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SUPERHARMONIC FUNCTIONS ARE LOCALLY

RENORMALIZED SOLUTIONS

TERO KILPELÄINEN, TUOMO KUUSI, AND ANNA TUHOLA-KUJANPÄÄ

Dedicated to Peter Lindqvist on the occasion of his 60th birhtday

Abstract. We show that different notions of solutions to measure data
problems involving p-Laplace type operators and nonnegative source
measures are locally essentially equivalent. As an application we char-
acterize singular solutions of multidimensional Riccati type partial dif-
ferential equations.

1. Introduction

Consider elliptic quasilinear type equations

(1.1) − div(A(x,Du)) = μ,

in an open set Ω ⊂ Rn, where μ is a nonnegative Radon measure and
the operator div(A(x,Du)) is a measurable perturbation of the p-Laplacean
operator

Δpu = div(|Du|p−2Du)), 1 < p ≤ n.

The natural domain of definition for the operator div(A(x,Du)) isW 1,p
loc (Ω).

Then, however, u �→ div(A(x,Du)) is locally in W−1,p′(Ω). Consequently,

equation (1.1) carries no solutions u in W 1,p
loc (Ω) if the measure data μ is not

in the dual. On the other hand, if μ ∈ W−1,p′(Ω), the existence of solutions
is a straightforward consequence of duality methods in view of the weak
continuity of the operator, see e.g. [23]. Moreover, the reader is asked to
examine functions

(1.2) u(x) =

∫ 1

|x|
rγ−1 dr

that for γ = (p − n)/(p − 1) yield a reasonable distributional solution to
equation (1.1), where the operator is the p-Laplacean and μ is a multiple
of the Dirac measure - a measure outside the dual. From this example we
also infer that the maximal regularity for a general solution cannot reach
n′-integrability of |Du|p−1.

In conclusion, in order to solve equation (1.1) with a general Radon mea-
sure one is forced to look outside the natural domain of the operator (see
Section 2 for a more accurate description). A relevant existence theory for
equations with general signed measure data was developed by Boccardo &
Gallouët [6] for p > 2 − 1/n (this restriction, dictated by the fact that the
fundamental solution in (1.2) does not have a distributional derivative at the
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origin, can be dispensed with by using a weaker derivative, see [21]). Their
method is based on a suitable approximation of the measure μ. The main
task pursued there was showing necessary a priori summability estimates
for the gradients of solutions that allow for viable compactness arguments.
The solutions produced in [6] are often called SOLA (Solutions Obtained as
Limits of Approximations), emphasizing the fact that these are limit func-
tions of solutions to equations with regularized source measures from the
dual of W 1,p converging weakly to the original measure. Regularity theory
for SOLA is a widely studied field, see for example [29, 30, 31] and the
references therein.

As known e.g. by the example given by Serrin [35] the distributional
solutions to (1.1) do not solve the Dirichlet problem in a unique manner.
Thus there arose attempts to arrive at the unique solvability by imposing
new requirements for u to be a solution.

When μ belongs to L1, alternative solutions were called entropy or renor-
malized solutions, introduced independently by Bénilan et. al. [4], Dall’Aglio
[7], and by Lions & Murat [25], and in these works also the uniqueness of
renormalized solutions was settled, but only when μ ∈ L1. Later, Dal Maso
et. al. [11] generalized the concept for general measures. These renormal-
ized solutions allow for testing the equation with Lipschitz functions of the
solution itself provided that the derivative of the test function is compactly
supported; see Section 2.3 for the precise definition. Again, renormalized
solutions are SOLA in the above sense.

In the case of nonnegative measures, Kilpeläinen & Malý [21] established
a clear connection between existence theory and nonlinear potential the-
ory. In particular, it was shown that every nonnegative measure induces
an A-superharmonic solution for all p > 1 and that obtained solutions are
SOLA as well.A class of A-superharmonic functions consists of (pointwise
defined) lower semicontinuous functions satisfying a comparison with re-
spect to solutions to homogenous equations. See Section 2.1 for definitions
and [19] for the rich theory behind such functions. In light of the fundamen-
tal convergence theorem, stating that under mild integrability conditions
properly pointwise defined limits of A-superharmonic functions remain A-
superharmonic, it is easy to see that SOLA have A-superharmonic represen-
tatives whenever μ can be approximated with nonnegative smooth measures.

In this paper we study the connection between A-superharmonic functions
and renormalized solutions. Our main result is that every A-superharmonic
function is locally a renormalized solution. We also show the converse, i.e.
that every renormalized solution has an A-superharmonic representative. In
this respect, our result unifies the existence theory in the case of nonnega-
tive measures and allows for very sharp testing of superharmonic functions
provided by the definition of renormalized solutions. More importantly, su-
perharmonic functions form a class of pointwise defined solutions to (2.6)
equivalent with SOLA and renormalized solutions whenever the source mea-
sure is nonnegative.
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As an application for our main result we characterize all W 1,p solutions
to Riccati type equation

(1.3) −Δpu = |∇u|p, p > 1 .

We show that the transformation

(1.4) u �→ e
u

p−1

gives an one-to-one correspondence between the solutions to (1.3) and those
p-superharmonic functions whose Riesz measures are singular with respect
to the p-capacity. More precisely, for each nonnegative Radon measure μ,
singular with respect to the p-capacity, any (SOLA) solution of −Δpv = μ
has a p-superharmonic representative and it can be transformed to a solution
u to (1.3) by the inverse of the transformation (1.4). Conversely, if u is

a solution to the Riccati equation (1.4), then e
u

p−1 is a p-superharmonic
function whose Riesz measure is supported in a set of p-capacity zero.

A corresponding result was proved in the Laplacean case in [38] by using
the linear potential theory. In the nonlinear case, results in the akin spirit
were obtained independently by Abdel Hamid & Bidaut-Véron [1]; however
our argument is fairly simple and our result completes the story.

The Riccati type equations, especially related existence and uniqueness
questions, are widely studied, see for instance [1, 2, 3, 8, 12, 13, 14, 15, 16,
17, 20, 26, 27, 33, 34].

2. Tools from nonlinear potential theory

Throughout this paper we let Ω stand for an open set in Rn, n ≥ 2, and
μ be a nonnegative Radon measure in Ω. Moreover, we let 1 < p < ∞ be
a fixed number. Throughout, c and C (and c(a, b, d)) will denote positive
constants (depending on data a, b, d) whose value is not necessarily the same
at each occurrence.

