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will be written a bit later.
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Notations and conventions

For any mapping f : X Ñ X, the fixed point set of f is

fix f “ tx P X : fpxq “ xu .

If a group G acts on a space X and A is a nonempty subset of X, the stabilizer of A
in G is

StabGA “ tg P G : gA “ Au .

Clearly, stabilisers are subgroups of G.

• N “ t0, 1, 2, . . . u.

• #pAq P NY t8u cardinality of A.

• A´B “ ta P A : a R Bu.

• f |A is the restriction of. mapping f : X Ñ Y to a subset A Ă X, f |Apaq “ fpaq for
all a P A.

• A Ł B means A is a proper subset of B: A Ă B and A ‰ B.

• diagpa1, a2, . . . , anq is the nˆ n-diagonal matrix with a1, a2, . . . , an on the diagonal.

• diagpA1, A2, . . . , Anq is the block diagonal matrix with square matrices A1, A2, . . . , An
on the diagonal.

• In “ diagp1, 1, . . . , 1q.

• tA is the transpose of a matrix A.

• HomeopXq the group of homeomorphisms of a topological space X.

• IsompXq the group of isometries of a metric space X.

• CpX, Y q space of continuous functions from a topological space X to a metric space
Y with the topology of compact convergence.

Definitions are boxed like this and not numbered.

A box like this has some remark or convention that is good to notice!
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Chapter 1

Geodesic metric spaces

In this chapter, we collect background material on metric spaces, in particular on geodesic
spaces. We also introduce some convenient terminology to be used throughout the course.

1.1 Metric spaces
We refer to [Bou1, Bou2, Mun] for the theory of metric (and topological) spaces. In this
section, for the convenience of the reader, we collect some standard definitions, notations
and examples.

Let X ‰ H. A function d : X ˆX Ñ r0,8r is a metric in X if

(1) dpx, xq “ 0 for all x P X and dpx, yq ą 0 if x ‰ y,

(2) dpx, yq “ dpy, xq for all x, y P X, and

(3) dpx, yq ď dpx, zq ` dpz, yq for all x, y, z P X (the triangle inequality).

The pair pX, dq is a metric space.

Example 1.1. (a) Any normed space is a metric space. In particular, the space Rn

with the Euclidean distance is a metric space.
(b) The circle S1 with the distance between two points defined as their angle as vectors
in E2 is a metric space, see Section 3.1 for details and generalisations.
(c) LetX ‰ H. The discrete metric d : XˆX Ñ r0,8r is defined by setting dpx, xq “ 0 for
all x P X and dpx, yq “ 1 for all x, y P X if x ‰ y.

Open and closed balls in a metric space, continuity of maps between metric spaces
and other “metric properties” are defined in the usual manner. In particular, if X is a
metric space, x P X and r ą 0,

Bpx0, rq “ Bdpx0, rq “ tx P X : dpx, x0q ă ru

December 7, 2020 3



4 Geodesic metric spaces

is the open ball of radius r and

Bpx0, rq “ Bdpx0, rq “ tx P X : dpx, x0q ď ru

is the closed ball of radius r.

A metric space is proper if its closed balls are compact.

Euclidean spaces are proper by the theorem of Heine and Borel.

1.2 Isometric embeddings and isometries
If pX1, d1q and pX2, d2q are metric spaces, then a map i : X Ñ Y is an isometric embedding,
if

d2pipxq, ipyqq “ d1px, yq

for all x, y P X1.
A map i : X Ñ Y is a locally isometric embedding if each point x P X has a neighbourhood
U such that the restriction of i to U is an isometric embedding.

Lemma 1.2. (a) Isometric embeddings are continuous injective mappings.
(b) If f : X Ñ Y and g : Y Ñ Z are isometric embeddings, then g ˝ f is an isometric
embedding.
(b) If f : X Ñ Y and g : Y Ñ Z are locally isometric embeddings, then g ˝ f is a locally
isometric embedding.

Proof. Exercise.

If an isometric embedding i : X Ñ Y is a bijection, then it is called an isometry between
X and Y .
An isometry i : X Ñ X is called an isometry of X.

We consider two isometric metric spaces to be two models of the same abstract metric
space. If pX, dq is a metric space, Y is a set and f : Y Ñ X is a bijection, then we get a
metric in Y by setting df py1, y2q “ dpfpy1q, fpy2qq for all y1, y2. Now f : pY, df q Ñ pX, dq
is an isometry and it is natural to think of pY, df q as a model of pX, dq. We will see
concrete examples in Chapter 5 when we consider models of hyperbolic space.

Proposition 1.3. The isometries of a metric space X form a group IsompXq with the
composition of mappings as the group law.

Proof. Exercise.

Let X be a metric space. The stabilizer of a point x P X is

Stabx “ tF P IsomX : F pxq “ xu .

Proposition 1.4. Let X be a metric space and let x P X. Then StabX is a subgroup of
IsomX.
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1.3. Geodesics 5

Proof. Exercise.

Example 1.5. We will see in section 2.3 that the Euclidean group

Epnq “ tx ÞÑ Ax` b : A P Opnq, b P Rn
u

is the group of isometries of the n-dimensional Euclidean space En.1 The stabilizer of
0 P En is Opnq.

If a group G acts on a space X, and x is a point in X, the set

Gpxq “ tgpxq : g P Gu

is the G-orbit of x. The action of a group is said to be transitive if Gpxq “ X for some
(and therefore for any) x P X.

A more elementary way to express this is that a group G acts transitively on X if for
all x, y P X there is some g P G such that gpxq “ y.

1.3 Geodesics
In this section, we give names to a particulary important class of isometric and locally
isometric embeddings and use these objects to define the class of metric spaces that plays
a central role in this course.

Let I Ă R be an interval. A (locally) isometric embedding i : I Ñ X is a (local) geodesic.
More precisely, it is

(1) a (locally) geodesic segment, if I Ă R is a (closed) bounded interval,

(2) a (locally) geodesic ray, if I “ r0,`8r, and

(3) a (locally) geodesic line, if I “ R.

Note that in Riemannian geometry, the definition of a geodesic is different from the
above: If pM, gq is a Riemannian manifold and I is an open interval, a Riemannian
geodesic γ : I Ñ M is a differentiable path whose acceleration is 0. If γ : I Ñ M is a
Riemannian geodesic, then there is some c ą 0 and such that the mapping t ÞÑ gp t

c
q is a

local geodesic according to our definition.

If γ : ra, bs Ñ X is a path, then γ connects the points γpaq to γpbq.
If γ is a geodesic segment that connects x P X to y P X, the points x and y are the
endpoints of γ.

Sometimes it is convenient to use more precise terminology and, for instance, refer to
the endpoint jp0q as the origin of j and to the other endpoint as the terminal point or
the terminus of j.

1See section 2.1.
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6 Geodesic metric spaces

A metric space pX, dq is a geodesic metric space, if for any x, y P X there is a geodesic
segment that connects x to y.

Example 1.6. Any normed space is a geodesic metric space: Let pV, } ¨ }q be a normed
space. For any two distinct points x, y P V , the map

t
j
ÞÑ x` t

y ´ x

}y ´ x}
,

is a geodesic line that passes through the points x and y. Indeed, for any s, t P R, we have

}jptq ´ jpsq} “
›

›

›
x0 ` t

y ´ x

}y ´ x}
´ px0 ` s

y ´ x

}y ´ x}
q

›

›

›
“

›

›

›
pt´ sq

y ´ x

}y ´ x}

›

›

›
“ |t´ s| .

The restriction j|r0,}x´y}s is a geodesic segment that connects x to y.
Example 1.7. It can be shown that hαps, tq “ |s´t|α is a metric in R if 0 ă α ď 1. The
metric space pR, hαq is homeomorphic to R with the usual metric given by the expression
h1 but it is not a geodesic metric space if 0 ă α ă 1.

A metric space pX, dq is uniquely geodesic, if for any x, y P X there is exactly one geodesic
segment that connects x to y.
If X is a uniquely geodesic metric space and x, y P X, x ‰ y, we denote the (image of
the) unique geodesic segment connecting x to y by rx, ys.a

aThis notation is often used even in spaces that are not uniquely geodesic.

Proposition 1.8. Any inner product space is a uniquely geodesic metric space.

