Määrää jatkuvan ja aidosti vähenevän funktion
:
a ) arvojoukko
, kun määrittelyjoukko
.
a ) Keksi ainakin kaksi erilaista funktioparia
ja
, jotka toteuttavat yhdistetyn funktion
b ) Millainen sisäfunktio
toteuttaa yhdistetyn funktion
, kun ulkofunktio
a ) Määritä
tuntematta käänteisfunktiota.
b ) Määritä
tuntematta käänteisfunktiota.
Mitä voit kertoa funktion nollakohdista, kun tiedetään, että funktion
arvojoukko on
ja määrittelyjoukossaan
funktio on
Toisen asteen polynomifunktiosta
tiedetään. että sen
a ) Toisen asteen termin kerroin
ja diskriminantti
.
b ) Toisen asteen termin kerroin
ja diskriminantti
.
c ) Funktion nollakohdat ovat
ja
ja funktion kuvaaja on alaspäin aukeava paraabeli, jonka huippu sijaitsee
-koordinaatiston pisteessä (3, 4).
Piirrä kullekin tapaukselle esimerkkikuva. Määrää lisäksi funktio, joka toteuttaa ehdot.
Funktio
on parillinen jos
ja pariton jos
. Parillisen funktion kuvaaja on symmetrinen koordinaatiston y-akselin suhteen ja parittoman origon suhteen. Tutki ovatko seuraavat funktiot parillisia vai parittomia vai eivätkö kumpaakaan: