[Ylempi pääsivu] [Edellinen sivu] [Seuraava sivu]
1. Olkoon on mielivaltainen
-matriisi ja
diagonaalimatriisi, jonka lävistäjäalkiot ovat 2, 3 ja 4. Muodosta tulot
ja
.
Mitä diagonaalimatriisilla kertomista koskevia sääntöjä voit päätellä tuloksista?
2. Tarkastellaan seuraavista kolmesta matriisista
saatavia matriisilausekkeita. Jos ,
ja
voidaan valita samoiksikin matriiseiksi, selvitä mitkä muotoa
olevat lausekkeet on määritelty ja laske sitten ne (yhteensä selvitettävänä on 27 eri mahdollisuutta).
3. Tehtävänäsi on seuraavassa kuvatulla menettelyllä johtaa sinin ja kosinin summakulmakaavat ( ja
). Olkoon
tason kierto kulman
verran (jolloin
).
(a) Muodosta lineaarikuvausta vastaava matriisi
.
(b) Muodosta tason kiertoa kulman verran vastaava matriisi
.
(c) Muodosta yhdistettyä lineaarikuvausta vastaava matriisi.
(d) Vertaa kohtien (b) ja (c) tuloksia keskenään.
4. Millä luvun arvoilla matriisitulot
ja
ovat samat, kun
5. Keksi jokin sellainen matriisista eroava matriisi
,
että
(vaikka
), kun
käänteismatriisi. (Tarkista tulos!)
7. Etsi käänteismatriisit matriiseille
8. Määrää lineaarikuvauksen käänteiskuvaus.
9. Määrää Gaussin ja Jordanin menetelmällä käänteismatriisi matriisille
10. Määrää alla olevan matriisin käänteismatriisi ja ratkaise sen avulla matriisi
alla olevasta yhtälöstä:
11. Määrää sellainen kerroin ,
että matriisi
on ortogonaalinen, kun
12. Määrää seuraavan matriisin käänteismatriisi:
Vihje: Voit tehdä sen esimerkiksi Gaussin ja Jordanin menetelmällä. Mutta voit ratkaista tehtävän myös toisin, kun ensin mietit missä mielessä matriisi on erikoinen! Vrt. edellinen tehtävä.