Let A : Ω × Rn �→ Rn be a Carathéodory function, that is, (x, ξ) �→
A(x, ξ) is measurable for every ξ ∈ Rn and ξ �→ A(x, ξ) is continuous for
almost every x ∈ Ω. We assume the growth conditions

〈A(x, ξ), ξ〉 ≥ α0|ξ|p, and |A(x, ξ)| ≤ β0|ξ|p−1,(2.1)

for all ξ ∈ Rn and for almost every x ∈ Ω, and the monotonicity condition

(2.2) 〈A(x, ξ)−A(x, ζ), ξ − ζ〉 > 0

for all ξ �= ζ in Rn and for almost every x ∈ Ω. Here α0 and β0 are positive
constants.

2.1. A-superharmonic functions. A continuous function h ∈ W 1,p
loc (Ω) is

said to be A-harmonic in Ω if it is a weak solution to

− div(A(x,∇h)) = 0,

that is, ∫
Ω
〈A(x,∇h),∇ϕ〉 dx = 0

for all ϕ ∈ C∞
0 (Ω).

A lower semicontinuous function u : Ω → R ∪ {∞} is called A-super-
harmonic if u �≡ ∞ in each component of Ω, and for each open U � Ω and
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each h ∈ C(U) that is A-harmonic in U , the inequality u ≥ h on ∂U implies
u ≥ h in U .

The following characterization for A-superharmonicity is our starting
point. For the proof, see for example [19].

2.3. Proposition. Suppose that u is an a.e. finite function in Ω. Then u
has an A-superharmonic representative if and only if the truncations uk =
min(u, k) are supersolutions to

− div (A(x,∇u)) ≥ 0

for each k > 0, i.e. uk ∈ W 1,p
loc (Ω) and∫

Ω
〈A(x,∇uk),∇ϕ〉 dx ≥ 0

for all nonnegative ϕ ∈ C∞
0 (Ω).

Recall that the pointwise values of an A-superharmonic function are
uniquely determined by its values a.e. since

u(x) = ess lim inf
y→x

u(y),

for each x; see [19, Theorem 7.22].
We denote by Tk(t) = min(k,max(t,−k)) the usual truncation operator.

Following the tradition of the potential theory we use the very weak gradient

Du = lim
k→∞

∇Tk(u)

for such u whose truncations are Sobolev functions, see [19, 21].
A frequently used property of A-superharmonic functions is the local

summability:

2.4. Theorem. [19, Theorem 7.46] If u is A-superharmonic in Ω, then u ∈
Ls
loc(Ω) and |Du|p−1 ∈ Lq

loc(Ω) whenever

0 < s <
n(p− 1)

n− p
and 0 < q <

n

n− 1
;

for p = n any finite s is allowed; for p > n, u ∈ W 1,p
loc (Ω).

A function u is a solution to

(2.5) − div (A(x,∇u)) = μ

if

(2.6)

∫
Ω
〈A(x,Du),∇ϕ〉 dx =

∫
Ω
ϕdμ

for all ϕ ∈ C∞
0 (Ω). Here, of course, one must have that A(x,Du) is locally

integrable. For an A-superharmonic function u this assumption is satisfied
by Theorem 2.4 and, indeed, for any nonnegative measure μ there is an
A-superharmonic function solving (2.5), see [21]. Conversely, for any A-
superharmonic function there exists a unique nonnegative Radon measure μ
such that u solves equation (2.5). This measure μ is called the Riesz measure
of u, and it is often denoted by μ[u].

We shall later employ the fact that the truncations uk = min(u, k) are also
A-superharmonic and their Riesz measures μ[uk] are locally in the dual of
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the Sobolev space W 1,p (see Proposition 2.3); moreover μ[uk] → μ[u] weakly
in Ω.

Recall also the two-sided Wolff potential estimate ([22],[24], [32], [39, 40]):
if u is a nonnegative A-superharmonic solution to (2.5) in B(x, 2r) ⊂ Ω, then
there is a constant c = c(n, p, α0, β0) such that

(2.7)
1

c
Wμ,r(x) ≤ u(x) ≤ c

(
ess inf
B(x,r)

u+Wμ,r(x)

)
,

where

Wμ,r(x) =

∫ r

0

(
μ(B(x, 	))

	n−p

)1/(p−1) d	

	
.

Observe carefully that all A-superharmonic functions with the Riesz mea-
sure μ satisfy the estimate. This fact suggests a definition of a class of
functions, namely

Sμ,r,L(Ω
′) = {u :

1

c
Wμ,r(x) ≤ u(x) ≤ L+ cWμ,r(x) ∀x ∈ Ω′} ,

for some r > 0, L ≥ 0, and Ω′ � Ω. We indeed have the following.

2.8. Proposition. Let u be a nonnegative A-superharmonic function with
the Riesz measure μ in a bounded domain Ω. Let Ω′ � Ω. For every 0 <
r < dist(Ω′, ∂Ω)/2, there is a constant L < ∞ for which u ∈ Sμ,r,L(Ω

′).

Proof. The first inequality in the definition of Sμ,r,L(Ω
′) readily follows from

the Wolff potential estimate (2.7). To deduce the second inequality from
the same estimate we need to have an upper bound for infB(y,r) u with

an arbitrary y ∈ Ω′. This easily follows from Theorem 2.4: there is γ =
γ(n, p) > 0 such that

inf
B(y,r)

u ≤
(∫

B(y,r)
uγ dx

)1/γ

≤ c

(
r−n

∫
Ω′+Br

uγ dx

)1/γ

< ∞

for all y ∈ Ω′, as desired. �
2.2. Decomposition of measures. The p-capacity capp(B,Ω) of any set
B ⊂ Ω is defined in the standard way: the p-capacity of a compact set
K ⊂ Ω is

capp(K,Ω) = inf

{∫
Ω
|∇ϕ|p dx : ϕ ∈ C∞

0 (Ω), ϕ ≥ 1 on K

}
.

The p-capacity of an open set U ⊂ Ω is then

capp(U,Ω) = sup
{
capp(K,Ω) : K compact, K ⊂ U

}
;

and for an arbitrary set E ⊂ Ω

capp(E,Ω) = inf
{
capp(U,Ω) : U open, E ⊂ U

}
.

There is also a dual approach to the capacity. Indeed, define

c̃app(E,Ω) := sup{ν(E) : ν ∈ (W 1,p
0 (Ω))′, supp ν ⊂ E, ν ≥ 0,

−Δpw = ν such that 0 ≤ w ≤ 1}
for E ⊂ Ω. Then by [22, Theorem 3.5] we have

c̃app(E,Ω) = capp(E,Ω)
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whenever E ⊂ Ω is a Borel set.
A set E is called polar if there is an open neighborhood U of E and an A-

superharmonic function u in U such that u = ∞ on E. We will later employ
the fact (see e.g. [19]) that a set E is polar if and only if is of p-capacity
zero, that is

capp(E ∩ U,U) = 0

for all open sets U ⊂ Rn.
For every Radon measure μ we denote with μ0 the part which is absolutely

continuous with respect to the p-capacity and with μs the singular part with
respect to the p-capacity, i.e.

