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Introduction

will be written a bit later.

December 7, 2020






Notations and conventions

For any mapping f: X — X, the fixed point set of f is

fix f={reX: f(x)=21}.

If a group G acts on a space X and A is a nonempty subset of X, the stabilizer of A

in G is

Stabg A ={ge G:gA = A}.

(Clearly, stabilisers are subgroups of G.

N=1{0,1,2,...}.
#(A) e Nu {oo} cardinality of A.
A—B={acA:a¢ B}.

f|a is the restriction of. mapping f: X — Y to a subset A < X, f|a(a) = f(a) for
all a € A.

A & B means A is a proper subset of B: Ac B and A # B.
diag(ay, as, ..., a,) is the n x n-diagonal matrix with aq,as, ..., a, on the diagonal.

diag(Aq, Ay, ..., A,) is the block diagonal matrix with square matrices Aq, As, ..., A,
on the diagonal.

I, = diag(1,1,...,1).

tA is the transpose of a matrix A.

Homeo(X) the group of homeomorphisms of a topological space X.
Isom (X)) the group of isometries of a metric space X.

C(X,Y) space of continuous functions from a topological space X to a metric space
Y with the topology of compact convergence.

Definitions are boxed like this and not numbered.

A box like this has some remark or convention that is good to notice!
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Chapter 1

Geodesic metric spaces

In this chapter, we collect background material on metric spaces, in particular on geodesic
spaces. We also introduce some convenient terminology to be used throughout the course.

1.1 Metric spaces

We refer to [Boull Bou2, Mun] for the theory of metric (and topological) spaces. In this
section, for the convenience of the reader, we collect some standard definitions, notations
and examples.

Let X # ¢F. A function d: X x X — [0,0[ is a metric in X if

(1) d(xz,z) =0 for all z € X and d(z,y) > 0 if x # v,

(2) d(z,y) = d(y,z) for all z,y € X, and

(3) d(z,y) < d(x,z)+ d(z,y) for all x,y, 2z € X (the triangle inequality).
The pair (X, d) is a metric space.

Example 1.1. (a) Any normed space is a metric space. In particular, the space R™
with the Euclidean distance is a metric space.

(b) The circle S' with the distance between two points defined as their angle as vectors
in E? is a metric space, see Section for details and generalisations.

(c) Let X # J. The discrete metric d: X x X — [0, oo[ is defined by setting d(x, z) = 0 for
all z € X and d(z,y) =1 forall z,y e X if x # y.

Open and closed balls in a metric space, continuity of maps between metric spaces
and other “metric properties” are defined in the usual manner. In particular, if X is a
metric space, x € X and r > 0,

B(xg,r) = By(xo,r) ={x e X : d(x,z) <1}

December 7, 2020 3



Geodesic metric spaces

is the open ball of radius r and
B(zg,7) = Bg(xg,7) = {x € X : d(x,z0) <71}
is the closed ball of radius 7.

A metric space is proper if its closed balls are compact.

Euclidean spaces are proper by the theorem of Heine and Borel.

1.2 Isometric embeddings and isometries

If (X4, d;) and (X5, dy) are metric spaces, then amap i: X — Y is an isometric embedding,
if

for all x,y € X;.

Amapi: X — Y is a locally isometric embedding if each point x € X has a neighbourhood
U such that the restriction of ¢ to U is an isometric embedding.

Lemma 1.2. (a) Isometric embeddings are continuous injective mappings.

(b)) If f: X - Y and ¢g:Y — Z are isometric embeddings, then g o f is an isometric
embedding.

(W) If f: X >Y and g:Y — Z are locally isometric embeddings, then go f is a locally
isometric embedding.

Proof. Exercise. m

If an isometric embedding i: X — Y is a bijection, then it is called an isometry between
X and Y.

An isometry ¢: X — X is called an isometry of X.

We consider two isometric metric spaces to be two models of the same abstract metric
space. If (X, d) is a metric space, Y is a set and f: Y — X is a bijection, then we get a
metric in Y by setting df(y1,y2) = d(f(y1), f(y2)) for all y1,y2. Now f: (Y,ds) — (X, d)
is an isometry and it is natural to think of (Y,d;) as a model of (X,d). We will see
concrete examples in Chapter [5| when we consider models of hyperbolic space.

Proposition 1.3. The isometries of a metric space X form a group Isom(X) with the
composition of mappings as the group law.

Proof. Exercise. O]
Let X be a metric space. The stabilizer of a point x € X is
Stabx = {F € Isom X : F(z) = z}.

Proposition 1.4. Let X be a metric space and let x € X. Then Stab X is a subgroup of
Isom X.
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1.3. Geodesics

Proof. Exercise. O
Example 1.5. We will see in section 2.3 that the Fuclidean group
E(n) ={x— Az +0b: A O(n),be R"}

is the group of isometries of the n-dimensional Euclidean space E"[] The stabilizer of
0eE" is O(n).

If a group GG acts on a space X, and x is a point in X, the set

G(r) = {g(v): g€ G}

is the G-orbit of z. The action of a group is said to be transitive if G(z) = X for some
(and therefore for any) = € X.

A more elementary way to express this is that a group G acts transitively on X if for
all z,y € X there is some g € G such that g(z) = y.

1.3 Geodesics

In this section, we give names to a particulary important class of isometric and locally
isometric embeddings and use these objects to define the class of metric spaces that plays
a central role in this course.

Let I < R be an interval. A (locally) isometric embedding i: I — X is a (local) geodesic.
More precisely, it is

(1) a (locally) geodesic segment, if I — R is a (closed) bounded interval,
(2) a (locally) geodesic ray, if I = [0, 4o0[, and
(3) a (locally) geodesic line, if I = R.

Note that in Riemannian geometry, the definition of a geodesic is different from the
above: If (M, g) is a Riemannian manifold and I is an open interval, a Riemannian
geodesic v: I — M is a differentiable path whose acceleration is 0. If v: I — M is a
Riemannian geodesic, then there is some ¢ > 0 and such that the mapping t — g(ﬁ) is a
local geodesic according to our definition.

If v: [a,b] — X is a path, then v connects the points y(a) to v(b).

If v is a geodesic segment that connects x € X to y € X, the points x and y are the
endpoints of .

Sometimes it is convenient to use more precise terminology and, for instance, refer to

the endpoint j(0) as the origin of j and to the other endpoint as the terminal point or
the terminus of 7.

1See section

December 7, 2020




Geodesic metric spaces

A metric space (X, d) is a geodesic metric space, if for any x,y € X there is a geodesic
segment that connects z to y.

Example 1.6. Any normed space is a geodesic metric space: Let (V)| -|) be a normed
space. For any two distinct points z,y € V', the map

TREA A

ly — |
is a geodesic line that passes through the points x and y. Indeed, for any s,t € R, we have
y—x
ly — |

13(6) = 35)1 = o + 47— = (o s =) = [ =) =] = It =l

ly —
The restriction j|[o,jz—y|) is & geodesic segment that connects x to y.

Example 1.7. It can be shown that h,(s,t) = [s—t|* isametricin R if 0 < o < 1. The
metric space (R, h,) is homeomorphic to R with the usual metric given by the expression
hi but it is not a geodesic metric space if 0 < o < 1.

A metric space (X, d) is uniquely geodesic, if for any x,y € X there is exactly one geodesic
segment that connects x to y.

If X is a uniquely geodesic metric space and z,y € X, x # y, we denote the (image of
the) unique geodesic segment connecting z to y by [z,y][]

%This notation is often used even in spaces that are not uniquely geodesic.

Proposition 1.8. Any inner product space is a uniquely geodesic metric space.

Proof. Let V be an inner product space and let z,y € V. We show that j constructed in
Example is the only geodesic segment that connects x to y. [

Let z,y,2z € V such that |z — z| + |z — y|| = |z — y|. We may assume for simplicity
that = 0. Squaring, the equation |y — 2| = [y| — [z], we get after simplification
(y|2) = |yll|z] and the claim follows from Cauchy’s inequality. O

Let X be a uniquely geodesic metric space. A nonempty subset K < X is convex if
[z,y] € K for all x,y € K.

A convex set K < X is strictly convez if [z,y] n 0K = {x,y} for any =,y € K.

Example 1.9. A normed space is uniquely geodesic if and only if its unit ball is strictly
convex. See [BH| Prop. I.1.6]. Thus, for example the normed spaces (R?, | - |,) with

|z]p = R/ + a3

are uniquely geodesic metric spaces if 1 < p < o0.
There are plenty of examples of metric spaces arising from normed spaces that are not
uniquely geodesic. For example, the unit balls of the norms

||$Hoo = maX{‘xl‘a |$2|}

2up to replacing the interval of definition [0, |z — y||] of the geodesic by [a, a+ |z —y|] for some a € R.
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1.4. Metric graphs

and

[#]oo = fara| + |

in R? are not strictly convex.
It is easy to check that, among many others, the mappings ji,j2: [0,1] — (R? dy)
defined by 7j;(t) = t(1,0) and

, t(1,1), if0 <t < 1,
) = {1 0SS
t1-1),ifi<t<1

are both geodesic segments in (R? dy) connecting 0 to (1,0).

Note that the inverse path of j is a geodesic that connects y to x so even in a uniquely
geodesic space there are two geodesic segments with endpoints x and y if we do not specify
the order of the endpoints.

In certain contexts’| it is convenient to use mappings that multiply distances with a
fixed constant.

Let X be a metric space, let I < R be a compact interval and let K > 0. A mapping
j: I — X is an affinely reparametrized geodesic if d(j(s),j(t)) = K |s —t| for all s,t € I.

1.4 Metric graphs

Metric graphs and, in particular, metric trees are important examples in this course. The
definition, based on see [Ser], Sect. 2.1], is somewhat involved.

Let EX and VX be two nonempty sets and let o,t: FX — VX and : EX — EX be
mappings that satisfy € # e, € = e and o(e) = t(e) for all e € EX. The quintuple
X = (VX,EXt,o0,7) is a graph.

The sets EX and VX, called the set of vertices and the set of edges of X.

The elements o(e), t(e) and € are called the initial vertez, the terminal vertex and the
opposite edge of an edge e € EX. The quotient of EX by the equivalence relation induced
by the involution e — € is called the set of nonoriented edges of X.

The cardinality of the preimage o !(v) is the degree degv of the vertex v € VX. If
deg: X — N is a constant mapping, then X is a reqular graph.

Note that we make no further assumptions on the cardinalities of the sets of vertices
and edges that the fact that these sets are not empty.

Often, graphs are defined in a different way, taking the set of nonoriented edges to
be a set consisting of pairs of distinct vertices. Furthermore, our construction allows for
loops where o(e) = t(e) for some edge e.

A graph is not a geometrical or topological object but one can associate natural spaces
to it as follows. Recall that an equivalence relation ~ is finer than ~ if x ~ y implies
T ~y.

3See the proof of Theorem and the definition of metric convexity in section
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Geodesic metric spaces

The topological realisation |X| of a graph X is the topological space obtained from the
disjoint union of the family (I.)e.cpx of closed unit intervals I, and VX by the finest
equivalence relation that identifies intervals corresponding to an edge and its opposite
edge by the map ¢t — 1 — ¢t and identifies 0 € I, with o(e) € VX.

More precisely, let | [ cpx Ie be the disjoint union of a family (/.)eepx of closed unit
intervals I, with the topology of the disjoint union[f] Let ~ be the equivalence relation in
[ I.cgx generated by the identifications (t,e) ~ (1 —t,¢e) for all ¢ € [0,1] and all e € EX
and (0,e) ~ (0,e) if and only if o(e) = o(¢') € VX.

A graph is connected if its topological realisation is path connected as a topological space.

A connected graph is a tree if its topological realisation is uniquely arcwise connected[]

?Recall that the image of an injective path defined on a compact interval is an arc. A topological
space X is uniquely arcwise connected if for any two distinct points z,y € X there is a unique arc |7|
whose endpoints are x and y.

(k,j) = (k,1—j), then it is easy to check using Figure|l.1|that the topological realization
of X is homeomorphic to E!. If we replace Z by N in the construction, we obtain a graph
X" whose geometric realization is homeomorphic to [0, 0.

Example 1.10. (1) If VX =Z, EX =7Z x {0, 1}, o(k;ﬁ =k+j,t(k,j) =k+1—jand

-
—e o o r 2 L L 2 @ *— |X|
-3 -2 -1 0 1 2 3 4

—

(1,0) (1,0) (2,0)
Figure 1.1 — E! as a metric graph

(2) Let A # & be any nonempty set and let VX = {0} x A and EX = A x {0,1}. Let
o(a,0) = 0 = t(a,1) and o(a,1) = a = t(a,0) for all a € A and define (a,k) = (a,1 — k)
for all a € A. If A is an infinite set, for example A = S!, the geometric realization of A is
not locally compact at the vertex 0.

(3) Often, we describe a graph more informally, for example by drawing a picture of the
geometric realization or a sufficiently large part of it if the structure repeats itself in a
reasonable manner.

A metric graph (X, \) is a pair consisting of a connected graph X and edge length map
A EX — )0, + 0] such that A\(e) = A(e).

A simplicial graph X is a metric graph whose edge length map is constant equal to 1.

Let (X, A) be a metric graph and let mx: [ [, zx Ie — |X| be the canonical projection.
A continuous mapping c: [0, 1] — |X| is a piecewise linear path if there is a subdivision

4This is the finest topology for which all the natural injections I, < [ | cepx le are continuous.
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1.4. Metric graphs

Figure 1.2 — The topological realization of a graph with two vertices and three undi-
rected edges that has two loops.

Figure 1.3 — Part of the geometric realization of a regular infinite simplicial tree such
that the degree of each vertex is 4. Imagine all the branches extending indefinitely with
the same branching at every vertex.

0=ty <ty <---<t, =10f[0,1], a collection of edges ey, ...,e, € EX and affine
mappings ¢;: [ti—1,t;] — I, such that c|p, , ] = 7x o ¢;. The length of c is

() = 2 () — exltin) A (e

If z,y € [X], let
PL(z,y) = {c: [0,1] — |X] : ¢ piecewise linear, ¢(0) =z, ¢(1) = y}.

Proposition 1.11. Let (X, \) be a metric graph such that any two points in |X| can be
connected by a piecewise linear path and \ has a positive lower bound. The expression

dy(z,y) = inf {)(c)

cePL(z,y)

defines a metric on the topological realization of X.
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Proof. Exercise. O

From now on, we assume that the edge length map of a metric graph has a positive lower

bound.

The above assumption could have been taken to be part of the definition of a metric
tree without restricting the generality of the construction in any essential way even though
it is easy to construct examples of metric trees without such a lower bound where the
above construction yields a metric.

Let (X, ) be a metric graph such that A has a positive lower bound. The geometric
realisation of (X, \) is the metric space (|X[, dy).

The metric space X determines (X, \) up to subdivisions of edges, hence we will often
not make a strict distinction between X and (X, \). In particular, we identify VX with
its image in X and we will refer to convex subsets of (X, \) as convex subsets of X, etc.

A uniquely arcwise connected geodesic metric space is an R-tree.

Example 1.12. (a) For any z,y € R, let

d (z,y) lz =yl it z and y are linearly dependent,
x,y) = ‘
ety |z| + |y| otherwise.

The French railroad space (R?, dsncr) is an R-tree[]
(2) Figure [1.3] shows a simplicial tree.

1.5 Triangles

The definitions of negatively curved spaces in Chapters [6] and [10] are based on the prop-
erties of triangles and we will also treat classical properties of triangles in the Euclidean,

spherical and hyperbolic spaces. A precise definition of this fundamental object is there-
fore in order:

Let X be a metric space. A triangle in X is a triple A = {j1, jo, j3} of geodesic segments

such that the terminus of j; is the origin of 7,1 with the index ¢ considered cyclically
mod 3.

The geodesic segments j;, jo and j3 are the sides of A.
A triangle A is degenerate if it is contained in the image of one of its sides.

The endpoints of the geodesic arcs ji, jo and j3 are the vertices of A.

A triangle A in a uniquely geodesic metric space is determined by its vertices but in
generalﬁ one has to specify the sides.

5SNCF=Société nationale des chemins de fer francais is the French national railroad company.
6See Example
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1.5. Triangles 11

If X is a uniquely geodesic metric space and z,y, 2z € X, then

Alx,y,z) = {[x,y], ly, x], [va]}

is the triangle with vertices x, y and z.

If X is a geodesic metric space and three points A, B, C' € X are the vertices of a triangle,
we denote the lengths of the sides with endpoints A and B, B and C and C' and A, in the
corresponding order, by ¢, a and b. If the angles at the vertices are defined["] the angles
between the sides at the vertices A, B and C be «a, 8 and 7. See Figure [2.1

?for example in Chapters and

Exercises
1.1. Prove Propositions and [L.4]
1.2. Fill in the details in Example [1.7]

1.3. Prove Proposition Why do we assume that the length function has a positive
lower bound?

1.4. Prove that (R? dsxcr) is not a proper metric space. Describe the isometry group
of (RZ, dSNCF>‘

1.5. For any z,y € R?, let

To| + |v1 —y1| + ,if xp #
d(x,)—{| 2| |1 y1| |y2| 17U

|zy — Yo cif 2 =y,

(a) Prove that (R? d) is an R-tree.
(b) Draw the sphere 0B(0,1) of (R?,d). Is it compact or connected?

Let [a,b] = R be a compact interval. An ordered finite sequence
c=(a=0p<o01<---<0,=D0)
is a partition of [a, b]. Let P, be the set of partitions of [a, b].

Let X be a metric space and let v: [a,b] — X be a path. The variation of vy with respect
to a partition 0 = (a =09 < 0y < --- <0, =b) is

n

Vi(v,0) = > d(y(0:),v(0i1)) -

i=1

The length of « is its total variation
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1.6. Let X be a metric space and let v: [0,b] — X be a geodesic segment.
(a) Compute the length of .
(b) Prove that ~ is a shortest path from ~(0) to (b).
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Chapter 2

Euclidean geometry

This chapter collects background information on Euclidean spaces. Most of this should
be known in some form from linear algebra and elementary geometry.

2.1 Euclidean space

As we use various different structures on the space R™, it is convenient to have a fixed
notation for the situation where we use the standard Euclidean structure. The notation
R™ therefore does not carry the Euclidean structure, it is just the n-fold Cartesian product
of R™, and we usually consider it with the standard structure of a vector space over R.

Let us denote the Fuclidean inner product of R™ by
(z]y) = Z$iyi .
i=1
The Fuclidean norm |z| = +/(z|x) defines the Fuclidean distance d(x,y) = |z — y||. The

triple E™ = (R™, (- |-),| - ||) is n-dimensional Fuclidean space.

Proposition 2.1. Fuclidean space is a uniquely geodesic metric space.

Proof. See Proposition O

2.2 FEuclidean triangles

The first two results are classical formulae that connect the side lengths and angles of
triangles in Euclidean space.

Proposition 2.2 (The Euclidean law of cosines). The relation
& =a®+b* — 2abcos~y

holds for all triangles in E™.

December 7, 2020 13



Euclidean geometry

A

Figure 2.1 — A triangle in Euclidean space.

Proof. The proof is linear algebra:
A=|B-APf=|B-C+C—-A*=b0+2(B-C|C— A)+ad*
=0 +2(B-C|C—A)+a®=0b"—2abcosy + a*. O
Proposition 2.3 (The Euclidean law of sines). The relation

a b c

sina  sin (8 - sin 7y
holds for all triangles in E™.
Proof. Exercise. O

The following result will be useful in Chapter (10| when we discuss comparison geometry
and CAT(—1) spaces. The content is this: Given any three positive numbers that satisfy
the conditions arising from the triangle inequality to be the sides of a triangle in a geodesic
metric space, there is a triangle in E? with precisely these side lengths.

Proposition 2.4. Let a,b,c > 0 and assume that a +b > c, a+c > b and b+ ¢ > a.
There is a triangle in E? with side lengths a, b and c.

a?+b%2—¢?

Proof. The inequality a +b > ¢ implies
a2+2’fb_c2 < 1. Thus, we can solve the equation ¢ = a* + b* — 2abcos~y to find ~y € [0, 7].
Placing two segments of lengths a and b starting at 0 with the angle v at the vertex 0
determines a triangle in E2. The Euclidean law of cosines implies that the length of the

third edge is c. O]

> —1 and the inequality a 4+ ¢ = b implies

Proposition 2.5. The sum of the angles of a triangle in E? is .

Proof. There are many different proofs, here is one that uses complex numbers: Note that

C-A ,C-A A-B | A-B A-C (B-C
5=a-lg=al¢" e=g-leg=pl¢" s=e-li=c

i

| & &7
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The product of the left sides of these equations is —1, and therefore, e!@*8+7) — 1.
Thus, o + f+ v =7+ k27 for some ke Z. As 0 < «, 3,7 < m and at most one of them
can be m, we get the claim. O]

2.3 Isometries of E"

We will now study the isometries of Euclidean space more closely.

The (Euclidean) orthogonal group of dimension n is
O(n) = {Ae GL,(R) : (Az| Ay) = (x|z) for all z,y € E"}
= {AeGL,(R): ATA=1,}.
Recall the following basic result from linear algebra:

Lemma 2.6. An n x n-matric A = (a1,...,a,) is in O(n) if and only if the vectors
ai,...,a, form an orthonormal basis of E™. [

It is easy to check that elements of O(n) give isometries on E" for any n € N: Let
A€ O(n) and let z,y € E". Now

d(Az, Ay)* = (Az — Ay | Az — Ay) = (A(z —y) | A(—y))
(ATA(z —y) |z —y) = (x—y|lz—y)
d(z —y)*.

For any b € R", let t,(x) = x + b be the translation by b. Again, it is easy to see that
translations are isometries of E”. The translation group is

T(n) ={t,: be R"}.
Orthogonal maps and translations generate the Fuclidean group
E(n)={zx— Az +b: A O(n),beR"} = T(n)O(n)
which consists of isometries of E".

Proposition 2.7. E(n) acts transitively by isometries on E". In particular, Isom(E")
acts transitively on E™.

Proof. The Euclidean group of E" contains the group of translations T(n) as a subgroup.
This subgroup acts transitively because for any =,y € R", we have T, _,(z) = y. O]

Next, we want to prove that all isometries of Euclidean space E™ are elements of the
Euclidean group.

Theorem 2.8. Isom(E") = E(n).

The proof of this theorem and the introduction of the tools needed in the proof takes
up the rest of this section.
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An affine hyperplane of E™ is a subset of the form
H=H(Pu) =P+u',
where P,u € E" and |u| = 1. The reflection in H is the map
rg(z) =2 —2(x— Plu)u.

Lemma 2.9. The definition of rg is independent of the choice of P € H.

Proof. If P,Q € H, then P — @Q € u*. Thus,

r—2rz—Pluu=2—-2—-Plu)u+2(P-Q|luu=2—-2(z—Q|u)u. (21[)]

Reflections are very useful isometries, the following results give some of their basic
properties.

Proposition 2.10. Let H be an hyperplane in E™. Then

(1) rg ory is the identity.

(2) rig € E(n). In particular, rg is an isometry, and if 0 € H, then ry € O(n).
(3) d(ru(z),y) = d(x,y) for allx € E" and all y € H.

(4) The fixed point set of ry is H.

Proof. We will prove (3) and leave the rest as exercises. Let z € E” and y € H. We have
rg(z) = ¢ — 2(x — y | u)u, which implies

d(ru(r),y)* = (ru(z) —ylra(e) —y) = (¢ —y —2(z —y|wu|z —y — 2(z — y|u)u)
=(r—yle—y) 4z —y|(zr —y|wu) +4((z —y|wu| (= — y|u)u)
= (z—yle—y) =d(zy). O
The bisector of two distinct points p and ¢ in E" is the affine hyperplane

pt+yq

bis(p,q) = {z € E" : d(x,p) = d(z,9)} = ——~ + (p—a)"-
Lemma 2.11. Ifp,q € E", p # q, then
bis(p, q) = p;rq +(p—q"
Proof. Exercise. m

Proposition 2.12. (1) If rg(z) =y and x ¢ H, then H = bis(x,y).

(2) If p,a € E", p # q, then rispq () = q-

(3) Let ¢ € Isom(E"), ¢ # id. Ifa € E", ¢(a) # a, then the fized points of ¢ are contained
in bis(a, ¢(a)).

(4) Let ¢ € Isom(E"™), ¢ # id. If H is a hyperplane such that ¢|y is the identity, then
Qb =THg.
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Proof. (1) follows from Proposition [2.10)3).
(2) From the definitions we get
p+4q ) pP—4q

Thisrg) (P) =0 — 2(p — T2 IPTU TR

:q.

(3) If ¢(b) = b, then d(a,b) = d(¢(a), ¢(b)) = d(¢(a),b), so that b € bis(a, ¢(a)).

(4) Let a ¢ H be a point that is not fixed by ¢. Claim (3) implies that H is contained in
bis(a, ¢(a)) and as the dimensions agree, we have H = bis(a, ¢(a)). Thus, by Claim (2),
rg(a) = ¢(a). But this holds for all a ¢ H. As ry|y = ¢y = idy, we have ¢ = ry. O

The idea of the proof of Theorem is to show that each isometry of E" is the
composition of reflections in affine hyperplanes. In order to do this, we show that the
isometry group has a stronger transitivity property than what was noted above.

Proposition 2.13. Let p1,po, ..., Pk, q1, G2, - - -, g € E™ be points that satisfy

for all i,j € {1,2,...,k}. Then, there is an isometry ¢ € E(n) < Isom(E") such that
o(pi) = q; for alli € {1,2,...,k}. Furthermore, the isometry ¢ is the composition of at
most k reflections in affine hyperplanes.

