[Ylempi pääsivu] [Edellinen sivu] [Seuraava sivu]
Olkoon äärellisen todennäköisyyskentän perusjoukko.
Satunnaismuuttujaksi sanotaan yleisesti mitä tahansa satunnaisilmiöön liittyvää funktiota
. Nopanheitossa se voi olla sama kuin tuloksena oleva silmäluku, kun taas lapsen sukupuolen määräytymisessä voidaan asettaa esimerkiksi, että
ja
.
Satunnaismuuttujan yhteydessä merkinnällä ,
missä
,
tarkoitetaan tapahtumaa
. Tämän avulla määritellään ns.
kertymäfunktio
,
jolle
. Äärelliseen todennäköisyyskenttään liittyvän kertymäfunktion kuvaaja on aina portaittain kasvava. Se saa arvonlisäyksen
kohdissa
ja on näitten välillä vakiosuuruinen.
Satunnaismuuttujan
tiheysfunktiolla eli
frekvenssifunktiolla taas tarkoitetaan kuvausta
,
jolle
. Tiheysfunktion saamista arvoista eli alkeistapausten todennäköisyyksistä muodostuu satunnaismuuttujan
jakauma. Sitä sanotaan myös satunnaisilmiön
todennäköisyysjakaumaksi.
Nopanheitossa perusjoukkona on ja satunnaismuuttujalle voidaan asettaa, että
joukossa
. Tiheysfunktio
saa aina arvon
ja kertymäfunktiolle
on
Kertymäfunktion kuvaaja on porrasfunktio. Piirrä tiheys- ja kertymäfunktion kuvaajat.
Heitettäessä noppaa neljästi olkoon saatujen kuutosten lukumäärä. Tiheysfunktio
saa silloin binomitodennäköisyyden mukaan arvot
Taulukoidaan tiheysfunktion ja kertymäfunktion
arvot näissä pisteissä:
Alla ovat vielä tiheys- ja kertymäfunktioiden kuvaajat. Kertymäfunktion arvo kokonaislukupisteissä on ylemmällä tasolla oleva arvo.
Satunnaismuuttujan jakaumaan liittyy pari sen reaaliakselille sijoittumista kuvaavaa tunnuslukua, nimittäin odotusarvo ja keskihajonta. Satunnaismuuttujan
odotusarvo on sen todennäköisyyksillä painotettu keskiarvo, ts.
kun ja
. Jakauman hajaantumista kuvaa taas
keskihajonta
Nopanheitossa silmäluvun ilmoittavan satunnaismuuttujan odotusarvo on
Tässä tapauksessa odotusarvo ei ole ollenkaan mahdollinen tulos. Odotusarvo ei siten välttämättä ole odotettavissa oleva arvo.
Nopanheitossa keskihajonnan neliö on
Heitettäessä noppaa neljästi olkoon saatujen kuutosten lukumäärä. Tiheysfunktion
arvot on taulukoitu esimerkissä 6.5.2. Odotusarvoksi saadaan siten
Yleisesti toistokokeeseen liittyvän binomijakauman odotusarvo on ja keskihajonta
,
kun
on toistojen lukumäärä ja
on tarkasteltavan tapahtuman onnistumistodennäköisyys. Todistus sivuutetaan tässä.
Edellisen tehtävän nopanheitossa on kyse binomijakaumasta, jossa ja
. Odotusarvoksi saadaan siten
ja keskihajonnaksi
1. Laatikosta, jossa on 6 valkoista ja 10 mustaa palloa, nostetaan umpimähkään 5 palloa. Määrää sen satunnaismuuttujan odotusarvo, joka ilmoittaa nostettujen valkoisten pallojen määrän. Tarvittavat todennäköisyydet ovat laskettavana pykälän Otanta ja toistokoe tehtävässä 1. Piirrä myös tiheys- ja kertymäfunktioiden kuvaajat.
2. Tee edellinen tehtävä ( 6 valkoisen ja 10 mustan pallon joukosta nostetaan umpimähkään 5 palloa) sillä muutoksella, että pallot pannaan joka noston jälkeen takaisin laatikkoon. Tarvittavat todennäköisyydet ovat laskettavana pykälän Otanta ja toistokoe tehtävässä 2.
3. Arpajaisissa on myytävänä 300 kahden euron hintaista arpaa. Päävoittona on 100 euroa, toisena voittona 40 euroa ja kolmantena 20 euroa. Muita voittoja ei ole. Laske yhdellä arvalla saatavan voiton odotusarvo.
4. Tarkastele pykälän Ehdollinen todennäköisyys tehtävän 8 hajamielisen herran sateenvarjon unohtamisilmiötä. Määrää sen satunnaismuuttujan odotusarvo, joka ilmoittaa sen, kuinka monenteen kauppaan sateenvarjo on unohtunut. Piirrä myös tiheys- ja kertymäfunktioiden kuvaajat.