Proof. Let V be an inner product space and let x, y P V . We show that j constructed in
Example 1.6 is the only geodesic segment that connects x to y. 2

Let x, y, z P V such that }x ´ z} ` }z ´ y} “ }x ´ y}. We may assume for simplicity
that x “ 0. Squaring, the equation }y ´ z} “ }y} ´ }z}, we get after simplification
py | zq “ }y}}z} and the claim follows from Cauchy’s inequality.

Let X be a uniquely geodesic metric space. A nonempty subset K Ă X is convex if
rx, ys Ă K for all x, y P K.
A convex set K Ă X is strictly convex if rx, ys X BK “ tx, yu for any x, y P K.

Example 1.9. A normed space is uniquely geodesic if and only if its unit ball is strictly
convex. See [BH, Prop. I.1.6]. Thus, for example the normed spaces pR2, } ¨ }pq with

}x}p “
p
a

xp1 ` x
p
2

are uniquely geodesic metric spaces if 1 ă p ă 8.
There are plenty of examples of metric spaces arising from normed spaces that are not

uniquely geodesic. For example, the unit balls of the norms

}x}8 “ maxt|x1|, |x2|u

2up to replacing the interval of definition r0, }x´y}s of the geodesic by ra, a`}x´y}s for some a P R.
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1.4. Metric graphs 7

and
}x}8 “ |x1| ` |x2|

in R2 are not strictly convex.
It is easy to check that, among many others, the mappings j1, j2 : r0, 1s Ñ pR2, d8q

defined by j1ptq “ tp1, 0q and

j2ptq “

#

tp1, 1q, if 0 ď t ď 1
2 ,

pt, 1´ tq, if 1
2 ď t ď 1

are both geodesic segments in pR2, d8q connecting 0 to p1, 0q.

Note that the inverse path of j is a geodesic that connects y to x so even in a uniquely
geodesic space there are two geodesic segments with endpoints x and y if we do not specify
the order of the endpoints.

In certain contexts,3 it is convenient to use mappings that multiply distances with a
fixed constant.

Let X be a metric space, let I Ă R be a compact interval and let K ą 0. A mapping
j : I Ñ X is an affinely reparametrized geodesic if dpjpsq, jptqq “ K |s´ t| for all s, t P I.

1.4 Metric graphs
Metric graphs and, in particular, metric trees are important examples in this course. The
definition, based on see [Ser, Sect. 2.1], is somewhat involved.

Let EX and V X be two nonempty sets and let o, t : EX Ñ V X and ¨ : EX Ñ EX be
mappings that satisfy e ‰ e, e “ e and opeq “ tpeq for all e P EX. The quintuple
X “ pV X, EX, t, o, ¨q is a graph.
The sets EX and V X, called the set of vertices and the set of edges of X.
The elements opeq, tpeq and e are called the initial vertex, the terminal vertex and the
opposite edge of an edge e P EX. The quotient of EX by the equivalence relation induced
by the involution e ÞÑ e is called the set of nonoriented edges of X.
The cardinality of the preimage o´1pvq is the degree deg v of the vertex v P V X. If
deg : XÑ N is a constant mapping, then X is a regular graph.

Note that we make no further assumptions on the cardinalities of the sets of vertices
and edges that the fact that these sets are not empty.

Often, graphs are defined in a different way, taking the set of nonoriented edges to
be a set consisting of pairs of distinct vertices. Furthermore, our construction allows for
loops where opeq “ tpeq for some edge e.

A graph is not a geometrical or topological object but one can associate natural spaces
to it as follows. Recall that an equivalence relation „ is finer than » if x „ y implies
x » y.

3See the proof of Theorem 7.10 and the definition of metric convexity in section C.3.
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8 Geodesic metric spaces

The topological realisation |X| of a graph X is the topological space obtained from the
disjoint union of the family pIeqePEX of closed unit intervals Ie and V X by the finest
equivalence relation that identifies intervals corresponding to an edge and its opposite
edge by the map t ÞÑ 1´ t and identifies 0 P Ie with opeq P V X.

More precisely, let
š

ePEX Ie be the disjoint union of a family pIeqePEX of closed unit
intervals Ie with the topology of the disjoint union.4 Let „ be the equivalence relation in
š

ePEX generated by the identifications pt, eq „ p1 ´ t, ēq for all t P r0, 1s and all e P EX
and p0, eq „ p0, eq if and only if opeq “ ope1q P V X.

A graph is connected if its topological realisation is path connected as a topological space.
A connected graph is a tree if its topological realisation is uniquely arcwise connected.a

aRecall that the image of an injective path defined on a compact interval is an arc. A topological
space X is uniquely arcwise connected if for any two distinct points x, y P X there is a unique arc |γ|
whose endpoints are x and y.

Example 1.10. (1) If V X “ Z, EX “ Zˆt0, 1u, opk, jq “ k` j, tpk, jq “ k` 1´ j and
pk, jq “ pk, 1´ jq, then it is easy to check using Figure 1.1 that the topological realization
of X is homeomorphic to E1. If we replace Z by N in the construction, we obtain a graph
X1 whose geometric realization is homeomorphic to r0,8r.

p2, 1q

´2 ´1´3 1 2 3 40
|X|

p1, 0q

p0, 1q p1, 1q

p1, 0q p2, 0q

Figure 1.1 — E1 as a metric graph

(2) Let A ‰ H be any nonempty set and let V X “ t0u ˆ A and EX “ A ˆ t0, 1u. Let
opa, 0q “ 0 “ tpa, 1q and opa, 1q “ a “ tpa, 0q for all a P A and define pa, kq “ pa, 1 ´ kq
for all a P A. If A is an infinite set, for example A “ S1, the geometric realization of A is
not locally compact at the vertex 0.
(3) Often, we describe a graph more informally, for example by drawing a picture of the
geometric realization or a sufficiently large part of it if the structure repeats itself in a
reasonable manner.

A metric graph pX, λq is a pair consisting of a connected graph X and edge length map
λ : EXÑ s0,`8s such that λpeq “ λpeq.
A simplicial graph X is a metric graph whose edge length map is constant equal to 1.

Let pX, λq be a metric graph and let πX :
š

ePEX Ie Ñ |X| be the canonical projection.
A continuous mapping c : r0, 1s Ñ |X| is a piecewise linear path if there is a subdivision

4This is the finest topology for which all the natural injections Ie ãÑ
š

ePEX Ie are continuous.
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1.4. Metric graphs 9

Figure 1.2 — The topological realization of a graph with two vertices and three undi-
rected edges that has two loops.

Figure 1.3 — Part of the geometric realization of a regular infinite simplicial tree such
that the degree of each vertex is 4. Imagine all the branches extending indefinitely with
the same branching at every vertex.

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1 of r0, 1s, a collection of edges e1, . . . , en P EX and affine
mappings ci : rti´1, tis Ñ Iei such that c|rti´1,tis “ πX ˝ ci. The length of c is

`λpcq “
n
ÿ

i“1
|ciptiq ´ cipti´1q|λpeiq .

If x, y P |X|, let

PLpx, yq “
 

c : r0, 1s Ñ |X| : c piecewise linear, cp0q “ x, cp1q “ y
(

.

Proposition 1.11. Let pX, λq be a metric graph such that any two points in |X| can be
connected by a piecewise linear path and λ has a positive lower bound. The expression

dλpx, yq “ inf
cPPLpx,yq

`λpcq

defines a metric on the topological realization of X.
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10 Geodesic metric spaces

Proof. Exercise.

From now on, we assume that the edge length map of a metric graph has a positive lower
bound.

The above assumption could have been taken to be part of the definition of a metric
tree without restricting the generality of the construction in any essential way even though
it is easy to construct examples of metric trees without such a lower bound where the
above construction yields a metric.

Let pX, λq be a metric graph such that λ has a positive lower bound. The geometric
realisation of pX, λq is the metric space p|X|, dλq.

The metric space X determines pX, λq up to subdivisions of edges, hence we will often
not make a strict distinction between X and pX, λq. In particular, we identify V X with
its image in X and we will refer to convex subsets of pX, λq as convex subsets of X, etc.

A uniquely arcwise connected geodesic metric space is an R-tree.

Example 1.12. (a) For any x, y P R, let

dSNCFpx, yq “

#

}x´ y} if x and y are linearly dependent,
}x} ` }y} otherwise.

The French railroad space pR2, dSNCFq is an R-tree.5

(2) Figure 1.3 shows a simplicial tree.