$2 0 p1(p3)

p1 X

Tqr = ¢1(p1)

p3

b2

bis(p1, qi) ¢1(p2) b1(p3)

Figure 2.2 —

Proof. We construct the isometry by induction. If p; = ¢, let ¢; be the identity, other-
wise, let ¢ be the reflection in the bisector of p; and ¢;. Let m > 1 and assume that there
is an isometry ¢,, such that ¢,,(p;) = ¢; for all i € {1,2,...,m}, which is the composition
of at most m reflections. The mapping ¢ is in E(n) by Proposition m
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Assume that ¢, (Pms1) # Gma1- NOW, q1, - - . Gm € biS(Gm(Pms1), Gm+1) because for each
1 <7 < m, we have

d(qi, Om(Pm+1)) = d(Dm(Di), Gm(Pm+1)) = d(Dis Pms1) = A(Gis Gme1) -

Thus, the map

¢m+1 = Tbis(¢m(pm+l)v(Im+l) © ¢m
satisfies ¢p11(p;) = q; forall 1 <i<m+ 1. O

Corollary 2.14. If T and T' are two triangles in E™ with equal side lengths, then there
is an isometry ¢ of ™ such that ¢(T) = T". O

Corollary 2.15. Any isometry of E™ can be represented as the composition of at most
n + 1 reflections. O

Proof. Let ¢ € Isom(E™). Proposition implies that there is an isometry ¢o € E(n)
such that ¢o(p(e;)) = e; for all 1 < i < n and ¢o(¢(0)) = 0. The set of fixed points of
®p © ¢ contains the points 0, eq,...,e,. In particular, the fixed point set of ¢y o ¢ is not
contained in any affine hyperplane. Proposition [2.12{3) implies that ¢g o ¢ = id. Thus,

¢=dg. -

Proof of Theorem[2.8. The elements of E(n) are isometries by Proposition . The op-
posite inclusion follows from Corollary and Proposition [2.10]2). O

Proposition 2.16. The stabiliser in Isom(E™) of any point x € E™ is isomorphic to O(n).
An isometry F' of E™ fizes b e E" if and only if there is an orthogonal linear map Fy such
that F = Tyo FyoT, .

Proof. An element of E(n) fixes the origin if and only if it is an orthogonal linear transfor-
mation. Thus the claim holds for 0. If b € E"—{0} and F € Stabb, then T, 'o FoT;, € O(n)
and for any A€ O(n), T,oAoT, ' efixb O

Proposition 2.17. For each affine k-plane P, there is an isometry ¢ € Isom(E"™) such
that
O(P)={zeBr: gt = zF2 = ... = g" = 0}.

FEach affine k-plane of E" is isometric with EF.

Proof. This is a direct generalisation of Proposition The details are left as an exercise.
O

Exercises

2.1. Prove Proposition [2.3]
2.2. Let o € E" and let u,v € S". Let F': E® — E" be an isometry.

(1) Show that F' o j,,, and F o j, , are geodesic lines.

(2) Show that F o j,, . and F o j,, , intersect and that the angle of intersection is the
same as for j,, ., and jg, .-
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2.3. Isometries of E" 19

2.3. Find an isometry F of E? such that F(0) = (1,0), F(1,0) = (1,1) and F(0,1) =
(2,0).

2.4. Let H(0,u) be a line in E? that forms an angle %With the positiv z;-axis. Let r, be
the reflection in H (0, u).

(1) Compute the matrix of r, in the standard basis.
(2) Let uy,us € St. Compute the matrix of r,, o r,, in the standard basis.
(3) Write the rotation by 7 as the composition of two reflections.

2.5. Prove the remaining parts of Proposition [2.10]
2.6. Prove Lemma 2.11]
2.7. Prove Proposition 2.17]
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Chapter 3

Spherical geometry

3.1 The sphere

The unit sphere in (n — 1)-dimensional Euclidean space is
S" = {zxeE"™ |z = 1}.
Let us show that the angle distance
dsn (z,y) = arccos(z | y) € [0, 7] (3.1)

is a metric. In order to do this, we will use the analog of the Euclidean law of cosines,
but first we have to define the objects that are studied in spherical geometry.

Each 2-dimensional linear subspace T' = R™! intersects S™ in a great circle. If A €
S™ and u € S™ is orthogonal to A (u € A*), then the path ja,: R — S",

Jau(t) = Acost + usint,

parametrises the great circle (A, u) N S™, where (A, u) is the linear span of A and u. The
vectors A and u are linearly independent, so (A, u) is a 2- plane.

Lemma 3.1. If ds» is a metric, then ja, is a locally geodesic line.
Proof. Observe that as A and u are unit vectors such that (Aju) = 0, we have

(Jau(s) | jau(t)) = (Acoss + usins| Acost + usint)
= | A|*cos scost + (cosssint + sin s cost)(A|u) + sin ssin ¢|u?

= cosscost + sinssint = cos(s — ). (3.2)
Thus,
d(Jau(s), jau(t)) = arccos(jau(s) | jau(t)) = arccoscos(s —t) = |s — t|,

which implies that the restriction of js, to any segment of length less than 7 is an
isometric embedding. O]
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Note that the computation applied with s = t implies that the image of the
mapping ja, is contained in St.

If A, B € S" such that B # + A, then there is a unique plane that contains both points.
Thus, there is unique great circle that contains A and B, in the remaining cases, there
are infinitely many such planes. The great circle is parametrised by the map j,, with

 B-(B|A)A  B—(A|B)A
B (BIA)A]  \/1-(A]B)?

Now j(0) = A and j(d(A, B)) = B.

If B = —A, then there are infinitely many great circles through A and B: the map
Ja. parametrises a great circle through A and B for any u € A*.

We call the restriction of any j4, as above to any compact interval [0, s] a spherical
segment, and u is called the direction of j4,. Once we have proved that d is a metric, it
is immediate that a spherical segment is a geodesic segment.

Our proof showing that the expression defines a metric is based on the spherical
law of cosines.

A triangle in S™ is defined as in the Euclidean case but now the sides of the triangle
are the spherical segments connecting the vertices.

(3.3)

u

Figure 3.1 — A triangle in S*.

Let jou([0,d(C, A)]) be the side between C and A, and let je,([0,d(C, B)])v be the
side between C' and B. The angle between the sides jo,. ([0, d(C, A)]) and je ([0, d(C, B)])
is arccos(u|v), which is the angle at A between the segments jc,([0,d(C,A)]) and
Jeu([0,d(C, B)]) in the ambient space E"*.

Now we can state and prove
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Proposition 3.2 (The spherical law of cosines). In spherical geometry, the relation
cosc = cosacos b + sinasin b cos vy
holds for any triangle.

Proof. Let w and v be the initial tangent vectors of the spherical segments j¢, from C to
A and jc, from C' to B. As u and v are orthogonal to C', we have

cosc = (A|B) = (cos(b)C + sin(b)u | cos(a)C + sin(a)v)
= cos(a) cos(b) + sin(b) sin(a)(u |v) . O
Proposition 3.3. The angle distance is a metric on S".

Proof. Clearly, the triangle inequality is the only property that needs to be checked to
show that the angle metric is a metric. Let A, B,C' € S be three distinct points and use
the notation introduced above for triangles. The function
v +— f() = cos(a) cos(b) + sin(a) sin(b) cos(7)
is strictly decreasing on the interval [0, 7], and
f(m) = cos(a) cos(b) — sin(b) sin(a) = cos(a + b) .

Thus, the law of cosines implies that for all v € [0, 7], we have

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(y) = cos(a + b), (3.4)
which implies ¢ < a + b. Thus, the angle distance is a metric. ]

Note that the inequality (3.4)) is strict unless v = 7. This also implies that for triangles
that are not completely contained in a great circle,

c<a+b<2m—c. (3.5)
We return to this observation in Section [3.4]

Theorem 3.4. (S",dsn) is a geodesic metric space. If dsa(A, B) < 7, then there is a
unique geodesic segment from A to B.

Proof. If z,y € S with y # +x, then, by Lemma the spherical segment with direction
given by the equation ([3.3)) is a geodesic segment that connects x to y. If the points  and
y are antipodal, then it is immediate from the expression of the spherical segment that
Juu(m) = —x. Thus, in this case there are infinitely many geodesic segments connecting
z to y.

If j is a geodesic segment connecting A to B, then any C in j([0,d(A, B)]) satisfies

dse (A, C) + ds» (C, B) = dsn(A, B)

by definition of a geodesic segment. In the proof of Proposition (3.3, we saw that equality
holds in the triangle inequality if and only if v = 7. In this case, all the points A, B and
C lie on the same great circle and C'is contained in the side connecting A to B. Thus, the
spherical segments are the only geodesic segments connecting A and B. If A # +B, then
there is exactly one 2-plane containing both points. This proves the second claim. O

Note that the sphere has no geodesic lines or rays because the diameter of the sphere
is 7.
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3.2 More on cosine and sine laws

The law of cosines implies that a triangle in E™ or S” is uniquely determined up to an
isometry of the space, if the lengths of the three sides are known. In Euclidean space the
angles are given by
a?+b* — 2

2ab
and the corresponding equations for o and 3 obtained by permuting the sides and angles,
and in the sphere we have

cosy =

cosc — cosacosb

cosy = . _
sin a sin b

In Euclidean space, the three angles of a triangle do not determine the triangle uniquely
but in S™ the angles determine a triangle uniquely. This is the content of

Proposition 3.5 (The second spherical law of cosines). In spherical geometry, the relation

cos avcos 3 + cosy

cosc = - -
sin «rsin 3

holds for any triangle.

Proof. This formula follows from the first law of cosines by manipulation. The first law
of cosines implies

Ly ) 1 + 2cosacosbcosc — (cos® + cos? b + cos? ¢) D
sin“y =1 —cos” vy = — =57,
sin” a sin” b sin” a sin” b

and D is symmetric in a, b and c¢. Thus, using the law of cosines, we get

cosa — cosbceosccosb — cosacosc N cosc — cosacosb

cOs ( Cos 3 + cosy _ sin bsin ¢ sin a sin ¢ sin asin b — cosc
sin o sin 3 D
sin a sin bsin? ¢ -

Spherical geometry even has its own sine law
Proposition 3.6 (The spherical law of sines). In spherical geometry, the relation

sina sin b sin ¢

sina sinf  sinvy
holds for any triangle.

Proof. In the proof of the second law of cosines we saw that he first law of cosines implies
that

. 2 . . .
sin ¢ sin? a sin? bsin? ¢
sin y D

The claim follows because this expression is symmetric in a, b and c. O
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3.3 Isometries of S"

Proposition 3.7. The orthogonal group O(n + 1) acts transitively by isometries on S™.
In particular, Isom(S™) acts transitively on S™.

Proof. Let A € O(n + 1) and let z € E**'. By definition of orthogonal matrices, we
have |Az|? = (Az | Ax) = |z|®>. Thus, A defines a bijection of the sphere S™ to itself.
Furthermore, for any x,y € S**!, again by the definition of orthogonal matrices,

cosh dgn (Ax, Ay) = (Ax | Ay) = (x| y) = coshdgn(z,vy),

which implies that the above mapping is an isometry.

Transitivity follows from the fact that any element of S™ can be taken as the first
element of an orthogonal basis of E” or, equivalently, as the first column of an orthogonal
matrix. O

Theorem 3.8. Isom(S") = O(n + 1)

Proof. The claim follows from Proposition and Corollary and Proposition
below in the same way as its Euclidean analog, Theorem was proven. O]

Let Hy be a linear hyperplane in E". The intersection H = Hy n S™ is a hyperplane of
S,

The reflection ri in H is the restriction of the reflection in Hy to the sphere: g = g, |sn.

Note that each hyperplane of S™ is isometric with S*~! and that, by Propositions
2.10(2) and [3.7] the image of r,|s» is contained in S™.

Proposition 3.9. Let H be an hyperplane in S™. Then
(1) ry ory is the identity.

(2) rg € O(n+1). In particular, ry is an isometry.

(8) d(ry(z),y) = d(z,y) for allz € S™ and all y € H.
(4) The fized point set of ry is H.

Proof. (1), (2) and (4) are direct consequences of Proposition [2.10f We leave (3) as an
exercise. []

The bisector of two distinct points p,q € S™ is

bis(p, q) = {x € S" : dsn(z,p) = ds(x,q)} .

Lemma 3.10. Let p,q € S", p # q. Then bis(p,q) = (p — ¢)* n S". In particular, the
bisector is a hyperplane, it is the intersection of the FEuclidean bisector of p and p with
the S™.

Proof. The points p, q,x € S™ satisfy dsa(x,p) = dsn(z,q) if and only if (p|z) = (¢|x),
which is equivalent with (p — ¢ |x) = 0. O
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Proposition 3.11. Let x,y € S™ and let H be a hyperplane of S™.

(1) If ry(z) =y and x ¢ H, then H = bis(z,y).

(2) If p,q € S™, p # q, then Thisp.q)(p) = q.

(3) Let ¢ € Isom(S™), ¢ #id. Ifa e S", ¢p(a) # a, then the fized points of ¢ are contained
in bis(a, p(a)).

(4) Let ¢ € Isom(S™), ¢ # id. If H is a hyperplane such that ¢|y is the identity, then
¢=ry.

Proof. (1) follows from Proposition [3.9(3).

(2) Using the definitions and the fact that % is in the Euclidean bisector of p and ¢, we
get

ptq P—q
Thisp)(P) =P —2(p——— [P — ¢ =q.
(p.q) ( 9 ‘ )HP_QHQ
The proofs of (3) and (4) are formally the same as in the Euclidean case. O

We leave it as an exercise to check that the following result is proved in the same way
as their Euclidean counterparts.

Proposition 3.12. Let p1,p2, ..., Pk, q1, G2, - - -, Qe € S™ be points that satisfy
d(pi, pj) = d(a, q5)

for alli,j € {1,2,...,k}. Then, there is an isometry ¢ € Isom(S"™) such that ¢(p;) = q;
forallie{1,2,... k}. O]

Corollary 3.13. Any isometry of S™ can be represented as the composition of at most
n + 1 reflections. O

Proposition 3.14. The stabilizer in Isom(S™) of any point x € S™ is isomorphic to O(n).

Proof. The north pole e, is stabilized by the subgroup of O(n) that consists of block
diagonal matrices diag(A, 1), where A € O(n). Proposition [3.7/ implies the claim as in the
Euclidean case, see Proposition [2.16] O

The proof of the following result is similar to that of its Euclidean analog, Proposition

217

Proposition 3.15. Each k-plane of S™ is isometric with S¥. For each k-plane P, there
is an isometry ¢ € Isom(S™) such that

H(P) ={xeS":aft? = 2F3 = ... = "1 =0}, o

3.4 Triangles in the sphere

In this section, we prove among other results that the sum of the angles of a nondegenerate
triangle in S? is greater than 7. In order to do this, we introduce the polar triangle of a
spherical triangle.
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Let A, B,C € S? be points that do not all lie on the same great circle, and let A be the
triangle with vertices A, B and C. The polar points A*, B*,Cx € S* of A, B and C' are
the unique points that satisfy the conditions

(A*[B) =0 = (A" ]C), (A*[A)>0
(B*|C) =0 = (B*|A), (B*|B)>0 (3.6)
(C*|A) =0 = (C*| B), (C*|C)>0.

The triangle A* with vertices A*, B* and C* is the polar triangle of A. Let a*, b* and
c* be the side lengths and let o*, 5* and v* be the angles of (ABC)*.

Geometrically, for each vertex of the triangle, the dual vertex is the intersection point
of the line orhogonal to the plane that contains the other two vertices, on the same side
of the plane as the original vertex.

Lemma 3.16. The polar points of the vertices of a nondegenerate triangle A in S? are
linearly independent and (A*)* = A.

Proof. Exercise. O

Proposition 3.17. Let ABC be a triangle in S* such that the vertices do not all lie on
the same great circle. Then

a+a*=b+p =c+y =a"+a=0"+pF=c"+y=m.

Proof. The situation is completely symmetric so it suffices to prove a + a* = w. Let
u,v € At = (B* C*) be the directions of the edges AB and AC, respectively. Recall that
(u|v) = cosa and (B* |C*) = cosa*.

Now, u € (A, B) implies that (u|C*) = 0 and similarly we have (v | B*) = 0. Further-
more,

>0

B—(B|A)A (B|B")
(wlB) = ( B*) -
B %) = B
and similarly (v|C*) > 0. Thus, we have either the points u, B*, C* and v on the circle

(B*,C*) in this order or in the order B* u, v and C* with the right angles between u
and C* and v and B* overlapping in both cases. The claim follows easily. O]

Lemma 3.18. The perimeter of a spherical triangle is at most 2m. If the perimeter is
27, then the vertices are all contained in the same great circle.

Proof. This follows from the inequality (3.5)) and the fact that this inequality is an equality
if and only if v = 7. 0

Proposition 3.19. The sum of the angles of a nondegenerate triangle in S? is greater
than .

Proof. Proposition implies that a + f+ v +a* + 0" +¢* = 3m. Asa* +b* +c¢* <27
by Lemma [3.18, we get the claim of Proposition [3.19] O

The following is the spherical analog of Proposition [2.4]
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Figure 3.2 — If A is the north pole and B and C' are on the equator, then A = A*.

Proposition 3.20. Let0 < a,b,c <m. Ifa+b>c,b+c>a,c+a>0banda+b+c < 2,
then there is a triangle in S* with side lengths a, b and c. All such triangles are isometric.

Proof. We use the law of cosines in the construction: Note that if such a triangle exists,
then the angle at C satisfies the cosine law. Therefore, we can compute it if we know that

cosc — cosacosb

<1, (3.7)

sinasin b

because then %:IZZO” is in the range of cos, and we can proceed with the construction.

The pair of inequalities ¢ < a + b < 27 — ¢ implies
cosc > cos(a + b) = cosacosb —sinasinb.
The inequalities b + ¢ > a and ¢ + a > b give |a — b| < ¢, which implies
cosc < cos(a —b) = cosacosb +sinasinb.
These two inequalities give
—sinasinb < cosc — cosacosb < sinasinb,
which implies the inequality . Now we can place the sides of length a and b starting
at C in the correct angle v. The cosine law implies that the lengths of the side opposite

to C' is indeed c.
The triangles are isometric by Proposition [3.12 [
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3.5 Some elementary Riemannian geometry on S2.

Let x € S%. The latitude of x is

O(z) = g —dg2(z,e3) = g — arccos(x | e3) = g — arccos(z3) € [—g, g],

which is the oriented angle of z from the equator {x € S* : x3 = 0}. The longitude of
reS?— {Les}is

(901,%2,0) | 61) T

¢(z) = sign(zs) arccos <($17=T2»0)|) = sign(zy) arccos (\/m> € |—m 7],

where sign(t) = ﬁ for nonzero ¢ and we set sign(0) = 1.

The longitude is the oriented angle between x and the geodesic segment from the north
pole ez to the south pole —e3, called the O—mem’dz’anﬂ Here we have chosen the value w
for the longitude on the international date line which is the geodesic segment between
the poles that passes through —e;. More generally, the geodesic line between the poles
determined by an equation ¢ = c¢ is a meridian and the circle determined by an equation
0 = cis a parallel.

The longitude and latitude of a point define a bijection L: §? — {£e3} — |—7, 7| x

13,30
The inverse of this map is given by
L (¢,0) = (cospcosf,sin g cosb,sinf) .

This map is good close to the equator but distances, areas and angles are badly distorted
close to the poles.

Let a € R — {0} and consider the projection plane P, = {x € E3 : 3 = a}. For any = € S?,
let S&: S? — P, be the map

r — €3

Sg(z)=(1—a) + e3

1-— I3

that associates to x the unique point on P, that lies on the affine line through ez and =x.
The stereographic projection S*: S* — {ez} — E? is pry 0S%, where prs(y) = (y1,y2) is the
orthogonal projection of E? to E? identified with the hyperplane E? x {0}. More explicitly,

(@) = (1= a) (-2, ).

1-1’3’1—?[}3

Most often, one uses a = 0, which is the case where the projection plane passes through
the origin, or a = —1, which is the case where the projection plane is tangent to the
sphere at the south pole.

Ithe Greenwich meridian if we consider the Earth
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Length and area

The (differential geometric) length of a piecewise continuously differentiable path 7: I —

S? is
or) = f 1,
I

where 7(t) is the tangent (derivative) vector of the path for each ¢ € I.

Proposition 3.21. Let A,B e S?, A # B. Let j be a spherical segment that connects A
and B. Then ((j) < {(7) for all piecewise continuously differentiable paths 7.

Proof. Using an isometry of S?, we can assume that A and B are contained in the 0-
meridian. Using longitude-latitude coordinates, consider the continuous map proj de-
fined by proj(¢,8) = (0,6) whose image is contained in the 0-meridian. Clearly, £(j) <
{(projort) < U(T). O

In the computation of the length of a path 7, the norm of the tangent vector 7(t) is
computed in the tangent plane 7(¢)* at 7(¢). Using the coordinate maps, we get

The inner product of the tangent spaces can be used to define the area of a subset of
the sphere. This gives the expressions

Area A = f cos 0dfdo
L(A)

in the longitude-latitude coordinates and

4
Area A = f %?2
so(ay (1 + [|lz[?)

in the coordinates given by the stereographic projection.
Proposition 3.22. The area of S* is 4.

Let 0 < o < 7. The area of the (spherical) sector S, = {x € $* : 0 < ¢(x) < a} and
any of its isometric images is easily seen to be ;-4m = 2a.

Proposition 3.23 (Girard). The area of a triangle with angles o, f and v is a+ S+ —.

Proof. Let A, B and C be the vertices of the triangle. The antipodal points —A, —B
and —C' determine a triangle (—A)(—B)(—C) that is isomorphic with ABC. The three
great circles (A, By n §?, (B,C) n'S? and {(C, Ay N S? determine six sectors with angles
a,a, B, 5,7, that cover the sphere. In the complement of the great circles, the triangles
ABC and (—A)(—B)(—C) are both covered by three sectors, other points are contained
in one sector. Thus,

4 = AreaS® = 2(Area S, + Area Sp + Area S,) — 4 Area ABC = 4a — 4 Area ABC,

which gives the claim. O]
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Exercises

3.1. Prove Proposition [3.9(3).

3.2. Let H be a hyperplane in S". Prove that d(rg(z),y) = d(z,y) for all x € S™ and
ye H.

3.3. Let ¢ € Isom(S™) — {id}. Let H be a hyperplane such that ¢|y = id|g. Prove that
¢=rn.

3.4. Prove Corollary for n = 2.

3.5. Prove Corollary (3.13]
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Chapter 4

Hyperbolic space

In this chapter, we define hyperbolic space as a submanifold of Minkowski space with a
metric that is analogous with the angle metric on the sphere. We will show that hyperbolic
space is a uniquely geodesic metric space and that the ortogonal group of the Minkowski
bilinear form is the group of isometries of hyperbolic space.

4.1 Minkowski space

Let V and W be real vector spaces. A map ®: V x W — R is a bilinear form, if the maps
v — (v, wp) and v — P(vy, w) are linear for all wy e W and all vy e V.

A bilinear form ® is nondegenerate if
e O(x,y) =0 for all y e W only if z = 0, and
e O(x,y) =0forall z € V only if y = 0.
If W =V, then ® is symmetric if &(z,y) = ®(y,x) for all x,y e V. It is
o positive semidefinite if ®(x,z) =0 for all z e V,
e positive definite if ®(z,z) > 0 for all z € V — {0},
e negative (semi)definite if —® is positive (semi)definite, and
e indefinite otherwise.
The quadratic form corresponding to a bilinear form ®: V x V — R is the function

q:V >R, q(zx) = ®(z,x).

A positive definite symmetric bilinear form is often called an inner product or a scalar
product.

If V is a vector space with a symmetric bilinear form ®, we say that two vectors
u,v € V are orthogonal if ®(u,v) = 0, and this is denoted as usual by v L v. The
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orthogonal complement of uwe V is
L .
u-={veV :ulo}

Let us consider the indefinite nondegenerate symmetric bilinear form (- |-) on R™*!
given by

@|y) = —zoyo + Y. xiy: = —woyo + (7 |7) = 2" Jy,
=1

where
J = Ji, =diag(-1,1,..., 1)

and © = (zg, x1,...,%,) = (o, T).

We call (- |-) the Minkowski bilinear form, and the pair
Ml’n _ (RnJrl, < ‘ >)

is the n + 1-dimensional Minkowski space.

A vector x € M is
e lightlike or a null-vector if (x| x) =0,
o timelike if (x|x) <0, and
o spacelike if (x| x) > 0.
The names for the three different types of vectors in Minkowski space come from
Einstein’s special theory of relativity, which lives in M. Minkowski space has a number

of geometrically significant subsets:
The subset of null-vectors is the light cone

L ={reM"™  (x|x)=0}.
The smooth submanifold
L ={veM"  (z|z) = -1}
is a two-sheeted hyperboloid, and its upper sheet is
H" = {x e M"" : {(z|2) = —1, x5 > 0}.

The smooth submanifold
L ={zeM": (z|x) =1}

is a one-sheeted hyperboloid.
The following is an important observation on time-like vectors.

Lemma 4.1. If u,v € H", then {u|v) < —1 with equality only if u = v.
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Figure 4.1 — The upper sheet of the two-sheeted hyperboloid with the lightcone and
the one-sheeted hyperboloid.

Proof. Using the Cauchy inequality for the Euclidean inner product in R™ for the first
inequality and a simple calculationﬂ for the second, we have

<U|U>:—U0U0+ZU,@U1\ Uovo—i‘\/ZTq/i v
i=1 =1

= —UgVg +\/u0— 1\/1)0 —-1<

Cauchy’s inequality is an equality if and only if u and v are parallel, and the final inequality
is an equality if and only if ug = vy. This implies the claim on equality. O]
4.2 The orthogonal group of Minkowski space

The orthogonal group of the Minkowski bilinear form is

O(1,n) = {A e GL, 41 (R) : (Az | Ay) = (x|y) for all z,y e M""}
={AeGL,1(R): "AJ1 ,A = J1 .}

Clearly, the linear action of O(1,n) on M preserves the light cone and the two-
sheeted hyperboloid .Z".

'Manipulate the given inequality to remove the square roots etc.

December 7, 2020



36

Hyperbolic space

Let A = (ag,a1,...,a,) bean (n+1) x (n+ 1)-matrix A in terms of its column vectors
ag,ai,...,a, € R"If A e O(1,n), then ag = A(eg) for ¢g = (1,0,...,0) € H*. Thus
A(eg) € H™ if and only if Agy > 0, and therefore the stabiliser in O(1,n) of the upper
sheet H" is

0% (1,n) = {AeO(1,n) : AH" = H"}
={AeGL,1(R): Ay > 0, (Az| Ay) = (x|y) for all z,y e M""}  (4.1)
= {A € GLn+1(R) : AOO > O, ,1;41]177114 = Jl,n} .