μ = μ0 + μs,

where μ0 << capp (meaning that μ0(E) = 0 for each set E of p-capacity
zero), and μs ⊥ capp (meaning that there is a Borel set F of p-capacity zero
for which μs(R

n \ F ) = 0). The support of the singular part is contained
in the polar set of corresponding A-superharmonic functions, as the next
lemma shows.

2.9. Lemma. Let u be A-superharmonic with the Riesz measure μ. Then

μs({u < ∞}) = 0 ,

where μs is the singular part of μ (with respect to the p-capacity).

Proof. Our goal is to estimate the measure μs on the set {u < ∞} by
employing the dual definition of the capacity. To this end, we first recall a
general fact that if ∫

Ω
Wν,r(x) dν < ∞

for a measure ν and for some r > 0, then ν belongs to (W 1,p
0 (Ω))′, see [18]

and also [28], [41].
Let then E ⊂ Ω be a set such that capp(E) = 0 and μs(Ω \ E) = 0. For

every k > 0 denote Ek = E ∩{u < k}. Fix k > 0 and take a compact subset
K ⊂ Ek. By the compactness, the distance of K and ∂Ω, say r, is positive.
Now the Wolff potential estimate (2.7) implies

Wμ�K ,r/8(x) ≤ Wμ,r/8(x) ≤ cu(x) < ck

for all x ∈ K. Thus∫
Ω
Wμ�K ,r/8(x) dμ�K≤ ckμ(K) < ∞

and hence μ�K belongs to the dual of W 1,p
0 (Ω).

Next, let v be a nonnegative A-superharmonic function solving

−Δpv = μ�K
in Ω with v ∈ W 1,p

0 (Ω). By the Wolff potential estimate (2.7) we have that

v(x) ≤ L+ ck

for all x ∈ K (see Proposition 2.8). Since v is A-harmonic in Ω \ K, the
maximum principle yields

0 ≤ v ≤ L+ ck
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in Ω. Hence, for M = L+ ck, w = v/M solves

−Δpw = Mp−1μ�K∈ (W 1,p
0 (Ω))′ , 0 ≤ w ≤ 1 ,

and therefore it is an admissible function to test the dual capacity of K. It
follows that

μ(K) ≤ Mp−1c̃app(K,Ω) = Mp−1capp(K,Ω) ≤ Mp−1capp(E,Ω) = 0 ,

where we used the equivalence of capacities. Thus μ(Ek) = 0, and hence

μs({u < ∞}) ≤ μs(Ω \ E) +

∞∑
k=1

μs(Ek) = 0 .

�

2.3. Locally renormalized solutions. If μ is a nonnegative Radon mea-
sure in an open set Ω, we say that a function u is a local renormalized solution
to (2.5) in Ω if

Tk(u) ∈ W 1,p
loc (Ω) for all k > 0 ,

|u|p−1 ∈ Ls
loc(Ω) for all 1 ≤ s <

n

n− p
,

|Du|p−1 ∈ Lq
loc(Ω) for all 1 ≤ q <

n

n− 1
,

(2.10)

and ∫
Ω
〈A(x,Du),Du〉 h′(u)φdx+

∫
Ω
〈A(x,Du),∇φ〉 h(u) dx

=

∫
Ω
h(u)φdμ0 + h(+∞)

∫
Ω
φdμs

(2.11)

is satisfied for all φ ∈ C∞
0 (Ω) and h ∈ W 1,∞(R) such that h′ has a compact

support; here

h(∞) = lim
t→∞h(t) .

This definition is a local version for a nonnegative measure μ of a renor-
malized solution used by Dal Maso, Murat, Orsina, and Prignet in [11] for
general signed measures. The localization was then made by Bidaut-Véron
in [5]. The most important feature in the localization is that the test function
φ is required to be compactly supported in (2.11).

We would like to write the condition (2.11) for short as

(2.12)

∫
Ω
〈A(x,Du),D(h(u)φ)〉 dx =

∫
Ω
h(u)φdμ ,

where h and φ are as above. This, however, requires some care: the left
hand sides of both (2.11) and (2.12) clearly agree for all a.e. representatives
of u. The same is not true for the right hand sides. Indeed,∫

Ω
h(u)φdμ =

∫
Ω
h(u)φdμ0 +

∫
Ω
h(u)φdμs .

The first integral on the right is easily settled: the integration against μ0

is independent of the chosen p-quasicontinuous representative of u as these
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agree q.e. and hence μ0-a.e. That∫
Ω
h(u)φdμs = h(∞)

∫
Ω
φdμs

for all h and φ is more tricky: it requires u to be Borel measurable (or
μs-measurable) and, more importantly, that u = ∞ μs-a.e. By Lemma 2.9
A-superharmonic representatives (if exist) have these properties, since they
are lower semicontinuous.

We will proceed in showing that locally renormalized supersolutions have
A-superharmonic representatives whenever μ is nonnegative. For such func-
tions the condition (2.12) is a legitimate way to write the equation (2.11).
The first task is to show that renormalized solutions are locally bounded
below. This will readily imply by the assumption Tk(u) ∈ W 1,p

loc (Ω) that also

min(u, k) ∈ W 1,p
loc (Ω) for all k > 0.

2.13. Lemma. Let μ be nonnegative and let u be a local renormalized solution
to (2.5) in Ω. Then u is locally essentially bounded below.

Proof. Choose first the test function

hε(u) =
1

ε
min{ε, u+} − 1, ε > 0,

and let h ∈ W 1,∞(R) be nonnegative with h′ having a compact support.
Let φ ∈ C∞

0 (Ω) be nonnegative. On the one hand, we have

hε(+∞)h(+∞)

∫
Ω
φdμs = 0,

∫
Ω
hε(u)h(u)φdμ0 ≤ 0,

and ∫
Ω
〈A(x,Du),∇hε(u)〉 h(u)φdx ≥ 0.

On the other hand, the dominated convergence theorem gives∫
Ω
〈A(x,Du),∇ (h(u)φ)〉hε(u) dx →

∫
Ω
〈−A(x,−Du−),∇ (h(u)φ)〉 dx

as ε → 0. Thus v := u− satisfies

min(v, k) ∈ W 1,p
loc (Ω), k > 0,

and

(2.14)

∫
Ω

〈
Ã(x,Dv),∇ (h(v)φ)

〉
dx ≤ 0

for all φ and h as above. Here Ã(x, z) := −A(x,−z). This means that v
is a nonnegative distributional subsolution for which a priori integrability
requirements are not necessarily fulfilled. We now proceed to show that v is
actually locally bounded and thus a usual weak subsolution. We establish
this using the method in [22].

Define

hk,d,ε(v) = 1−
(
1 +min

(
(v − k)+

d
,
1

ε

))1−τ

, k, d, ε > 0, τ > 1,
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which we can substitute into (2.14). Note that h′k,d,ε ≥ 0. We then have
by the monotone convergence together with the assumed summability of
|Dv|p−1 that

0 ≥
∫
Ω

〈
Ã(x,Dv),∇ (hk,d,ε(v)φ

p)
〉
dx

≥ 1

C

∫
Ω
|Dv|ph′k,d,ε(v)φp dx− C

∫
Ω
|Dv|p−1hk,d,ε(v)φ

p−1|Dφ| dx

→ 1

C

∫
Ω
|Dv|ph′k,d(v)φp dx− C

∫
Ω
|Dv|p−1hk,d(v)φ

p−1|Dφ| dx

as ε → 0, where

hk,d(v) := 1−
(
1 +

(v − k)+
d

)1−τ

, k, d > 0, τ > 1.

This energy estimate is enough for showing [22, Lemma 4.1]. Indeed, now
one may mimic the proof starting from [22, (4.5)] with obvious changes
v ≡ u and μ ≡ 0. We then continue as in the proof of [22, Theorem 4.8],
with only slight differences: let x0 ∈ Ω be a Lebesgue point of vγ and let
r < dist(x0, ∂Ω)/2. Assume that

p− 1 < γ <
n(p− 1)

n− p+ 1
.

Denote Bj = B(x0, rj), where rj = 21−jr. Let a0 = 0 and for j ≥ 1 let

aj+1 = aj + δ−1

(∫
Bj+1

(v − aj)
γ
+ dx

)1/γ

,

where δ > 0 is a suitable small constant. Note that aj < ∞ since v = u− ∈
Lγ
loc(Ω) by the assumptions. Now applying [22, Lemma 4.1] one can deduce

as in the proof of [22, Theorem 4.8] that aj+1− aj ≤ (aj − aj−1)/2 implying
by telescoping argument that

a := lim
j→∞

aj ≤ 2a1 = C

(∫
B1

vγ dx

)1/γ

.

Hence the sequence (aj) is bounded and increasing. Therefore, we have

(v(x0)− a)γ+ = lim
j→∞

∫
Bj

(v − a)γ+ dx ≤ lim
j→∞

∫
Bj

(v − aj)
γ
+ dx

= lim
j→∞

Cδ(aj − aj−1) = 0 .

Thus

u−(x0) = v(x0) ≤ a ≤ C

(∫
B0

|u|γ dx
)1/γ

and hence u is locally essentially bounded below by the assumed summability
of u. �

We are ready to prove that for nonnegative measures μ each local renor-
malized solution has an A-superharmonic representative.
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2.15. Theorem. Suppose that u is a local renormalized solution to (2.5) in
Ω with a nonnegative μ. Then there is an A-superharmonic function ũ such
that ũ = u a.e. and, moreover, ũ satisfies (2.12), i.e.∫

Ω
〈A(x,Dũ),∇(h(ũ)φ)〉 dx =

∫
Ω
h(ũ)φdμ

for all φ ∈ C∞
0 (Ω) and h ∈ W 1,∞(R) such that h′ has a compact support.

Proof. In the light of the discussion after (2.12) it suffices to find an A-
superharmonic representative for u. To this end, let φ ∈ C∞

0 (Ω) be nonneg-
ative. For ε > 0 and k > 0 write

hk,ε(t) =
1

ε
min((k + ε− t)+, ε) .

Since h′k,ε(t) ≤ 0, we have∫
Ω
〈A(x,Du),Du〉 h′k,ε(u)φdx ≤ 0.

Moreover, the nonnegativity of μ and φ imply∫
Ω
hk,ε(u)φdμ0 + hk,ε(+∞)

∫
Ω
φdμ+

s ≥ 0.

Thus, (2.11) yields ∫
Ω
〈A(x,∇uk),∇φ〉 dx ≥ 0

once we let ε → 0 and refer to the dominated convergence theorem; here
uk = min(u, k).

Since u is locally bounded from below by Lemma 2.13, uk ∈ W 1,p
loc (Ω)

is an ordinary supersolution. Therefore each uk has an A-superharmonic
representative ũk. We conclude the proof by observing that the desired
representative of u is then given by

ũ = lim
k→∞

ũk

as it is A-superharmonic, being an increasing limit of A-superharmonic func-
tions. �

3. Superharmonic functions are locally renormalized

Before proving our main theorem, we establish the existence of an auxil-
iary comparison function. The result relies on the existence of renormalized
solutions.

3.1. Lemma. Let μ be a nonnegative Radon measure supported in B(0, R).
Then there is an A-superharmonic function w solving{

− div(A(x,Dw)) = μ in B(0, 4R),

w = 0 on ∂B(0, 4R),

such that for all 0 < r < R there is a positive constant L < ∞ such that

w ∈ Sμ,r,L(B(0, 4R))
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and ∫
B(0,4R)

|∇(min(w, 2λ) − λ)+|p dx ≤ λ

α0
μ ({Wμ,r > λ/L} ∩B(0, R))

for all λ > L.

Proof. We first obtain by [11, Definition 2.25] the existence of a renormalized

solution v to the equation in the formulation vanishing on ∂B(0, 4R) inW 1,p
0 -

sense. Theorem 2.15 implies that v has an A-superharmonic representative
w satisfying (2.12).

Observe next that since w is an A-superharmonic function, it is nonneg-
ative by the minimum principle. Proposition 2.8 gives a constant L0 < ∞
such that

w ∈ Sμ,r,L(B(0, 2R))

for L ≥ L0. The Wolff potential estimate (2.7) implies that w is locally
bounded outside the support of μ, hence w is locally in W 1,p there; in
particular w is A-harmonic in B(0, 4R) \ B(0, R) (cf. [28, Corollary 3.19]).
Thus the maximum principle gives

sup
B(0,4R)\B(0,2R)

w ≤ L0.

Consequently, we may take any L ≥ L0 to obtain

w ∈ Sμ,r,L(B(0, 4R)).

The potential estimate also leads to the inclusion

{w > L0 + ck} ⊂ {Wμ,r > k}
for all k ∈ R. Fix k = λ/c − L0, λ > 0. We have for all λ > 2cL0 that
k > λ/(2c). Thus,

{w > λ} ⊂ {Wμ,r > λ/(2c)}
holds for all λ > 2cL0.

Finally, we test the renormalized equation of w with

h(w) = (min(w, 2λ) − λ)+,

λ > 2cL0 > 0, which is clearly admissible since h is Lipschitz continuous
and h′ has a compact support. Moreover, since w vanishes continuously on
the boundary of B(0, 4R), h(w) has a compact support in B(0, 4R) and, in

particular, h(w) ∈ W 1,p
0 (B(0, 4R)). We have

λμ ({Wμ,r > λ/(2c)} ∩B(0, R)) ≥
∫
B(0,R)

h(w) dμ

=

∫
B(0,4R)

〈A(x,∇w),∇h(w)〉 dx ≥ α0

∫
{λ<w<2λ}∩B(0,4R)

|∇w|p dx

= α0

∫
B(0,4R)

|∇(min(w, 2λ) − λ)+|p dx

and the result follows for L := 2cmax{L0, 1}. �

The heart of this paper is the following.



12 KILPELÄINEN, KUUSI, AND TUHOLA-KUJANPÄÄ

3.2. Theorem. Suppose that u is an A-superharmonic solution to (2.5).
Suppose further that v is A-superharmonic and that for all Ω′ � Ω and for
all small r > 0 there is L < ∞ such that

u, v ∈ Sμ,r,L(Ω
′).

Let h : R×R �→ R be Lipschitz and let ∇h have a compact support. Then∫
Ω
h(u, v)φdμ =

∫
Ω
〈A(x,Du),∇(h(u, v)φ)〉 dx

for all φ ∈ C∞
0 (Ω).

Proof. Denote uj = min(u, j), j > 0. Let k be so large that h(u, v) =
h(uk, vk). Let φ ∈ C∞

0 (Ω) and let Ω′ � Ω be a smooth domain such that
the support of φ belongs to Ω′.

Let ε > 0 and
Kε ⊂ {Wμ,1 = +∞} ∩Ω′

be a compact set such that

μs(Ω
′ \Kε) < ε.

Set

r =
1

2
min{dist(Ω′, ∂Ω),dist(Kε, {max(u, v) ≤ k})} > 0

and denote
Sε := {x ∈ Rn : dist(x,Kε) ≤ r}.

Take
θε ∈ C∞

0 ({min(u, v) > k}), 0 ≤ θε ≤ 1,

such that
θε = 1 on Sε.

In particular, in the support of θεφ, h(u, v) = h(k, k) is a constant. Define
further

με = μ�Ω′\Kε
,

i.e., the restriction of μ to the set Ω′ \ Kε. Note that με(E) ≤ μ0(E) + ε
whenever E is a Borel set. Observe that we have

Wμ,r = Wμε,r in Ω′ \ Sε.

This yields the inclusion

Sμε,r,L(Ω
′) ⊂ Sμ,r,L(Ω

′ \ Sε)

for all L ≥ 0.
Next, let R be large enough so that Ω′ ⊂ B(0, R) and let wε be an A-

superharmonic renormalized solution to{
− div(A(x,Dwε)) = με in B(0, 4R),

wε = 0 on ∂B(0, 4R).

By Lemma 3.1, there is a constant L̃ < ∞ such that

wε ∈ S
με,r,˜L

(Ω′) ⊂ S
μ,r,˜L

(Ω′ \ Sε),

and for

ψλ =
(min{wε, 2λ} − λ)+

λ
,
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the estimate∫
Ω
|∇ψλ|p dx ≤Cλ1−pμε

({Wμ,r > λ/C} ∩ Ω′)
≤Cλ1−p

(
μ0

({Wμ,r > λ/C} ∩ Ω′)+ ε
)(3.3)

holds for all λ > L̃.
Furthermore, the assumption of the theorem provides us L such that

u, v ∈ Sμ,r,L(Ω
′ \ Sε)

and thus

wε, u, v ∈ Sμ,r,max{L,˜L}(Ω
′ \ Sε).

Consequently, wε, u, and v are comparable. In particular, there is a constant
C < ∞ such that

{max(u, v) > Cλ} ∩ (Ω′ \ Sε) ⊂{wε > λ} ∩ (Ω′ \ Sε)

⊂{min(u, v) > C−1λ} ∩ (Ω′ \ Sε)

holds for all λ > C.
Next we observe that by the choice of θε we have∫

Ω
h(u, v)φθε dμ = h(k, k)

∫
Ω
φθε dμ

= h(k, k)

∫
Ω
〈A(x,Du),∇(φθε)〉 dx

=

∫
Ω
〈A(x,Du),∇(h(u, v)φθε)〉 dx.

(3.4)

Indeed, θε has been chosen so that its support does not intersect the support
of ∇h. Our goal is hence to show that∣∣∣∣∫

Ω
h(u, v)φ(1−θε) dμ −

∫
Ω
〈A(x,Du),∇(h(u, v)φ(1−θε))〉 dx

∣∣∣∣
is small by means of ε, eventually leading to the result of the theorem. To
prove this, we use the truncated equation of u, i.e.

− div(A(x,∇um)) = μ[um],

m ∈ N.
First, since both uk and vk are p-quasicontinuous and in W 1,p(Ω′), there

are sequences uk,j and vk,j of smooth functions converging in W 1,p(Ω′) and
p-quasieverywhere to uk and vk, respectively. In particular, uk,j → uk and
vk,j → vk μ0-almost everywhere. This readily implies that h(uj,k, vj,k) con-
verges weakly to h(uk, vk) in W 1,p(Ω′). Recall that h(uk, vk) = h(u, v) by
the choice of k. We have by the weak convergence of μ[um] to μ that∫

Ω
h(uk,j, vk,j)(1−θε)φdμ[um] →

∫
Ω
h(uk,j, vk,j)(1−θε)φdμ.

Furthermore, by the p-quasieverywhere convergence and the dominated con-
vergence theorem, we obtain∫

Ω
h(uk,j, vk,j)(1−θε)φdμ0 →

∫
Ω
h(u, v)(1−θε)φdμ0
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as j → ∞ and the estimate∫
Ω
h(uk,j , vk,j)(1−θε)φdμs ≤ ε‖h‖∞‖φ‖∞

holds by Lemma 2.9 and the choice of θε. Hence we obtain

(3.5) lim sup
j→∞

∣∣∣∣∫
Ω
h(uk,j, vk,j)(1−θε)φdμ −

∫
Ω
h(u, v)(1−θε)φdμ

∣∣∣∣ ≤ Cε

with C independent of ε.
Next, rewrite∫

Ω
h(uk,j , vk,j)(1−θε)φdμ[um]

=

∫
Ω
ψλh(uk,j , vk,j)(1−θε)φdμ[um]

+

∫
Ω
(1− ψλ)h(uk,j , vk,j)(1−θε)φdμ[um].

(3.6)

We estimate the first integral on the right as

(3.7)

∫
Ω
ψλh(uk,j , vk,j)(1−θε)φdμ[um] ≤ ‖h‖∞

∫
Ω
ψλ(1−θε)φdμ[um]

and then use the structure of A to obtain∫
Ω
ψλ(1−θε)φdμ[um] =

∫
Ω
〈A(x,∇um),∇(ψλ(1−θε)φ)〉 dx

≤β0‖φ‖∞
∫
Ω′\Sε

|∇um|p−1|∇ψλ| dx

+ β0‖∇(φ(1−θε))‖∞
∫
Ω′∩supp(ψλ)

|Du|p−1 dx.