1.5 Triangles
The definitions of negatively curved spaces in Chapters 6 and 10 are based on the prop-
erties of triangles and we will also treat classical properties of triangles in the Euclidean,
spherical and hyperbolic spaces. A precise definition of this fundamental object is there-
fore in order:

Let X be a metric space. A triangle in X is a triple ∆ “ tj1, j2, j3u of geodesic segments
such that the terminus of ji is the origin of ji`1 with the index i considered cyclically
mod 3.
The geodesic segments j1, j2 and j3 are the sides of ∆.
A triangle ∆ is degenerate if it is contained in the image of one of its sides.
The endpoints of the geodesic arcs j1, j2 and j3 are the vertices of ∆.

A triangle ∆ in a uniquely geodesic metric space is determined by its vertices but in
general,6 one has to specify the sides.

5SNCF=Société nationale des chemins de fer français is the French national railroad company.
6See Example 1.9
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1.5. Triangles 11

If X is a uniquely geodesic metric space and x, y, z P X, then

∆px, y, zq “
 

rx, ys, ry, xs, rz, xs
(

is the triangle with vertices x, y and z.

If X is a geodesic metric space and three points A,B,C P X are the vertices of a triangle,
we denote the lengths of the sides with endpoints A and B, B and C and C and A, in the
corresponding order, by c, a and b. If the angles at the vertices are defined,a the angles
between the sides at the vertices A, B and C be α, β and γ. See Figure 2.1.

afor example in Chapters 2, 3 and 4

Exercises
1.1. Prove Propositions 1.3 and 1.4.
1.2. Fill in the details in Example 1.7.
1.3. Prove Proposition 1.11. Why do we assume that the length function has a positive
lower bound?
1.4. Prove that pR2, dSNCFq is not a proper metric space. Describe the isometry group
of pR2, dSNCFq.
1.5. For any x, y P R2, let

dpx, yq “

#

|x2| ` |x1 ´ y1| ` |y2| , if x1 ‰ y1,
|x2 ´ y2| , if x1 “ y1,

(a) Prove that pR2, dq is an R-tree.
(b) Draw the sphere BBp0, 1q of pR2, dq. Is it compact or connected?

Let ra, bs Ă R be a compact interval. An ordered finite sequence

σ “ pa “ σ0 ă σ1 ă ¨ ¨ ¨ ă σn “ bq

is a partition of ra, bs. Let Pa,b be the set of partitions of ra, bs.

Let X be a metric space and let γ : ra, bs Ñ X be a path. The variation of γ with respect
to a partition σ “ pa “ σ0 ă σ1 ă ¨ ¨ ¨ ă σn “ bq is

V b
a pγ, σq “

n
ÿ

i“1
dpγpσiq, γpσi´1qq .

The length of γ is its total variation

`pγq “ V b
a pγq “ sup

σPPa,b

V b
a pγ, σq .
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12 Geodesic metric spaces

1.6. Let X be a metric space and let γ : r0, bs Ñ X be a geodesic segment.
(a) Compute the length of γ.
(b) Prove that γ is a shortest path from γp0q to γpbq.
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Chapter 2

Euclidean geometry

This chapter collects background information on Euclidean spaces. Most of this should
be known in some form from linear algebra and elementary geometry.

2.1 Euclidean space
As we use various different structures on the space Rn, it is convenient to have a fixed
notation for the situation where we use the standard Euclidean structure. The notation
Rn therefore does not carry the Euclidean structure, it is just the n-fold Cartesian product
of Rn, and we usually consider it with the standard structure of a vector space over R.

Let us denote the Euclidean inner product of Rn by

px | yq “
n
ÿ

i“1
xiyi .

The Euclidean norm }x} “
a

px|xq defines the Euclidean distance dpx, yq “ }x´ y}. The
triple En “ pRn, p¨ | ¨q, } ¨ }q is n-dimensional Euclidean space.

Proposition 2.1. Euclidean space is a uniquely geodesic metric space.

Proof. See Proposition 1.8

2.2 Euclidean triangles
The first two results are classical formulae that connect the side lengths and angles of
triangles in Euclidean space.

Proposition 2.2 (The Euclidean law of cosines). The relation

c2
“ a2

` b2
´ 2ab cos γ

holds for all triangles in En.
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14 Euclidean geometry

A

β

a

γ

α

b

c

B

C

Figure 2.1 — A triangle in Euclidean space.

Proof. The proof is linear algebra:

c2
“ }B ´ A}2 “ }B ´ C ` C ´ A}2 “ b2

` 2pB ´ C |C ´ Aq ` a2

“ b2
` 2pB ´ C |C ´ Aq ` a2

“ b2
´ 2ab cos γ ` a2 .

Proposition 2.3 (The Euclidean law of sines). The relation

a

sinα “
b

sin β “
c

sin γ

holds for all triangles in En.

Proof. Exercise.

The following result will be useful in Chapter 10 when we discuss comparison geometry
and CATp´1q spaces. The content is this: Given any three positive numbers that satisfy
the conditions arising from the triangle inequality to be the sides of a triangle in a geodesic
metric space, there is a triangle in E2 with precisely these side lengths.

Proposition 2.4. Let a, b, c ą 0 and assume that a ` b ě c, a ` c ě b and b ` c ě a.
There is a triangle in E2 with side lengths a, b and c.

Proof. The inequality a` b ě c implies a2`b2´c2

2ab ě ´1 and the inequality a` c ě b implies
a2`b2´c2

2ab ď 1. Thus, we can solve the equation c2 “ a2 ` b2 ´ 2ab cos γ to find γ P r0, πs.
Placing two segments of lengths a and b starting at 0 with the angle γ at the vertex 0
determines a triangle in E2. The Euclidean law of cosines implies that the length of the
third edge is c.

Proposition 2.5. The sum of the angles of a triangle in E2 is π.

Proof. There are many different proofs, here is one that uses complex numbers: Note that

C ´ A

B ´ A
“
›

›

C ´ A

B ´ A

›

› eiα ,
A´B

C ´B
“
›

›

A´B

C ´B

›

› eiβ ,
A´ C

B ´ C
“
›

›

B ´ C

A´ C

›

› eiγ .
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2.3. Isometries of En 15

The product of the left sides of these equations is ´1, and therefore, eipα`β`γq “ ´1.
Thus, α ` β ` γ “ π ` k 2π for some k P Z. As 0 ď α, β, γ ď π and at most one of them
can be π, we get the claim.

2.3 Isometries of En

We will now study the isometries of Euclidean space more closely.

The (Euclidean) orthogonal group of dimension n is

Opnq “ tA P GLnpRq : pAx |Ayq “ px |xq for all x, y P Enu
“ tA P GLnpRq : ATA “ Inu .

Recall the following basic result from linear algebra:

Lemma 2.6. An n ˆ n-matrix A “ pa1, . . . , anq is in Opnq if and only if the vectors
a1, . . . , an form an orthonormal basis of En.

It is easy to check that elements of Opnq give isometries on En for any n P N: Let
A P Opnq and let x, y P En. Now

dpAx,Ayq2 “ pAx´ Ay |Ax´ Ayq “ pApx´ yq |Ap´yqq

“ pATApx´ yq |x´ yq “ px´ y |x´ yq

“ dpx´ yq2 .

For any b P Rn, let tbpxq “ x` b be the translation by b. Again, it is easy to see that
translations are isometries of En. The translation group is

Tpnq “ ttb : b P Rn
u .

Orthogonal maps and translations generate the Euclidean group

Epnq “ tx ÞÑ Ax` b : A P Opnq, b P Rn
u “ T pnqOpnq

which consists of isometries of En.

Proposition 2.7. Epnq acts transitively by isometries on En. In particular, IsompEnq
acts transitively on En.

Proof. The Euclidean group of En contains the group of translations Tpnq as a subgroup.
This subgroup acts transitively because for any x, y P Rn, we have Ty´xpxq “ y.

Next, we want to prove that all isometries of Euclidean space En are elements of the
Euclidean group.

Theorem 2.8. IsompEnq “ Epnq.

The proof of this theorem and the introduction of the tools needed in the proof takes
up the rest of this section.
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16 Euclidean geometry

An affine hyperplane of En is a subset of the form

H “ HpP, uq “ P ` uK ,

where P, u P En and }u} “ 1. The reflection in H is the map

rHpxq “ x´ 2px´ P |uqu .

Lemma 2.9. The definition of rH is independent of the choice of P P H.

