
LATTICE PROPERTY OF p-ADMISSIBLE WEIGHTS
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Abstract. We show that, for large p’s, the maximum of two p-admissible
weights remains p-admissible in the terminology of nonlinear potential
theory. We also give examples showing that in general, the minimum
may fail to remain p-admissible.

1. Introduction

Let 1 < p < ∞ be fixed. Following [8, Ch. 20], we say that a locally
integrable nonnegative function w on Rn, n ≥ 1, is p-admissible if it is
the density of a doubling measure measure µ that supports a p-Poincaré
inequality. More precisely we require that there exist positive constants Cd
and CP so that for each ball B(x, r) and every Lipschitz function u on Rn

we have that

(1.1) µ(B(x, 2r)) ≤ Cdµ(B(x, r))

and

(1.2)

∫
B(x,r)

|u− uB(x,r)| dµ ≤ CP r(
∫
B(x,r)

|∇u|p dµ)1/p .

Here, and in what follows, we use the notation

µ(A) =

∫
A
w(x) dx

and, for any integrable function v,

vA =
1

µ(A)

∫
A
v dµ =

∫
A
v dµ

For the significance of the class of p-admissible weights we refer e.g. to
[4, 8, 6, 1].

A core class of p-admissible weights is formed by the class of Muckenhoupt
Ap-weights [4, 8]. Since the Ap-weights form a lattice:

w1 ∧ w2 ∈ Ap
and

w1 ∨ w2 ∈ Ap
whenever w1, w2 ∈ Ap (see Appendix below), it is natural to inquire if the
same feature is shared by the entire class of p-admissible weights. It is rather
surprising to us that this issue does not seem to have been addressed in the
literature, not even for Ap-weights. In this note, we discuss this question by
establishing the following result:
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1.3. Theorem. The class of p-admissible weights on R is a lattice.
In Rn, n ≥ 2, the minimum w1 ∧w2 of two p-admissible weights w1 and w2

may fail to be p-admissible. Further, there is q0 (depending on w1) so that the
maximum w1 ∨ w3 is q-admissible whenever q ≥ q0 and w3 is q-admissible.

Let us briefly comment on the proof of Theorem 1.3. First of all, in
dimension one, w is p-admissible if and only if w ∈ Ap ([2] also see [3]), and
hence the lattice property is that of the Ap class.

Secondly, in higher dimensions, we have been able to solve the problem
only partially. The example in negative direction necessarily deals with non-
Ap weights that are p-admissible. For 1 < p < n, prime examples of such
weights are of the form

w = J
1−p/n
f ,

where f is a quasiconformal self-homeomorphism of Rn, n ≥ 2. In our
construction, we employ a planar quasiconformal mapping that generates a
singular measure on the real line and simply use w ≡ 1 as our second weight.
Higher dimensional cases are handled via a lifting procedure. This approach
only applies for sufficiently small p; see Example 3.9. It would be interesting
to see similar examples for all values of p.

Our proof for the positive direction in the case of the maximum uses a
Hölder estimate for Sobolev functions in terms of the gradient. It would be
interesting to dispense with it.
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2. Toolbox

In this section we collect auxiliary results that will be used in our proof
of Theorem 1.3.

Our first lemma reduces the p-Poincaré inequality into a more checkable
condition. The result relies on Mazya’s truncation argument [10] and a
chaining argument; see e.g. [6, p. 10 and Corollary 9.8].

2.1. Lemma. Let w be a nonnegative, locally integrable function on Rn such
that the associate measure µ with dµ = w dx is doubling (i.e. satisfies (1.1)).
Suppose, further, that there is a constant c so that the estimate

min (µ({y ∈ B(x, r) : u(y) = 0}), µ({y ∈ B(x, r) : u(y) = 1}))

≤ crp
∫
B(x,4

√
nr)
|∇u|p dµ

holds for all Lipschitz functions u and every ball B(x, r). Then w is p-
admissible.

Adding dummy variables allows us to lift weights to higher dimensions:
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2.2. Lemma. Let w be a p-admissible weight on Rn. Then the weight ŵ,

ŵ(x1, . . . xn, xn+1) = w(x1, . . . , xn)

is p-admissible on Rn+1.