(3.8)

Since wε, u ∈ Sμ,r,C(Ω
′ \ Sε),

(3.9) u ≤ C + cWμ,r ≤ C + c2wε < C + 2c2λ in {wε < 2λ} ∩ (Ω′ \ Sε)

and hence u ≤ Cλ in the intersection of the support of ∇ψλ and Ω′ \ Sε for
all sufficiently large λ. In this set um = uCλ for all m > Cλ. It follows by
Hölder’s inequality and (3.3) that∫

Ω′\Sε

|∇um|p−1|∇ψλ| dx =

∫
Ω′\Sε

|∇uCλ|p−1|∇ψλ| dx

≤
(∫

Ω′
|∇uCλ|p dx

)(p−1)/p
(∫

B(0,4R)
|∇ψλ|p dx

)1/p

≤Cλ(p−1)/pCλ−(p−1)/p
(
μ0

({Wμ,r > λ/C} ∩ Ω′)+ ε
)1/p

=C
(
μ0

({Wμ,r > λ/C} ∩ Ω′)+ ε
)1/p

→Cε1/p

(3.10)

as λ → ∞ since capp({Wμ,r > λ/C} ∩Ω′) → 0; here we have also employed
the estimate

(3.11)

∫
Ω′∩{u≤λ}

|∇u|p dx ≤ Cλ,
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with some constant C independent of λ, from the proof of [21, Theorem
1.13]. Note that the upper bound in (3.10) is independent of j and m.
Moreover, the local summability of |Du|p−1, see Theorem 2.4, implies that

(3.12)

∫
Ω′∩supp(ψλ)

|Du|p−1 dx → 0

as λ → ∞ since capp({ψλ > 0} ∩ Ω′) → 0. Inserting estimates (3.10) and
(3.12) into (3.8) and then using (3.7) leads to

(3.13) lim sup
λ,j,m→∞

∣∣∣∣∫
Ω
h(uk,j, vk,j)ψλ(1−θε)φdμ[um]

∣∣∣∣ ≤ Cε1/p.

Hence, by (3.5) and (3.6),

lim sup
λ,j,m→∞

∣∣∣∣∫
Ω
h(uk,j , vk,j)(1−ψλ)(1−θε)φdμ[um]

−
∫
Ω
h(u, v)(1−θε)φdμ

∣∣∣∣ ≤ C(ε+ ε1/p),

(3.14)

with C independent of ε.
Next, we consider the first term on the left in (3.14). By (3.9) we have

that (1−ψλ)(1−θε)φ vanishes outside {u ≤ Cλ}∩ (Ω′ \Sε) for all sufficiently
large λ. Hence, for all m > Cλ,∫

Ω
h(uk,j, vk,j)(1−ψλ)(1−θε)φdμ[um]

=

∫
Ω′\Sε

〈A(x,∇uCλ),∇φ〉 h(uk,j, vk,j)(1−θε)(1−ψλ) dx

+

∫
Ω′\Sε

〈A(x,∇uCλ),∇(1−θε)〉 h(uk,j, vk,j)(1−ψλ)φdx

+

∫
Ω′\Sε

〈A(x,∇uCλ),∇h(uk,j , vk,j)〉 (1−θε)(1−ψλ)φdx

−
∫
Ω′\Sε

〈A(x,∇uCλ),∇ψλ〉 h(uk,j, vk,j)(1−θε)φdx.

Now we fix the ”marching order” for the limiting processes by sending first
m, then j, and finally λ to infinity; observe that the estimates in previous
limiting processes were independent of the particular order.

First, it follows by the dominated convergence theorem that

lim
λ→∞

lim
j→∞

lim
m→∞

∫
Ω′\Sε

〈A(x,∇uCλ),∇φ〉 h(uk,j, vk,j)(1−θε)(1−ψλ) dx

=

∫
Ω
〈A(x,Du),∇φ〉 h(u, v)(1−θε) dx

and

lim
λ→∞

lim
j→∞

lim
m→∞

∫
Ω′\Sε

〈A(x,∇uCλ),∇(1−θε)〉 h(uk,j, vk,j)(1−ψλ)φdx

=

∫
Ω
〈A(x,Du),∇(1−θε)〉h(u, v)φdx.
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Second, the weak convergence of ∇h(uk,j, vk,j) to ∇h(uk, vk) = ∇h(u, v)
together with the dominated convergence gives

lim
λ→∞

lim
j→∞

lim
m→∞

∫
Ω′\Sε

〈A(x,∇uCλ),∇h(uk,j , vk,j)〉 (1−θε)(1−ψλ)φdx

=

∫
Ω
〈A(x,Du),∇h(u, v)〉 (1−θε)φdx.

Third, estimating as in (3.8) and (3.10), we have∣∣∣ ∫
Ω′\Sε

〈A(x,∇uCλ),∇ψλ〉 h(uk,j, vk,j)(1−θε)φdx
∣∣∣

≤C‖h‖∞‖φ‖∞
∫
Ω′

|∇uCλ|p−1|∇ψλ| dx

≤C
(
μ0({Wμ,r > λ/C} ∩ Ω′) + ε

)1/p
,

which readily implies

lim sup
λ,j,m→∞

∣∣∣∣∣
∫
Ω′\Sε

〈A(x,∇uCλ),∇ψλ〉h(uk,j , vk,j)(1−θε)φdx

∣∣∣∣∣ ≤ Cε1/p.

Inserting above estimates into (3.14) we infer that∣∣∣∣∫
Ω
h(u, v)(1−θε)φdμ −

∫
Ω
〈A(x,Du),∇(h(u, v)(1−θε)φ)〉 dx

∣∣∣∣ ≤ C(ε+ε1/p).

This together with (3.4) yields∣∣∣∣∫
Ω
h(u, v)φdμ −

∫
Ω
〈A(x,Du),∇(h(u, v)φ)〉 dx

∣∣∣∣ ≤ C(ε+ ε1/p),

concluding the proof after letting ε → 0. �
Now we arrive at our main theorem by choosing u = v in Theorem 3.2.

3.15. Theorem. Let u be A-superharmonic with Riesz measure

μ = − divA(x,∇u).

Then u is a local renormalized solution, i.e.,∫
Ω
〈A(x,Du),∇(h(u)φ)〉 dx =

∫
Ω
h(u)φdμ

for all φ ∈ C∞
0 (Ω) and for all Lipschitz functions h : R �→ R whose deriva-

tive h′ is compactly supported.