Proof. If P,Q P H, then P ´Q P uK. Thus,

x´ 2px´ P |uqu “ x´ 2px´ P |uqu` 2pP ´Q |uqu “ x´ 2px´Q |uqu . (2.1)

Reflections are very useful isometries, the following results give some of their basic
properties.

Proposition 2.10. Let H be an hyperplane in En. Then
(1) rH ˝ rH is the identity.
(2) rH P Epnq. In particular, rH is an isometry, and if 0 P H, then rH P Opnq.
(3) dprHpxq, yq “ dpx, yq for all x P En and all y P H.
(4) The fixed point set of rH is H.

Proof. We will prove (3) and leave the rest as exercises. Let x P En and y P H. We have
rHpxq “ x´ 2px´ y |uqu, which implies

dprHpxq, yq
2
“ prHpxq ´ y | rHpxq ´ yq “ px´ y ´ 2px´ y |uqu |x´ y ´ 2px´ y |uquq
“ px´ y |x´ yq ´ 4px´ y | px´ y |uquq ` 4

`

px´ y |uqu
ˇ

ˇ px´ y |uqu
˘

“ px´ y |x´ yq “ dpx, yq2 .

The bisector of two distinct points p and q in En is the affine hyperplane

bispp, qq “ tx P En : dpx, pq “ dpx, qqu “
p` q

2 ` pp´ qqK.

Lemma 2.11. If p, q P En, p ‰ q, then

bispp, qq “ p` q

2 ` pp´ qqK.

Proof. Exercise.

Proposition 2.12. (1) If rHpxq “ y and x R H, then H “ bispx, yq.
(2) If p, q P En, p ‰ q, then rbispp,qqppq “ q.
(3) Let φ P IsompEnq, φ ‰ id. If a P En, φpaq ‰ a, then the fixed points of φ are contained
in bispa, φpaqq.
(4) Let φ P IsompEnq, φ ‰ id. If H is a hyperplane such that φ|H is the identity, then
φ “ rH .
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2.3. Isometries of En 17

Proof. (1) follows from Proposition 2.10(3).
(2) From the definitions we get

rbispp,qqppq “ p´ 2
`

p´
p` q

2
ˇ

ˇ p´ q
˘ p´ q

}p´ q}2
“ q .

(3) If φpbq “ b, then dpa, bq “ dpφpaq, φpbqq “ dpφpaq, bq, so that b P bispa, φpaqq.
(4) Let a R H be a point that is not fixed by φ. Claim (3) implies that H is contained in
bispa, φpaqq and as the dimensions agree, we have H “ bispa, φpaqq. Thus, by Claim (2),
rHpaq “ φpaq. But this holds for all a R H. As rH |H “ φH “ idH , we have φ “ rH .

The idea of the proof of Theorem 2.8 is to show that each isometry of En is the
composition of reflections in affine hyperplanes. In order to do this, we show that the
isometry group has a stronger transitivity property than what was noted above.

Proposition 2.13. Let p1, p2, . . . , pk, q1, q2, . . . , qk P En be points that satisfy

dppi, pjq “ dpqi, qjq

for all i, j P t1, 2, . . . , ku. Then, there is an isometry φ P Epnq ď IsompEnq such that
φppiq “ qi for all i P t1, 2, . . . , ku. Furthermore, the isometry φ is the composition of at
most k reflections in affine hyperplanes.

φ1pp2q

φ2 ˝ φ1pp3q

p3

q1 “ φ1pp1q

bispp1, q1q

bispφ1pp2q, q2q

p1

p2

q3

q2 “ φ2 ˝ φ1pp2q

φ1pp3q

Figure 2.2 —

Proof. We construct the isometry by induction. If p1 “ q1, let φ1 be the identity, other-
wise, let φ1 be the reflection in the bisector of p1 and q1. Let m ą 1 and assume that there
is an isometry φm such that φmppiq “ qi for all i P t1, 2, . . . ,mu, which is the composition
of at most m reflections. The mapping φ is in Epnq by Proposition 2.10.
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18 Euclidean geometry

Assume that φmppm`1q ‰ qm`1. Now, q1, . . . qm P bispφmppm`1q, qm`1q because for each
1 ď i ď m, we have

dpqi, φmppm`1qq “ dpφmppiq, φmppm`1qq “ dppi, pm`1q “ dpqi, qm`1q .

Thus, the map
φm`1 “ rbispφmppm`1q,qm`1q ˝ φm

satisfies φm`1ppiq “ qi for all 1 ď i ď m` 1.

Corollary 2.14. If T and T 1 are two triangles in En with equal side lengths, then there
is an isometry φ of En such that φpT q “ T 1.

Corollary 2.15. Any isometry of En can be represented as the composition of at most
n` 1 reflections.

Proof. Let φ P IsompEnq. Proposition 2.13 implies that there is an isometry φ0 P Epnq
such that φ0pφpeiqq “ ei for all 1 ď i ď n and φ0pφp0qq “ 0. The set of fixed points of
φ0 ˝ φ contains the points 0, e1, . . . , en. In particular, the fixed point set of φ0 ˝ φ is not
contained in any affine hyperplane. Proposition 2.12(3) implies that φ0 ˝ φ “ id. Thus,
φ “ φ´1

0 .

Proof of Theorem 2.8. The elements of Epnq are isometries by Proposition 2.7. The op-
posite inclusion follows from Corollary 2.15 and Proposition 2.10(2).

Proposition 2.16. The stabiliser in IsompEnq of any point x P En is isomorphic to Opnq.
An isometry F of En fixes b P En if and only if there is an orthogonal linear map F0 such
that F “ Tb ˝ F0 ˝ T

´1
b .

Proof. An element of Epnq fixes the origin if and only if it is an orthogonal linear transfor-
mation. Thus the claim holds for 0. If b P En´t0u and F P Stab b, then T´1

b ˝F ˝Tb P Opnq
and for any A P Opnq, Tb ˝ A ˝ T

´1
b P fix b

Proposition 2.17. For each affine k-plane P , there is an isometry φ P IsompEnq such
that

φpP q “ tx P En : xk`1
“ xk`2

“ ¨ ¨ ¨ “ xn “ 0u .

Each affine k-plane of En is isometric with Ek.

Proof. This is a direct generalisation of Proposition 2.7. The details are left as an exercise.

Exercises
2.1. Prove Proposition 2.3.
2.2. Let x0 P En and let u, v P Sn. Let F : En Ñ En be an isometry.

(1) Show that F ˝ jx0,u and F ˝ jx0,v are geodesic lines.

(2) Show that F ˝ jx0,u and F ˝ jx0,v intersect and that the angle of intersection is the
same as for jx0,u and jx0,v.
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2.3. Isometries of En 19

2.3. Find an isometry F of E2 such that F p0q “ p1, 0q, F p1, 0q “ p1, 1q and F p0, 1q “
p2, 0q.
2.4. Let Hp0, uq be a line in E2 that forms an angle φ

2with the positiv x1-axis. Let ru be
the reflection in Hp0, uq.

(1) Compute the matrix of ru in the standard basis.

(2) Let u1, u2 P S1. Compute the matrix of ru2 ˝ ru1 in the standard basis.

(3) Write the rotation by π
2 as the composition of two reflections.

2.5. Prove the remaining parts of Proposition 2.10.
2.6. Prove Lemma 2.11.
2.7. Prove Proposition 2.17.
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Chapter 3

Spherical geometry

3.1 The sphere
The unit sphere in pn´ 1q-dimensional Euclidean space is

Sn “ tx P En`1 : }x} “ 1u .

Let us show that the angle distance

dSnpx, yq “ arccospx | yq P r0, πs (3.1)

is a metric. In order to do this, we will use the analog of the Euclidean law of cosines,
but first we have to define the objects that are studied in spherical geometry.

Each 2-dimensional linear subspace T Ă Rn`1 intersects Sn in a great circle. If A P
Sn and u P Sn is orthogonal to A (u P AK), then the path jA,u : RÑ Sn,

jA,uptq “ A cos t` u sin t ,

parametrises the great circle xA, uy X Sn, where pA, uq is the linear span of A and u. The
vectors A and u are linearly independent, so xA, uy is a 2- plane.

Lemma 3.1. If dSn is a metric, then jA,u is a locally geodesic line.