Let us check that the second of the three equalities in holds: Let A € GL,+1(R)
with Agg > 0 and (Az | Ay) = (x| y) for all z,y € M. The first and third properties are
equivalent with A € O(1,n) so it remains to check that AH"™ = H". We know that the
Aeg € H". Linear automorphisms of E**! are continuous mappings and the image of a
connected set under a continuous map is connected, so H" is mapped into H". Similarly,
the lower half of the hyperboloid .Z" is mapped into itself. Furthermore, the elements of
GL,+1(R) are linear bijections, so the restriction to H" is a bijection of H".

A basis {vg, vy, ..., v,} of MY is orthonormal if the basis elements are pairwise orthogonal
and if (vg |voy = —1 and (v; |v;) =1 forallie {1,2,...,n}.

The following observation is proved in the same way as its Euclidean analog:

Lemma 4.2. An (n+1) x (n+ 1)-matriz A = (ag, ay, . ..,a,) is in O(1,n) if and only if
the vectors ag,ay, . .., a, form an orthonormal basis of MY™. Furthermore, A € O*(1,n)
if and only if A€ O(1,n) and ay € H".

Proof. Exercise. O
Example 4.3. (1) Let ¢t € R. The matrix

cosht sinht 0
Ly = | sinht cosht 0 |eO%(1,2)
0 0 1

stabilizes any affine hyperplane
H, ={xeM"?:2,=c}.
In particular, the path ¢t — Lieq = (cosht,sinht,0) parametrizes the hyperbola
{reH?:2y=0}=H*n {zeM"*?: 2, =0}.

cosf) —sind

(2) For any 6 € R, let Ry = (Sme cos 0

) € O(2), and let

0 10 0
Ry = diag(1, Ry) = ~ = |0 cos® —sinf |eO*(1,2).
0 R(6) 0 sinf cos 6
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This mapping is a Euclidean rotation around the vertical axis by the angle . The rotation
Ry stabilizes each affine hyperplane

E.={reM“?:xy=r}.

Another important mapping that comes by extension from O(2) is given by the matrix
diag(1,1,—1), which is a reflection in the hyperplane Hy defined above.

(3) The above examples can be generalized to higher dimensions:
e [, is extended as the identity on the last coordinates to diag(Ls, I,,_5) € O(1,n).
e Any Euclidean orthogonal matrix A € O(n) gives an isometry diag(1, 4) € O"(1,n).

Proposition 4.4. The group O*(1,n) acts transitively on H™ and on the one-sheeted
hyperboloid £}

Proof. We use the notation of Example If x € H", then x = (1/||Z||?> + 1,Z). There is
some Ry € O(n) such that Ryx = ||Z|le;, and thus, Ry(x) = (£/|Z|? + 1, |z]e1). Further-

more,
Larsinn jz€0 = (V[ Z]? + 1, Z]e1) .

This implies that H" is the O" (1, n)-orbit of €.
A similar proof shows that £ is the O™ (1, n)-orbit of e;. O

\“““YA‘X-M.( V/
B e

Figure 4.2 — The idea of the proof of Proposition: Ry moves the point x along the
red circle to the blue curve and L, moves the point along the blue curve to e;. The
hyperboloid is seen from the side and from the top.

The proof of the following propositions demonstrate the use of a transitive group of
transformations:

Proposition 4.5. The restriction of the Minkowski bilinear form to the orthogonal com-
plement of a timelike vector is positive definitef]

2Naturally, the orthogonal complement is defined with respect to the Minkowski bilinear form.
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Proof. Let v € M be a timelike vector. We may assume that v € H”. Proposition
implies the existence of an element A € O*(1,n) such that Av = ¢;. The orthogonal
complement of ey is the subspace {x € M"" : x5 = 0}. The restriction of the Minkowski
bilinear form to this subspace is the standard Euclidean inner product. By definition,
(A7 | A7y = (u|u)y > 0 for all u € ep . O

Proposition 4.6. For any a € H", the tangent space T,H" of H" at a coincides with a™.

Proof. Let p € H*. As the group O*(1,n) acts transitively on H" there is some A €
O*(1,n) such that Aey = p. As in Proposition Aeg = p*. Considering the linear
map A as a differentiable mapping of R**! to itself, its differential that coincides with A
maps the tangent space at ey to the tangent spaces at p. Clearly,

T.,.H" = {ze M : 20 = 0} = e*

and the same holds at p by the observations we just made. O

Figure 4.3 — The orthogonal complement p* of a point p € H? coincides with the tangent
space T,(H?) as a vector subspace of R®. The figure also shows the affine tangent plane
p + pt that is tangent to H? at p. If we consider the standard Euclidean inner product in
R3, the tangent plane coincides with the orthogonal complement only at e.

Propositions and imply that the restriction of the Minkowski bilinear form to
each tangent space defines a Riemannian metric.

The Riemannian metric of H" is (- | -)|,4t.

The angle % (u,v) of any two vectors u,v € T,H" = a* — {0} is

X (u,v) = arccos({u | v))

1 -

The norm in a— is

= v/Galw)

for all u € at.
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We will not discuss Riemannian geometry in a formal manner. Hyperbolic space is
an important example of a Riemannian manifold, and sometimes| the definition of the
hyperbolic metric is defined as a Riemannian metric. In that approach, hyperbolic metric
appears as the path metric of the Riemannian metric.

The Riemannian length of a piecewise smooth path 7: [a,b] — H" is

b
() = | VEOT@ .
The length metric of the Riemannian metric of H" is

dRiem(xvy) = lnfg(’)/)a

where the infimum is taken over all piecewise smooth paths that connect x to y.

In section[5.3] we will show that the Riemannian approach leads to the same hyperbolic
metric as the one we will define in section [4.3] Riemannian geometry also provides a
natural concept of volume in hyperbolic space, and we will discuss this in section [5.8|

4.3 Hyperbolic space

In this section, we define a metric on the upper sheet H" using the Minkowski bilinear
form analogously with the definition of the spherical metric in section [3.1]

The metric space (H", d), where
d(z,y) = arcosh(—(z | y)) € [0, o0,

is the hyperboloid model of n-dimensional (real) hyperbolic space. The metric d is the
hyperbolic metric.

We still need to show that the hyperbolic metric is a metric. The proof follows the
same idea that was used to treat the angle metric for the sphere S™.

Let a € H", and let u € a* such that (u|u) = 1. ﬂ The mapping ja.: R — H",
Jau(t) = acosh(t) + usinh(t),

is the hyperbolic line through a in direction u. For any T > 0, the restriction jq .|[o,1] is
a hyperbolic segment.

“Recall that the restriction of the Minkowski bilinear form to a' is positive definite by Corollary

Lemma 4.7. Let a € H" and u € a*.

(1) The image of ja. is contained in H".

3See [And] or [Beal

December 7, 2020



40

Hyperbolic space

(2) For all s,t € R, we have

d(Jau(t), Jau(s)) = [s — 1] (4.2)
(3) A0 Jou = jaa.au for all A O (1,n).
Proof. Exercise. O

As in section for the sphere, if we show that d is a metric, then j,, is a geodesic
line.

Lemma 4.8. Let p,q € H" be two distinct points. Let

q+{plop

Vil -1

The hyperbolic line j,., satisfies passes through p and q. Furthermore, j,,(0) = p and
Jpaularcosh(=(p|q))) = q.

Proof. Observe that Lemma [£.1] implies

la+<plopla+lplop) = P> —1>0.

Thus, v is a unit tangent vector to the hyperboloid. The fact that j,,(0) = p is immediate,
and the other claim follows by noting that sinh(arcosh(—(p|¢))) = 1/{p|¢)* — 1. O

Lemma 4.9. For any a € H" and any u € a*, j,.(R) = H" n {a,u). If a 2-plane T
intersects H™, then T'n H" is the image of a hyperbolic line.

Proof. Clearly, the image of j,, is contained in the 2-plane {(a,u). The fact the image of
Jau coincides with {a,u)y n H" follows from the second statement of the Lemma that we
prove below.

If T'= {eg,e1), then H" n T is a copy of the upper half of the hyperbola

{reR*: -2} — 2] = 1},

and this intersection is parametrized by je,.,. If T = {eo,v) for any v € eg, then there is
an element B € O(n) such that Be; = v and, consequently, an element B’ = diag(1, B) €
O*(1,n) such that Bey = ey and Be; = v. Thus, H* n T = B'(H" n {ep, e;)) coincides
with the image of the hyperbolic line B ¢ jey e, = jpreg,Brer = Jeow, Sce Lemma [4.7]

If the plane T' does not pass through eg but intersects H", then Proposition [4.4] provides
an element A € O (1,n) such that T = A(T}) for some plane Ty that intersects H" at eq.
We saw above that this intersection is parametrized by a hyperbolic line j.,, for some
v € eg. As above, we see that H" N T is parametrized by A0 jey» = Jaeo. A O]

The fact that the hyperbolic metric is indeed a metric is proved in the same way as
Proposition [3.3] in the spherical case. First we prove the law of cosines for triangles in
hyperbolic space. As we cannot use a metric yet, we consider triangles whose sides are
hyperbolic segments. The angles at the vertices are defined using the Riemannian metric.
We use the notation for triangles introduced in section [I.5]
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Figure 4.4 — A linear plane that intersects H? seen from two different angles.

Figure 4.5 — A triangle in H? with a vertice at e.

Proposition 4.10 (The first hyperbolic law of cosines).
cosh ¢ = cosh a cosh b — sinh a sinh bcosy .

Proof. Let u and v be the initial tangent vectors of the hyperbolic segments from C' to A
and from C' to B. As u and v are orthogonal to C', we have as in the spherical case,

coshe = —(A| B) = —(cosh(b)C + sinh(b)u | cosh(a)C + sinh(a)v)
= cosh(a) cosh(b) — sinh(b) sinh(a){u|v). O
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Theorem 4.11. Hyperbolic space is a uniquely geodesic metric space. Hyperbolic lines
are geodesic lines.

Proof. To show that the hyperbolic metric is a metric, let A, B,C' € H". Using the
fixed notation for the hyperbolic triangle with vertices A, B and C', consider the strictly
increasing function f: [0, 7] — R,

f(v) = cosh acosh b — sinh a sinh b cos ,
that has a unique maximum at v = 7 with
v(m) = cosh acosh b + sinh asinh b = cosh(a + b).

The first law of cosines implies that cosh ¢ < cosh(a + b), which yields the triangle in-
equality.

Now that we know that hyperbolic space is a metric space, hyperbolic lines are geodesic
lines by Lemma [£.7(2). If A and B are distinct points in H", there is a unique 2-plane T'
through them. Thus, there is exactly one image of a hyperbolic line through these points.
Assume that there is a geodesic segment k: [0,d(A, B)] — H" such that k(0) = A,
k(d(A, B)) = B and the image of k is not contained in T". Let C € k([0, d(A, B)]) —T and
consider the triangle with vertices A, B and C and sides the unique hyperbolic segments
connecting A to B, B to C' and C to A. As the function f is strictly increasing, equality
is possible in the triangle inequality only when v = 7. This implies that the segments
from B to C' and from C to A are contained in a hyperbolic line. This hyperbolic line
contains A and B and, therefore, the sides from B to C' and from C' to A are contained
in the side from A to B, but this is a contradiction. Thus, H" is uniquely geodesic. [

We will postpone the proof of the following important result until Section where
the details are simplified by a smart choice of coordinates.

Theorem 4.12. Hyperbolic metric is the length metric of the Riemannian metric of
hyperbolic space.

4.4 Isometries of H"

Proposition 4.13. O* (1, n) acts transitively by isometries on H". In particular, Isom(H™)
acts transitively on H™.

Proof. Transitivity of the action was proved in Proposition so it remains to show that
the elements of O"(1,n) act as isometries. Let g € OF(1,n), and let z,y € H". By the
definition of the hyperbolic metric and of O (1,n), we have

d(g(),g(y)) = arcosh(—(g(x) | g(y))) = arcosh(—(x |y)) = d(z,y). O

Example 4.14. (1) Let t € R. The matrix L; of Example [4.3|acts on H? as an isometry
that preserves the intersection of H? with any affine 2-plane {x € M : 2, = ¢}. In
particular, it stabilizes the geodesic line

(={zeH: z,=0}.
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For any point p = (a,b,0) € ¢, we have
d(L:(p), p) = arcosh(—(Lyp | p)) = arcosh((—a® + b?) cosh(t)) = |t] .

In chapter [5, we will see that all other points are moved a longer distance than |¢].
(2) If r > 0, then the set

H" n {(coshr,z) : z € R"} = {(coshr,z): z € R" | ||z| = sinhr}

is the sphere of radius r centered at the point ¢g € H". If A € O(n), the isome-
try diag(1,A) € O"(1,n) maps each sphere centered at ey to itself, and the subgroup
{diag(1,A) € O"(1,n) : A € O(n)} = Stabey < IsomH" acts transitively on each such
sphere.

(3) For each v e Z? and ¢ < 0, the set
{zeH?*: (v|z)=c})

is called a horosphere based at v. The mapping given by the matrix

2 2

I+%5 -5 s
No=| = 1-% 5|e0%(1,2)
5 -s 1

maps each horosphere based at (1,1,0) € .£2 to itself.

(4) Composing some number of the above mappings we obtain further examples of isome-
tries of the hyperbolic plane. For example, if p € H?, then there is some § € R such that
Ry(p) € L. Now, L;émp)(Rg(p)) = L_qeo.p)(Ro(p)) = €0, and for any ¢ € R, the mapping

S = R_go Lgeyp) © Ry © L;(le()p) o Ry is an isometry that fixes p and maps each sphere

centered at p to itself. The mapping S is conjugatdﬂ to R, in Isom(H").

The isometries introduced above are classified according to the conic sections they
correspond to. The mapping L, and any of its conjugates in Isom(H") is called hyperbolic
because L; maps each affine plane parallel to the (zg,x;)-plane in MM to itself, and
these planes intersect the light cone in hyperbola, except for the (xq, z1)-plane itself that
intersects the lightcone in a pair of lines.

The mapping Ry and any of its conjugates is called elliptic because Ry preserves all
horizontal hyperplanes in M!? and their intersections with %2, which are circles centered
at points of the 0:th coordinate axis.

The mapping Ny and any of its conjugates is called parabolic because it preserves all
affine hyperplanes {z € M"? : (v|x) = ¢}, which intersect .£? in a parabola when ¢ < 0.

As in the Euclidean and spherical geometries, we will now study a fundamental class
of isometries, reflections in a hyperplane.

If T is an (m + 1)-dimensional linear subspace of R"*! that intersects H", then T'n H" is
an m~dimensional hyperbolic subspace of H". If m =n — 1, then T is a hyperplane.

Proposition 4.15. Let 1 < m < n. Any two hyperbolic m-dimensional subspaces of H"
can be mapped to each other by isometries of H™.

4If G is a group and g, h € G, then the elements g and hgh™! are conjugate elements in G.
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Proof. Exercise. O

Corollary 4.16. If 2 < k < n, then any k-dimensional hyperbolic subspace of H" is
isometric to HF.

Proof. The hyperplane {x € H" : 741 = Tp4o = -+ = ,, = 0} is clearly isometric to HF.
The claim follows from Proposition 4.15] O]

Any hyperplane T’ in M is of the form T = u! for some v € M*" — {0} because the
Minkowski bilinear form is nondegenerate. Let H = u* n H" be a hyperbolic hyperplane.
Since H intersects H", it contains a vector v for which (v|v) = —1. Proposition
implies that (u|u) > 0, and after normalising, we may assume that u is a unit vector.

Let u € Z7. The reflection in H = u* n H" is the map
rp(x) =2 —2{(x|uyu. (4.3)

Example 4.17. 1If uyp = 0, then {(z |u) = (x| u) for all z € M"™. This implies that the
reflection in u* coincides with the Euclidean reflection in the hyperplane u* that contains
€p.

The proofs of the basic properties of reflections are natural modifications of those in
the spherical case. Note that the expression defines a mapping in Minkowski space,
fixing the hyperplane u*. The reflection in hyperbolic space is, in fact, the restriction of
a reflection of Minkowski space.

Proposition 4.18. Let H be a hyperbolic hyperplane. Then
(0) rg maps H"™ into itself.

(1) ry ory is the identity.

(2) rgp € OF(1,n).

(8) d(ry(x),y) = d(x,y) for all x € H" and all y € H.

(4) The fized point set of ry is H

Proof. (0) Let x € H". Using bilinearity and symmetry of the Minkowski form and the
fact that u is a unit vector, we get

rg(z)|ry(z)) = <:U — Az |uyu ‘ x — 2(z| u>u>
= () = 2z [uwz|w — 2z |u)Xu|z) + Kz |u)z|u)u|w
={(x|x)=—-1.
Thus, rg(z) € £". Furthermore, for any v € H,

rg(v) =v—20|uyu = v,

so there are points in H" which are mapped to H". Since ry is continuous and preserves
the Minkowski form, ry (H") < H".
(1) This easy computation is left as an exercise.

(2) Clearly, ry is a linear mapping, and it is a bijection by (1). As in (0), we get

()| ra(y)) = (o — 2@ |upu |y — 2y |upuy = (x|y).
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Thus, ri € O(1,n). Claim (0) gives rg € O"(1,n).
(3) For any z € H" and all y € H, we have

Cru(e) [y) = @ =2 [wuly) = (@ly) — 2w [uwluly) = @]y,

where the final equality follows from the assumption u € H*.
(4) This follows immediately from (3) by taking z =y € H. O

The bisector of two distinct points p and ¢ in H" is the hyperplane
bis(p, q) = {x € H" : d(z,p) = d(z,q)} .

Lemma 4.19. If p,qe H", p # q, then bis(p,q) = (p — ¢)* n H".
Proof. Exercise. O

Proposition 4.20. (1) For any p,q € H", the bisector bis(p, q) is a hyperbolic hyperplane.
(2) If H is a hyperplane in H" and z,y € H" — H with rg(z) =y, then H = bis(x,y).
(3) [fp7 qe Hn; P #q, then T'bis(p,q) (p) =d.

(4) Let ¢ € Tsom(H"), ¢ # id. If a € H" with ¢(a) # a, then the fized points of ¢ are

contained in bis(a, ¢(a)).

(5) Let ¢ € Isom(H"™), ¢ # id. If H is a hyperplane such that ¢|g is the identity, then
¢ =rp.

Proof. (1) Lemma [4.1] implies that

p—qlp—q=-2-2p|g>0.

Let A > 0 and u € " such that p — ¢ = M. Obviously, (p — ¢)* = v'. The second part
of Proposition implies that there is an element A € O"(1,n) such that Av = e;. The
orthogonal complement of e; is the hyperplane {x € M'" : x; = 0} that contains eg. The
claim follows as A maps H" to itself and (Av)t = A(vt).

(2) follows from Proposition [4.18)3).

(3) Using the computation from (1) above, we have

2p|p—aqy =2(p|p)—pla) = —2—=2plgy = p—q*.

Thus,
This(pg) (D) =D — 2§p|p — @ Mf__qu =q.
(4) If ¢(b) = b, then d(a,b) = d(é(a), ¢(b)) = d(¢(a),b), so that b € bis(a, ¢(a)).
(5) is an instructive exercise. O

Proposition 4.21. Any two reflections in hyperbolic hyperplanes of H" are conjugate in
Isom H"™.

Proof. Exercise. O]
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Next, we prove that all isometries of hyperbolic space are restrictions to H" of linear
automorphisms of M

Theorem 4.22. Isom(H") = O"(1,n).

The idea of the proof is to show that each isometry of H" is the composition of
reflections in hyperbolic hyperplanes. Again, the proof follows the same ideas as in the
Fuclidean and spherical cases.

Proposition 4.23. Let p1,p2, ..., Pk, q1,G2, - - -, qx € H" be points that satisfy

foralli,je {1,2,... k}. Then, there is an isometry ¢ € Isom(H™) such that ¢(p;) = q;
for all i € {1,2,... k}. Furthermore, the isometry ¢ is the composition of at most k
reflections in hyperplanes.

Proof. The proof is formally exactly the same as that of Proposition [2.13] n

Note that Proposition implies that if 7"and T” are two triangles in H"” with equal
sides, then there is an isometry ¢ of H™ such that ¢(T') = T".

Proof of Theorem[4.29 Let ¢ € Isom(H"). Let {ag,as,...,a,} be a set of points in H"
which is not contained in any proper hyperbolic subspace. This is achieved by choosing
them so that they generate M'" as a vector space. Proposition implies that there
is an isometry ¢y € O"(1,n) such that ¢g(é(a;)) = a; for all 0 < i < n. Since the set
of fixed points of ¢y o ¢ contains the points ag, aq, ..., a,, the fixed point set of ¢y o ¢ is
not contained in a proper hyperbolic subspace. Proposition M(él) implies that ¢g o ¢ is
the identity map. Thus, ¢ = ¢ '. In particular, ¢ € O*(1,n), which is all we needed to
show. O]

Corollary 4.24. Any isometry of H" can be represented as the composition of at most
n + 1 reflections. [

Proposition 4.25. The stabilizer of any point x € H" is isomorphic to O(n).

Proof. Again, we follow the proof of the spherical case. The details are left as an exercise.
O

4.5 Triangles in H"

The law of cosines implies that a triangle in E", S" or H" is uniquely determined up to
an isometry of the space, if the lengths of the three sides are known. In Euclidean space,
the three angles of a triangle do not determine the triangle uniquely. In S™ and H"™ the
angles determine a triangle uniquely. For H", this is the content of

Proposition 4.26 (The second hyperbolic law of cosines).

cos avcos 3 + cosy
coshc =

sin asin 3
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Proof. This formula follows from the first law of cosines by a lengthy manipulation anal-
ogous to the proof of Proposition See for example [Beal, p. 148-150]. m

The second law of cosines and Proposition imply that if 7"and 7" are two triangles
in H" with equal sides, then there is an isometry ¢ of H" such that ¢(7") = T".

Proposition 4.27 (The hyperbolic law of sines).

sinha  sinhb _ sinh ¢

sina sinf  siny

Proof. The first law of cosines implies that

sinh ¢ 2 B sinh? a sinh? bsinh? ¢
sin 7y 2 cosh a cosh bcosh ¢ — cosh? a — cosh? b — cosh?c + 1
The claim follows because this expression is symmetric in a, b and c. O
The following two results on triangles will be useful later.

Proposition 4.28. For any 0 < a, b, ¢ for whicha+b>c, b+c¢>a and c+a > b, there
s a triangle with side lengths a, b and c. Any two such triangles are isometric.

Proof. The proof is analogous with that of Proposition without the upper bound on
the lengths. We use the hyperbolic law of cosines in the construction. If a triangle with
the asserted properties exists, then the angle at C' satisfies the cosine law. Therefore, we
can compute what this angle needs to be if we know that

cosh acoshb — cosh ¢

4.4
sinh a sinh b (4:4)

The inequality ¢ < a + b implies
cosh ¢ < cosh(a + b) = coshacoshb + sinh asinh b,

which gives
cosh a coshb — cosh ¢

sinh asinh b
The inequalities b + ¢ > a and ¢ + a > b give |a — b| < ¢, which implies

cosh ¢ > cosh(a — b) = coshacosh b + sinh asinh b,

and we get
cosh acoshb — cosh ¢

sinh a sinh b
Now we can place the sides of length a and b starting at C' in the correct angle ~. The
cosine law implies that the distance of the endpoints points A and B of these segments
is ¢. There geodesic arc from A to B is therefore the side opposite to C' of the desired
length c.
The triangles are isometric by Proposition [4.23] O

Proposition 4.29. Any triangle in H" is contained in an isometrically embedded copy of
H? in H".
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Proof. Any three points in the hyperboloid model H" are contained in the intersection of
H" with a 3-dimensional linear subspace of M'"*, which is an isometrically embedded copy
of the hyperbolic plane. The geodesic arc through any two of these points in is contained

int

he same hyperbolic 2-plane by Lemma [£.9]

]

Using the hyperbolic law of cosines and the Taylor polynomials of hyperbolic functions
at 0, cosht = 1 + % + o(t?) and sinht¢ = ¢ + o(t), we see that if the sides of a triangle
in hyperbolic space are short, then the sides satisfy the Euclidean law of cosines up to a
small error.

Exercises

4.1. Prove Lemma 2

4.2. Prove Lemma 7

4.3. Prove Proposition [4.15]
4.4. Prove Lemma [£.19

4.5. Prove Proposition [4.20(5).
4.6. Prove Proposition [4.21]f]
4.7. Prove Proposition [4.23]
4.8. Prove Proposition [4.25]f]

5Use Proposition
6 Assume that we know Isom H" = O™ (1,n) and use transitivity.
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Chapter 5

Models of hyperbolic space

The hyperboloid model of hyperbolic space introduced in chapter 4| model is used in
many arithmetical applications and the closely related projective model has important
generalizations to complex and quaternionic hyperbolic spaces.

In this chapter, we consider a number of other models for hyperbolic space. Hyperbolic
space of dimension n is the class of all metric spaces isometric with the hyperboloid model
(H", d), and we can use any model that is best suited for the geometric problem at hand.
After this section we will often talk about the “upper halfplane model of H?” etc.

The underlying set of the Klein model and the Poincaré model is the unit ball in
Euclidean space. Therefore, we introduce a special notation for this set:

B"™ is the unit ball in E™.

In sections [5.2] [5.3] and we use the geometric properties of inversions in spheres.
We refer to Appendix [A] for details on inversions.

5.1 Klein’s model

Each line in M through the origin which intersects the hyperboloid model H", intersects
it in exactly one point, and it also intersects the embedded copy {1} x B™ in M'" of B" in
exactly one point. This correspondence determines a bijection K : B" — H"™, which has
the explicit expression

(1,z)

K@= Aep

The map K becomes an isometry when we define a metric on B" by setting

1—(z]y)

V1= [Py = Tyl?

The metric space (B", dk) is the Klein model of n-dimensional hyperbolic space.

dg(z,y) = d(K(x), K(y)) = arcosh
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-2 -1 b 1 2

Figure 5.1 — The map K used in the construction of the Klein model.

Proposition 5.1. The images of geodesic lines of the Klein model are Fuclidean open
segments connecting two points in the Fuclidean unit sphere.

Proof. A geodesic line in H" is the intersection of H" with a 2-plane in M". The inter-
section of this plane with B™ x {1} is the preimage under K of the geodesic line. O

Proposition implies that for any two distinct points a,b € S*~! = 0B", there is a
unique image of a geodesic line ]a,b[ in the Klein model. We call |a, b[ the geodesic line
with endpoints a and b in the Klein model of H". Note that if v: R — H" is a geodesic
line and 7 € R, then the mapping ¢ > v(t — T) defined on R is a geodesic line such that
7(R) = 77(R).

If 2o € B" and b € 0B", there is a unique geodesic ray pg,s: [0, — B™ in the Klein
model of H" such that p,,,(0) = x¢ and such that the Euclidean closure of the image
Paon([0,00[) = [0, b] is the Euclidean closed segment [z, b].

Figure 5.2 — Three red lines through the origin that are parallel in the Klein model
with the line whose endpoints are (0, 1) and (1,0).
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Recall that in Euclidean plane geometry, two (geodesic) lines are {em parallel if they
do not intersect. The parallel axiom states that through any point P in the Euclidean
plane that is not contained in a line L, there is exactly one line that is parallel with L. It
easy to see using the Klein model that the parallel axiom does not hold in H?, see Figure

5.2 Poincaré’s ball model

Each affine line that passes through the point (—1,0) € RxR" = M which intersects H",
intersects it in exactly one point, and it also intersects the n-dimensional ball {0} x B"
embedded in M!" in exactly one point. This correspondence determines a bijection
P:B" — H",
(1 + |l=[? 2)
Plz) = —F-—+—
1 —|lz]?

This expression is found by computing for any = € B™ that the point y, = (0, ) + ¢(1,x)

on the line through the points (0, z) and (—1,0) of R x R™ = M"" is in H" if and only if
{ = Ll
=[]

-0.5

-1.0

Figure 5.3 — The map P used in the construction of the Poincaré model.

The map P becomes an isometry when we define a metric on B” by setting

dp(z,y) = d(P(z), P(y)) = arcosh (1 + 2

|z -y )
(1= =) =y "

The metric space (B", dp) is the Poincaré model of n-dimensional hyperbolic space.
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Lemma 5.2. The hyperbolic ball of radius r > 0 centered at 0 in the Poincaré model
coincides with the Euclidean ball of radius tanh 3 centered at 0. The Euclidean ball of

radius 0 < R < 1 centered at 0 coincides with the hyperbolic ball of radius log % centered
at 0 in the Poincaré model.
Proof. If x € B", we have
] 1+ |
dp(z,0) = arcosh (1 + 2 ————) = log :
( 1- HwHQ) 1— ]
Both claims follow from this equation. O

Proposition 5.3. The images of geodesic lines of the Poincaré model are the intersections
of the Fuclidean unit ball with Euclidean circles and lines that are orthogonal to the unit
sphere.

Proof. The map h = K~ o P is an isometry between the Poincaré and Klein models. A

computation[] shows that
2z

h = —.
@) = TP

The inversion ¢(_1 )2 in the sphere centered at (—1,0) € E' x E" of radius V2 maps
{0} x E™ U {00} to S™. It maps {0} x B" U {oo} to the upper hemisphere of S", fixing
{0} x S"~1. In coordinates,

(2) (1 —|z]* 2z >
L(— xr) =
TR TN ol T4 e

so that if pr: E"*! = E! x E® — E" is the Euclidean orthogonal projection on the second
component of the product, we have

h = pr OL(,170)72 .

The inversion ¢(_1 )2 maps any circle in {0} x B" orthogonal to {0} x S~ to a circle
on the unit sphere in E"™! orthogonal to {0} x S*~'. These circles are orthogonal to
{0} x E™, and they are exactly the intersections of the unit sphere with 2-planes parallel
to the xp-axis, and thus, pr maps them to the geodesic lines of the Klein model. As h is
an isometry, the result follows. O

Note that the mapping h from the Klein model to the Poincaré model is the restriction
of a homeomorphism of the Euclidean closure of B” to itself. This extended mapping is the
identity in the boundary of B". Analogously with the case of the Klein model, Proposition
implies that for any two distinct points a,b e S"~! = JB", there is geodesic line ]a, b[
in the Poincaré model that we call the geodesic line with endpoints a and b in the Poincaré
model of H". If xy € B™ and b € dB", there is a unique geodesic ray py,5: [0,0[ — B" in
the Poincaré model of H" such that p,,;(0) = zo and such that the Euclidean closure of
the image p., ([0, 0[) = [x0, b[ is a closed Euclidean segment or a closed circular segment
with one endpoint at b.

IThis can be done by observing that A is a radial map and then solving the equation

(1,y) 7(1+x2 233)
1—22"1— 22

N

with0 <z,y < 1.
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0.5

-05

Figure 5.4 — The construction of the map h from the Poincaré model to the Klein
model.

Figure 5.5 — Some geodesic lines and a ball in the Poincaré disk model of HZ.

Proposition 5.4. The Riemannian metric of the ball model is %

Proof. For all tangent vector u € T,B(0,1), we have

Az |u) 2u 4 (z|u)z
(= [ 1= Jz[> (1= ]]?)

DP(x)u = ( ;) e M.
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Figure 5.6 — Geodesic rays starting at 0 and at (%, 0) with circles centered at the same
points in the Poincaré disk model of H?.

Using this, for u,v in T,B", we compute

_16@]u)(z]v)  Alulv) | 16([w)(z|v) | 16(z]u)(z]|v)|z]?
(L= @ =) (1= ]]?)? (1 —f]?)*
4(u|v
- ] l 2" -
(1 — )
Proposition [5.4/implies that the angles between tangent vectors of paths in the Poincaré
model are the same as the angles measured in the ambient Euclidean space.

(DP(x)u| DP(x)v) =

5.3 The upper halfspace model

Let
R*, ={zeR": x, > 0}

be the n-dimensional upper halfspace. Let v_., o be the inversion in the sphere of center
—e, € E" of radius /2. The map

B . B" — Rn+ (51>

F = l_e,,2
is a bijection, which becomes an isometry if we use the metric

|z — yl?
o)

i (2,y) = dp(F™ () () = arcosh (1-+ 15—

(5.2)
in R",.

The metric space (R™;,dgn,) is the upper halfspace model of n-dimensional hyperbolic
space.

Example 5.5. An elementary computation shows that if = (a,x,) and y = (a, y,) for
any a € R" !, then

Ln
d]R"+(x7y) = ‘log y?‘ :
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HQ

£C2=0

Figure 5.7 — Some geodesic lines in the upper halfplane model of H?.

It is very common to identify the upper halfplane model of H? with the upper halfplane
in C, and we will often do this, as in the following Example [5.6(2) below.

Example 5.6. (1) Let n > 3. The subspace {x € R} : 29 = --- = z,_; = 0} with
the metric induced from the upper halfplane model is an isometrically embedded copy of
H? in the upper halfspace model of H™.

(2) Let 0 < ¢ < m. Then the distance of the points i and ¢ in the upper halfplane model

is
cos? ¢ + (1 — sin ¢)?

dge, (i,€'?) = arcosh (1 + ) = arcosh

2sin ¢

sin¢

-1.0 -0.5 0.0 0.5 1.0

Figure 5.8 —

Proposition 5.7. The images of the geodesic lines of the upper halfspace model are the
intersections of the upper halfspace with Euclidean circles and lines that are orthogonal to
E"1 x {0}.

Proof. The inversion used in the definition of the upper halfspace model maps lines and
circles to lines or circles and preserves angles. The claim follows from Proposition[5.3, [
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Figure 5.9 — The mapping F' corresponds to the reflection in the red circle when E2 is
identified with S? by the stereographic projection. See section and Appendix

Geodesic lines in the upper halfspace model are images under F' of geodesic lines of
the Poincaré model. If one of the endpoints of a geodesic line in the Poincaré model is
—e,, then F' maps this geodesic line to a halfline orthogonal to E"~! x {0} at one end,
and the other endpoint is mapped to o € Er.

Proposition implies that for any two distinct points a,b € E*1 x {0} U {00}, there
is geodesic line ]a,b[ in the upper halfspace model that we call the geodesic line with
endpoints a and b in the upper halfspace model of H™.

We have seen that the unit sphere in the Klein and Poincaré ball models and the set
E"! x {0} U {0} < E” in the upper halfspace model have a geometric meaning, and that
there is a natural homeomorphism between these sets. In chapter [§] we will see that these
sets appear naturally as a geometrically defined boundary at infinity of H", and we will
use the notation 0, H" for this set from now on.

In practical applications, it is good to remember that a circle is perpendicular to

E x {0} < E? if and only if its center is in E x {0}. In higher dimensions, this is no longer
true.

The following lemma records the expressions of the geodesics in the upper halfspace.
Lemma 5.8. Let x € R"! and y > 0. The mapping V,,: R — R",
Yay(t) = (z,y€)

is a geodesic line in the upper halfspace model of H" such that 7, ,(0) = (z,y). For any
isometry g of the upper halfspace model, the mapping g o 7., is a geodesic line.
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Figure 5.10 — The blue geodesic lines of the Poincaré model in this figure are the images
of the red geodesic lines of the Klein model. The angles at the points of intersection are
the same in hyperbolic plane but the angle in the ambient Fuclidean space of the red lines
is not the same as that of the blue circular segments.

Proof. Apply Example 5.5 O
1)

Proposition 5.9. The Riemannian metric of the upper halfspace model is I‘%

Proof. The proof is similar to that of Proposition , using (the inverse of) the map F
defined in equation (5.1)) to transfer the Riemannian metric from the ball to the upper

halfspace.
O

Proposition [5.9|implies that the angles between tangent vectors of paths in the upper
halfspace model are the same as the angles measured in the ambient Euclidean space.
The Klein model does not have this useful property. This is illustrated in Figure [5.10]

Proof of Theorem[{.13 We will use the upper halfspace model to prove the result. Both
quantities are invariant under isometries of hyperbolic space. Therefore, it is sufficient to
show that the geodesic segment [(0,1), (0,7")] is the Riemannian geodesic segment from
(0,1) to (0,7) for any 7" > 0.

Let ¢: [0,1] — H" be a piecewise smooth path such that ¢(0) = (0,1) and ¢(1) =
(0,7). f] Let p: H* — [0,1],

p({lj, S) = (07 S)

for all z € R"! and s > 0, be the horospherical projection to the geodesic line |0, oo[ that
contains the points (0, 1) to (0,7"). Note that Dp(z, s)u = u, for all (z,s) € H" and all
u e R". This implies that |(po ¢)(7)| < |6(7)| for all T € [0,1] . This gives the inequality

2We can assume that all paths are defined on [0, 1] because smooth reparametrization does not change
the Riemannian length of a path, see for example [Petl, Section 5.3].
3 f is the notation we use for the derivative vector of a path f.
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we want:

o) = ) m dr = L m dr = log(po ¢(1)) =logT = d((0,1),(0,7)).

Note that the second inequality is strict if the mapping ¢ — ¢, () is not monotonous.
To complete the proof, note that if 4o, is the geodesic line of Lemma [5.8] 791(0) =
(0,1), 7(1og T) = (0,T) and

log T | : log T t
y()] J ye
14 o :J dt = Z_dt=logT. O
(’V|[0,1 gT]> ] %L@) o yet g

5.4 Triangles in H" (part 2)

The Poincaré model and the upper halfspace model are very useful in many proofs for
example because the angle between two tangent vectors is in these models is the same
as the Euclidean angle. We use this property to prove the following facts on triangles in
hyperbolic space.

Proposition 5.10. (1) The sum of the angles of a nondegenerate triangle in hyperbolic
space is strictly less than .

(2) For any 0 < «, B,y < m for which a + B + v < m, there is a triangle with angles
a, B and v. Any two such triangles are isometric.

Proof. By Proposition [4.29] it suffices to consider the hyperbolic plane.

(1) Let T be a triangle with vertices A, B and C. We may assume that one of the vertices
A is the origin in the Poincaré disk model. Thus, two sides of the triangle are contained
in two radii of the ball and the third one is contained in a circle which is orthogonal to the
boundary of B". Consider the Euclidean triangle with the same vertices as T'. The angles
[ and ~ are strictly smaller than the corresponding angles in the Euclidean triangle. This
implies the result as the angles of an Euclidean triangle sum to 7.

(2) Let us consider the upper halfplane model of H?. Let 0 < r < 1. At most one of

the angles can be greater than or equal to 7, and we may assume that 0 < a, 8 < 7.

The geodesic line contained in the Euclidean circle with center cosa > 0 and radius 21
intersects the geodesic line ]0, o0 at an angle «, and the geodesic line contained in the
Euclidean circle with center —rcos 8 < 0 and radius r intersects ]0,00[ at an angle [.
When 1=¢®e 4 < ziﬁg, there are subsegments of these three geodesic lines that make

1+4+cos 8
up a triangle where the third angle grows from 0 to 7 — a — 5. O]

5.5 Isometries of the upper halfspace model

In the upper halfspace model, it is often convenient to move a geodesic line by an isometry
such that the endpoints of the geodesic in the model are 0 and co. The following results
on isometries allow to do that and a bit more. We illustrate the utility of the transitivity
properties of the group of isometries in Proposition [5.14]and its corollaries, and in Lemma

0.201
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l—cosa
1+cos 8

r =

l1—cos

14+cos B <r<l

-2 -1 0 1 2

Figure 5.11 — The idea of the proof of Proposition [5.10} Here o = § and 8 =

Let b e R™! x {0} < R". The mapping Tj,: R? — R,
Tb(l‘) =+ b,

is a horizontal translation by b.
Let A > 0. The mapping Ly: R} — R%,

L)x(‘r) = /\J},

is a dilation by factor A.
Let Qo € O(n — 1) and let us use the notation x = (Z, z,). The mapping @: R? — R”,

Q(T,xn) = (Qo(7), n),

is an orthogonal mapping around the geodesic line |0, oo|.
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Lemma 5.11. Let a,be R" ! x {0} = R™ and let A > 0.
(Z) Tb Olgr2© T—b = la+br2-
(2) L)\ Olpr2 © L% = Lo,(Ar)2-

Proof. Exercise. O
Proposition 5.12. The maps

o T, for any be R"1 x {0} c R",

® 1,2, for any a € R" ! x {0} < R" and any r >0 ,

o L, forany A >0, and

e Q for any Qo€ O(n—1)
are isometries of the upper halfspace model.

Proof. Let us consider the inversion in the Euclidean unit sphere. It preserves all affine
rays from a, so it preserves the upper halfspace. To prove that its restriction to H" is

an isometry, equation (5.2]) implies that it is enough to show that the expression % is
invariant under the inversion. Let us compute:
i) —waly) =y 2yl - yl)?
r? Izl ly]* l=[y*
which gives
Iz Jy[*—2( | )| =]y > +]=]* |y]
Jto1(2) — wa(m)|* _ [ o Nz —yl?
L071($)n[/0,1(y)n % TnlYn

The rest is left as an exercise. O]

Corollary 5.13. The subgroup of Isom(H"™) generated by dilations fizing 0 and horizontal
translations acts transitively on the upper halfspace model of H™.

Proof. 1f x is in the upper half plane,
T—(th,mxn—ho) ([E) = (07 <o ’xn> = anen .

Thus,
T = T(ccl,arg,...xn,hO) o Lmnen . [l

We will now apply the transitivity of the action of the group of isometries and of
suitable subgroups to geometric and topological questions.

Proposition 5.14. Balls in the upper halfspace model and in the Poincaré ball model are
Euclidean balls in the Fuclidean space that contains the model.
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Proof. By Lemmal5.2] balls centered at the origin of the Poincaré ball model are Euclidean
balls. The inversion that maps the ball model to the upper halfspace model is an isometry,
and on the other hand it preserves generalized spheres. Thus, the images of the balls
centered at the origin are hyperbolic and Euclidean balls. The hyperbolic center of these
balls can be mapped to any other point in H" by one of the isometries of Corollary [5.13]
These mappings preserve spheres, which implies that all balls in the upper halfspace model
are Euclidean balls. The rest of the claim follows by one more application of the inversion
that maps the ball model to the upper halfspace model. O

Corollary 5.15. Hyperbolic space H"™ is homeomorphic with the open unit ball of E™.

Proof. The identity map from the Poincaré model to the B” < E™ with the induced metric

is a homeomorphism by Proposition [5.14} O]
Corollary 5.16. Hyperbolic space H™ is a proper metric space. [

Proposition 5.17. Let xq1,x9,x3 and y1,ys2,ys be two triples of distinct points in the
boundary at infinity of H™. There is an isometry of H™ which is the restriction of a
homeomorphism g of H"™ U 0. H™ to itself such that g(x;) = vy; for allie {1,2,3}.

Proof. Let us cons1der the question in the upper halfspace model. The mappings given
in Proposition [5.12 are clearly continuous mappings of E" to itself.

It suffices to show that we can use a combination of these isometries to map x1, zo, 3
to ©0,0,(1,0,...,0). If all points 1, xs, x5 are finite, map x; by a translation 7_,, to 0
and then by the inversion ¢ to c0. Relabel toT ., (z2) and toT_,, (x3) to z2 and x3. Map
T2 to 0 by a translation. This map keeps oo fixed. Map x5 (again relabeled) to the unit
sphere by a dilation and then to (1,0,...,0) by the extension of an orthogonal map of
E"~!. These two maps fix oo and 0. O

Proposition 5.18. Let x,y € H" and a,b € 0,H". There is an isometry of H" which
is the restriction of a homeomorphism g of H" U 0,H™ to itself such that g(z) =y and

g(a) =b.
Proof. Exercise. O

In the proofs of Propositions and [5.18] we used explicit isomorphisms of the upper
half plane model that are restrictions of homeomorphic self-maps of H" u 0,H". In fact,
there is a result that generalizes this observation to all isometries:

Theorem 5.19. The isometries of H" are restrictions of homeomorphic self-maps of
U O H™.

Proof. We could prove this by showing that all reflections in hyperplanes have this prop-
erty, and then using the fact that reflections generate Isom H". The proof relies on showing
that in the upper halfplane model, reflections in hyperbolic hyperplanes are either con-
jugates of the map @) of Proposition with Qo a hyperplane reflection in E"!, or
inversions.

Instead, we postpone the proof until Chapter |8 where we prove a more general result
by a different method. O]
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For any r > 0, the r-neighbourhood of any nonempty subset A < H" is

N(A) ={zeH":d(x,A) <r}.

A

Figure 5.12 — Neighbourhoods of geodesic lines in the upper halfplane model and in
the Poincaré ball model of HZ.

Lemma 5.20. Let L = |0,0[ in the upper halfspace model of H".
(1) (0,]lz]]) € R*! x Ry is the unique closest point to x € R in L.
(2) The r-neighbourhood of L is the Buclidean infinite cond

1

N (L) = {z e R} : cos£o(L,x) > p—

Proof. (1) The function

24+ a3+ + 22+ (2, — |zet)?
2z, |z|et
2z, |zllet + 23 + 2% + - + 22 + 22 — 2, |x|et + |z)2e*

t — coshd(x,v,2(t)) = 1+

2a, x|t
2 1 2t
el ol
21, x|t T,
has a unique minimum at 0, and 7 | (0) = ||z|e,.
(2) Exercise. O

If L' is a geodesic line in the upper halfspace model, we can map it to L by a com-
position of the isometries used in Proposition [5.17} These isometries are conformal maps
which map the set of spheres and hyperplanes in E™ to itself. It is easy to see that the
neighbourhoods 4;,.(L) are cones or bananas with opening angles at the endpoints given
by Lemma [5.20] see Figure[5.12] As the isometry used to map the ball model to the upper
halfspace model is an inversion, the r-neighbourhoods of geodesic lines in the ball model
are bananas.

4%0(L, ) is the angle between the Euclidean ray L and the Euclidean ray from 0 through z.
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5.6 Generalized triangles in H".

We now extend the definition of triangles and allow some of the vertices to be points at
infinity of H"™:

A (generalized) triangle consists of three distinct points A, B, C' € H" U d,,H", called the
vertices, and of the geodesic arcs, rays or lines, called the sides, connecting the vertices.

If all vertices of a triangle A are in 0,H", then A is an ideal triangle.

Proposition 5.21. (1) Any generalized triangle in H" is contained in an isometrically
embedded copy of H? in H".

(2) If A and A are ideal triangles in H", there is an isometry v € IsomH" such that
v(A) = A

Proof. Exercise. O

Next, we prove an analog of the second law of cosines for a special kind of generalized
triangles. Note that the first law of cosines cannot be generalized to this setting as the
triangle in question has two infinitely long sides.

Proposition 5.22. Let A, B e H" and let C € 0,H". Then

1 4 cosacos (5.3)

coshe =

sin o sin 3

Figure 5.13 —

Proof. By proposition [5.21], it is enough to consider the hyperbolic plane. We use the
upper halfplane model and normalize, using Proposition |5.17| with x; = C', x5 and x3 the
endpoints of the geodesic line through A and B, and y; = o0, y5 = —1 and y3 = 1, so that
A and B are on the Euclidean unit circle and C' = oo.
Now, A = (—cosa,sina) and B = (cos3,sin3). The result follows from equation
(5.2)), as
|A — BJ|? (cosa + cos 8)? + (sina —sin 8)? 1+ cosacos 3

l+——— =1+ = .
2A5 B, 2sin avsin 8 sin acsin 8
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The special case of equation (.3]) with g = 7:

1
coshc = — (5.4)
sin «
is known as the angle of parallelism. Another useful form of equation ([5.4) is
¢ = log cot % . (5.5)

Note that equation ([5.3)) agrees with the second law of cosines if we define that

the angle at a vertex at infinity is 0.

From now on, we will use this convention.

5.7 Halfspaces and polytopes

Proposition implies that hyperbolic hyperplanes are bisectors of two distinct points
in H". Using this, we can prove

Proposition 5.23. Hyperplanes in the upper halfspace model are Fuclidean hyperplanes
orthogonal to the boundary at infinity or intersections with the upper halfspace of Fuclidean
spheres whose center is in the boundary at infinity.

Proof. Let z,y be points in the upper halfplane model. Using equation [5.2] we see that
the bisector of x and y consists of the solutions z in the upper halfspace of the equation

|z =2 _ y—==|

Tn Yn

(5.6)

If z, = y,, then equation defines an affine plane in E" that is orthogonal to the
boundary at infinity because it is a translate of the orthogonal complement of the x — y
whose nth coordinate is 0.

If x,, # y,, then equation defines a sphere centered at s+ -y, which is

—Yn Yn—Tn
in the boundary at infinity. O]

The two connected components of the complement of a hyperplane P H" are open hyper-
bolic halfspaces. Their closures in H" are closed hyperbolic halfspaces.

Lemma 5.24. Closed and open halfspaces are convex in H™.

Proof. Exercise. m

If I is a finite or countable index set and (H;);s is a collection of closed halfplanes in H”
with nonempty intersection P = (),_; H; such that (0H; ) is a locally finite collection of
hyperplanes[’] then P is a locally finite polytope in H™.

In dimension n = 2, polytopes are polygons and in dimension n = 3, polyhedra.

®This means that for any compact K < H", the set {i € I : K n 0H; # ¢} is finite.
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y 2B

Figure 5.14 — Three polygons in the upper halfplane model of the hyperbolic plane.

Lemma 5.25. Let X be a uniquely geodesic metric space. Let K, < X be convex sets for
all o € A. Then () .4 Ko is convex or empty.

acA

Proof. Exercise.

Proposition 5.26. Polytopes in H" are convexz.

5.8 Riemannian metrics, area and volume

The Riemannian metrics of the ball and upper halfspace models are conformal metrics:
their expressions are a positive function times the Euclidean Riemannian metric of the
underlying subset of E”.

The Riemannian structure defines a natural volume form and a volume measure on
hyperbolic space: If V' is for example an open subset of n-dimensional hyperbolic space,
and A, is the n-dimensional Lebesgue measure, the volume of V' is

_ 2" d\, ()
Vol(V) = L = [«

in the Poincaré ball model and

in the upper halfspace model.

Proposition 5.27. The volume of a ball in hyperbolic space is

Vol(B(z, 1)) = Vol(s™1) J sinh™ ¢ dt.
0

In the hyperbolic plane, we have
Vol(B?(z,r)) = 47 sinh? g

for all x € H2.

The length of a circle of radius r in H? is 27 sinhr.
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Proof. As the isometry group acts transitively, the volume of each ball of a fixed radius
is the same. Thus, it suffices to consider balls centered at the origoin in the Poincaré
ball model. Recall that the Euclidean radius of a ball of hyperbolic radius r centered at
0 in the Poincaré model is tanh 3. In order to compute the volume of the ball of radius
r, recall that the Lebesgue measure is given in the spherical coordinates (x < (r,u)) by
dAn(z) = r"~'d Volga-1(u), and thus, using a change of variables s < tanh £, we get

r _
tanh 5 on gn 1

Vol(B(z,r)) = Vol(B(0,r)) = Vol(S”l)fO mdzs

_ 91 ol(sm ) J

0

r

t t
sinh™ ! = cosh™ ! = dt
2 2

T

= Vol(S”‘l)J sinh" ! ¢ dt.
0

The computation of the length of a circle is left as an execise. O]

It is clear from the expression of the volume, that for all x € H", we have

Vol (Sn) (n—1)r
on—1 € )

Vol(B"(x,r)) ~

as 7 — 0. Thus, the volume of balls in hyperbolic space grows exponentially with the
radius, much faster than in Euclidean space.

Proposition 5.28. The area of the polygon in H? bounded by a generalized triangle with
angles a, B and v is 7™ — (a+ B+ 7).

Proof. Any triangle T' can be described as the difference of two triangles with one vertex
at infinity. By the additivity of area and angles in the hyperbolic plane, we may restrict
to this special case. Using Proposition [5.17, we can assume that that A and B are on the
Euclidean unit circle and that the vertex C' has been moved to infinity. Now, the area of

T is . 5
dXo(x o8 ‘ dzdx o8 dx
J 25):f f 122:J 712=7r—04—ﬁ. O
T T2 —cos(a) J4/1—a2 L3 cos(m—a) 1-— €y

Exercises

5.1. Fill in the details of the proof of Proposition [5.4]
5.2. Compute the radius of the red ball in Figure [5.5]
5.3. Fill in the details of the proof of Proposition [5.9]
5.4. Prove that a ball in hyperbolic space has a unique center.