3.16. Remark. DalMaso and Malusa [9] defined a concept of a reachable
solution. They showed that such a solution satisfies the formula (for h and
ϕ as in Theorem 3.15)∫

Ω
〈A(x,Du),∇(h(u)φ)〉 dx

=

∫
Ω
h(u)φdμ1 + h(+∞)

∫
Ω
φdμ2 − h(−∞)

∫
Ω
φdμ3

for some decomposition μ = μ1 +μ2 −μ3 for the measure μ. The novelty in
our result is that we may now specify the decomposition by taking μ1 <<
capp, μ2 ⊥ capp such that spt(μ2) ⊂ ∩k>0{u > k}, and μ3 = 0. Our theorem
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seems not to be easily deduced from results in [9], since the weak convergence
of measures, used by Dal Maso and Malusa to obtain the measures μ2 and μ3,
seems to be as such inadequate to conquer the concentration phenomenon.

4. Nonlinear Riccati type equations

Theorem 3.15 enables us to employ all the properties of the renormalized
solution when studying equations of type (2.5), regardless of the nature of
the solutions. As an example we consider the following two problems:

(4.1)

{
−Δpu = |∇u|p in Ω,

u ∈ W 1,p
0 (Ω)

and

(4.2)

⎧⎪⎨⎪⎩
−Δpv = μ,

μ ∈ M+(Ω) and μ ⊥ capp,

0 ≤ min(v, k) ∈ W 1,p
0 (Ω) for all k > 0 ,

where Ω is bounded. Recall that, as emphasized in (2.5), the equations are
understood in the sense of distributions.

In this section we show that these two problems are essentially equivalent:

4.3. Theorem. There is a one-to-one correspondence between problems (4.1)
and (4.2) via the transformation

v = e
u

p−1 − 1.

That is, if u solves (4.1), then v = eu/(p−1) − 1 solves (4.2); and conversely,
if v is a solution to (4.2), then u = (p − 1) log(v + 1) is a solution to (4.1).

Abdel Hamid and Bidaut-Véron have related results in their recent man-
uscript [1]. The novelty in our result is that we do not assume a priori that
solutions are of special nature like renormalized or similar.

Before proving the correspondence we first analyze equations locally.

4.4. Lemma. Let u ∈ W 1,p
loc (Ω) satisfy

(4.5) −Δpu = |∇u|p
in Ω. Then v = eu/(p−1) is p-superharmonic in Ω.

Proof. Observe first that u is a nonnegative weak supersolution of−Δpu ≥ 0.
It follows that ũ defined via

ũ(x) = ess lim inf
y→x

u(y)

is a representative of u in the sense that ũ = u almost everywhere. Thus we
may assume that u is lower semicontinuous.

Write next uk = min(u, k) and vk = euk/(p−1). There is a nonnegative
measure νk such that∫

Ω
〈|∇uk|p−2∇uk,∇η〉 dx =

∫
Ω
|∇uk|pη dx+

∫
Ω
η dνk

for each η ∈ W 1,p
0 (Ω) ∩ L∞(Ω); indeed choosing

1

ε
min (ε, (k + ε− u)+) η, ε > 0,
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as a test function in (4.5) and letting ε → 0, we have by the dominated
convergence that ∫

Ω
η dνk = lim

ε→0

1

ε

∫
{k<u<k+ε}

|∇u|pη dx.

Substitute then the test function η = eukϕ, ϕ ∈ C∞
0 (Ω), ϕ ≥ 0, to obtain∫

Ω
〈|∇uk|p−2∇uk, e

uk∇ϕ〉 dx+

∫
Ω
〈|∇uk|p−2∇uk,∇uke

ukϕ〉 dx

=

∫
Ω
|∇uk|peukϕ dx+

∫
Ω
eukϕdνk .

Hence

(p− 1)1−p

∫
Ω
〈|∇vk|p−2∇vk,∇ϕ〉 dx =

∫
Ω
eukϕdνk ≥ 0

and therefore vk ∈ W 1,p
loc (Ω) is p-superharmonic. Consequently also

v = lim
k→∞

vk

is p-superharmonic. �

Next we calculate how the equations are transformed.

4.6. Lemma. Suppose that v is a nonnegative p-superharmonic function
with the Riesz measure μ. Then u = (p− 1) log(v) satisfies

(p− 1)p−1

∫
Ω
e−uϕ dμ =

∫
Ω
〈|∇u|p−2∇u,∇ϕ〉 dx−

∫
Ω
|∇u|pϕ dx

for all ϕ ∈ C∞
0 (Ω).

Proof. Let ϕ ∈ C∞
0 (Ω). Theorem 3.15 allows us to test the equation of v

with the function ηk = e−ukϕ, where uk = min(u, k). We have

(p − 1)p−1

∫
Ω
ηk dμ

= (p− 1)p−1

∫
Ω
〈|∇v|p−2∇v, e−uk∇ϕ−∇uke

−ukϕ〉 dx

=

∫
{u≤k}

〈|∇u|p−2∇u,∇ϕ〉 dx

+ (p − 1)p−1

∫
{u>k}

〈|∇v|p−2∇v, e−uk∇ϕ〉 dx−
∫
Ω
|∇uk|pϕ dx

→
∫
Ω
〈|∇u|p−2∇u,∇ϕ〉 dx−

∫
Ω
|∇u|pϕ dx

as k → ∞ since |∇v|p−1 is locally integrable (Lemma 2.4) and u ∈ W 1,p
loc (Ω),

see [19, Theorem 7.48]. The dominated convergence guarantees that∫
Ω
ηk dμ →

∫
Ω
e−uϕ dμ,

finishing the proof. �

We are ready to prove the local version of Theorem 4.3:
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4.7. Theorem. Let u ∈ W 1,p
loc (Ω) be a weak solution to

−Δpu = |∇u|p
in Ω. Then v = eu/(p−1) is p-superharmonic and its Riesz measure μ =
−Δpv is singular with respect to the p-capacity, i.e.

μ ⊥ capp .

Conversely, if v is a nonnegative p-superharmonic function whose Riesz
measure μ = −Δpv is singular with respect to the p-capacity, then u =

(p− 1) log v ∈ W 1,p
loc (Ω) solves weakly the equation

−Δpu = |∇u|p
in Ω.

Proof. Suppose first that u ∈ W 1,p
loc (Ω) satisfies

−Δpu = |∇u|p in Ω.

Then, by Lemma 4.4, v = eu/(p−1) is p-superharmonic and Lemma 4.6 gives∫
Ω
v1−pϕ dμ = 0 for all ϕ ∈ C∞

0 (Ω).

Therefore v = ∞ μ-almost everywhere. Since the set {v = ∞} is of p-
capacity zero, we have μ ⊥ capp, as desired.