Proof. Write µ and µ̂ for the associated measures with dµ = wdx on Rn and
dµ̂ = ŵdx on Rn+1, respectively. Regarding the doubling condition (1.1),
simply notice that

µ̂(Bn+1(x, 2r)) ≤ 4rµ(π(Bn+1(x, 2r))) ≤ c(Cd, µ, n)µ̂(Bn+1(x, r)) ,

where π is the projection from Rn+1 onto Rn and Cd is the doubling constant
of µ; notice that the cylinder

Bn(π(x), r/2)×]xn+1 − r/2, xn+1 + r/2[

is contained in the ball Bn+1(x, r).
Towards the p-Poincaré inequality (1.2), fix a Lipschitz function u and a

ball Bn+1(x, r). Write

E = {y ∈ Bn+1(x, r) : u(y) = 0} , F = {y ∈ Bn+1(x, r) : u(y) = 1} .
Set

EG = {z ∈ π(E) : there is s ∈]xn+1 − r, xn+1 + r[ with u(z, s) >
1

3
} .

If z ∈ EG, then

1

3
≤
∫

]xn+1−r,xn+1+r[
|∇u(z, t)| dt

≤ (

∫
]xn+1−r,xn+1+r[

|∇u(z, t)|p dt)1/p(2r)1−1/p ,

and hence

rp
∫
B(x,

√
nr)
|∇u|p dµ̂ ≥ 21−p3−pµ(EG)r .

Suppose that

µ(EG) ≥ 1

2
µ(π(E)).

Since
µ̂(E) ≤ 2rµ(π(E)) ,

it would follow that

rp
∫
B(x,

√
nr)
|∇u|p dµ̂ ≥ 21−p3−pµ(EG)r ≥ 2−(1+p)3−pµ̂(E) .

Hence the estimate assumed in Lemma 2.1 and hence also our claim would
follow. Thus we may assume that

µ(EG) ≤ 1

2
µ(π(E)) .

Analogously, defining

FG = {z ∈ π(F ) : there is s ∈]xn+1 − r, xn+1 + r[ with u(z, s) <
2

3
} ,

we may assume that

µ(FG) ≤ 1

2
µ(π(F )) .
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Thus, we are reduced to the case

µ(π(E) \ EG) ≥ 1

2
µ(π(E)) and µ(π(F ) \ FG) ≥ 1

2
µ(π(F )) .

Now by truncating u appropriately, the definition of ŵ, the p-Poincaré in-
equality for µ on (copies of) Rn, and the Fubini theorem yield

rp
∫
B(x,

√
nr)
|∇u|p dµ̂ ≥ c(CP , µ, p)rmin (µ(π(E)), µ(π(F )))

≥ c(CP , µ, p) min (µ̂(E), µ̂(F )) ,

and the claim follows from Lemma 2.1. �

The following result due to Tukia [11] gives us the building block for our
construction for the negative part in Theorem 1.3.

2.3. Lemma. Let 0 < s < 1. There is a quasiconformal mapping f : R2 →
R2 and a set Es ⊂ R with

f(R) = R , dimH(Es) ≤ s and dimH(f(R \ Es)) ≤ s .

Here and in what follows dimH(E) refers to the Hausdorff dimension of
the set E.

2.1. Sets of (p, µ)-capacity zero. We need to recall some facts of sets of
(p, µ)-capacity zero. For a more thorough discussion the reader is referred
to [8].

Suppose that Ω ⊂ Rn is open. The (p, µ)-capacity capp,µ(E,Ω) of any set
E ⊂ Ω is defined as follows: the (p, µ)-capacity of a compact set K ⊂ Ω is

capp,µ(K,Ω) = inf

{∫
Ω
|∇ϕ|p dµ : ϕ ∈ C∞0 (Ω), ϕ ≥ 1 on K

}
.

The (p, µ)-capacity of an open set U ⊂ Ω is then

capp,µ(U,Ω) = sup
{

capp,µ(K,Ω) : K compact, K ⊂ U
}

;

and for an arbitrary set E ⊂ Ω

capp,µ(E,Ω) = inf
{

capp,µ(U,Ω) : U open, E ⊂ U
}
.

A set E is said to be of (p, µ)-capacity zero if

capp,µ(E ∩ Ω,Ω) = 0 for all open Ω.

The definition seems a bit complicated, but for bounded sets E, one needs
only one bounded open set Ω ⊃ E to find out if E is of (p, µ)-capacity zero
[8, Lemma 2.9]. Moreover, the capacity is subadditive in E, so that E is
of (p, µ)-capacity zero if and only if it is a countable union of sets of of
(p, µ)-capacity zero.