Proof. Observe that as A and u are unit vectors such that pA|uq “ 0, we have

pjA,upsq | jA,uptqq “ pA cos s` u sin s |A cos t` u sin tq
“ }A}2 cos s cos t` pcos s sin t` sin s cos tqpA |uq ` sin s sin t}u}2

“ cos s cos t` sin s sin t “ cosps´ tq . (3.2)

Thus,

dpjA,upsq, jA,uptqq “ arccospjA,upsq | jA,uptqq “ arccos cosps´ tq “ |s´ t| ,

which implies that the restriction of jA,u to any segment of length less than π is an
isometric embedding.
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22 Spherical geometry

Note that the computation (3.2) applied with s “ t implies that the image of the
mapping jA,u is contained in S1.

If A,B P Sn such that B ‰ ˘A, then there is a unique plane that contains both points.
Thus, there is unique great circle that contains A and B, in the remaining cases, there
are infinitely many such planes. The great circle is parametrised by the map jA,u, with

u “
B ´ pB |AqA

}B ´ pB |AqA}
“

B ´ pA |BqA
a

1´ pA |Bq2
. (3.3)

Now jp0q “ A and jpdpA,Bqq “ B.
If B “ ´A, then there are infinitely many great circles through A and B: the map

jA,u parametrises a great circle through A and B for any u P AK.
We call the restriction of any jA,u as above to any compact interval r0, ss a spherical

segment, and u is called the direction of jA,u. Once we have proved that d is a metric, it
is immediate that a spherical segment is a geodesic segment.

Our proof showing that the expression (3.1) defines a metric is based on the spherical
law of cosines.

A triangle in Sn is defined as in the Euclidean case but now the sides of the triangle
are the spherical segments connecting the vertices.

A

C

a

b

c

α

β

B

γ

Figure 3.1 — A triangle in S2.

Let jC,upr0, dpC,Aqsq be the side between C and A, and let jC,vpr0, dpC,Bqsqv be the
side between C and B. The angle between the sides jC,upr0, dpC,Aqsq and jC,vpr0, dpC,Bqsq
is arccospu | vq, which is the angle at A between the segments jC,upr0, dpC,Aqsq and
jC,vpr0, dpC,Bqsq in the ambient space En`1.

Now we can state and prove
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Proposition 3.2 (The spherical law of cosines). In spherical geometry, the relation

cos c “ cos a cos b` sin a sin b cos γ

holds for any triangle.

Proof. Let u and v be the initial tangent vectors of the spherical segments jC,u from C to
A and jC,v from C to B. As u and v are orthogonal to C, we have

cos c “ pA |Bq “ pcospbqC ` sinpbqu | cospaqC ` sinpaqvq
“ cospaq cospbq ` sinpbq sinpaqpu | vq .

Proposition 3.3. The angle distance is a metric on Sn.

Proof. Clearly, the triangle inequality is the only property that needs to be checked to
show that the angle metric is a metric. Let A,B,C P Sn be three distinct points and use
the notation introduced above for triangles. The function

γ ÞÑ fpγq “ cospaq cospbq ` sinpaq sinpbq cospγq

is strictly decreasing on the interval r0, πs, and

fpπq “ cospaq cospbq ´ sinpbq sinpaq “ cospa` bq .

Thus, the law of cosines implies that for all γ P r0, πs, we have

cospcq “ cospaq cospbq ` sinpaq sinpbq cospγq ě cospa` bq, (3.4)

which implies c ď a` b. Thus, the angle distance is a metric.

Note that the inequality (3.4) is strict unless γ “ π. This also implies that for triangles
that are not completely contained in a great circle,

c ă a` b ă 2π ´ c . (3.5)

We return to this observation in Section 3.4.

Theorem 3.4. pSn, dSnq is a geodesic metric space. If dSnpA,Bq ă π, then there is a
unique geodesic segment from A to B.

Proof. If x, y P S with y ‰ ˘x, then, by Lemma 3.1, the spherical segment with direction
given by the equation (3.3) is a geodesic segment that connects x to y. If the points x and
y are antipodal, then it is immediate from the expression of the spherical segment that
jx,upπq “ ´x. Thus, in this case there are infinitely many geodesic segments connecting
x to y.

If j is a geodesic segment connecting A to B, then any C in jpr0, dpA,Bqsq satisfies

dSnpA,Cq ` dSnpC,Bq “ dSnpA,Bq

by definition of a geodesic segment. In the proof of Proposition 3.3, we saw that equality
holds in the triangle inequality if and only if γ “ π. In this case, all the points A, B and
C lie on the same great circle and C is contained in the side connecting A to B. Thus, the
spherical segments are the only geodesic segments connecting A and B. If A ‰ ˘B, then
there is exactly one 2-plane containing both points. This proves the second claim.

Note that the sphere has no geodesic lines or rays because the diameter of the sphere
is π.
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3.2 More on cosine and sine laws
The law of cosines implies that a triangle in En or Sn is uniquely determined up to an
isometry of the space, if the lengths of the three sides are known. In Euclidean space the
angles are given by

cos γ “ a2 ` b2 ´ c2

2ab
and the corresponding equations for α and β obtained by permuting the sides and angles,
and in the sphere we have

cos γ “ cos c´ cos a cos b
sin a sin b .

In Euclidean space, the three angles of a triangle do not determine the triangle uniquely
but in Sn the angles determine a triangle uniquely. This is the content of

Proposition 3.5 (The second spherical law of cosines). In spherical geometry, the relation

cos c “ cosα cos β ` cos γ
sinα sin β

holds for any triangle.

Proof. This formula follows from the first law of cosines by manipulation. The first law
of cosines implies

sin2 γ “ 1´ cos2 γ “
1` 2 cos a cos b cos c´ pcos2` cos2 b` cos2 cq

sin2 a sin2 b
“

D

sin2 a sin2 b
,

and D is symmetric in a, b and c. Thus, using the law of cosines, we get

cosα cos β ` cos γ
sinα sin β “

cos a´ cos b cos c
sin b sin c

cos b´ cos a cos c
sin a sin c `

cos c´ cos a cos b
sin a sin b

D

sin a sin b sin2 c

“ cos c .

Spherical geometry even has its own sine law

Proposition 3.6 (The spherical law of sines). In spherical geometry, the relation

sin a
sinα “

sin b
sin β “

sin c
sin γ

holds for any triangle.

Proof. In the proof of the second law of cosines we saw that he first law of cosines implies
that

ˆ

sin c
sin γ

˙2

“
sin2 a sin2 b sin2 c

D
.

The claim follows because this expression is symmetric in a, b and c.
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3.3 Isometries of Sn

Proposition 3.7. The orthogonal group Opn ` 1q acts transitively by isometries on Sn.
In particular, IsompSnq acts transitively on Sn.

Proof. Let A P Opn ` 1q and let x P En`1. By definition of orthogonal matrices, we
have }Ax}2 “ pAx |Axq “ }x}2. Thus, A defines a bijection of the sphere Sn to itself.
Furthermore, for any x, y P Sn`1, again by the definition of orthogonal matrices,

cosh dSnpAx,Ayq “ pAx |Ayq “ px | yq “ cosh dSnpx, yq ,

which implies that the above mapping is an isometry.
Transitivity follows from the fact that any element of Sn can be taken as the first

element of an orthogonal basis of En or, equivalently, as the first column of an orthogonal
matrix.

Theorem 3.8. IsompSnq “ Opn` 1q

Proof. The claim follows from Proposition 3.7 and Corollary 3.13 and Proposition 3.9
below in the same way as its Euclidean analog, Theorem 2.8, was proven.

Let H0 be a linear hyperplane in En. The intersection H “ H0 X Sn is a hyperplane of
Sn.
The reflection rH in H is the restriction of the reflection in H0 to the sphere: rH “ rH0 |Sn .

Note that each hyperplane of Sn is isometric with Sn´1 and that, by Propositions
2.10(2) and 3.7, the image of rH0 |Sn is contained in Sn.

Proposition 3.9. Let H be an hyperplane in Sn. Then
(1) rH ˝ rH is the identity.
(2) rH P Opn` 1q. In particular, rH is an isometry.
(3) dprHpxq, yq “ dpx, yq for all x P Sn and all y P H.
(4) The fixed point set of rH is H.

Proof. (1), (2) and (4) are direct consequences of Proposition 2.10. We leave (3) as an
exercise.

The bisector of two distinct points p, q P Sn is

bispp, qq “ tx P Sn : dSnpx, pq “ dSnpx, qqu .