5.5. Compute the hyperbolic radius and center of the ball {z € H? : |z — ci| < 1} for all
¢ > 1 in the upper halfplane model of H? E|

5.6. Prove Lemma [B.111
5.7. Complete the proof of Proposition [5.12]]

5We identify the upper halfplane model of H? with the upper halfplane in C.
6Use Lemma for inversions.
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5.8. Prove Proposition [5.1§]

5.9. Prove Lemma [5.202).

5.10. Prove Proposition [5.21]

5.11. Prove Lemma [5.24

5.12. Prove Lemma [5.25

5.13. Prove that the length of a circle of radius r in H? is 27 sinh r.
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Appendix A

Inversive geometry

A.1 One-point compactification

Lemma A.1. Let (X, 1) be a topological space and let oo be a point that is not an element
of X. Let X = X u {0} and let

Tw={Uc X :0ecUjo X—Uc X is closed and compact}.

Then T = T U Ty is a topology in X.

Proof. See the basic course in topology. n

Let X be a topological space that is not compact. The topological space X is the one
point compactification or the Aleksandroff compactification of X.

Theorem A.2. Let (X,7) be a topological space that is not compact. The one point
compactification of X is compact and (X)z = X. The topology of X induces the original
topology of X on X.

Proof. Let (Uy)aes be an open cover of X. There is an index Qo € J such that 0 e U, .
The sets U, n X form an open cover of X —U,, in X. As X —U,,, is compact in X, there
is some finite Jy = J such that X — U,,, < (Jsey, Ua- The finite collection (Ua)acssu{an)

is a cover of X. R

The subset X is dense in X because, by definition, every open neighbourhood of
oo intersects X. The topology 7 induces the topology 7 in X because 7 consists, by
definition of elements of 7 and of sets formed as the union of an element of 7 and {o0}. O

Example A.3. The stereographic projection . : S" — {e3} — E" = E" x {0} < E""[ls
the mapping
T, T,y Tp)

I- Tnt1

y(m)z(

Lfrom the north pole to the level of the equator
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It is a homeomorphism that maps each point x € S — {e,,+1} to the unique point in E"
(thought of as the hyperplane E? x {0} in E*)on the affine line through e, and x. Setting
(en+1) = 00 we obtain a homeomorphism .%: S" — En.

The one-point compactification of the Euclidean plane appears in complex analysis
as the Riemann sphere C U {0}. For example, the mapping z — % becomes a self-
homeomorphism of the Riemann sphere if we set 0 — oo and oo — 0.

Figure A.1 — Stereographic projection is the restriction to the sphere of an inversion
whose center is the

A.2 Inversions

In this short section, we review some basic material on inversions.

Let c € E" and let o € R — {0}. The mapping tco: E" — {¢} = E" — {c},

r—cC

an(l') =cC+ O{W s

is an a-inversion with a pole at ¢. The number « is called the power of the inversion.

Example A.4. In the complex plane,

z

0a(2) = I =

ST
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Clearly, for all x € E" — {c}, we have
(x —cltea(z) — ) =

and teq O Leo = id \En_{o}. If &« > 0, then the restriction of ¢., to the sphere of center c
and radius \/« is the identity. The points x and ¢(x) are on the same ray starting at c,
and they satisfy
2
Hl’ - C|H|Lc,r2(x) - CH =r.

Let c e E" and r > 0. The mapping ¢.,2 is the inversion in the sphere of radius r centered
at c.

We extend the definition of an inversion ¢., to the one-point compactification En of
E™ by setting t.o(c) = 00 and ¢.4(0) = c.

Example A.5. ., o|sn = S" — E".
Spheres and hyperplanes in " are generalized hyperplanes.

Proposition A.6. Let c € E" and let « € R — {0}. The inversion t., maps
(1) the affine subspaces that contain ¢ to themselves,
(2) spheres passing through c to affine hyperplanes that do not contain c,
(8) affine hyperplanes that do not contain ¢ to spheres passing through c, and
(4) spheres that do not pass through c to spheres that do not pass through c.

Proof. (1) is clear from the expression of the inversion.

(2) Clearly, it is enough to consider the case ¢ = 0. For any a € E® — {0}, the sphere
0B(a, |al)) passes through 0 and

0B(a, ) = {z € E" : [z]* = 2(x] a)}.

axr

This implies that for any « € 0B(a, |a|), we have iy o (x) = el

5. Thus,

, and this gives (i(z) |a) =

ina(@B(a, al)) = {y € E" : (y]a) = 5},

which is a hyperplane.
(3) follows from (2) and the fact that 4j, = id [g»_{0}.

(4) Consider the sphere 0B(a, p) with p # ||a|. If 21,29 € 0B(a, p) are on a line L (through
0), then % is the orthogonal projection of a on L, and we have

o1 + 22| + |1 + 22 — 2a]* = 4]a?

and
|z = @|® + |21 + 22 — 2a]* = 4]p°|.

Thus,
(w1 ]22) = [af* = p?,
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and therefore xy = g jqj2_,2(71), and we have = 1o 42— p2(0B(a, p)) = 0B(a, p). A simple
computation shows that for any a, 5 € R — {0}, we have ¢, 0 t5(x) = 3T for all x # 0, so

we get
Q@
to,a = laf2 = p2 to,a)2—p? >

which implies tg(0B(a, p)) = (0B(a, p)). O

Let D be an open subset of E”. A mapping F': D — E" is locally conformal, if it
preserves the angles between tangent vectors. Clearly, any mapping whose differential
at any point is the composition of an orthogonal transformation and a dilation is locally
conformal. A homeomorphism which is a locally conformal map is called a conformal
mapping. Sometimes one wants to be more precise and say that mappings which preserve
angles and orientation are (directly) conformal and those that preserve angles but reverse
the orientation are indirectly conformal.

Proposition A.7. Let c € E* and let « € R — {0}. The inversion i., is conformal.

Proof. Observe that . = T, 09 ©T_.. Translations and dilation by « are clearly
conformal mappings so it suffices to prove the claim for the standard inversion ¢y ;. Note
that

1 2 .

D L S
0a(®) = Rt~ EETT

where % is the transpose of x when z is a column vector. Observe that "Dig;(z) = Dig;(z)
and that

1 4 4 1
Dig1(z)? = —— I3 — —awo’ + —ala’ev = —1,.
(. J]® =]
Thus, Dy, (x) is a multiple of an orthogonal matrix. O

Exercises

A.1. Fill in the details Example [A.5]
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Chapter 6

Gromov-hyperbolic spaces

Gromov-hyperbolic spaces form a class of geodesic metric spaces where some geomet-
ric features are similar to hyperbolic space. There are several equivalent definitions of
Gromov-hyperbolicity in the literature, most of which formalize the idea that triangles
are thin or slim in these spaces in a controlled way. In this chapter, we introduce Gromov-
hyperbolic spaces in the same way as they are defined in [BH] and the introduction of
[GAIH]. We will also discuss the definition used by [BS], and we will show that these
definitions give the same class of Gromov hyperbolic spaces.

6.1 J-hyperbolic spaces

The first definition captures a feature of triangles in hyperbolic spaces:

Let X be a geodesic metric space and let § > 0. A triangle A satisfies the Rips condition’]
with constant § if any side of A is contained in the union of the closed d-neighbourhoods
of the other two.

®or is §-slim as in [BH]

Proposition 6.1. All triangles in H" satisfy the Rips condition with constant log(1++/2).

Proof. By Proposition [4.29] it suffices to consider H?. Let x, y and 2 be the vertices of
a nondegenerate triangle in the upper halfplane model of the hyperbolic plane. Using
the transitivity properties of the isometry group[ we may assume that the geodesic line
containing the edge [z,y] is |—1, 1[, which is the intersection of the Euclidean unit circle
with the upper halfplane. Furthermore, using reflections in the imaginary axis and the
FEuclidean unit circle, we may assume that Re x < Re y and that the Euclidean distance
of z from 0 is greater than 1. Using an isometry ¢_; 90 L;01_1 5 with an appropriate t € R,
we may assume that z is in the imaginary axis as in Figure [6.1]

1See Proposition
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log(1 ++/2)

Figure 6.1 — The ideas of Example [6.2]

Let us show that [z, y] © A1 va) ([2, 2]) U 10e1 4 va) ([Y; 2]), using the ideal triangle
with vertices at 0, 1 and oo. If p € [z, y] = H?, then the shortest geodesic segment from
]—1, oo[ to p passes through [z, z] U [z, y], and similarly for the shortest geodesic segment
from ]—1, oo[ to p. It is easy to check with the help of Lemmal[5.20]that |1, 1[ is contained
in the union of the closed log(1 + ﬁ)—neighbourhood of the geodesic lines |—1, oo[ and
]—1, c0[. Thus, the distance from p to [z, z] U [2,y] is at most log(1 + +/2). O

Let X be a geodesic metric space. If all triangles in X satisfy the Rips condition with
constant 9, then X is a d-hyperbolic space.

If X is -hyperbolic for some § > 0, then X is A Gromouv hyperbolic space.

Example 6.2. (1) We showed in Proposition [6.1| that H" is log(1 + /2)-hyperbolic.

(2) E" is not a hyperbolic space if n > 2. If A is a non-degenerate triangle in E", the
midpoint of any one of the sides is at a positive finite distance s from the union of the
two others. If & > 0, the image of A under the homothety (stretch map) z — kx is a
triangle where the corresponding distance is ks. Letting k grow to oo proves the claim.

(3) If X is a a geodesic metric space such that the diameter diam X of X is finite, then
X is diam X-hyperbolic. We are not interested in spaces like this.

(4) Any R-tree is 0-hyperbolic: Let X be an R-tree and let z,y,z € X. If [z,y] n [z, 2] =
{x}, then [z,y] U [, z] is an arc with endpoints y and z. Thus, it is the unique arc that
joins y to z, in particular, [z,y] U [z, 2] = [y, z]. If [x,y] N[z, 2] = [z, w] for some w # =,
then [w, y]  [w, 2] = {w} and [y, 2] = [y,w] [, 2] < [2,5] © [ 2].

In particular, E! is Gromov-hyperbolic.

(5) The bi-infinite simplicz’aﬂ ladder is Gromov-hyperbolic. See Figure

2arcosh 1+ =log(1 + v/2).
4

3Recall from section that this means we have a metric graph with constant edge length 1.
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O 0
0 0
Q 0
0 O
Q O
O S
O O
Q 3
Q 0
0 ® Y 5 0
® o
0 ®
w W
O 5 e
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0 9 e ®
o 0
O Q
0 T e
Q
e e
o O
e e
o O
O o

Figure 6.2 — A triangle with vertices x, y and z in a tree.

T

Figure 6.3 — The bi-infinite simplicial ladder.

6.2 Gromov product
Let X be a metric space and let x,y, 2 € X. There is a unique triple of positive numbers
Tz, Ty, T, > 0 such that
Ty + 1y =d(x,y)
re + 7. =d(z,2) (6.1)
ry+r,=d(y,z).

The solutions to this system of equation are important enough to have a name:

Let X be a metric space and let z,y, 2z € X. The Gromov product of y and z with respect
to x is

(y]2)e = 5dl.9) +d(z,2) — dly, =)

Note that the triangle inequality implies that the Gromov product is nonnegative:
(y|2), for all x,y, z € X in any metric space X.
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ard

Figure 6.4 — The geometric meaning of the solution of the system (6.1)).

A metric tree with three sides and four vertices such that one vertex has degree 3 and
three vertices have degree 1 is a tripod.

Figure 6.5 — The tripod T of a triangle A with side lengths 3, 4 and 5.

Lemma 6.3. Let X be a geodesic metric space and let A be a triangle with vertices x,y, z.
Let Ta be the tripod with side lengths (y|z)., (z|z2), and (x|y).. There is mapping
fa: A — Ta such that the restriction of fa to any side of A is an isometry.

Proof. This is clear as the Gromov products give the solution of the system of equations

(6-1). 0

Note: In many statements and proofs starting from Lemma [6.4] the notation
[a,b] means some or any geodesic segment with endpoints a and b in places
where the actual choice of the possible geodesic segments is not important.

Lemma 6.4. Let X be a geodesic metric space. Let A be a triangle with vertices x,vy, z €
X. Then

(Y] 2)e < d(z, [y, 2]).
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Proof. Let w € [y,z] be a closest point to z. By Lemma there is a point w €
[z,y] U [z, 2] such that fa(w) = fa(w). We may assume that @ € [z,y]. Note that
d(y,w) = d(y,w) and, as w € [y, z], (y] 2). < d(z,w). Thus,

(y ’ Z)ﬂc < d(l’,’(b) = d(l’,y) - d(y7®> = d(l’,y) - d(y7w> < d(m,w) = d(l’, [y7 Z]) .U

Let X be a geodesic metric space and let 6 > 0. A triangle A in X is 0-thin if d(a,b) < ¢
for all b e fi'(fa(a)) and all a € A.

Lemma 6.5. Let X be a geodesic metric space. If A is a d-thin triangle with vertices
x,y,z€ X. Then

(y]2)e <d(z, [y, 2]) < (y]2). +9.

Proof. The first inequality holds by Lemma[6.4] To prove the second, let vy be the central
vertex of Ta, and let a € f3'(vo) N [z,y] and b e f*'(vo) N [y, 2z]. By assumption, we get

d(z, [y, z]) < d(z,a) + d(a,b) < (y|z). +. O
Lemma 6.6. A 0-thin triangle satisfies the Rips condition with constant d.
Proof. Exercise. O]
Proposition 6.7. Let X be a §-hyperbolic space. Then all triangles in X are 46-thin.

Proof. Assume that there is a triangle A with vertices x, y, z € X that is not 4-thin. Then
(changing the names of the vertices if necessary) there are points u € [z,y] and v € [z, 2]
such that fa(u) = fa(v) and d(u,v) > 46. By continuity and as we are assuming a strict
inequality d(u,v) > 49, we may choose the points u and v such that

d(z,u) =d(z,v) < (y]2).- (6.2)

fa(y)

fa(u) = fa(v)

T y fa(z) \.fA<Z)

@- Q-

Figure 6.6 — The choice of u and v.

Lemma [6.4) applied to triangles with vertices x, u and v, and with vertices y, v and v
implies that

d(v,[z,y]) = min (d(v, [z,u]),d(v, [u,y])) = min ((z|w),, (y|u),). (6.3)
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Furthermore, using the assumption that d(z,u) = d(z,v),

and
2(y [u)y = d(y,v) + d(u,v) — d(y, u)
=d(y,v) + d(u,v) — (d(y, z) — d(z, u))
= d(u,v) + (d(y,v) + d(z,v) — d(y, z))
= d(u,v) + 2(x |y), = d(u,v)

Combining these observations with the inequality (6.3)), we get

d(v, [z,y]) = zd(u,v) > 24.

In particular, d(x,v) > 20 and there is a unique point p € [z, v] with d(p,v) = § and

d(p, [x,y]) > 6. (6.4)

It remains to estimate the distance from p to [y, z]: Lemma and the inequality (6.2))
imply
d(p, [y, z]) = d(z, [y, 2]) — d(p, z) = (y| 2). — d(p, z)
> d('l'av) - d(x,p) = d(p,U) =0.

The inequalities (6.4]) and (6.5)) show that the triangle A does not satisfy the Rips condi-

tion with constant §. ]

(6.5)

6.3 Approximation of paths by geodesics

In this section, we prove a technical result that is useful in section [7.2] The proof makes
strong use of d-hyperbolicity.

Proposition 6.8. Let X be a d-hyperbolic space. Let v: [0,1] — X be a rectifiable
pathfl] and let j: [0,d(v(0),7(1)] — X be a geodesic segment such that j(0) = ~(0) and
3(1) = ~(1). For any t € [0,d(~(0),~(1))],

d(j(t),7([0,1])) < dlog, £(7) + 1.

Proof. We may assume that /() > 1 and that ~ is parametrized proportional to ar-
clength ]

Let N € N such that 4(2—7) < 2V < l(v). Let t € [0,d(7(0),~(1))]. Let A; be a triangle
with vertices 7(0), 7(1) and ~(3) such that one of the sides is the image of the geodesic

segment 7. As X is -hyperbolic,
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e — ()
h
7(0) J(t) v(1)
Figure 6.7 —

Thus, there is a point 41 € [(0),7(3)] v [v(3),7(1)] such that d(j(t), 1) < 8. If y; €

[7(0),7(3)], let A, be a triangle with vertices 7(0), v(1) and 7(3). Otherwise, let Ay be
the triangle with vertices y(3), 7(2) and ~(1).

Assume that we are in the first case. Then, using d-hyperbolicity as above, there is
a point y» € [7(0),7(3)] U [7(3),7(2)] such that d(y1,y2) < 6. We continue inductively,
and construct a finite sequence of points yi, s, ..., yny such that d(yg, yxr1) < 6 for all

1 < kK < N—1. Note that, by construction, yy € [7(2%),7(%)] for some 0 < k < 2V —1,
and therefore, d(yy,v([0,1])) < 2%1)1 < 1. The triangle inequality gives the estimate

d(j(t),7([0,1])) < N+ 1 <log, {(7) + 1. O

Note that in the Euclidean plane, the distance to from the center of a half-circle to the
half-circle grows linearly with the radius. In the hyperbolic plane, we saw in Proposition
that the length of a circle of radius r is 27w sinhr ~ mwe”.

Exercises

6.1. Prove Lemma [6.6

6.2. Let T be a simplicial tree. Let zq € X and let py, pa: [0,00[ — T be geodesic rays
such that p1(0) = p2(0) = zo and p; # pe. Prove that the limit limy; o (p1(t) | p2(t))z, €x-
ists

6.3. Let p1, p2: [0, 0] — H? be geodesic rays such that p1(0) = p1(0) = 0 in the Poincaré
disk model and p; # py. Prove that (pi(t)|p2(t))o is bounded]]

6.4. Let p1, pa: [0, 0] — E? be geodesic rays such that p;(0) = p1(0) = 0 and p; # —ps.
Prove that (p1(t) | p2(t))o is not bounded.

1A path v is rectifiable if £(vy) < o0.

°See [BH, Remark 1.1.22] for the second assumption.

SProve that the function t — (p1(t) | p2(t))z, is constant for large ¢.
"Lemma and Proposition can be useful.
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Chapter 7

Quasi-isometries and hyperbolicity

In this chapter, we introduce quasi-isometric embeddings and quasi-isometries that are
important classes of mappings in coarse geometry. These mappings distort large distances
moderately but in smaller scale they may behave badly but not too badly. In particular,
quasi-isometric embeddings are allowed to have discontinuities and not to be injective.

In sections [7.4] and we discuss some basic objects of geometric group theory and
group actions on geodesic metric spaces. We conclude the chapter with a proof of an
important result of Svarc and Milnor.

7.1 Quasi-isometric embeddings and
quasi-isometries

In this section, we study a class of mappings between metric spaces that is natural in the
study of the large scale geometry of metric spaces.

Let (X,dx) and (Y, dy) be metric spaces and let A > 1, ¢ > 0. A mapping F': X — Y is
a (A, ¢)-quasi-isometric embedding if

1
de(x,a:’) —c<dy(F(z), F(2") < Mdx(z,2') + ¢

for all x,2" € X.

The definition of quasi-isometric embeddings does not require continuity or injectiv-
ity of the mapping. In particular, that quasi-isometric embeddings do not have to be
embeddings in the usual sense.

Example 7.1. (1) Isometric embeddings are (1, 0)-quasi-isometric embeddings.

(2) If X is a bounded metric space and zp € X, then the constant mapping x — zq is
a quasi-isometric embedding. The inclusion mapping {x,} — X is a quasi-isometric
embedding.
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The floor, ceiling and nearest integer functions are defined by setting for all £ € E,

|t] = max{m e Z:m < t},
[t] = min{m € Z : m > t}, and

f] = {[tj, if t € Upezln,n + 3]

[t], otherwise.

In the definition of the nearest integer mapping, we have made a choice for the elements
of Z + % to map them to the smaller of the two nearest integers.

Example 7.2. The functions |-|,[],[]: E' — Z are (1, 1)-quasi-isometric embeddings.

Let I = E! be an interval. A (), ¢)-isometric embedding i: [ — X is a (), ¢)-quasigeodesic.
More precisely, it is

(1) a (A, ¢)-quasigeodesic segment, if I = [0, b] is a (closed) bounded interval,
(2) a (A, ¢)-quasigeodesic ray, if I = [0, +oo[, and
(3) a (A, ¢)-quasigeodesic line, if I = E!.

Lemma 7.3. Let X, Y and Z be metric spaces.

(1) If F: X — Y is a (Ap, cp)-quasi-isometric embedding and G:Y — Z is a (Mg, cq)-
quasi-isometric embeddings, then Go F' is a (A\gAr, AgCr + cg)-quasi-isometric embedding.
(2) If j: I — X is a geodesic and F': X — Y is a (X, ¢)-quasi-isometric embedding, then
Foj isa ()N c)-quasigeodesic.

Proof. Exercise. O

Let (X,dyx) and (Y,dy) be metric spaces and let A > 1, ¢ > 0. If F: X - Y and
F:Y — X are quasi-isometric embeddings and there is a constant K > 0 such that

dx(x,FoF(z)) < K

and B

for all 7 € X and all y € Y, then F is a quasi-isometry, F is a quasi-inverse of F', and X
and Y are quasi-isometric spaces.

Lemma 7.4. If F: X - Y and G: Y — Z be quasi-isometries, then G o F' is a quasi-
1sometry.

Proof. Let F and G be the quasi-inverses of F' and G. Lemma [7.3[implies that G o F' and
F o @ are quasi-isometric embeddings. Let K > 0 be such that d(y, G o G(y)) < K for all
yeY, and let G be a (A, ¢) quasi-isometric embedding. Now, d(F(z),G o G(F(r))) < K
for all z € X, and thus,
d(z,(FoG)o(GoF)(x)) <d(x,F(F(x))) + d(F(F(2)), F(Go G(F(x))))
+c

d
AK

NN
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for all z € X. The corresponding estimate for d(y, (G o F') o (F o G)(y)) is shown in the
same way. Thus, F o G is a quasi-inverse of G o F. O

Example 7.5. (1) If X is a bounded metric space and xy € X, then the constant
mapping = — xy is a quasi-isometry, the identity is its quasi-inverse.

(2) The functions |-],[],[']: E! — Z are quasi-isometries. These three functions are
quasi-inverses of the inclusion map Z — E!.

Proposition 7.6. Let (X, dx) and (Y,dy) be metric spaces. Let F': X —Y be a quasi-
isometric embedding such that sup{dy (y,F(X)) : y € Y} < o[ Then F is a quasi-
isometry.

Proof. Exercise. O

Example 7.7. The space Z™ with the metric induced from E" is quasi-isometric with
E™: the inclusion map is an isometric embedding and d(z,Z") < @ for all x e E™.

The main result of this chapter is the stability of Gromov-hyperbolicity under quasi-
isometries. We will prove it at the end of section|7.3|as a corollary of the results in section
7.2

Theorem 7.8. Let X and Y be geodesic metric spaces. If X andY are quasi-isometric,
then X is Gromov-hyperbolic if and only if Y is Gromov-hyperbolic.

7.2 Stability of quasigeodesics

In this section, we will prove that the image of a (A, c¢)-quasigeodesic segment in a §-
hyperbolic space is not far from a geodesic segment connecting its endpoints, and that
the distance of these two sets depends only on the parameters A, ¢ and 4.

Let X be a metric space. The Hausdorff distance of two nonempty subsets A, B ¢ X is
dyaus(A, B) = inf{e > 0: Ac 4B, and B c A.A}.
The Hausdorff distance of mappings f,g: Z — X is

ditans(f+ 9) = dians(f(Z£), 9(Z)) -

We use the Hausdorff distance to measure how much two subsets of a metric space
differ but, in the general case, Hausdorff distance is not a metric because the distance of
a bounded set and an unbounded set is infinite and because the Hausdorff distance of a
set and its closure is 0.

Let E # . A function d: E x E — [0,00] is an eztended pseudometric in E if
(1) d(z,z) =0 for all z € E,
(2) d(z,y) = d(y,x) for all z,y € E, and

(3) d(z,y) < d(z,z) + d(z,y) for all x,y,z € E (the triangle inequality).

!The image F(X) is quasidense in Y.
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Lemma 7.9. Let X be a metric space. Hausdorff distance is an extended pseudometric
in the set of nonempty subsets of X.

Proof. Exercise. m

Theorem 7.10. Let § > 0, A > 1 and ¢ = 0. There is a constant R = R(, \,c¢) = 0 such
that the following holds: If v: I — X is a (X, c¢)-quasigeodesic segment in a §-hyperbolic
space X, then the Hausdorff distance of v(I) from any geodesic segment with the same
endpoints as vy is at most R.

Proof. Let : [0,b] — X be a (A, ¢)-quasigeodesic segment. For convenience, to replace b
by an integer, let v;: [0, [b]] — X,

(t) = {’y(t), if ¢ € [0,]

v(b)  otherwise.

The mapping v is a (A, ¢ + 1)-quasigeodesic segment that has the same image as 7.

Step 1. First, we construct a continuous quasigeodesic segment 7, close to v;. Let
o;: [i—1,i] - X be affinely reparametrized geodesic arcs or constant mappings such that
oi(t —1) =y (i—1) and 0;(2) = 11 (7) for all ¢ € {1,2,...,[b]}. Let

Y2 =01 %02 % %0

This mapping is continuous as the product (or concatenation) of geodesic arcs.

Figure 7.1 — The possibly disconnected quasigeodesic arc v and a continuous quasi-
geodesic arc 7.