We shall employ the fact that a bounded set E is of (p, µ)-capacity zero
as soon as we find Lipschitz functions ηj (or more generally, quasi continu-
ous functions from the corresponding weighted Sobolev space W 1,p(Rn;µ)),
vanishing outside a fixed ball, such that maxj ηj ≥ 1 on E and

∞∑
j=1

∫
Rn

|∇ηj |p dµ < ε ,

whenever ε > 0 is a given number; see [8].
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2.4. Lemma. Suppose that 1 < p < n and that f : Rn → Rn is quasicon-
formal. Let w(x) = Jf (x)1−p/n and E ⊂ Rn. If dimH(f(E)) < n− p, then
E is of (p, µ)-capacity zero; recall dµ = wdx.

Proof. Recall that w is p-admissible. Let ε > 0. Since dimH(f(E)) < n− p,
we may cover f(E) with balls B(xj , rj) such that

∞∑
j=1

rn−pj < ε .

Next choose Lipschitz functions ηj with compact supports in B(xj , 2rj) such
that |∇ηj | < C/rj , ηj = 1 on B(xj , rj). Then∫

Rn

|∇(ηj ◦ f)|p dµ ≤
∫
Rn

|Df |p|∇ηj ◦ f |pJf (x)1−p/ndx

≤ c
∫
Rn

|∇ηj ◦ f |pJf (x)dx

= c

∫
B(xj ,2rj)

|∇ηj |p dy

≤ crn−pj .

Since max(ηj ◦ f) ≥ 1 on E and

∞∑
j=1

∫
Rn

|∇(ηj ◦ f)|p dµ ≤ c
∞∑
j=1

rn−pj < cε ,

we have by referring to discussion above that E is of (p, µ)-capacity zero. �

3. New admissible weights from the old ones

In what follows we use the notation that µj stands for the measure with
density wj . Also if B(x, r) is a ball, then λB = B(x, λr) for λ > 0.

We start with a lemma for sums.

3.1. Lemma. Let w1 and w2 be p-admissible and let w = w1 +w2. Suppose
further that

(3.2)
1

µ(B)2

∫
B

∫
B
|u(x)− u(y)|dµ1(x)dµ2(y) ≤ Cr(

∫
2B
|∇u|p dµ)1/p

for all Lipschitz functions u and all balls B = B(z, r); here µ = µ1 + µ2.
Then w is p-admissible.

Proof. The doubling property (1.1) for the sum measure µ immediately fol-
lows from the corresponding doubling property with weights w1 and w2;
indeed,

µ(2B) = µ1(2B) + µ2(2B) ≤ CD1µ1(B) + CD2µ2(B) ≤ Cµ(B).

Towards the Poincaré inequality (1.2), let uB, uB1, and uB2 stand for the
averages of u over B with respect to measures µ, µ1, and µ2, respectively.
In light of [7, Theorem 9.5] it suffices to find the estimate∫

B
|u− uB|dµ ≤ Cr(

∫
2B
|∇u|p dµ)1/p ,
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where the constant C is independent of u and B. To reach this, we first
observe that

(3.3)

∫
B
|u− uB|dµ ≤

∫
B

∫
B
|u(x)− u(y)|dµ(x)dµ(y)

≤
(µ1(B)

µ(B)

)2 ∫
B

∫
B
|u(x)− u(y)|dµ1(x)dµ1(y)

+
2

µ(B)2

∫
B

∫
B
|u(x)− u(y)|dµ1(x)dµ2(y)

+
(µ2(B)

µ(B)

)2 ∫
B

∫
B
|u(x)− u(y)|dµ2(x)dµ2(y) ,

Now we use (3.2) to estimate the second term on the right-hand side:

2

µ(B)2

∫
B

∫
B
|u(x)− u(y)|dµ1(x)dµ2(y) ≤ Cr(

∫
2B
|∇u|p dµ)1/p.

Hence by (3.3) we need only to find an estimate for the terms(µj(B)

µ(B)

)2 ∫
B

∫
B
|u(x)− u(y)|dµj(x)dµj(y) , j = 1, 2.