Lemma 3.10. Let p, q P Sn, p ‰ q. Then bispp, qq “ pp ´ qqK X Sn. In particular, the
bisector is a hyperplane, it is the intersection of the Euclidean bisector of p and p with
the Sn.

Proof. The points p, q, x P Sn satisfy dSnpx, pq “ dSnpx, qq if and only if pp |xq “ pq |xq,
which is equivalent with pp´ q |xq “ 0.
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Proposition 3.11. Let x, y P Sn and let H be a hyperplane of Sn.
(1) If rHpxq “ y and x R H, then H “ bispx, yq.
(2) If p, q P Sn, p ‰ q, then rbispp,qqppq “ q.
(3) Let φ P IsompSnq, φ ‰ id. If a P Sn, φpaq ‰ a, then the fixed points of φ are contained
in bispa, φpaqq.
(4) Let φ P IsompSnq, φ ‰ id. If H is a hyperplane such that φ|H is the identity, then
φ “ rH .

Proof. (1) follows from Proposition 3.9(3).
(2) Using the definitions and the fact that p`q

2 is in the Euclidean bisector of p and q, we
get

rbispp,qqppq “ p´ 2
`

p´
p` q

2
ˇ

ˇ p´ q
˘ p´ q

}p´ q}2
“ q .

The proofs of (3) and (4) are formally the same as in the Euclidean case.

We leave it as an exercise to check that the following result is proved in the same way
as their Euclidean counterparts.

Proposition 3.12. Let p1, p2, . . . , pk, q1, q2, . . . , qk P Sn be points that satisfy

dppi, pjq “ dpqi, qjq

for all i, j P t1, 2, . . . , ku. Then, there is an isometry φ P IsompSnq such that φppiq “ qi
for all i P t1, 2, . . . , ku.

Corollary 3.13. Any isometry of Sn can be represented as the composition of at most
n` 1 reflections.

Proposition 3.14. The stabilizer in IsompSnq of any point x P Sn is isomorphic to Opnq.

Proof. The north pole en`1 is stabilized by the subgroup of Opnq that consists of block
diagonal matrices diagpA, 1q, where A P Opnq. Proposition 3.7 implies the claim as in the
Euclidean case, see Proposition 2.16.

The proof of the following result is similar to that of its Euclidean analog, Proposition
2.17.

Proposition 3.15. Each k-plane of Sn is isometric with Sk. For each k-plane P , there
is an isometry φ P IsompSnq such that

φpP q “ tx P Sn : xk`2
“ xk`3

“ ¨ ¨ ¨ “ xn`1
“ 0u . ˝

3.4 Triangles in the sphere
In this section, we prove among other results that the sum of the angles of a nondegenerate
triangle in S2 is greater than π. In order to do this, we introduce the polar triangle of a
spherical triangle.
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Let A,B,C P S2 be points that do not all lie on the same great circle, and let ∆ be the
triangle with vertices A, B and C. The polar points A˚, B˚, C˚ P S2 of A, B and C are
the unique points that satisfy the conditions

pA˚ |Bq “0 “ pA˚ |Cq, pA˚ |Aq ą 0
pB˚ |Cq “0 “ pB˚ |Aq, pB˚ |Bq ą 0 (3.6)
pC˚ |Aq “0 “ pC˚ |Bq, pC˚ |Cq ą 0 .

The triangle ∆˚ with vertices A˚, B˚ and C˚ is the polar triangle of ∆. Let a˚, b˚ and
c˚ be the side lengths and let α˚, β˚ and γ˚ be the angles of pABCq˚.

Geometrically, for each vertex of the triangle, the dual vertex is the intersection point
of the line orhogonal to the plane that contains the other two vertices, on the same side
of the plane as the original vertex.

Lemma 3.16. The polar points of the vertices of a nondegenerate triangle ∆ in S2 are
linearly independent and p∆˚q˚ “ ∆.

Proof. Exercise.

Proposition 3.17. Let ABC be a triangle in S2 such that the vertices do not all lie on
the same great circle. Then

a` α˚ “ b` β˚ “ c` γ˚ “ a˚ ` α “ b˚ ` β “ c˚ ` γ “ π .

Proof. The situation is completely symmetric so it suffices to prove a ` α˚ “ π. Let
u, v P AK “ xB˚, C˚y be the directions of the edges AB and AC, respectively. Recall that
pu | vq “ cosα and pB˚ |C˚q “ cos a˚.

Now, u P xA,By implies that pu |C˚q “ 0 and similarly we have pv |B˚q “ 0. Further-
more,

pu |B˚q “
´ B ´ pB |AqA

}B ´ pB |AqA}

ˇ

ˇB˚
¯

“
pB |B˚q

}B ´ pB |AqA}
ą 0

and similarly pv |C˚q ą 0. Thus, we have either the points u, B˚, C˚ and v on the circle
xB˚, C˚y in this order or in the order B˚, u, v and C˚ with the right angles between u
and C˚ and v and B˚ overlapping in both cases. The claim follows easily.

Lemma 3.18. The perimeter of a spherical triangle is at most 2π. If the perimeter is
2π, then the vertices are all contained in the same great circle.

Proof. This follows from the inequality (3.5) and the fact that this inequality is an equality
if and only if γ “ π.

Proposition 3.19. The sum of the angles of a nondegenerate triangle in S2 is greater
than π.

Proof. Proposition 3.17 implies that α` β ` γ ` a˚ ` b˚ ` c˚ “ 3π. As a˚ ` b˚ ` c˚ ă 2π
by Lemma 3.18, we get the claim of Proposition 3.19.

The following is the spherical analog of Proposition 2.4.
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B˚

A “ A˚

C˚

a

b

c

α

β

B

γ

C

Figure 3.2 — If A is the north pole and B and C are on the equator, then A “ A˚.

Proposition 3.20. Let 0 ă a, b, c ă π. If a`b ą c, b`c ą a, c`a ą b and a`b`c ă 2π,
then there is a triangle in S2 with side lengths a, b and c. All such triangles are isometric.

Proof. We use the law of cosines in the construction: Note that if such a triangle exists,
then the angle at C satisfies the cosine law. Therefore, we can compute it if we know that

ˇ

ˇ

ˇ

cos c´ cos a cos b
sin a sin b

ˇ

ˇ

ˇ
ă 1 , (3.7)

because then cos c´cos a cos b
sin a sin b is in the range of cos, and we can proceed with the construction.

The pair of inequalities c ă a` b ă 2π ´ c implies

cos c ą cospa` bq “ cos a cos b´ sin a sin b .

The inequalities b` c ą a and c` a ą b give |a´ b| ă c, which implies

cos c ă cospa´ bq “ cos a cos b` sin a sin b .

These two inequalities give

´ sin a sin b ă cos c´ cos a cos b ă sin a sin b ,

which implies the inequality (3.7). Now we can place the sides of length a and b starting
at C in the correct angle γ. The cosine law implies that the lengths of the side opposite
to C is indeed c.

The triangles are isometric by Proposition 3.12
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3.5. Some elementary Riemannian geometry on S2. 29

3.5 Some elementary Riemannian geometry on S2.

Let x P S2. The latitude of x is

θpxq “
π

2 ´ dS
2px, e3q “

π

2 ´ arccospx | e3q “
π

2 ´ arccospx3q P r´
π

2 ,
π

2 s,

which is the oriented angle of x from the equator tx P S2 : x3 “ 0u. The longitude of
x P S2 ´ t˘e3u is

φpxq “ signpx2q arccos
´

px1, x2, 0q | e1q

}px1, x2, 0q}

¯

“ signpx2q arccos
´ x1
a

x2
1 ` x

2
2

¯

P s´π, πs ,

where signptq “ t
|t|

for nonzero t and we set signp0q “ 1.

The longitude is the oriented angle between x and the geodesic segment from the north
pole e3 to the south pole ´e3, called the 0-meridian.1 Here we have chosen the value π
for the longitude on the international date line which is the geodesic segment between
the poles that passes through ´e1. More generally, the geodesic line between the poles
determined by an equation φ “ c is a meridian and the circle determined by an equation
θ “ c is a parallel.

The longitude and latitude of a point define a bijection L : S2 ´ t˘e3u Ñ s´π, πs ˆ
sπ2 ,

π
2 r,

Lpxq “ pφpxq, θpxqq .

The inverse of this map is given by

L´1
pφ, θq “ pcosφ cos θ, sinφ cos θ, sin θq .

This map is good close to the equator but distances, areas and angles are badly distorted
close to the poles.