As v is a (A, ¢+ 1)-quasigeodesic segment, we have
d(vi(i=1),m@@) <A+c+1 (7.1)

for all i € {1,2,...,[b]}. As o; is parametrized relative to the arclength for all i, this
implies d(72(t), 12([t])) < 2 for all ¢ € [0, [b]]. By the (A, ¢ + 1)-quasigeodesity of 71,
we have

d(vi(t), n([t]) < Mt —[t]| +c+1 < ; te41

forall t € [0, [b]]. The triangle inequality and the fact that the mappings v, and 75 coincide
at the integers gives now

don (1), 72(0) < A+ 5(e+ 1),
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and as a consequence,

it (1 ([0, 1), 220, B11)) < A+ 2 (e 1) (7.2

It remains to show that -, is quasigeodesic. Let 0 < ¢,¢' < [b]. Using the triangle
inequality, the fact that v; and 7, agree at the integers in [0, [b]] and the definition of a
quasigeodesic segment, we get the estimate

d(12(t), 72(t)) < d(r2([t]), %2([t'D) + d(12(8), %2([t]) + d(72(t), 12([£]))

< d(”qut])’,},l([t/])) n A +§+ 1 . A +;+ 1

AN =[] +ec+1+A+c+1
At =t |+ X +2c+2+ ),

<
<

and, similarly,

A3 (). 32 () > d(a([E]), 3 ([E]) = A+ e+ 1)
1 /
>X|[t]—[t]|—()\+2(c+1)) (7.3)
1, ., 1
> X‘t_”_X_()‘JrQ(H 1)).
Combining these two estimates show that 7, is a (A, 2(A + ¢ + 1))-quasigeodesic segment.

Step 2. Let j: [0,d(7(0),7(b))] — X be a geodesic segment such that j(0) = (0) and
j(1) = ~(1). We now prove that there is a constant H = H (0, A, ¢) such that

.7([07 d(f)/(o)afy(b))]) = L/VH (72([07 [b”)) :

By continuity and compactness,

D = max {d(j(t), 12([0. 1)) - £ € [0,d(3(0), 1 (B))]} < .

Let ty € [0,d(7(0),~(b))] such that d(j(to),2([0,[b]])) = D. In particular,
d(7(0), j(to)), d(v(1), j(to)) = D

and B(j(t())? D) a '72([07 [b]]) = (.

Let t_ = max(0,ty — 2D) and t; = min(0, ty + 2D). Let z_, z, € ([0, [b]]) such that
d(j(t_,z_),d(j(ty),z+) < D. Let s_, s, € [0,1] such that z; = 72(s+). Let n be the path
obtained by concatenating a geodesic segment from j(t_) to z_, ¥a|[s_ .1 and a geodesic
segment from z, to j(t,). The distance from j(t() to the image of 1 is at least D and the
triangle inequality implies that

d(z_,zy) <6D. (7.4)

Recall that ~, is a concatenation of reparametrized geodesic arcs and constant map-
pings. Thus, using equation (7.1]), we have

(Yalfs_,ss1) S A+ e+ 1)([s4] = [s-]1 +2).
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Figure 7.2 — The path 7.
Combining this with the inequalities and , we get that there are nonnegative
constants K, K’ such that
()< KD+ K'+2D=(K+2)D+K'.
Proposition [6.8] gives the estimate
D < dlogyl(n) +1 < dlogy(K+2)D+K')+1.

This inequality does not hold for large D and it gives the existence of an upper bound
Dy for D that only depends on 9§, A and ¢. We have proved that

3([0,d(v(0), ¥(b))]) = A b, (2([0, [b1])) - (7.5)

Step 3. Let [u,v] < [0,[b]] be a maximal interval such that ~,([u,v]) is contained in
the complement of JI/I)O+1(j([ d(v(0),7v(b))])). Note that by (7.5,

3([0,d(v(0),7(0))]) = Apy+1(velour) Y ADo+1 (V2o 1) -
As j([0,d(v(0),v(b))]) is connected and its subsets j([0,d(v(0),v(D))]) N ADg+1(V2l[0,u[)

]
and j([0,d(v(0),v(0))]) N ADg+1(V2|[v,[of) are nonempty, they must intersect. Thus, there
! v" € Ju,[b]] and ¢, € [0, d(v(0),~(b))] such that

are u’' € [0, ul,
d(y2(u), j(to)), d(2(v), 5 (to)) < Do+ 1.
In particular, d(y2(u'), 72(v")) < 2(Dy + 1). As in Step 2, this implies
((olpww) < 2K (Do +1) + K7,

and we see that

32010, 1) = 7 g1y 1122 (10,41 0), 1 5))) (7.6)
Equations ([7.2)), (7.5) and ([7.6)) give the claim of the theorem. ]
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7.3 Quasitriangles and the proof of Theorem

In this section, we introduce quasitriangles that are made up of quasigeodesic arcs and
use this tool to prove the invariance of Gromov-hyperbolicity under quasi-isometries.

Let X be a metric space and let A = 1 and ¢ = 0. A (), ¢)-quasitriangle in X is a triple
gA = {j1,J2, ja} of (A, ¢)-quasigeodesic segments such that the terminus of j; is the origin
of j;4+1 with the index ¢ considered cyclically mod 3.

The quasigeodesic segments ji, jo and j3 are the sides of ¢A.

The endpoints of the quasigeodesic segments j1, j» and j3 are the vertices of A.

Lemma implies that the image of a triangle by a quasi-isometric embedding is a
quasitriangle. Naturally, we extend the Rips condition?| to quasitriangles:

Let X be a geodesic metric space and let § > 0. A quasitriangle qA satisfies the Rips
condition (for quasigeodesic triangles) with constant M if any side of ¢A is contained in
the union of the closed M-neighbourhoods of the other two.

Corollary 7.11. Let X be a d-hyperbolic space and let X\ = 1 and ¢ = 0. There is a
constant M = M (0, A, ¢) such that all (X, ¢)-quasitriangles of X satisfy the Rips condition
with constant M.

Proof. Exercise O
Theorem 7.12. Let X be a geodesic metric space and let Y be a d-hyperbolic space. Let
F: X >Y be a (A c)-quasi-isometric embedding. Then there is a constant ' such that
X is 0'-hyperbolic.
Proof. Let j1: I — X, jo: Iy — X, j3: I3 — X be the sides of a triangle A in X.
Corollary implies that the quasitriangle with sides Foj;, Fojs and Fojs is M (9, A, ¢)-
thin.
Let t € I;. Corollary implies that there is some s € Iy U I3 such that
d(F o ji(t), F o ji(s)) < M(8, A, ¢),
where k € {1,2}. This implies that
d(j1(t), jr(s)) < Ad(F 0 ji(t), F o ji(s)) + ¢ < AM(3, A, ) + ¢,

and the analogous estimate for the sides j, and j3. Thus, A satisfies the Rips condition
with constant ¢ = AM (0, A, ¢) + c. O

Proof of Theorem[7.8. Let F: X — Y be a quasi-isometry let F': Y — X be its quasi-
inverse. Theorem applied to these two mappings implies the claim. O

2See section
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7.4 Hyperbolic groups

Simplicial graphs associated with finitely generated groups are important examples in the
theory of Gromov-hyperbolic spaces.

A subset S < G is a symmetric set of generators of G if S generates G and s € S if and
only if s7' € S and the identity element of G is not in S.

A group G is finitely generated if it has a finite generating set.

Let G be a group and let S be a symmetric set of generators of G. The Cayley graph
9(G,S) is the graph with V¥ (G, S) = G and EY(G,S) = G x S, 0(g,$) = g, t(g,s) = gs
and (g,s) = (gs,57").

The simplicial graph defined on ¥ (G, S) is also called the Cayley graph 4 (G, S).

Example 7.13. (1) Theset S = {—3,—2,2,3} < Z is a finite symmetric set of generators
of the additive group of integers Z. The Cayley graph ¥(Z, S) looks very different from
the Cayley graph ¢(Z,{—1,1}) shown in Example |[1.10(1).

SR

Figure 7.3 — Part of the Cayley graph g(Fg, {a,b,a™, b~ 1} of the free group on two
generators.

(2) A word on the alphabet &/ = {a,b,a”',b"'} is a finite sequence s;ss...s, with n €
N and s; € & for all i € {1,2,...,n}, including the empty word e that corresponds to
n = 0. A word is reduced if it does not include subwords aa™!, a~ta, bb=! or b='b. We
denote the set of reduced words by Z (). If u = s;---s,, and w = t; - - - £, are reduced
words on &7, the juztaposition u=w of u and w is the word obtained by successively deleting
the forbidden subwords from the word s; - - - $,,t1 - - - t,,. The free group on two generators
is the group Fy = (Z(&), ). See [Rotl, Ch. 11]. The Cayley graph ¢ (F, {a,b,a™, b7 '}) is
the regular tree of degree 4, see figure

Let G be a group and let S be a symmetric set of generators of G. The word metric ds in
G associated with the generating set S is defined by

ds(g,h) =min{n e N: g 'h = 5189 8,, 51,82,...,5,€S}.

Note that, if G is a group, e € G is the identity element and S < G is a symmetric
generating set, by construction,

dS(gv h) = dS(67g_1h) . (77>
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Figure 7.4 — Part of the Cayley graph ¢ (F, {a,b,a™,b7'}) of the free group on two
generators.

Lemma 7.14. The metric of the simplicial graph 4 (G, S) induces a metric on V¥4(G, S)
such that the identity map G — G = VY (G, S) is an isometric embedding.

Proof. Exercise. O]

Lemma 7.15. Let G be a group and let S be a symmetric set of generators of G. The
metric spaces 4(G,S) and (G, dg) are quasi-isometric.

Proof. The claim follows from Lemma Proposition |7.6| and the fact that 4 (G, S) =
N1 (VE(G,9)). O

Lemma 7.16. Let S and T be finite symmetric generating sets of a group G. The identity
map id: (G,ds) — (G, dr) is a quasi-isometry.

Proof. Exercise. O]

Proposition 7.17. Let S and T be finite symmetric generating sets of a group G. The
Cayley graphs 4(G,S) and 4(G,T) are quasi-isometric.

Proof. The claim follows from Lemmas [7.15] and [7.4] O]
Proposition and Theorem imply that the following definition makes sense:

A finitely generated group G is a hyperbolic group if 4(G,S) is Gromov-hyperbolic for
some symmetric generating set S of G.

Example 7.18. (1) The free group on two generators is a hyperbolic group. In fact,
the free group on n generators is hyperbolic for all n € N, its Cayley graph with respect
to a symmetric set of free generators is a tree with degree 2n.

December 7, 2020



92

Quasi-isometries and hyperbolicity

(2) The word metric of the symmetric generating set S = {+e; : 1 <i < n}in Z" coincides
with the induced metric of the norm | - |, of R", which is equivalent with the Euclidean
metric. This observation combined with Example|7.7|shows that Z" with any word metric
is quasi-isometric with E”. In particular, Z" is not hyperbolic for n = 2 by Theorem

and Example [6.2/2).

7.5 Group actions and the Svarc-Milnor lemma

Let S(A) be the group of permutations of a set A. A group G acts on A if there is a
homomorphism ¢: G — S(A). The homomorphism ¢ is an action of G on A.

Let X be a topological space. A group G acts on (X, d) by homeomorphisms if there is a
homomorphism ¢: G — Homeo(X, d).

Let (X,d) be a metric space. A group G acts on (X,d) by isometries if there is a
homomorphism ¢: G — Isom(X, d).

If a group GG acts on a set A and will use the notation

g-a=¢(g)a) = (¢(g))(a)

for all g € G and all a € A. If the group is a subgroup of the permutation group of A,
the notation g(a) is natural to use, and if we have an action of a group of matrices on a
vector space with a fixed basis, the usual notation of matrix multiplication is used.

Example 7.19. Any finitely generated group acts on itself and on its Cayley graph by
isometries. If G is a group and g € G, the mapping L,: G — G, L,(¢') = g¢', is left
multiplication by g. If S is a finite symmetric generating set of GG, then

ds(gg1,992) = min{n € N: (gg1) 'gg2 = 91 'g2 = 8152+ Sn, S1,82,-..,5, € S}
= dS(gth)

forall g, g1, g» € G. Thus, the mappings L, are isometries. As Ly, = L,oL;, forall g,h € G,
we see that the mapping g — L, is an action by isometries on (G, dg). Consequently, it
induces an isometry of the Cayley graph.

Lemma 7.20. Let X be a metric space and let G be a finitely generated group that acts
on X by isometries and let xo € X. For any symmetric generating set S of G, there is a
constant M such that

d(g1 - w0, g2 - o) < Mds(g1, 92)
for all g1, 92 € G.
Proof. Let

M = max{d(zg,s-xg) : s€ S}.

Let g € G and let sq,59,...,5, € S such that g = s959--- 5, and let g = $989--- s, for
all 1 < k < n and let gy = e be the identity of G. The triangle inequality and the fact
that G acts by isometries give

n n
d(xo,9 - w0) < Y, d(gk-1 - o, g - T0) Z (2o, 81 - xo) <M .
k=1 —
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Zo

S$1S9 * X
17270 5182 Sg—1* Xo

N

S1 o g - Xo

Thus, d(zo,g - ©9) < Mds(e,g). Equation (7.7) and and the fact that G acts by
isometries implies the claim:

d(g1 - o, g2 - w0) = d(x0, 9™ g2 - w0) < Mds(e, g1 'g2) = Mds(g1, g2) u
Let A be a set and let GG be a group that acts on A. If a € A, the set
G-a={g-a:9eG}
is the G-orbit of a. The quotient sel? is
G\A={G-a:aecA}.

If X is a topological space, the quotient space of X by G is the set G\X with the quotient
topology of the equivalence relation defined by the partition of X to G-orbits. The
mapping 7: X — G\X, 7(z) = G - z, is the canonical projection.

The action by homeomorphisms of a group GG on a topological space X is cocompact if
G\ X is compact.

?Do not confuse the notation with the commonly used notation \ for the difference of sets!

Example 7.21. 7" acts cocompactly on E" by translations, b-x = x+0b for all b € Z™ and
all x € E". The quotient space Z"\E" is an n-torus.

The action of a group GG on a metric space X is proper if for all compact subsets K < X
{9eG:Kng K+ &}

is finite.

Lemma 7.22. Let (X,d) be a proper metric space and let G be a group that acts on X
properly by isometries. Let m: X — G\X be the canonical projection. The expression

d(z,y) = min {d(Z,7) : 7(¥) =z, 7(§) =y}
defines a metric on G\X.

Proof. Exercise. O

Let (X, d) be a metric space and let G be a group that acts on X properly by isometries.
the metric d on G\X defined in Lemma |7.22|is the quotient metric.
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Quasi-isometries and hyperbolicity

For compact subsets A, B ¢ X let
d(A, B) = min{d(a,b) :a€ A, be B}.
Recall that d(A, B) > 0 if the compact sets A and B are disjoint.

Theorem 7.23 (Svarc, Milnor). Let X be a proper geodesic space and let G be a group
that acts on X cocompactly and properly by isometries. Then G is finitely generated and

the mapping G LA X, g— g-xg, is a quasi-isometry for any xg € X.

Proof. Let R < o be the diameter of the compact metric space G\X. Let zo € X Let
K = B(zo, R). Note that the choice of K implies that

X=|Jg-K. (7.8)
geG

Let e € G be the identity and let
S={geG:g9-KnK +# J}—{e}.

The set S is finite because we assume that the action of G is proper. If r € s- K n K,
then s7! -2 € s7'K n K, and therefore s € S if and only if s7! € S.

Let us show that S is a generating set of G.

As K is compact and G acts properly, the number

r=min{d(K,g-K):g9eG—(Su{e})} (7.9)

is positive[l| Let g € G— (S u{e}). Let [z, g- 7] be a geodesic segment and choose points
T1,T2, ..., T = g-Tg € [To, g o] such that d(z;_1,z;) <rforall 1 < j<k. Using (7.8),
we can choose go = €, g1, . . ., gx € G such that d(z;, g; - 79) < R. See Figure 7.5
Let s; = g4 g; forall 1 <i < k. As g;' - 2; € K by the choice of g; for all 1 <i <k,
we have
d(K,s;- K) < d(g[_l1 ST, sl-gjlxi) =d(x;qx;) <.

The definition of r implies that s; € S. As
=gk = S152° Sk, (7.10)

we see that S is a generating set of G.

Lemma gives the estimate d(g; - xo, g2 - T9) < Mds(g1, g2) for all g1, g2 € G, so to
prove that @ is a quasi-isometry, it is enough to find an inequality in the reverse direction.
Again, it suffices to bound dg(e, g) by d(zo, g - o) for all g € G. We may assume that
the points x1, 2, ..., 2 = g - x9 € [0, g - To] are chosen so that d(z;_1,x;) < R for all
1 <@ < k. Furthermore, k£ can be chosen to be minimal with this property, which implies

the bound

d(xo, g - o)
k< ——+1.
R
Equation (7.10)) now gives the desired estimate dg(e, g) < w + 1. O

3Exercise
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Figure 7.5 —

Example 7.24. Let p,q,r € N — {0,1} such that % + % +1 < 1. Let A(p,q,r) be

s s

a triangle polygon in H? with angles > 4 and 7. Note that such a triangle exists by
Proposition [5.10§2).

The subgroup T, of Isom H? generated by the reflections in the sides of A(p,q,7) is
a hyperbolic triangle group. It can be shown that the images under I', ,, of the polygon
A(p, q,r) tile H:

U 9ap.qr) =1

9€l'p q,r

and if g,h € I, g # h, then either g(A(p,q,7)) N (A(p,q,7)) is a side or a vertex
of both triangles or g(A(p,q,7)) N A(p,q,r) = . In particular, the action of I',,, on
H? is proper and cocompact. See for example [Beal §10.6] for details. Thus, I',,, is a
hyperbolic group by Proposition [7.23]

Exercises

7.1. Let X be a geodesic metric space. Let py,po,p3, ps € X and let j;, jo and j3 be
geodesic segments such that jp connects pg to pryq for all k € {1,2,3}. Assume that
d(p1,p2) = d(ps,pa) = C. Prove that j = ji * jo = jz: [0,d(p2, p3) + 2C] — X is a
(1,4C)-quasigeodesic segment.

7.2. Prove Lemma [7.3l

7.3. Let F': X - Y be a () ¢+ 1)-quasi-isometric embedding. Find an upper bound
on the diameter of the set F'~1(y) for all y € F(X).

7.4. Prove Proposition [7.6]]

4Some choices need to be made.
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Quasi-isometries and hyperbolicity
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Figure 7.6 — The tiling the hyperbolic plane defined by the triangle group A(2,4,6).

7.5. Prove Lemma [7.0l

7.6. Prove that the mapping 7, in the proof of Theorem is a (A, c+1)-quasi-isometric
embedding.

7.7. Prove Corollary [7.11]

7.8.
7.9.

7.10.
7.11.
7.12.
7.13.

Prove that the word metric is a metric.

Prove Lemma [7.14]

Prove Lemma [Z.16/F]

Prove Lemma [7.22]

Prove that » > 0 in equation ([7.9)).

Show that the bi-infinite simplicial ladder of Example [6.2(5) and Figure is a

Cayley graph of Z x (Z/2Z). Show that Z x (Z/2Z) is a hyperbolic groupf]

5Note that we are assuming that the generating sets are finite.
STheorem [7.8 may be useful. The hyperbolicity of the bi-infinite ladder was stated in Example [6.2]5)
without a proof...
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Chapter 8

Boundary at infinity

In the Poincaré ball model, hyperbolic space appears to have a boundary as a subset of
E". In chapter , we saw that the unit sphere S"~! has a geometric meaning in terms of
the endpoints of geodesic lines. In this chapter, we introduce an abstract definition of the
boundary at infinity of a metric space that is naturally identified as sets with the unit
sphere in the Poincaré model and with R"™! x {0} U {0}

8.1 Asymptotic rays

Let X be a metric space. The space of geodesic rays of X is
4, (X) = {geodesic rays p: [0,00] —> X},
and the space of geodesic rays of X with origin p is
. (X,p) = (e D (X) : pl0) = p} .

Two geodesic rays py, ps € 4, (X) are asymptotic, p1 ~ pa, if

sup d(pi1(t), pa2(t)) < 0.
te[0,00[

Lemma 8.1. Let X be a metric space. Asymptoticity is an equivalence relation in 4. (X).
Proof. This is immediate from the triangle inequality. ]

Proposition 8.2. Two geodesic rays p1, p2 € 4+ (H") are asymptotic if and only if they
have the same endpoint in the Poincaré ball model or in the upper halfspace model.

Proof. As the inversion F' = ¢_., o used to identify the two models in section is a
self-homeomorphism of the extended space E™, it suffices to consider the upper halfspace
model.
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Boundary at infinity

Assume that the geodesic rays p; and py have the same endpoint in the upper halfspace
model. Using Proposition [5.17, we can assume that the common endpoint is c0. Now,
there are T,y € E"! and x,,,y, > 0 such that p;(t) = (7, z,e') and po(t) = (7, yne'). We
can estimate the distance d(p1(t), p2(t))]

i O ol | NPV ol A el
220, Yn 22,Yn = 22, Yn 2T, Yn

coshd(pi(t), pa(t)) =

for all £ > 0, which implies asymptoticity.
If the rays p; and p, have different endpoints in the model, we can assume that these
points are co and 0. Now, p; is as above and max;>o(p2), = M < co. For large t,

dlpr (1), pa(t)) = d(p(8), (&, M)) = log T+t — o

as t — o0. This shows that the rays are not asymptotic. O]
The following characterization of asymptoticity is sometimes useful.

Proposition 8.3. Let X be a metric space. Two geodesic rays py, p2 € 9+ (X) are asymp-
totic if and only if the Hausdorff distance of their images is finite.

Proof. 1t is clear that asymptotic rays are at finite Hausdorff distance from each other.

Let p1,p2: R — X be geodesic rays and let K > 0 be such that dya..s(p1,p2) < K.
By assumption, for all ¢ > 0, there is some s; > 0 such that d(p:1(t), p2(s;)) < K. The
triangle inequality gives the double inequality

d(p1(t), p1(0)) = 2K < d(pa(s), p2(s0)) < d(p1(t), p1(0)) + 2K,
and as the mappings p; and py are isometric embeddings,
t—2K <|sy —so| <t+2K.
In particular, |s; —t| < so + 2K, and this implies for all ¢ > 0 the estimate

d(p1(t), p2(t)) < d(py(t), p2(se)) + d(p2(se), p2(t)) < K + s+ 2K = 5o + 3K,
so the rays p; and py are asymptotic. O]
We illustrate the use of Proposition [8.2] by an alternative proof of Proposition [8.2]

Second proof of Proposition[8.4 Assume that the geodesic rays p; and py have the same
endpoint in the upper halfspace model. Using Proposition [5.17, we can assume the end-
point is 0. Now, there are Z,y € E"! and z,,,y, > 0 such that p,(t) = (Z,x,e') and
p2(t) = (¥, yne'). We may assume that z, < y,. Using Proposition , we see that

p2([0,0[) = A1p1([0,2])  and  pi([0, %) = A71pa([0, o),

which implies asymptocity by Proposition [8.2]
The argument for rays with different endpoints is the same as in the first proof. [

1See equation ([5.2)).
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In Gromov-hyperbolic spaces, the Hausdorff distance of asymptotic rays is controlled
by the constant ¢ if we forget an initial segment of the rays. This is in strong contrast with
Euclidean space where the Hausdorff distance of asymptotic geodesic rays is unbounded.

Proposition 8.4. Let X be a d-hyperbolic space. Let py and ps be asymptotic geodesic
rays in X.

(1) If p1(0) = p2(0), then d(pi(t), pa(t)) < 20 for allt = 0.

(2) For all large enough t, there is some sy = 0 such that d(pi(t), p2(st)) < 24.

(8) For all large enough t, there is some u € R such that d(pi(t), p2(t —u)) < 60.

Proof. Let
K = sup d(p:(t), p2(1)) -

te[0,00[
(1) The triangle with sides p1|[o,q, p2|j0,q and [p1(t), p2(t)] satisfies the Rips confition with
constant 6. If 0 < s < t—(K+9), then d(p1(s), [p1(t), p2(t)]) > 0 by the triangle inequality.
The Rips condition implies that there is some sy € [0,] such that d(pi(s), pa(s2)) < 0.
The triangle inequality implies that |s — s5| < 4.

p1(8) P‘l (t)
p1(0) = pa(0) K +90
<K
K+
pa(s) (1)

(2) Let t > K+ d and let T >t + K + 25. As in (1), there is a point y; € [p2(0), p1(T)]
such that d(p;(t),y,) < 0 and similarly, d(y:, p2(s:)) < ¢ for some s; = 0.

p1(0)

p2(0)

This implies the claim by the triangle inequality.

(3) Let tp > K + d. By (2), there is some s¢, > 0 such that d(p1(to), pa(st,)) < 20. Let
u = S, — tp.

Note that there is some T > ¢y such that s, > s;, for ¢ > Ty: Assume that s; < sy,.
By assumption, d(p1(t), p2(t)) < K. The triangle inequality gives

26 = d(p1(t), pa(se)) = d(p2(t), pa(se)) — d(p2(t), pr(t) 2t —sp = K >t — 59— K,
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that implies the bound f < sy, + K + 20.
Let t > Tj. The triangle inequality implies that

d(p2(st), p2(t +u)) = [t +u — s = [(t —to) — (st — (to +u))|
= [(t —to) — (5t = 51,)| = |d(p1(t), p1(to)) — d(p2(st), pa(st,))| < 40 .

The claim follows from this estimate and (2) by the triangle inequality. O

8.2 The boundary at infinity

Let X be a metric space. Let ~ be the asymptoticity equivalence relation on ¢, (X). The
quotient set

X =9, (X )/ ~
is the boundary at infinityf”] of X. The equivalence class of a ray p

p(0) ={p e X p~p}

is its point at infinity.

®This set is also called the space at infinity and the Gromov boundary of X.

Proposition implies that the boundary at infinity of hyperbolic space coincides
with the definition we gave in section for the Klein, Poincaré and upper halfspace
models.

Lemma 8.5. Let X be a metric space. The rule
g-p(®) = (g0 p)(x)
for all g € Isom(X) and all £ = p(0) defines an action of Isom(X) on X.

Proof. Let p1,p2 € 44(X). If g € Isom(X), then d(g o pi(t), g 0 p2(t)) = d(p1(t), p2(2)).
Thus p; and py are asymptotic if and only if g o p; and g o p are asymptotic. This
implies that the mapping p(o0) — ¢ - p(0) is well defined and a bijective selfmap of
0 X. The associativity of the composition of mappings implies that we have an action
of Isom(X). O

Let X be a metric space. The space of geodesic lines of X is
9 (X) = {geodesic lines p: R — X}.

If g € 9(X), let pg+,p, € G(X), pf = glioeof and p, : t — g(—t) The endpoints
(at infinity) of g are the negative endpoint g(—o0) = p;(00) and the positive endpoint
9(0) = pg ().