To this end, we obtain by using the Poincaré inequality that∫
B

∫
B
|u(x)− u(y)|dµj(x)dµj(y)

≤
∫
B

∫
B
|u(x)− uBj |dµj(x)dµj(y) +

∫
B

∫
B
|uBj − u(y)|dµj(x)dµj(y)

≤
∫
B
|u(x)− uBj |dµj(x) +

∫
B
|uBj − u(y)|dµj(y)

≤ 2Cpjr(

∫
B
|∇u|p dµj)1/p ≤

( µ(B)

µj(B)

)1/p
2Cpjr(

∫
B
|∇u|p dµ)1/p

≤
( µ(B)

µj(B)

)2
2Cpjr(

∫
B
|∇u|p dµ)1/p ,

where we also used the simple fact that µ(B) ≥ µj(B). This completes the
proof. �

3.4. Lemma. Let w1 be p-admissible. If w2 is a function with

1

c0
w1 ≤ w2 ≤ c0w1

for a constant c0 > 0, then w2 is also p-admissible.

Proof. The doubling property (1.1) follows immediately. For the Poincaré
one needs to observe that∫

B
|u− uB2 |dµ2 ≤ c

∫
B
|u− uB1 |dµ2 ≤ cc2

0

∫
B
|u− uB1 |dµ1

≤ cc2
0CP1r(

∫
B
|∇u|p dµ1)1/p ≤ Cr(

∫
B
|∇u|p dµ2)1/p ,

as desired. �
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3.5. Lemma. Let w1 and w2 be p-admissible. Suppose further that for all
balls B = B(z, r)

(3.6) |u(x)− u(y)| ≤ Cr(
∫

2B
|∇u|p dµ1)1/p x, y ∈ B,

for all Lipschitz functions u. Then w = w1 + w2 is p-admissible.

Proof. The claim follows from Lemma 3.1 once we notice that the condition
(3.2) follows from the oscillation estimate (3.6). Indeed,

1

µ(B)2

∫
B

∫
B
|u(x)− u(y)|dµ1(x)dµ2(y)

≤ Crµ1(B)µ2(B)

µ(B)2
(

∫
2B
|∇u|p dµ1)1/p

≤ Cr(
∫

2B
|∇u|p dµ)1/p ,

since by the doubling property

µ1(B)µ2(B)

µ(B)2
(

1

µ1(2B)
)1/p

= (
µ1(B)

µ(B)
)1−1/p(

µ1(B)µ(2B)

µ1(2B)µ(B)
)1/pµ2(B)

µ(B)
(

1

µ(2B)
)1/p

≤ C(
1

µ(2B)
)1/p.

�

3.7. Remark. Condition (3.6) is the Hölder estimate given by the Sobolev
embedding theorem if w1 = 1 and p > n. Thus 1 + w2 and 1 ∨ w2 are both
p-admissible whenever w2 is p-admissible and p > n.

3.8. Lemma. Let w1 be p0-admissible. There is q0 > 1 such that for all
p ≥ q0 the sum w1 +w2 and the maximum w1∨w2 are p-admissible whenever
w2 is p-admissible.

Proof. Since any q-admissible weight is p-admissible for all p ≥ q [8, Thm.
1.8], it suffices, by Lemmas 3.4 and 3.5, to observe that the Hölder estimate
(3.6) holds for some exponent q0 depending on the doubling constant of w1;
see [6, Thm. 5.1]. �

If n = 1, then the class of p-admissible weights coincides with that of
Ap-weights [2] and the claim follows because the class of Ap-weights forms
a lattice, see Appendix below.

We conclude the proof of Theorem 1.3 by giving counterexamples.

3.9. Example. Fix 1 < p < 2. First let n = 2. For a fixed 0 < s < 2 − p
Lemma 2.3 provides us with a quasiconformal mapping f : R2 → R2 and a
set Es ⊂ R so that

dimH(Es) ≤ s and dimH(f(R \ Es)) ≤ s .

Then the weight w1 = J
1−p/2
f is p-admissible [8, Ch. 15] and R \ Es is of

(p, µ1)-capacity zero (Lemma 2.4); here µ1 = w1dx. Since

dimH(Es) ≤ s < 2− p,
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Es is of (p, dx)-capacity zero (see the argument at the end of the proof of
Lemma 2.4).

Now let w = w1 ∧ 1 and µ = wdx. Then w is not p-admissible. If
it were, then both Es and R \ Es would be of (p, µ)-capacity zero, and
consequently, the whole line R would be of (p, µ)-capacity zero in R2 by
subadditivity. However, at the presence of the Poincaré inequality, the sets
of (p, µ)-capacity zero cannot separate the space [8, Lemma 2.46].

A counterexample for n ≥ 3 follows by lifting the weights above by using
Lemma 2.2 and reasoning similarly as above. The details are left to the
reader.

