[Etusivu] [Sisältö] [Luku I II III IV V VI] [Hakemisto]
[Ylempi pääsivu] [Edellinen sivu] [Seuraava sivu]


Raja-arvojen rationaaliset laskusäännöt

Seuraava tulos osoittaa, että jos jossain pisteessä tiedetään useiden eri funktioiden raja-arvoja, voidaan näistä rationaalisin lausekkein muodostettujen uusien funktioiden raja-arvot päätellä rationaalisin laskutoimituksin.

Rationaalisia lausekkeita voidaan muodostaa summa-, erotus, tulo- ja osamääräfunktioin. Ne tarkoittavat seuraavien funktioiden muodostamistapojen toistuvaa käyttöä. Kahden funktion ja summafunktio määritellään määrittelyjoukkojen leikkausjoukossa lausekkeella . Vastaavasti määritellään erotus , tulo ja osamäärä . Osamääräfunktion kohdalla on lisäksi jätettävä mahdolliset nimittäjän nollakohdat pois määrittelyjoukosta.

Lause 2.2.8. (Raja-arvojen rationaaliset laskusäännöt)

Jos funktioilla ja ovat (op./vp./mp.) raja-arvot olemassa jossain pisteessä, niin (op./vp./mp.) raja-arvoille ko. pisteessä on

(a)  ,

(b)  ,

(c)  

Todistus. Tulokset voidaan johtaa suoraan raja-arvojen määritelmistä. Käydään tässä läpi vain ensimmäisen kohdan summaa koskeva väite op. raja-arvoille. Muut kohdat voidaan todistaa samaan tapaan kuin jonoja koskevat säännöt lauseessa 2.1.7.

Olkoot

sekä olkoon . Silloin jollekin on

 

Tällöin

 

aina kun . Siten

kuten väitettiin.

 

Esimerkki 2.2.9.

Selvitetään onko raja-arvoa

 

olemassa. Pyritään käyttämään esimerkin 2.2.6 raja-arvoa hyväksi. Kun , voidaan tarkasteltavaa lauseketta muokata seuraavasti:

 

Tässä suhde on muotoa , missä (kun ). Esimerkin 2.2.6 mukaan tämän raja-arvo on 1. Samasta syystä lausekkeen raja-arvo on 1. Tulokseksi saadaan raja-arvojen rationaalisia laskusääntöjä käyttäen, että

 

 


[Ylempi pääsivu] [Edellinen sivu] [Seuraava sivu]

[Lähetä palautetta]