Example 8.6. (1) For any S € R, let Tg: R — R be the translation Ts(t) =t + S. If
geEY(X), then goTs € 4(X) and g o Ts(+w0) = g(+o0) for all S € R.

(2) In chapter [f], we saw that for any &1, & € 0,H", & # &, there is a unique geodesic
line in H" with endpoints & and &,.
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(3) In E2, every geodesic line has infinitely many geodesic lines with equal endpoints at
infinity and disjoint images. On the other hand, if g, g, € ¥ (E?) with g;(0) = ga(0),
then g1(~oc) = ga(~o0).

Let X be a metric space and let &1,& € 0, X. If there is a geodesic line g € 4(X) with
g(—0) = & and g(o0) = & that is unique up to translation of the domain of definition
R[] let

161, 6 = 9(R).

®as in Example (1)

Lemma 8.7. Let X be a metric space and let &, € 0,X. Let g € Isom(X). Then
g(]§17§2[) = ]g £1,9- 52[-

Proof. Exercise. O

8.3 The boundary at infinity of a simplicial tree
In this section, let X be an R-tree and let p € X.

Lemma 8.8. Let X be a an R-tree and let py, ps € 9, (X). Then py and py are asymptotic
if and only if there are constants Ty, Ty such that pi(t) = pa(t + T3) for all t = Ty.

Proof. Let
Tp = sup {t € 10,%0] : p1(t) € p2(]0,0])} .
If Ty < oo, then
d(pr(t), p2(10,0])) = ¢t = Ty —

as t — c0. Thus, in this case, the rays p; and p, are not asymptotic.
If Ty = oo, then let

Ty = min {t € 10, 0] : p1(t) € p2(]0,0])},
and let T3 = 0 such that py(Th) = p2(T3). Then, pi(t) = po(t —T1 + T3) forall t = T;. O

Lemma 8.9. Let X be an R-tree and let p e X. For all p € 9.(X), there is a unique ray
pp € 9(X,p) such that p,(0) = p(©).

Proof. Let p(T) € p([0, 0[) be the closest point to p. The path p, = [p, p(T)] * p|[7,c0( is &
geodesic ray because X is an R-tree, and clearly p,(o0) = p(c0). Uniqueness follows from

Lemma [8.8 O
Lemma 8.10. Let X be an R-tree and let p € X and &,& € 00X, &1 # &. There is a
unique geodesic line in g € 94(X) with endpoints g(—o0) = & and g(0) = & such that
g(0) is the closest point to p in g(R).

Proof. Exercise. O]
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We saw in Exercise that the limit lim; o (p1(t) | p2(t)), exists for any pi,ps €
9. (X,p), p1 # pa, if X is an R-tree, and in fact,

lim (p1(t) | p2(t))p = d(p. 1p1(0), p2(0)])

for any such pair of rays.

Let X be an R-tree, let p € X and let &1, & € 0, X. The Gromov product of & and & with
respect to p is

(& 1&)e = d(p. 161, &[)
if & # & and (£]€), = oo for all £ € 0., X.

Let X # ¢J. A function d: X x X — [0, 00[ is an ultrametric in X if
(1) d(z,z) =0 for all z € X and d(z,y) > 0if = # y,
(2) d(x,y) = d(y,x) for all z,y € X, and
(3) d(z,y) < max(d(x, z),d(z,y)) for all x,y,z € X (the ultrametric inequality).

The pair (X, d) is a ultrametric space.
Lemma 8.11. Let X be an R-tree and let p € VX. The expression

dp(gh 52) — e (E]&)p
is an ultrametric in 0X Pl

Proof. Exercise. m

A metric space is perfect if it has no isolated points. It is totally disconnected if its
connected subsets are sets with one point.

Proposition 8.12. Let X be a simplicial tree such that the degree of each vertex is at
least 3, and let pe VX.

(1) The metric space (05X, d,) is perfect and totally disconnected.
(2) If the degree of each vertex is bounded, then (0 X,d,) is compact.

Proof. Any ultrametric space with more than one point is totally disconnected because
all open balls are closed.

Let £ € 0, X, and let p € ¢4, (X, p) with p(c0) = £. By assumption, for each n € N,
there is a ray p, € ¢, (X,p) such that p and p, coincide exactly on the interval [0, n].
Thus,

dp(g’p”(oo)) = dp(p(OO),pn(OO)) =e " =0
as n — o, and (Jy X, d,) is perfect.
(2) Exercise. -

2We use the convention e~®

the tree.

= 0. It is not essential to take p to be a vertex, it could be any point in
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Corollary 8.13. Let X be a simplicial tree such that the degree of each vertex is finite
and at least 3, and let p e X. The metric space (0,X,d,) is homeomorphic to the Cantor
1

5-set.

Proof. Every nonempty, compact, perfect, totally disconnected metric space is homeo-
morphic to the Cantor set, see [HY], Cor. 2-98]. O

The following result shows that the metrics in the boundary of an R-tree depend on
the basepoint in a controlled manner:

Proposition 8.14. Let X be an R-tree and let p,q € X. The metrics d, and d, are
equivalent.

Proof. The triangle inequality gives for any &;,& € 00 X

d(g,)&,&[) — d(p,q) < d(p, )&, &[) < d(q, 16, &]) +dp.q),

and, consequently, the estimate

e P9I, (£1,6) < dp(&1, &) < e"PVdy(61,6) . =

Proposition 8.15. Let X be an R-tree and let p € X. Let g € Isom(X). The mapping
& g-& is a bilipschitz mapping.

Proof. Exercise. m

Exercises

8.1. Determine the boundary at infinity of the bi-infinite ladder.
8.2. Prove Lemma R.7

8.3. Prove Lemma R0l

8.4. Prove Lemma RI1]

8.5. Prove Proposition [8.12)2).

8.6. Prove Proposition [8.15

8.7. Show that it is not possible to define a Gromov product in the boundary of the
bi-infinite ladder by setting

(p1(0) | pa(0))p = Tim (p1(2) | p2(2))y

for some basepoint p.
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Chapter 9

Topology of the boundary at infinity

In this chapter, we study a compactification of a proper Gromov-hyperbolic space X. The
compactification is constructed using generalized geodesic rays.

9.1 (Generalized rays

Let X be a geodesic metric space and let p € X. For each x € X, there is at least
one geodesic segment with endpoints p and x. In order to consider all these geodesic
segments, along with all the geodesic rays starting at p, as elements of a single topological
space, we introduce the space of generalized rays as a subspace of the topological space
of continuous mappings C([0, oo[, X') with the topology of compact convergenceE]

Let X be a metric space. A mapping w: [0,0] — X is a generalized geodesic ray if w
is a geodesic ray or there is some m > 0 such that wljo,, is a geodesic segmentﬂ and
w(t) = w(m) for all w € [m, oo[.

The space of generalized geodesic rays of X is
g:(X) = {generalized geodesic rays w: [0, — X} < C([0, [, X)
and the space of generalized geodesic rays of X with origin p is
G.(X,p) = {we D (X) 1 w(0) = p} < F,(X).

If 0: [0,b] — X is a geodesic segment, the interpretation of o as a generalized geodesic

~

ray is 04 € ¥, such that &|jy = o and 7. (t) = o(b) for all t > b.

Ifoe %VJF(X) — 9. (X), the endpoint of o is

o(0) = Jim o(t).

%ncluding the case m =0

1See Appendix [B|for the definitions and basic properties of the topological space C([0, o[, X).
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Note that every generalized geodesic ray that is not a geodesic ray is obtained from a
geodesic ray as the interpretation of a geodesic segment.

Lemma 9.1. Let X be a metric space and let p € X. The spaces %:(X) and S%F(X, p)
are closed subsets of C([0,0[, X) for allpe X.

Proof. Let f be a poinf of accumulatio of %VJF(X) Let K < [0,00[ be compact. By
assumption, for each and n € N — {0}, there is an element g, € Bg(f, %) N %(X) By
definition of By (f, %), the restrictions gj|x converge to f uniformly on K. Exercise
implies that f e %(X ).

The other claim is proved in a similar way. O

Theorem 9.2. Let X be a proper metric space and let p € X. The space %:(X,p) i
compact and limit point compact for all p e X.

Proof. Let t € [0,00[. By definition of generalized geodesics, w(t) € B(p,t) for all w €
g:(X ,p). As X is proper and g:(X ,p) is closed, we may apply Corollary él to conclude
that g\;(X ,p) is compact.

Compactness does not imply sequential compactness in general in topological spaces.
However, every infinite subset of a compact space has an accumulation point, and the
argument of the proof of Lemma implies that ¢, (X, p) is limit point compact. ]

9.2 The boundary at infinity and rays with a fixed
origin

The compactness of the space of generalized rays allows us to use sequences of generalized
rays that converge uniformly on compact sets to prove various existence results. We begin
with the observation that in a proper Gromov-hyperbolic space, each asymptoticity class
of geodesic rays can be represented by rays with a prescribed origin.

Proposition 9.3. Let X be a proper Gromov-hyperbolic space and let ¢ € X. For any
peG.X, there is a ray p, € 9+ (X) with p,(0) = q and p,(0) = p(0).

Proof. Let X be d-hyperbolic. Let o,: in/ — X be a geodesic segment with endpoints
q and p(n) for all n € N. The sequence (0,), has a convergent subsequence by Theorem
9.3, The limit is a geodesic ray because d(q, p(n)) — o as n — .

Let us now prove that p,(c0) = p(0). Let [g,p(0)] be a geodesic segment. Let
t > 2(d(p(0),q) + ) = m. The triangle inequality implies that d(p(t),z) > ¢ for all
x € [q,p(0)]. Let s = m. Uniform convergence on compact sets and the Rips condition
on the triangle with sides [g, p(0)], p([0, M]) and o (I5) imply that for some integer
M > s,

d(p(s), pa([0,0])) < d(p(s), (oar), ([0,0])) + 1 <5+ 1.

Thus, the image of p is contained in the closed m + § + 2-neighbourhood of the image of
pq- Similary, the image of p, is contained in a neighbourhood of the image of p. m

2Sometimes these points are called limit points as in [Mun|] or cluster points.
3See Appendix for the definition of By (f, %)
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Figure 9.1 —

Figure 9.2 — The construction of a geodesic ray with prescribed endpoints.

Corollary 9.4. Let X be a proper Gromouv-hyperbolic space and let p € X. The boundary
at infinity 0 X is naturally identified with G, (X, p)/~.

Proof. The construction p — p, for any ray p € gjr(X ) described in Proposition
induces a bijection ¥4, (X)/~— 4, (X,p)/~. O

9.3 Visibility

Eberlein and O’Neill [EQ] introduced the following class of spaces as a generalization of
simply connected negatively curved Riemannian manifolds.

A geodesic metric space X is a wvisibility space if for any two &,&, € 0, X, with £_ # £,
there is a geodesic line g € 4(X) with g(—w) = ¢_ and g(®0) = &,

Example 9.5. (1) Hyperbolic space H" is a visibility space for all n = 2 by Propositions

51 B3 and B
(2) R-trees are visibility spaces by Lemma [8.10]

(3) E™ is not a visibility space when n > 2: If geodesic lines g;, g2 € 4 (E") are parallel,
the lines ¢ — ¢;(—t) and t — go(—t) are parallel. Thus, given & € d,,E™, there is a unique
&' € 0,E™ such that there is a geodesic line with endpoints & and &'.
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In order to prove that proper Gromov-hyperbolic spaces are visibility spaces, we in-
troduce generalized geodesic lines analogously with the generalized geodesic rays defined
in section

Let X be a metric space. A continuous mapping w: R — X is a generalized geodesic line
if w is a geodesic line or there is some closed] interval I « R such that wl; is an isometric
embedding and w is locally constant in the complement of 1.

The space of generalized geodesic lines of X is
Q(X) = {generalized geodesic lines w: E' — X} < C(E', X).

If I is a closed interval and o: I — X is a geodesic segment or a generalized geodesic ray,
let & € & such that &|; = 0 and & is locally constant in R — I.

“not necessarily bounded

Lemma 9.6. Let X be a metric space. The space g(X) s a closed subset of C(El,X).
Proof. Similar to the proof of Theorem [0.1] exercise. O

Theorem 9.7. Let X be a proper metric space and let K < X be compact. The space
{ge 94(X):g(0) e K} is compact.

Proof. Similar to the proof of Theorem [0.2] exercise. O
Theorem 9.8. Proper Gromov-hyperbolic spaces are visibility spaces.

Proof. Let X be a proper §-hyperbolic space. Let p € X and let py, ps € 4, (X, p) with
p1(0) # pa(00). As the rays p; and p, are not asymptotic, there is some 7' > 0 for which
min{d(p:(T), p2(t)) : t = 0} = 0.

Forn e N, let 02: [0,b,] — X be a geodesic segment with endpoints ¢%(0) = p;(n) and

02 (b,) = p2(n). The Rips condition implies that for each n € N such that n > T, there is

some t, € [0,b,] such that p, = 0d2(t,) € B(p:1(T),9).

We reparametrize the geodesic segments 0¥ as the mappings o,,: [~tp, b, — t,] — X,
on(t) = o2(t + t,) for all n > T. Theorem implies that the sequence (0y,) eny has a
convergent subsequence and the limit is a geodesic line g.

By the Rips condition, the Hausdorff distance of o,,(1,,) to p1([0,n[) U p2([0, n[) is at
most 0. Thus, the same holds for the image of g. But this implies that g(—o0) = & and

g(®) = &. O

9.4 (Quasi-isometries and the boundary at infinity

In this section we use quasigeodesic rays that were introduced in section to study
the behaviour of the boundary at infinity under quasi-isometric embeddings and quasi-
isometries. We begin by introducing convenient notation in analogy with that used for
geodesic rays.
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p1(0)

Figure 9.3 — The construction of a geodesic line with prescribed endpoints.

Let X be a metric space. The set of quasigeodesic rays of X is
29, (X) = {quasigeodesic rays p: [0, 0] —> X},
and the set of quasigeodesic rays of X with origin p is
29, (X,p) ={pe 29.(X): p(0) = p}.

Two quasigeodesic rays py, p2 € 4. (X) are asymptotic, p1 ~ po, if the Hausdorff distance
of their images is finite. The equivalence class p(0) of a quasigeodesic ray p is its point
at infinity.

The following result allows us to represent the boundary at infinity using quasirays
instead of geodesic rays.

Proposition 9.9. Let X be a proper Gromov-hyperbolic space and let ¢ € X. For any
pe 29 .(X,q), there is a ray py, € 9. (X, q) such that p(0) = p(c0).

Proof. The existence of p is proved in the same way as Proposition [0.3] Note that
d(p(0), p(t)) — oo as t — o because p is a quasi-isometric embedding. The asymptoticity
follows from Theorem [7.10l O

Note that Proposition [9.9 has no analog in E™, see Exercise [9.5

Corollary 9.10. Let X be a proper Gromouv-hyperbolic space and let p € X. The boundary
at infinity 0 X is naturally identified with 24, (X)/~ and 29, (X,p)/~. O]

Proposition 9.11. Let X and Y be metric spaces. Let p1,ps € 9 (X) and let F: X —
Y be a quasi-isometric embedding. Then pi(0) = po(o0) if and only if F o pi(o0) =
F o py(0).

Proof. Exercise. O]
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Corollary 9.12. Let X be a metric space and let Y be a proper Gromov-hyperbolic space.
A quasi-isometric embedding F': X — Y induces an injective mapping Fp: 0 X — 0Y .
O]

Proposition 9.13. Let X and Y be proper Gromov-hyperbolic spaces and let F: X —
Y be a quasi-isometry. The mapping Fp: 0p X — 0xY,

Foo(p(o0)) = (F o p)(0),
is a bijection.

Proof. Let F: Y — X be a quasi-inverse of F' and let K > 0 such that

d(FoF(z),z) < K and d(FoF(y),y) <K (9.1)

forallz e X and allye Y. If pe 4, (X), then F o Fope 29 (X), and (9.1) implies
that d(F o F o p(t), p(t)) < K for all t € [0,00[. Thus

Fo 0 Fyp(p(0) = F o Fop(w) = p(0).
An analogous argument gives F., o F', = id, so F, is a bijection. O

Example 9.14. The boundary at infinity of the bi-infinite ladder is naturally identified
with d,E! = {—00, 0} because these two spaces are quasi-isometric by Proposition .

9.5 A topology on X U 0,X

In this section, we define a topology in the union of a proper Gromov-hyperbolic space X
and its boundary at infinity, and obtain a geometrically natural compactification of X.

Let X be a metric space and let p € X. The mapping E: E%(X,p) — X U 0pX,
E(p) = p(0), is the endpoint map.

Proposition 9.15. The restriction of the endpoint map E - %VJF(X,p) -9, (X,p) — X is
a quotient map.

Proof. Let A = X be closed. Let g, € E~*(A) such that g, — g as n — . Then
gn(0) € A for all n € N and g(o0) = lim,,_, g, (o0) € A as A is closed. Thus, g € E~1(A),
so I/ is continuous.

Let A < X such that E71(A) is closed. Let a; € A be a sequence that converges in
X. Let g, € E7}(A) such that gi(o0) = ay, for all k € N. This sequence has a convergent
subsequence g,, — g € E~1(A) as k — o by Theorem[9.2] and a,, = gn, (20) — g(0) € A.
Thus, A is closed. n

Let > be the equivalence relation in E%r(X ,p) defined by ¢ > ¢ if and only if g(o0) = ¢'(0).

Corollary 9.16. X is homeomorphic with (%1 (X,p) -9, (X, p))/E
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Proof. The claim follows from Proposition by Proposition [B.7] O

The topology (based at p) of X U 05X is the quotient topology of the topology of compact
convergence on 4, (X, p).

Theorem 9.17. Let X be a proper Gromouv-hyperbolic space. The space X U 05X is
compact and X is open and dense in X U 0, X.

Proof. The quotient map from ¢, (X) to G, (X)/ ~ Is continuous and ¢, (X) is compact by
Theorem [9.2] and the image of a compact space under a continuous mapping is compact.

Corollary implies that X is open in X U 0, X. If £ € 0, X, then £ = p(o0) for
some p € 4, (X, x9). The sequence (p|[r])ren converges to p. O

Example 9.18. The space H" u 0,,H" is homeomorphic to the closed unit ball in E™.
Consider the Poincaré ball model. The image of the neighbourhood B, (p,¢), with
r,e > 0, of geodesic rays p € 4, (H?,0) in H? U d,,H? is the union of the hyperbolic ball
B(p(r),e) and the intersection of a sector with the annulus {z € H? : d(z,0) > r} of the
unit disk as in Figure Clearly, these neighbourhoods and the topology of H? generate
the topology of the closed unit ball.

Figure 9.4 — A neighbourhood of the boundary point 1 € d,,H? consists of the union of
an annular sector and a ball.

Example 9.19. Let X be a regular tree with constant degree 3, and let zy € VX.
We saw in Lemma [8.9] that the boundary at infinity of X is identified with the space of
geodesic rays 4, (X, zg). Let pe 9. (X,x0), re Nand € > 0. As X is a tree,

Bos(p,€) = {p € 9, (X,x0) : d(p(t), p'(t)) < € for all te [0, 7]}
={p'e gjr(X; o) Pl|[07r] = P|[o7r]} )
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See Figure Notice that
Bjos(p,€) N 0 X = B(p(w),e™")

for the metric d,, defined in section [8.3| Thus, we see that the topology defined in this
section agrees with the metric topology in the boundary of X.

Zo

Figure 9.5 — The part of the tree bounded by the blue wedge is By (p, €) for any ray
p €Y. (X, o) that enters the wedge and a small £ > 0.

Exercises

9.1. Let X be a metric space, let m > 0 and let ji: [0,m] — X be geodesic segments.
Assume that the sequence (ji)ren converges uniformly to a mapping j. Prove that j is a
geodesic segment.

9.2. Let X be a metric space and let g, € %\;(X ) for all k € N such that g — ¢ uniformly
on compact sets. Prove that g € 4, (X).

9.3. Prove Lemma [0.6]
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9.4. Prove Theorem 9.7

9.5. Let v: [0,00[ — E? ~(t) = (t,1og(1 +t)) be a parametrization in polar coordinates
(r,0) of the logarithmic spiral. Prove that v is a (v/2,0)-quasigeodesic ray. Is there a
geodesic ray in E? asymptotic to 77

9.6. Prove Proposition [0.11]

“You may assume the result of Lemma
5The length of a path is at least the distance of its endpoints.
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Chapter 10

CAT(—1) spaces

In this chapter, we will begin the study of CAT(k)-spaces that formalize the concept of
metric spaces with curvature bounded above by xk with x € R. We will then study some
basic properties of CAT(0)-spaces that are spaces of non-positive curvature, and later
concentrate on CAT(—1)-spaces as a convenient class of spaces of negative curvature.
If kK < 0, then CAT(k)-spaces are Gromov-hyperbolic spaces, and all the theory from
chapters [6] to [9] is applicable.

10.1 Comparison geometry

If (X,d) is a metric space and k > 0 is a constant, then (X, kd) is a metric space. For
example, (S, kdsn) is isometric with the sphere of radius k. In particular, (S™, kdsn) is not
isometric with S”. Similarly, it can be seen for example by considering the configuration
studied in Exercise and Figure that the spaces (H", kdg») are not isometric for
different parameters k£ > 0. On the other hand the mapping F': (R" | - |) — (R™ k| - ||),
F(x) = ;, is an isometry for any norm || - .

After these observations, the following family of 2-dimensional metric spaces appears
reasonable.

Let k € R. The metric space

$2 = (8, Ldg)  ifr>0
X, =< E? ifk=0.
H2 = (H2, Jlodie) if k<0

K

is the model space of curvature k.

With this definition, the space X is the unique 2-dimensional simply-connected Rie-
mannian manifold of Riemannian curvature . In this course, we do not discuss Rieman-
nian geometry to any depth, and refer to for example [O’N] or [Pet] and [BH, Appendix
of Ch. II.1] for these topics.
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In comparison geometry, metric spaces are compared with the model spaces defined
above using the geometric properties of triangles.

Let (X, d) be metric space and let x,y, z € X be three distinct points. Let x € R. If there
are points x, ¥y, z € X, the triangle with vertices 7,7,z € X is a comparison triangle of
x,y, 2 in X,.

If A is a triangle in X, the comparison triangle of its vertices is the comparison triangle of

A.

Proposition 10.1. Let k € R. Let X be a metric space and let x,y,z € X. The triple
{x,y, 2} has a comparison triangle in X, for k <0.

Proof. As X is a metric space, the side lengths of A(z,y, z) satisfy the assumptions of
Propositions [2.4] and [5.10] O

Comparison triangles exist also in the spherical model spaces X, for x > 0 if the sum
of the pairwise distances of the three points is at most the length of the equator of the
sphere X .. For simplicity, we will restrict to x < 0 although the general case is important
even when the main interest is in negatively curved spaces. See for example [BH|, Chapter
I1.5].

The proof of the following lemma is based on repeated application of the cosine law
in X,. In H2, with the standard notations for triangles as in section [1.5 the cosine law
takes the form

cosh(v/—ke) = cosh(y/—ka) cosh(y/—kb) — sinh(y/—ra) sinh(v/—kb) cos v .

This cosine law follows directly from the hyperbolic cosine law of Proposition [4.10] Recall
that the Euclidean cosine law was proved in Proposition

Lemma 10.2 (Aleksandrov’s lemma). Let k < 0. Let A, B,C, D, A',B'",C", D' € X, such
that B and C' are in different components of the complement of the line through A and
D such that d(A, B) = d(A', B’), d(A,C) = d(A",C") d(B, D) + d(D,C) = d(B',C") and
D' e [B',C"] such that d(B,D) = d(B',D"). Let o, B, v and n = 7 be the interior angles
in the quadrilateral with vertices A, B, C and D, and let o/, ' and v be the interior
angles of the triangle with vertices A', B and C'. Then o > «, § = 5, v = v and
d(A',D") = d(A, D).

Proof. Let A’ be the triangle with vertice A’, B and C’. The triangle inequality implies
that d(B,C) < d(B’,C"). Thus, the cosine law applied to the triangle with vertices A, B
and C' and to A" implies that a < o

Let C' be the unique point on the geodesic line through B and D such that d(B, C)
d(B,D) + d(D,C) and d(D,C) = d(D,C). The angle at D of the triangle with vertices
A, D and 5’, is not greater than the angle at D in the triangle with vertices A, D and C.
Thus, the cosine law implies that

d(A,C) < d(A,C) = d(A', C").

Thus, the cosine law applied to the triangle with vertices A, B and C and to A/ implies
that § < . An analogous argument shows that v < +/.

The cosine law applied to the triangle with vertices A, B and D and to the triangle
with vertices A’, B’ and D’ implies that d(A, D) < d(A', D’). O
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B/

Figure 10.1 — Aleksandrov’s lemma.

Aleksandrov’s lemma is an important technical tool in many proofs in comparison
geometry.

10.2 CAT(r) spaces

Let X be a geodesic metric space and let k < 0. Let j;: I; — X, i € {1,2,3} be geodesic
segments that form a triangle A in X, and let j,: I; — X, be the sides of the comparison
triangle A of A such that j,(0) = 5;(0) for alli € {1,2,3}. Thenp = j,(¢) is the comparison
point of a point p = j;(t) for t € I; and i € {1, 2, 3}.

Most of the time, we suppress the notation of the geodesic segments forming a triangle
using formulations such as

Let p € [Z, 7] be the comparison point of p € [z, y]
meaning that p € [Z,7] is the unique point with d(Z,p) = d(z,p) and d(g,p) = d(y,p).

Here, if X is not uniquely geodesic, the notation [z,y] refers to one of the geodesic
segments connecting = to y.

<
N

Figure 10.2 — A triangle in a metric space and its comparison triangle in X, = E2.
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Let k < 0. A geodesic metric space X is a CAT(/@)-spaceﬂ if for all z,y,2z € X and any
points p € [z, y] and ¢ € [z, z], the comparison points p and ¢ satisfy d(p,q) < d(p,q).

®The letters CAT refer to E. Cartan, A. D. Aleksandrov and V. A. Toponogov who studied similar
conditions for curvature.