4. Appendix

Recall that the Muckenhoupt class Ap, p > 1, consists of all locally inte-
grable functions w with 0 < w < ∞ a.e., for which there is a constant cp,w
so that ∫

B
w dx ≤ cp,w(

∫
B
w1/(1−p) dx)1−p,

for each ball B. Set

A∞ =
⋃
p>1

Ap.

Recall that we set

µ(E) = µw(E) =

∫
E
w dx ,

where w is a weight function. Now we have the following characterization
[5, Theorem IV.2.11 and Corollary IV.2.13].

4.1. Proposition. The following two conditions are equivalent:

(1) w ∈ A∞.
(2) The measure µ = µw is doubling and there exist positive constants

C and δ such that, for each ball B and every measurable set E ⊂ B
it holds that

µ(E)

µ(B)
≤ C

(
|E|
|B|

)δ
.

We also employ the following characterization from [5, Theorem IV.2.17].

4.2. Proposition. The following two conditions are equivalent:

(1) w ∈ Ap.
(2) w ∈ A∞ and w−1/(p−1) ∈ A∞.

The above two propositions allow us to verify the lattice property for Ap.

4.3. Proposition. The class of Ap-weights is a lattice.
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Proof. Suppose that wj ∈ Ap, j = 1, 2. We first prove that w1 ∨ w2 ∈ Ap.
By the definition of Ap there exist positive constants cp,j , j = 1, 2, with∫

B
w1 ∨ w2 dx ≤

∫
B
w1 dx+

∫
B
w2 dx

≤ cp,1(

∫
B
w

1/(1−p)
1 dx)1−p + cp,2(

∫
B
w

1/(1−p)
2 dx)1−p

≤ cp,12(

∫
B

(w1 ∨ w2)1/(1−p) dx)1−p ,

whenever B is a ball; here we wrote cp,12 = 2 max{cp,1, cp,2}. Hence

w1 ∨ w2 ∈ Ap.
Next we prove that w1∧w2 ∈ Ap. To this end we intend to use Proposition

4.2 and thus show that w1 ∧ w2 ∈ A∞ and (w1 ∧ w2)−1/(p−1) ∈ A∞.
To establish the first, we verify condition (2) of Proposition 4.1 for w1∧w2.

To this end, we first observe that w1 ∧ w2 defines a doubling measure µ =
w1 ∧ w2 dx. Indeed, write

µj(E) =

∫
E
wj dx

and, for a fixed ball B choose a set A ⊂ B with |A| ≥ 1
2 |B| and that

w1 ∧ w2 = wj on A, say w1 ∧ w2 = w1 on A. Then

µ1(A) ≥ c( |A|
|B|

)pµ1(B) ≥ c2−pµ1(B)

by the strong doubling property [8, 15.5] of Ap-weights. Consequently, µ is
doubling, since

µ(2B) ≤ µ1(2B) ≤ cµ1(B) ≤ cµ1(A) = cµ(A) ≤ cµ(B).

Next, let Cj and δj be the positive constants associated to weights wj ,
given us by Proposition 4.1. Set δ = min{δ1, δ2}, C = C1 + C2 and observe
that by the previous estimation

µ(B) ≥ cmin(µ1(B), µ2(B)).

Therefore, for all measurable E ⊂ B

c
µ(E)

µ(B)
≤ µ1(E)

µ1(B)
+
µ2(E)

µ2(B)
≤ C1

(
|E|
|B|

)δ1
+ C2

(
|E|
|B|

)δ2
≤ C

(
|E|
|B|

)δ
.

Hence by Proposition 4.1, we have that w1 ∧ w2 ∈ A∞.
To complete the proof, we verify the second condition part (2) of Propo-

sition 4.2. To this end, write

w′j = w
−1/(p−1)
j , j = 1, 2.

Since w′j ∈ A∞, there exist pj > 1 with w′j ∈ Apj . Set q = max{p1, p2}.
Then w′j ∈ Aq since Apj ⊂ Aq (cf. [8, p. 298]).

By the first part of this proof

w′1 ∨ w′2 ∈ Aq ⊂ A∞.
Since

(w1 ∧ w2)−1/(p−1) = w′1 ∨ w′2,
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we infer that
(w1 ∧ w2)−1/(p−1) ∈ A∞.

Hence Proposition 4.2 ensures us that w1 ∧ w2 ∈ Ap, as desired. �
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