For the converse, let v be nonnegative and p-superharmonic with a sin-
gular Riesz measure. First observe that u = (p − 1) log v ∈ W 1,p

loc (Ω) by the
standard logarithm estimate [19, Lemma 7.48]. The rest follows by Lemma
4.6, because v = ∞ μ-almost everywhere by Lemma 2.9 and thus∫

Ω
e−uϕ dμ =

∫
Ω
v1−pϕ dμ = 0

for all ϕ ∈ C∞
0 (Ω). �

4.8. Corollary. Suppose that u ∈ W 1,p
loc (Ω) satisfies

−Δpu = |∇u|p in Ω.

Then eλu ∈ W 1,p
loc (Ω) for all 0 < λ < 1/p.

If eu/p ∈ W 1,p
loc (Ω), then v = eu/(p−1) is p-harmonic and hence u is C1,α

for some α > 0.

Proof. Let 0 < λ < 1/p. The integrability result easily follows from the
estimate [19, Lemma 3.57]: if ε > 0,∫

Ω
|∇v|pv−1−εηp dx ≤ (

p

ε
)p

∫
Ω
vp−1−ε|∇η|p dx.

for all cut-off functions η ∈ C∞
0 (Ω), η ≥ 0. Now, choosing ε = (p−1)(1−pλ)

we have that ∫
Ω
|∇eλu|pηp dx = c

∫
Ω
|∇v|pv−1−εηp dx,

≤ c

∫
Ω
vp−1−ε|∇η|p dx < ∞ ,

since vp−1 is locally integrable (Lemma 2.4).
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To prove the latter claim, we use the test function η = eukϕ, where
ϕ ∈ C∞

0 (Ω), ϕ ≥ 0, and uk = min(u, k). Then∫
Ω
〈|∇u|p−2∇u, euk∇ϕ〉 dx+

∫
Ω
〈|∇u|p−2∇u,∇uke

ukϕ〉 dx

=

∫
Ω
|∇u|peukϕ dx,

and hence∫
Ω
〈|∇u|p−2∇u, euk∇ϕ〉 dx =

∫
Ω
|∇u|peukϕ dx−

∫
Ω
|∇uk|peukϕ dx

=

∫
{u>k}

ek|∇u|pϕ dx → 0

by the assumption eu/p ∈ W 1,p
loc (Ω). The right hand side then converges to

(p− 1)1−p

∫
Ω
〈|∇v|p−2∇v,∇ϕ〉 dx ,

which shows that the Riesz measure of v vanishes and therefore v is p-
harmonic, see [28, Corollary 3.19]. Hence v and thereby also u is locally
C1,α for some α > 0 (see for example [36], [37], or [10]). �

Next we turn to the global problems (4.1) and (4.2).

Proof for Theorem 4.3. In the light of the local version 4.7, we only need to
check that the transformations go into correct spaces. First, if u ∈ W 1,p

0 (Ω),

then its clear that the truncations of v = eu/(p−1) − 1 lie in W 1,p
0 (Ω), since

Ω is bounded.
Conversely, if v is a solution to the problem (4.2) and u = log(v+1), then∫

{v≤1}
|∇u|pdx =

∫
{v≤1}

|∇v|p
(v + 1)p

dx ≤
∫
{v≤1}

|∇v|pdx < ∞.

Also ∫
{v>1}

|∇u|pdx ≤
∫
{v>1}

|∇ log v|p min(v, 1)p dx

≤
∫
Ω
|∇min(v, 1)|pdx < ∞.

by the standard log-estimate [19, Proof of Lemma 3.47]. The proof is com-
plete. �

We finally record an estimate that might be of some interest:

4.9. Proposition. Suppose that u is a solution to (4.1) in a bounded open

set Ω. Then eλu ∈ W 1,p(Ω) for all 0 < λ < 1/p. If eu/p ∈ W 1,p(Ω), then
u = 0. In particular, the only bounded solution is u = 0.

Proof. Define first a decreasing function f : R �→ [0,∞) as

f(k) =

∫
Ω∩{u>k}

|∇u|p dx.
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We then have

f(k + ε)− f(k) = −
∫
Ω∩{k<u<k+ε}

|∇u|p dx.

As a monotone function, f is differentiable for almost every k.
Take then the test function

ηk,ε =
1

ε
min{(u− k)+, ε},

ε > 0. Now ηk,ε ∈ W 1,p
0 (Ω) provided that k ≥ 0. The monotone convergence

theorem implies

lim
ε→0

∫
Ω
|∇u|pηk,ε dx = f(k)

for every k ≥ 0. Inserting thus ηk,ε into (4.1) and letting ε → 0 implies

lim
ε→0

∫
Ω
〈|∇u|p−2∇u,∇ηk,ε〉 dx = f(k).

The term on the left is

lim
ε→0

1

ε
(f(k)− f(k + ε))

and the limit is obtained for every k ≥ 0. Replacing k by k−ε, an analogous
argument gives

lim
ε→0

1

ε
(f(k − ε)− f(k)) = f(k).

So f ′(k) = −f(k) for every k > 0 and f ′(0+) = −f(0). Solving the ordinary
differential equation gives∫

Ω∩{u>k}
|∇u|p dx = f(k) = e−kf(0) = e−k

∫
Ω
|∇u|p dx

for all k ≥ 0.

We multiply this equation by eλ̃k, 0 < λ̃ < 1, and integrate by the aid of
the Fubini theorem to obtain the desired estimate:∫

Ω
eλ̃u|∇u|p dx =

∫
Ω
(eλ̃u − 1)|∇u|p dx+

∫
Ω
|∇u|p dx

= λ̃

∫ ∞

0
eλ̃k

∫
{u>k}

|∇u|p dx dk +

∫
Ω
|∇u|p dx

= λ̃

∫ ∞

0
eλ̃k−k

∫
Ω
|∇u|p dx dk +

∫
Ω
|∇u|p dx

= (λ̃

∫ ∞

0
eλ̃k−kdk + 1)

∫
Ω
|∇u|p dx

=
1

1− λ̃

∫
Ω
|∇u|p dx < ∞ .

Hence eλu ∈ W 1,p(Ω) for all 0 < λ < 1/p.

Should it happen that eu/p ∈ W 1,p(Ω) we could let λ̃ increase to 1 in the
calculation above. Since the term on the left remains bounded, this would
force ∇u vanish throughoutly. Hence u is zero. �
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[1] Abdel Hamid, H. & Bidaut-Véron, M. F., On the connection between two
quasilinear elliptic problems with a source terms of order 0 or 1. preprint,
http://arxiv.org/abs/0811.3292v1

[2] Abdellaoui, B., Dall’Aglio, A. & Peral, I., Some remarks on elliptic problems with
critical growth in the gradient. J. Differential Equations. 222 (2006), no. 1, 21–62.

[3] Abdellaoui, B., Dall’Aglio, A. & Peral, I., Corrigendum to “Some remarks on elliptic
problems with critical growth in the gradient” [J. Differential Equations 222 (2006)
21–62]. J. Differential Equations 246 (2009), no. 7, 2988–2990.
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