[Ylempi pääsivu] [Edellinen sivu] [Seuraava sivu]
Matematiikassa tarkastellaan usein muuttujien välisiä riippuvuuksia. Esimerkiksi neliön pinta-ala riippuu sen sivun pituudesta ja ympyrän kehän pituus ja pinta-ala riippuvat sen säteestä. Tällainen riippuvuus voidaan ilmaista kuvauksena, jossa tulos (pinta-ala, pituus, ...) ilmoitetaan riippuvuutena syötteestä (pituus, säde, ...). Esitetään seuraavassa kertauksen- ja luettelonomaisesti muutamia perusasioita kuvauksista.
• Funktio eli kuvaus on sääntö (relaatio), joka liittää kuhunkin lähtöjoukon eli määrittelyjoukon
alkioon
yhden (ja vain yhden) maalijoukon
alkion
. Tätä yhteyttä merkitään
ja alkiota
sanotaan alkion
kuvaksi tai funktion
arvoksi pisteessä
.
Esimerkkinä alla olevassa kuvassa 5 on esitettynä kuvaus ,
missä lähtöjoukkona on joukko
ja maalijoukkona joukko
. Tässä kuvauksessa on esimerkiksi
.
• Kuvauksessa osajoukon
kuva(joukko) on kaikkien joukon
alkioiden kuvien muodostama joukko
Yllä olevassa kuvan 5 esimerkissä joukon kuva on joukko
.
• Edellisestä erikoistapauksena funktion kuvajoukko eli arvojoukko on koko joukon
kuvajoukko
Kuvan 5 esimerkissä arvojoukko on .
• Osajoukon alkukuva on joukon
osajoukko
Joukon alkukuvasta käytetään myös merkintää
,
jotta tämä erottuisi myöhemmin esitettävästä käänteiskuvauksen kuvasta (ks. Bijektio ja käänteiskuvaus). Kuvan 5 esimerkissä joukon
alkukuva on joukko
.
• Edellisestä erikoistapauksena alkion alkukuva on joukko
Alkion alkukuvasta käytetään myös merkintää
. Kuvan 5 esimerkissä alkion
alkukuva on joukko
ja alkion
alkukuva on joukko
.
Opiskeluvideo: F1: Funktiot 1 − määritelmä
Opiskeluvideo: F2: Funktiot 2 − kuvajoukko
Opiskeluvideo: F3: Funktiot 3 − alkukuva
Opiskeluvideo: F4: Funktiot 4 − injektio