Let a P R´ t0u and consider the projection plane Pa “ tx P E3 : x3 “ au. For any x P S2,
let Sa0 : S2 Ñ Pa be the map

Sa0 pxq “ p1´ aq
x´ e3

1´ x3
` e3

that associates to x the unique point on Pa that lies on the affine line through e3 and x.
The stereographic projection Sa : S2 ´ te3u Ñ E2 is pr3 ˝S

a
0 , where pr3pyq “ py1, y2q is the

orthogonal projection of E3 to E2 identified with the hyperplane E2ˆt0u. More explicitly,

Sapxq “ p1´ aq
` x1

1´ x3
,

x2

1´ x3

˘

.

Most often, one uses a “ 0, which is the case where the projection plane passes through
the origin, or a “ ´1, which is the case where the projection plane is tangent to the
sphere at the south pole.

1the Greenwich meridian if we consider the Earth
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Length and area
The (differential geometric) length of a piecewise continuously differentiable path τ : I Ñ
S2 is

`pτq “

ż

I

} 9τ} ,

where 9τptq is the tangent (derivative) vector of the path for each t P I.

Proposition 3.21. Let A,B P S2, A ‰ B. Let j be a spherical segment that connects A
and B. Then `pjq ď `pτq for all piecewise continuously differentiable paths τ .

Proof. Using an isometry of S2, we can assume that A and B are contained in the 0-
meridian. Using longitude-latitude coordinates, consider the continuous map proj de-
fined by projpφ, θq “ p0, θq whose image is contained in the 0-meridian. Clearly, `pjq ď
`pproj ˝τq ď `pτq.

In the computation of the length of a path τ , the norm of the tangent vector 9τptq is
computed in the tangent plane τptqK at τptq. Using the coordinate maps, we get

The inner product of the tangent spaces can be used to define the area of a subset of
the sphere. This gives the expressions

AreaA “
ż

LpAq

cos θdθdφ

in the longitude-latitude coordinates and

AreaA “
ż

S0pAq

4 dx1dx2

p1` }x}2q2

in the coordinates given by the stereographic projection.

Proposition 3.22. The area of S2 is 4π.

Let 0 ă α ă π. The area of the (spherical) sector Sα “ tx P S2 : 0 ď φpxq ď αu and
any of its isometric images is easily seen to be α

2π4π “ 2α.

Proposition 3.23 (Girard). The area of a triangle with angles α, β and γ is α`β`γ´π.

Proof. Let A, B and C be the vertices of the triangle. The antipodal points ´A, ´B
and ´C determine a triangle p´Aqp´Bqp´Cq that is isomorphic with ABC. The three
great circles xA,By X S2, xB,Cy X S2 and xC,Ay X S2 determine six sectors with angles
α, α, β, β, γ, γ that cover the sphere. In the complement of the great circles, the triangles
ABC and p´Aqp´Bqp´Cq are both covered by three sectors, other points are contained
in one sector. Thus,

4π “ Area S2
“ 2pAreaSα ` AreaSβ ` AreaSγq ´ 4 AreaABC “ 4α ´ 4 AreaABC ,

which gives the claim.
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Exercises
3.1. Prove Proposition 3.9(3).
3.2. Let H be a hyperplane in Sn. Prove that dprHpxq, yq “ dpx, yq for all x P Sn and
y P H.
3.3. Let φ P IsompSnq ´ tidu. Let H be a hyperplane such that φ|H “ id |H . Prove that
φ “ rH .
3.4. Prove Corollary 3.12 for n “ 2.
3.5. Prove Corollary 3.13.
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Chapter 4

Hyperbolic space

In this chapter, we define hyperbolic space as a submanifold of Minkowski space with a
metric that is analogous with the angle metric on the sphere. We will show that hyperbolic
space is a uniquely geodesic metric space and that the ortogonal group of the Minkowski
bilinear form is the group of isometries of hyperbolic space.

4.1 Minkowski space
Let V and W be real vector spaces. A map Φ: V ˆW Ñ R is a bilinear form, if the maps
v ÞÑ Φpv, w0q and v ÞÑ Φpv0, wq are linear for all w0 P W and all v0 P V .
A bilinear form Φ is nondegenerate if

• Φpx, yq “ 0 for all y P W only if x “ 0, and

• Φpx, yq “ 0 for all x P V only if y “ 0.

If W “ V , then Φ is symmetric if Φpx, yq “ Φpy, xq for all x, y P V . It is

• positive semidefinite if Φpx, xq ě 0 for all x P V ,

• positive definite if Φpx, xq ą 0 for all x P V ´ t0u,

• negative (semi)definite if ´Φ is positive (semi)definite, and

• indefinite otherwise.

The quadratic form corresponding to a bilinear form Φ: V ˆ V Ñ R is the function
q : V Ñ R, qpxq “ Φpx, xq.

A positive definite symmetric bilinear form is often called an inner product or a scalar
product.

If V is a vector space with a symmetric bilinear form Φ, we say that two vectors
u, v P V are orthogonal if Φpu, vq “ 0, and this is denoted as usual by u K v. The
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orthogonal complement of u P V is

uK “ tv P V : u K vu.

Let us consider the indefinite nondegenerate symmetric bilinear form x¨ | ¨y on Rn`1

given by

xx | yy “ ´x0y0 `

n
ÿ

i“1
xiyi “ ´x0y0 ` px̄ | ȳq “ xTJy,

where
J “ J1,n “ diagp´1, 1, . . . , 1q

and x “ px0, x1, . . . , xnq “ px0, x̄q.

We call x¨ | ¨y the Minkowski bilinear form, and the pair

M1,n
“
`

Rn`1, x¨ | ¨y
˘

is the n` 1-dimensional Minkowski space.
A vector x PM1,n is

• lightlike or a null-vector if xx |xy “ 0,

• timelike if xx |xy ă 0, and

• spacelike if xx |xy ą 0.

The names for the three different types of vectors in Minkowski space come from
Einstein’s special theory of relativity, which lives in M1,3. Minkowski space has a number
of geometrically significant subsets:

The subset of null-vectors is the light cone

L n
“ tx PM1,n : xx |xy “ 0u .

The smooth submanifold

L n
´ “ tx PM1,n : xx |xy “ ´1u

is a two-sheeted hyperboloid, and its upper sheet is

Hn
“ tx PM1,n : xx |xy “ ´1, x0 ą 0u.

The smooth submanifold
L n
` “ tx PM1,n : xx |xy “ 1u

is a one-sheeted hyperboloid.
The following is an important observation on time-like vectors.

Lemma 4.1. If u, v P Hn, then xu | vy ď ´1 with equality only if u “ v.
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Figure 4.1 — The upper sheet of the two-sheeted hyperboloid with the lightcone and
the one-sheeted hyperboloid.

Proof. Using the Cauchy inequality for the Euclidean inner product in Rn for the first
inequality and a simple calculation1 for the second, we have

xu | vy “ ´u0v0 `

n
ÿ

i“1
uivi ď ´u0v0 `

d

n
ÿ

i“1
u2
i

d

n
ÿ

i“1
v2
i

“ ´u0v0 `
a

u2
0 ´ 1

a

v2
0 ´ 1 ď ´1 .

Cauchy’s inequality is an equality if and only if u and v are parallel, and the final inequality
is an equality if and only if u0 “ v0. This implies the claim on equality.

4.2 The orthogonal group of Minkowski space
The orthogonal group of the Minkowski bilinear form is

Op1, nq “ tA P GLn`1pRq : xAx |Ayy “ xx | yy for all x, y PM1,n
u

“ tA P GLn`1pRq : TAJ1,nA “ J1,nu .

Clearly, the linear action of Op1, nq on M1,n preserves the light cone and the two-
sheeted hyperboloid L n.

1Manipulate the given inequality to remove the square roots etc.
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Let A “ pa0, a1, . . . , anq be an pn`1qˆpn`1q-matrix A in terms of its column vectors
a0, a1, . . . , an P Rn`1. If A P Op1, nq, then a0 “ Ape0q for e0 “ p1, 0, . . . , 0q P Hn. Thus
Ape0q P Hn if and only if A00 ą 0, and therefore the stabiliser in Op1, nq of the upper
sheet Hn is

O`
p1, nq “ tA P Op1, nq : AHn

“ Hn
u

“ tA P GLn`1pRq : A00 ą 0, xAx |Ayy “ xx | yy for all x, y PM1,n
u (4.1)

“ tA P GLn`1pRq : A00 ą 0, TAJ1,nA “ J1,nu .

