Käänteismatriisin laskeminen Gaussin ja Jordanin menetelmällä

Gaussin ja Jordanin algoritmia (ks. luku 3) voidaan käyttää myös käänteismatriisin laskemiseen. Menettelyn esittämistä varten olkoon kokoa oleva neliömatriisi, jolle käänteismatriisia pyritään etsimään. Merkitään sitä varten muodostetussa yhtälössä matriisin sarakkeita vektoreilla , , ..., . Yksikkömatriisin sarakkeet muodostuvat taas kantavektoreista , , ..., . Kun matriisilla kerrotaan matriisin jokin sarake, tulokseksi saadaan tulon vastaava sarake. Siten matriisiyhtälön ratkaiseminen on yhtäpitävää vektoriyhtälöiden , , ..., ratkaisemisen kanssa.

Matriisiyhtälön ratkaiseminen voidaan näin ollen tehdä sarakkeittain ja tehtävä voidaan siten periaatteessa paloitella yhtälön ratkaisemiseen. Algoritmisesti nämä yhtälöt voidaan kuitenkin ratkaista yhtäaikaisesti. Jokaisen yhtälön ratkaisemisessahan kerroinmatriisi on aina sama ja siten sen muokkaaminen yksinkertaisempaan muotoon voidaan ajatella tehtävän joka kerta samalla tavalla. Kokonaisuudessaan ideana onkin nyt siis pyrkiä kaaviosta muotoa olevaan kaavioon, josta silloin käänteismatriisi voitaisiin lukea.

Esimerkki 8.13.

Etsitään käänteismatriisia matriisille

.

Muodostetaan kaavio ja muokataan sitä samoilla säännöillä kuin aikaisemminkin. Se saadaan silloin muotoon

.

Vastaan tuli epätosi yhtälö (ja myös  ), joten päätelmänä on, että matriisilla ei ole käänteismatriisia. Se ei siis ole kääntyvä matriisi.

 

Esimerkki 8.14.

Määrätään käänteismatriisi matriisille

.

Muodostetaan ensin kaavio

 

ja muokataan sitä Gaussin ja Jordanin menetelmän sallimin keinoin ajatellen vain, että oikealla puolella on nyt kolmen eri yhtälöryhmän vakiotermit ja niitä muokataan yhtäaikaisesti. Vähennetään ensimmäinen rivi aluksi kahdella kerrottuna toisesta rivistä ja lisätään se sitten samalla kolmanteen riviin. Silloin saadaan kaavio

.

Nollaamalla toisen rivin avulla toisen sarakkeen alkiot ylä- ja alapuolelta (sekä muuttamalla toisen rivin lukujen merkit) saadaan kaavio

.

Kolmannen rivin avulla nollataan lopuksi kolmannen sarakkeen alkioita ja saadaan kaavio

.

Saatiin aikaan kaavio, jossa vasemmalla puolella on yksikkömatriisi. Tämä osoittaa, että lähtömatriisi on kääntyvä matriisi. Lisäksi sen käänteismatriisi voidaan nyt lukea kaavion oikealta puolelta. Tuloksena on siten, että

.

Tuloksen voi tarkistaa kertomalla matriisit ja keskenään - kumminpäin tahansa. Tulon on tietenkin oltava yksikkömatriisi kummassakin tapauksessa.

 

Opiskelutehtävä 31

Etsi käänteismatriisit, jos mahdollista, matriiseille

,         ja     .

Vinkki tehtävään 31

Opiskelutehtävä 32

Totea, että lauseen 8.10 kohta (c) pätee opiskelutehtävän 31 matriiseille ja , siis että .

Vinkki tehtävään 32

Havainnollistus: Käänteismatriisin laskeminen