It is, in fact, sufficient to check the defining inequality in the case that one of the
points is a vertex of the triangle:

Proposition 10.3. Let X be a geodesic metric space and let k < 0. Then X is a CAT(k)-
space if and only if for all z,y,z € X and p € |y, 2], d(x,p) < d(Z,p).

Proof. Exercise. O

Example 10.4. (1) H" is a CAT(—1)-space.

(2) R-trees are CAT(k)-spaces for all k < 0: Let X be an R-tree and let z,y,2z € X. Let
7,7,z € H? be the vertices of a comparison triangle. Let v: [0,d(y,2)] — X be a the
unique geodesic segment with v(0) = y and vy(d(y, 2)) = 2. If 0 <t < (2] 2),, then

d(y(t),x) = d(y,z) =t < d(7(1),7)

because the distance d(+y(t), x) decreases at maximal speed for any geodesic in any geodesic
metric space. The claim for (z|z), <t < d(y, z) is checked in the same way.

Lemma 10.5. Let k; < ko < 0. Let x1,y1,21 € Xy, and xo,Yy2,20 € X, such that
d(x1,y1) = d(z2,92), d(21,21) = d(22,22) and Ko, (Y1,21) = Koy (Yo, 22). Then d(yi, z1) =
d(y2722>'

Proof. Let us use polar coordinates (r1,6;) centered at z; and (rq, 63) centered at x2. In
polar coordinates, the Riemannian metric of X, has the expression

ds* = dr® + sinh?(v/—xr)d6® = dr® + f(k,r)*d6?,

1
V=K
and if K = 0, we have the Euclidean plane with the Riemannian metric ds? = dr? 4 r2d6?,
and we set f(0,r) =r.

For fixed r > 0, the mapping k — f(k,r) is strictly decreasing. Therefore, the mapping

(r1,01) — (rq,0s) strictly decreases the length of each tangent vector that is not radial.
Thus, d(y1,21) = d(ya, 22). 0

Lemma 10.6. Let k; < ko < 0. Let x1,y1,21 € X,, and To,Yy2,20 € X, such that
d(x1,31) = d(x2,2), d(21,21) = d(22, 22) and d(yy, z1) = d(y2, 22). Then the angles of the
triangle with vertices x1, y1 and z, are not greater than the corresponding angles of the
triangle with vertices xs, Yo and zs.

Proof. This is an immediate consequence of Lemma [10.5 [

Lemma 10.7. Let k1 < ky < 0. Then X, is a CAT(ky)-space.
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Proof. Let x1,y1,21 € Xy, and Xa, Yo, 20 € X, such that d(zy,y1) = d(za,92), d(xy1,2) =
d(xq, z9) and d(y1, 2z1) = d(ye, 22). Let p1 € [y1,21] and let ps be its comparison point in
[y27 22]' .

Let 77,71, z1, p1 € X4, such that the triangles with vertices 77, ¥1, p1 and 7, Z1, p1 are
comparison triangles of the triangles with vertices x,y;, p; and x, 21, p; and the points
77 and Z7 are in different components of the complement of the geodesic line through the
points 77 and py.

Let v and ' be the angles at p; of the triangles with vertices x1, p; and z; and with
vertices x1, p; and y;, respectively. Lemma implies that 7; > v, and 7} > ~1. In
particular, 7, +7, = 7, and we may apply Aleksandrov’s lemmaﬂ to the quadrilateral with
vertices 71, ¥;, p; and Z; and to the triangle with vertices xs, y2 and 25 to conclude that
d(z1,p1) = d(Ty,D;) < d(z2,p2). Thus, X,, is a CAT(ky)-space by Proposition O

21 <2

pl pQ

I 9

1 Y2

Figure 10.3 — The triangles in the proof of Lemma [10.7]

It follows from Lemma that the classes of CAT(k)-spaces are naturally nested in
terms of the real parameter .

Proposition 10.8. If k < k' <0 and X is a CAT(k) space, then X is a CAT(k') space.
Proof. This is a consequence of Lemma [10.7] O

As the metric of X, for x is obtained from that of the hyperbolic plane by multiplying
with the factor \/%77 it is sufficient to concentrate on (locally) CAT(—1) spaces when we
study negatively curved spaces. In many cases, it is sufficient to only assume that the
space is a CAT(0)-space.

ILemma m
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Proposition 10.9. CAT(0)-spaces are uniquely geodesic.

Proof. Let X be a CAT(0)-space and let x,y € X. Let j; and j, be geodesic segments such
that j1(0) = j2(0) = = and ji(d(z,y)) = ja(d(x,y)) = y. Let z = ji(t), 0 < t < d(z,y) be
in the image of j; and consider the triangle A whose vertices are x, y and z and whose
sides are j1[[04], J1|[t,d(y)] and j2. The Euclidean comparison triangle of A is degenerate.
As X is a CAT(—1) space, we get d(j1(t), j2(t)) < |j1(t) — j2(t)| = 0. Thus, j1(t) = ja(t)
for all ¢ € [0,d(x,y)], which implies j; = jo. O

Proposition 10.10. Balls are strictly convex in CAT(0) spaces.
Proof. Exercise. O
Proposition 10.11. CAT(—1)-spaces are log(1 + +/2)-hyperbolic.
Proof. Exercise. m

A metric space X is contractible if there is a continuous mapping F': [0,1] x X — X such
that F(0,) is a constant mapping and F(1,-) is the identity mapping[]

%The identity map is null-homotopic.

Proposition 10.12. CAT(0)-spaces are contractible.

Proof. Let xqg € X. For each x € X, there is a unique geodesic segment g, € %VJF(X , o) with
gz(0) = = because X is uniquely geodesic by Proposition [10.9] Let F': [0,1] x X — X,

F(t,x) = go(t d(zo, ).

For fixed x € X, the mapping t — g,(td(zo,x)) is an affinely reparametrized geodesic
segment. By comparison with a triangle with vertices Ty = 0, 7; and Ty in E2,

A(F (t1, 1), F(t2,72)) = d(ge, (t1 d(20,21)), gay (b2 d(20, 72)))
|
|

< 0T — T < [t — tof[|T0]| + t2] 71 — T
<

t1 — t||Z1] + |71 — T2 = [t1 — ta|d(wo, 21) + d(21, 22)

for all t1,t5 € [0,1] and all x1, 25 € X. Thus, F is continuous. H

Proposition [10.12 implies that the class of CAT(k)-spaces with £ < 0 does not con-
tain all Gromov-hyperbolic spaces because for example the bi-infinite ladder is Gromov-
hyperbolic but not contractible.

Exercises
10.1. Prove Proposition [10.3]
10.2. Prove Proposition [10.10

10.3. Prove Proposition (10.11

10.4. Let X be a CAT(0)-space and let p € X. Let p1,ps € 4, (X,p) be asymptotic
rays. Prove that p; = ps.

December 7, 2020



Chapter 11

The boundary at infinity of a
CAT(—1)-space

In this chapter we study the boundary at infinity of a CAT(—1)-space. In particular, we
define a Gromov product and a metric in the boundary at infinity.

11.1 Some hyperbolic geometry

In this section we prove that triangles with a short side and two long sides have very long

thin parts.
Let L be a geodesic line in H". Lemma [5.20[1) implies that for each p € H", there is
a unique point 7 (p) € L for which d(p, L) = d(p, 7(p)).

Lemma 11.1. Let L be a geodesic line in H". For any p ¢ L, the geodesic arc [p,m(p)]
is orthogonal to L.

Proof. Exercise. m
Let L be a geodesic line in H". The map 7 : H" — L is the closest point map of L.

Proposition 11.2. The closest point map w is 1-Lipschitz. More precisely, for any
p,q € H",
d(r(p), 7(q)) < d(p,q)

with equality only if p,q € L.

Proof. Normalize so that L is the geodesic line with endpoints at 0 and co. For any z € L,
mp(z) = {y e H" : Jy| = |=[}.

Let us minimize the hyperbolic distance between any pair of points =,y € H" such that

mr(x) = mp(p) and 7 (y) = 7.(q). Recall from section [5.3| that

|z — y|\2)

d(z,y) = h(1+
(z,y) = arcosh ( TR
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122 The boundary at infinity of a CAT(—1)-space

The Euclidean distance |z — y| is minimal when = and y are on the same ray from 0 and
the product x,y, is maximal when x and y are on L. O

Lemma 11.3. Let p,q € H" and let pe 4 (H",p). Let € > 0. If

4sinh d(p, q) )
5

max (d(p, q),log <t<T,

then d(p(t),[q, p(T)]) <e.

Proof. Let 0(T') be the angle at p(T') and let ¢(T") be the angle at ¢ in the triangle with
vertices p, ¢ and p(T'). The hyperbolic law of sine{] gives the equation

sin ¢(T") sinh d(p, q)

sin6(T) = sinh T’

Let L be the unique geodesic line that contains the geodesic segment [g, p(7')]. Lemma
implies that d(7r(p(t)), p(T)) < d(p(t), p(T)). Thus 71 (p(t)) is the closest point to
p(t) in the segment [q, p(T)]. Lemma [11.1]implies that the segment [p(t), 7 (p(t))] meets
[¢, p(T')] orthogonally at 7 (p(t)).

The hyperbolic sine law applied to the triangle with vertices p(t), 7 (p(t)) and p(T')
implies

sin ¢(7T") sinh d(p, q) sinh(T" — t) _ sinh d(p, q) sinh(T — t)

~

sinh d(p(t), 7. (p(t))) =

sinh T’ sinh T’
An elementary computation shows that the right side of this inequality is smaller than
e ift > log 4sinhd(p.9) - The claim follows as ¢ < sinht for ¢ > 0. m

€

11.2 Asymptotic rays

In this section we collect some results on asymptotic rays in a CAT(—1). The first one
strengthens the conclusion of Proposition for these spaces.

Proposition 11.4. Let X be a proper CAT(—1)-space and let p e X and £ € 0,X. There
is a unique geodesic ray p € 9. (X,p) with p(owo) = &.

I Proposition m
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Proof. CAT(—1)-spaces are Gromov-hyperbolic by Proposition(10.11] Existence of the ray
follows from Proposition[9.4 As X is a CAT(0)-space by Proposition [10.8] uniqueness of
the ray follows from Exercise [10.4 O]

The estimate of Lemma is very rough and an optimal value is not important for
us. The important content of this result is that the lower bound on ¢ depends only on
d(p,q) and e. This is generalized in the following proposition:

Proposition 11.5. Let X be a CAT(—1)-space. Let p,q € X and let ¢ > 0. There is
some constant M > 0 such that if w e X with d(p,w),d(q,w) = M, x € [p,d(p,w)] with
M < d(p,x) < M, then d(z,[q,w]) < e.

Proof. This follows directly by comparison from Lemma [11.3 O

Proposition 11.6. Let X be a CAT(—1)-space. Let py, ps € G (X) with py(0) = pa(c0).

(1) limyo0 d(p1(t), p2) = 0.
(2) There is some T € R such that limy_,o d(p:1(t), po(T + 1)) = 0.

Proof. When X is proper, the claim follows by modifying the proof of Proposition
where d-hyperbolicity is replaced by the thinness of long triangles given by Proposition
111.5l We leave the general case as an exercise. O

11.3 The Busemann cocycle

In this section, we introduce the Busemann cocycle, and horoballs and horospheres that
are subsets of the CAT(—1)-space defined using the Busemann cocycle. In Example
we find a geometric meaning in terms of horospheres for the spheres tangent to the
boundary at infinity in the upper halfplane model and the Poincaré model of hyperbolic
space.

Let X be a CAT(—1)-space. The Busemann cocycle of X is the map : 0, X x X x X — R
defined by

(& 2,y) = Be(a,y) = lim d(p(t), z) —d(p(t),y) ,

t—+00

where p is any geodesic ray ending at &.
Proposition 11.7. Let X be a CAT(—1)-space. The Busemann cocycle is well-defined.
Proof. Let p e 4. (X). The function
t— fo(t) = dp(t), z) =t = d(p(t),x) = d(p(t), p(0))
is decreasing because if t > s, we have
d(z, p(t)) < d(z, p(s)) + d(p(s), p(t)) = d(z, p(s)) +1 5.

Furthermore,

t =d(p(0),p(t)) < d(p(0), x) + d(z, p(t)),

December 7, 2020



124 The boundary at infinity of a CAT(—1)-space

so that d(z, p(t)) —t = —d(p(0),z) for all t > 0. Thus the limit lim; o, f,(¢) exists. As
B(p(w0),z,y) = f,(t) — fu(t), the limit in the definition of the Busemann cocycle exists
for a fixed p.

Let p1, p2 € 4, (X) such that p(o0) = p/(0). By Proposition [11.6] we have

lim d(pi(t), ) = d(pa(t),y) = Nim d(pa(T +1),x) = d(pa(t +T),y),

t—+00

which shows that the definition of the Busemann cocycle is independent of the ray used
in its definition. O

Example 11.8. (1) Let z = (z,z,),y = (z,
pe G, (H",p), p(t) = (z, z,e’), and let € = oo
give the estimates

€ H™ in the upper halfspace model. Let

)
p(00). Theorem and Proposition

T

t+log ™ = d(p(t), y 7ae’) < d(p(t), y) < d(p(t), (3, 70e")) + d(y, 7ue’,y)

for large t, which implies that
Yn
() = log 2.

n

(2) If X is an R-tree, if p € X is such that [z, &[] n [y, &[] = [p, €], then

Be(z,y) = d(z,p) —d(y.p) . (11.1)

Lemma 11.9. Ifz,y,z€ X, £ € 0,X and let g € Isom(X). Then
(1) |Be(z, y)| < d(z,y).

(2) Bye(g(x), 9(y)) = Pe(,y).

(3) Pe(x,y) + Bely, z) = Pe(x, 2).

Proof. (1) The triangle inequality gives the bounds

—d(z,y) < d(p(t),x) = d(p(t),y) < d(z,y)

for allt = 0.

(2) Exercise.

(3) Trivially, we have the equation d(p(t),z) — d(p(t),y) + d(p(t),y) — d(p(t), z) for all
t = 0. The claim follows by taking the limit { — 0. O]

Let X be a CAT(—1)-space. Let L be a geodesic line in X and let £ € 0,X be one
of its endpoints. The horosphericalf] projection map of L with respect to & is the map-
ping hpe: X — L defined by setting hy¢(p) to be the unique point on L such that

Be(p, hre(p)) = 0.

“When X = H?, this mapping is usually called the horocyclic projection map.

Note that if L = ]¢,n[, the maps hp¢ and hy, are usually not the same mapping. See
figure for an example in the hyperbolic plane.
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Proposition 11.10. Let X be a CAT(—1)-space. Let L be a geodesic line and let £ € 05, X
be one of its endpoints. The horospherical projection hr ¢ is 1-Lipschitz. More precisely,
for any p,q e X,

d(hre(p), hre(g)) < d(p,q)
with equality only if p,q € L.

Proof. Exercise. O

—

(a) (b)

Figure 11.1 — (a) Horocycles centered at 1 € 0,H? in the Poincaré model.
(b) The horocyclic projections with respect to the two endpoints of the geodesic line

L =]-1,1[ are different in H?: hL,l(% = —1) and hL,—l(% =1).

Let X be a CAT(—1)-space. Let £ € 0,X and let x € X. The (closed) horoball centred at
& through x is

A, x) ={y e X : Pe(x,y) = 0},
and

0 (& x) ={y e X : Be(x,y) = 0},
the is the horospherd? centred at & through .

“When X = H?, horospheres are usually called horocycles.

Proposition 11.11. Let X be a CAT(—1)-space.
(1) Horoballs are nonempty closed com)eaﬂ subsets of X.
(2) Let £ € 0, X and let x € X. If g € Isom(X), then g(H (&, x)) = H#(g- &, g(x)).

Proof. (1) Exercise.
(2) This is a direct consequence of Lemma [11.9] O

2In fact, they are strictly convex.
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Example 11.12. Let x = (z,x,) € H" in the upper halfspace model. Example
implies that

H(o,x) ={yeH" 1y, > x,}.

For each x € R"™! x {0} = d,,H", © = T, 0 191(00). The mapping g, = T, o 191
is an isometry of H" and it is a composition of two reflections in hyperplanes and the
inversion ¢p;. Thus, g, maps the horoballs centered at oo to Euclidean balls that are
tangent to d,H" at x. Proposition implies that g, (¢ (0,y)) = #(x,9.(y)). In
the ball model, horoballs are Euclidean balls tangent to d,H" = S*~1.

0.5 1.0 1.5

Figure 11.2 — Horoballs in the upper halfplane model of H?2.

11.4 Gromov product in the boundary at infinity
In section 8.3 we extended the Gromov product of an R-tree to the boundary at infinity
by a limiting construction. This is not possible for Gromov-hyperbolic spaces in general

in such a simple manner, see Exercise (8.7, However, the construction works for CAT(—1)-
spaces as we will now see.

Lemma 11.13. Let X be a proper CAT(—1)-space, let xg € X and let &,& € 0, X . Let
p1, P2 € G (X, x0) with p1(0) =& and pa(0) = &. Let p € 1&1,&|. Then

lim (pu(t) | p2(t)),, = ;(ﬁsl (20, p) + Be, (w0, D)) -
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Proof. Let v € 4(X) such that y(—o0) = & and () = &. Then,

Be, (20, 1) + Bey (20, ) = lim. (d(wo, p1(t)) — d(p1(t),p)) + lim (d(zo, p2(t)) — d(pa(t), D))
= lim (d(zo, p1(t)) + d(zo, p2(t)) — (d(ps(t), ) + d(p2(t), p)))
= lim (d(zo, p1(t)) + d(zo, p2(t)) — d(ps(t), p2(1))) ,

where the final equation follows from Proposition [11.6] O

d
d

+ o+

Let X be a proper CAT(—1) space. The Gromov product of &1,& € 0 X with respect to
ro € X is

(21 €2)z0 = Jim (1 (1) | p2(1))o
where p1, ps € G, (X, z9) with p1(00) = & and pa(0) = &.

As in the case of R-trees, we use the Gromov product at infinity to define a metric:

Let X be a proper CAT(—1) space. The Gromov-Bourdon visual metric of 0, X with
basepoint xg is
e~ (11&)ey i £ # &

dzy (§1,&2) = {0 if & = &.

Let zg, 21,72 € X and let Tg, 71, T3 € H? be the vertices of the comparison triangle of
g, X1, To. Let
2

Lemma 11.14. If X is a CAT(—1) space, xg € X andt > 0, then oy, is a metric in the
sphere 0B(xo,t)

Qo (21, T2) = sin

Proof. The usual formulae of trigonometric and hyperbolic functions give

A5 (T1,T3) _ \/ L — cos £5(T1, 2)

Qo (21, T2) = sin 5 5

_[coshd(zy,x9) — cosh (d(zo, 1) — d(z0, 22))
B 2 sinh d(xg, 1) sinh d(xg, x2) '

Thus, if d(zg, 1) = d(xo, 22) =1,

coshd(xq,x9) — 1
Oéﬂc()(xlwxé) = \/ 2Sinh2t . (112)

As the mapping ¢ — +/cosht — 1 on [0, o[ is increasing and convex and vanishes only at
0, we conclude that a,, is a metric. ]

Lemma 11.15. Let X be a proper CAT(—1) space and let py, ps € 9, (X, x). Then
Hm o, (p1 (), p2(t) = duy (p2(0), pa(0)) -
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Proof. Using equation (|11.2)), we have

lim g, (p1(£), p2(t)) = \/ liy <2241 (1), pa (1))

t—00 2sinh?t

ed(p1(t),p2(t))
lim ————
t—00 @2t

_ o (01(0) [ p2(0))ay =

Proposition 11.16. The Gromov-Bourdon visual metric is a metric.

Proof. The properties of the metric on the expanding spheres are preserved in the limit.
]

Example 11.17. The visual distance do(£1,&2) of two points &,& € 0,,H® = S" ! in
the Poincaré ball model of H" is half the length of the Euclidean segment [, &].

Exercises

11.1. Prove Lemma 111l

11.2. Give a detailed proof of Proposition [11.6[1) for proper CAT(—1)-spaces.
11.3. Give a detailed proof of Proposition [11.6]2) for proper CAT(—1)-spaces.
11.4. Prove Proposition [11.6[ without the assumption that X is proper.

11.5. Let X be a regular tree with constant degree 3, and let zo € VX and let £ € 0, X.
Describe the horoball (£, xy). Draw a picture.

11.6. Prove Lemma[11.9)2).
11.7. Prove Proposition
11.8. Prove Proposition [11.11]1)F]

31t is sufficient to use that X is a CAT(0)-space.
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Appendix B

Complements on topology

B.1 Topology of compact convergence

Let X be a topological space and let Y be a metric space. A sequence (fi)gen of mappings
fr: X =Y converges uniformly on compact sets to a mapping f: X — Y if the sequence
(fr|x )ken converges uniformly for compacts subsets K < X.

Uniform convergence on compact subsets defines a topology on the space of continuous
mappings.

Let X be a topological space and let Y be a metric space. For f € C(X,Y), K c
X compact and € > 0, let

Bi(f.€) = {g € C(X.Y) : maxd(f(z), g(z)) < <).

zeK

The topology generated by
{Bk(f,e): feC(X,Y), K < X compact,e > 0}
is the topology of compact convergence in C(X,Y).

Proposition B.1. Let X be a topological space and let Y be a metric space. A sequence
of functions (fx)ren, fx € C(X,Y) converges uniformly on compact sets if and only if it
converges in the topology of compact convergence.

Proof. Exercise. m

B.2 The theorems of Arzela and Ascoli

Let X be a topological space and let Y be a metric space. A subset # < C(X,Y) is
equicontinuous if for all xq € X for all € > 0 there is an open neighbourhood of x4 such
that d(f(x), f(xo)) < e for all fe 7.
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130 Complements on topology

Example B.2. If (X, dy) and (Y, dy) are metric spaces, the family M-Lipschitz map-
pings

Lipy (X, Y) ={f: X > Y 1 dy(f(z1), f(z2)) < Mdx(x1,22) for all z1,29 € X}

is equicontinuous: the condition dx(z1,72) < 57 implies dy(f(z1), f(22)) < € for all
f € Lipy,(X,Y) and all 1,29 € X.

Theorem B.3 (Arzeld and Ascoli). Let X be a topological space and let' Y be a metric
space. Let # < C(X,Y) be a subset that consists of equicontinuous mappings such that
the sets F, = {f(x) : f € F} have compact closures for all x € X. Then .F is contained
in a compact subset of C(X,Y).

Proof. See [Mun, Thm. 47.1]. O

Corollary B.4 (Arzela and Ascoli). Let X be a topological space and let Y be a metric
space. Let F < C(X,Y) be a closed subset that consists of equicontinuous mappings such
that the sets F, = {f(x) : f € F} have compact closures for all x € X. Then F is
compact. [

Another version of the theorem of Arzeld and Ascoli that one often sees is also useful.

Let (X,dx) and (Y, dy) be metric spaces. A family .# < C(X,Y) is uniformly equicon-
tinuwoud?| if for all € > 0 there is § > 0 such that dy (f(z), f(y)) < ¢ for all f € .# when
dx(z,y) < 9.

“Beware of the terminology: [BH] call this property equicontinuity.

Theorem B.5 (Arzela and Ascoli). Let X be a separable metric space and let Y compact
metric space. Any sequence (fi)ren, of uniformly equicontinuous mappings fr: X — Y
has a subsequence that converges uniformly on compact subsets. The limit mapping is
uniformly continuous.

Proof. See [BH| Lemma 1.3.10]. O

B.3 Quotient mappings

If X is a topological space and ~ is an equivalence relation in X, the quotient set X/~ has
a natural quotient topology, where V' X/ ~ is open if and only if its preimage in X is
open. See for example [Munl, §22].

Let X and Y be topological spaces. A mapping ¢: X — Y is a quotient map if it is a
continuous surjection and ¢~!(U) is open only if U is open.

Lemma B.6. A continuous surjection q: X — Y is a quotient map q~*(F) is closed only
if F'is closed.

Proof. Exercise. O]
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Surjective continuous maps that are open or closed are quotient maps but not all
quotient maps are open or closed mappings.

Proposition B.7. Let X and Y be topological spaces and let q: X — 'Y be a continuous
surjection. Let ~ be the equivalence relation in X defined by setting x ~ ' if and only if
q(z) = q(z'). The spaces Y and X/ ~ are homeomorphic if and only if q is a quotient
map.

Proof. See [Munl, Cor. 22.3] O

Exercises

B.1. Prove Proposition [B.I]
B.2. Prove Lemma [B.6
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Appendix C

Projects

Writing a report on one of the projects below is part of the requirement for passing the
course in addition to getting at least 50% for the exercises. The aim of each project is to
study the material using the given sources, or any other source, and to write a presentation
in a style compatible with this course.

The projects should be completed by the end of January 2021. If you finish earlier,
you can of course return the project earlier and get credit for the course earlier.

It is possible that more options for the projects appear in the last two weeks of the
course.

If you do not have access to the literature indicted in the project descriptions, let me
know. Note that [Mun| is available at the internet library http://archive.org.

C.1 The theorem of Arzela and Ascoli

Study the proof of Theorem for example using [Mun, Thm. 47.1], and write a pre-
sentation where you introduce the required required material etc. You may assume that
Tychonoft’s theorem is known but include its statement in the presentation.

C.2 The 4-point condition
A geodesic metric space X satisfies the 4-point condition with constant § > 0 if

(CC | y)w > min ((5[7 | Z)un (?J ’ Z)w) =9

for all x,y,z,we X.

Theorem C.1. A a geodesic metric space X is Gromouv-hyperbolic if and only if it satisfies
the 4-point condition with some constant 6 > 0.

Study the proof of Theorem from [BS, §2.1] or [BH, p. 410-411].
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C.3 Metrically convex spaces

There are other notions of non-positive curvature than the CAT(0)-condition. A slightly
weaker one is the convexity of the metric.

A geodesic metric space X is metrically conver if for any two affinely reparametrized
geodesic segments ji, jo: [0, 1] — X, the function t — d(ji(¢), j2(t)) is convex.

Introduce the concept of metric convexity and prove that normed spaces and CAT(0)-
spaces are metrically convex. Prove also that metrically convex spaces are contractible.
Material for this project is found at [BH, Prop. I1.2.2] and in Section 8.1 of [Pap|, in
particular, Proposition 8.1.8.
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