Let us check that the second of the three equalities in (4.1) holds: Let A P GLn`1pRq
with A00 ą 0 and xAx |Ayy “ xx | yy for all x, y PM1,n. The first and third properties are
equivalent with A P Op1, nq so it remains to check that AHn “ Hn. We know that the
Ae0 P Hn. Linear automorphisms of En`1 are continuous mappings and the image of a
connected set under a continuous map is connected, so Hn is mapped into Hn. Similarly,
the lower half of the hyperboloid L n is mapped into itself. Furthermore, the elements of
GLn`1pRq are linear bijections, so the restriction to Hn is a bijection of Hn.

A basis tv0, v1, . . . , vnu of M1,n is orthonormal if the basis elements are pairwise orthogonal
and if xv0 | v0y “ ´1 and xvi | viy “ 1 for all i P t1, 2, . . . , nu.

The following observation is proved in the same way as its Euclidean analog:

Lemma 4.2. An pn` 1q ˆ pn` 1q-matrix A “ pa0, a1, . . . , anq is in Op1, nq if and only if
the vectors a0, a1, . . . , an form an orthonormal basis of M1,n. Furthermore, A P O`

p1, nq
if and only if A P Op1, nq and a0 P Hn.

Proof. Exercise.

Example 4.3. (1) Let t P R. The matrix

Lt “

¨

˝

cosh t sinh t 0
sinh t cosh t 0

0 0 1

˛

‚P O`
p1, 2q

stabilizes any affine hyperplane

Hc “ tx PM1,2 : x2 “ cu .

In particular, the path t ÞÑ Lte0 “ pcosh t, sinh t, 0q parametrizes the hyperbola

tx P H2 : x2 “ 0u “ H2
X tx PM1,2 : x2 “ 0u .

(2) For any θ P R, let pRθ “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

P Op2q, and let

Rθ “ diagp1, pRθq “

ˆ

1 0
0 pRpθq

˙

“

¨

˝

1 0 0
0 cos θ ´ sin θ
0 sin θ cos θ

˛

‚P O`
p1, 2q .
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This mapping is a Euclidean rotation around the vertical axis by the angle θ. The rotation
Rθ stabilizes each affine hyperplane

Er “ tx PM1,2 : x0 “ ru .

Another important mapping that comes by extension from Op2q is given by the matrix
diagp1, 1,´1q, which is a reflection in the hyperplane H0 defined above.

(3) The above examples can be generalized to higher dimensions:

• Lt is extended as the identity on the last coordinates to diagpLt, In´2q P Op1, nq.

• Any Euclidean orthogonal matrix A P Opnq gives an isometry diagp1, Aq P O`
p1, nq.

Proposition 4.4. The group O`
p1, nq acts transitively on Hn and on the one-sheeted

hyperboloid L n
` .

Proof. We use the notation of Example 4.3. If x P Hn, then x “ p
a

}x̄}2 ` 1, x̄q. There is
some pRθ P Opnq such that Rθx̄ “ }x̄}e1, and thus, Rθpxq “ p

a

}x̄}2 ` 1, }x̄}e1q. Further-
more,

Larsinh }x̄}e0 “ p
a

}x̄}2 ` 1, }x̄}e1q .

This implies that Hn is the O`
p1, nq-orbit of e0.

A similar proof shows that L n
` is the O`

p1, nq-orbit of e1.

Figure 4.2 — The idea of the proof of Proposition: Rθ moves the point x along the
red circle to the blue curve and Lt moves the point along the blue curve to e1. The
hyperboloid is seen from the side and from the top.

The proof of the following propositions demonstrate the use of a transitive group of
transformations:

Proposition 4.5. The restriction of the Minkowski bilinear form to the orthogonal com-
plement of a timelike vector is positive definite.2

2Naturally, the orthogonal complement is defined with respect to the Minkowski bilinear form.
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Proof. Let v P M1,n be a timelike vector. We may assume that v P Hn. Proposition
4.4 implies the existence of an element A P O`

p1, nq such that Av “ e0. The orthogonal
complement of e0 is the subspace tx P M1,n : x0 “ 0u. The restriction of the Minkowski
bilinear form to this subspace is the standard Euclidean inner product. By definition,
xA´1u |A´1uy “ xu |uy ą 0 for all u P eK0 .

Proposition 4.6. For any a P Hn, the tangent space TaHn of Hn at a coincides with aK.

Proof. Let p P Hn. As the group O`
p1, nq acts transitively on Hn there is some A P

O`
p1, nq such that Ae0 “ p. As in Proposition 4.5, AeK0 “ pK. Considering the linear

map A as a differentiable mapping of Rn`1 to itself, its differential that coincides with A
maps the tangent space at e0 to the tangent spaces at p. Clearly,

Te0Hn
“ tx PM1,n : x0 “ 0u “ eK

and the same holds at p by the observations we just made.

Figure 4.3—The orthogonal complement pK of a point p P H2 coincides with the tangent
space TppH2q as a vector subspace of R3. The figure also shows the affine tangent plane
p` pK that is tangent to H2 at p. If we consider the standard Euclidean inner product in
R3, the tangent plane coincides with the orthogonal complement only at e0.

Propositions 4.5 and 4.6 imply that the restriction of the Minkowski bilinear form to
each tangent space defines a Riemannian metric.

The Riemannian metric of Hn is x¨ | ¨y|aK .
The angle >pu, vq of any two vectors u, v P TaHn “ aK ´ t0u is

>pu, vq “ arccospxu | vyq

The norm in aK is
|u| “

a

xu |uy

for all u P aK.
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We will not discuss Riemannian geometry in a formal manner. Hyperbolic space is
an important example of a Riemannian manifold, and sometimes3 the definition of the
hyperbolic metric is defined as a Riemannian metric. In that approach, hyperbolic metric
appears as the path metric of the Riemannian metric.

The Riemannian length of a piecewise smooth path γ : ra, bs Ñ Hn is

`pγq “

ż b

a

a

x 9γptq | 9γptqy dt .

The length metric of the Riemannian metric of Hn is

dRiempx, yq “ inf `pγq,

where the infimum is taken over all piecewise smooth paths that connect x to y.

In section 5.3, we will show that the Riemannian approach leads to the same hyperbolic
metric as the one we will define in section 4.3. Riemannian geometry also provides a
natural concept of volume in hyperbolic space, and we will discuss this in section 5.8.

4.3 Hyperbolic space
In this section, we define a metric on the upper sheet Hn using the Minkowski bilinear
form analogously with the definition of the spherical metric in section 3.1.

The metric space pHn, dq, where

dpx, yq “ arcoshp´xx | yyq P r0,8r ,

is the hyperboloid model of n-dimensional (real) hyperbolic space. The metric d is the
hyperbolic metric.

We still need to show that the hyperbolic metric is a metric. The proof follows the
same idea that was used to treat the angle metric for the sphere Sn.

Let a P Hn, and let u P aK such that xu |uy “ 1. a The mapping ja,u : RÑ Hn,

ja,uptq “ a coshptq ` u sinhptq ,

is the hyperbolic line through a in direction u. For any T ą 0, the restriction ja,u|r0,T s is
a hyperbolic segment.

aRecall that the restriction of the Minkowski bilinear form to aK is positive definite by Corollary 4.5.

Lemma 4.7. Let a P Hn and u P aK.
(1) The image of ja,u is contained in Hn.

3See [And] or [Bea]

December 7, 2020



40 Hyperbolic space

(2) For all s, t P R, we have

dpja,uptq, ja,upsqq “ |s´ t| . (4.2)

(3) A ˝ ja,u “ jAa,Au for all A P O`
p1, nq.

Proof. Exercise.

As in section 3.1 for the sphere, if we show that d is a metric, then ja,u is a geodesic
line.

Lemma 4.8. Let p, q P Hn be two distinct points. Let

u “
q ` xp | qyp
a

xp | qy2 ´ 1
.

The hyperbolic line jp,u satisfies passes through p and q. Furthermore, jp,up0q “ p and
jp,uparcoshp´xp | qyqq “ q.

Proof. Observe that Lemma 4.1 implies
@

q ` xp | qyp
ˇ

ˇ q ` xp | qyp
D

“ xp | qy2 ´ 1 ą 0 .

Thus, u is a unit tangent vector to the hyperboloid. The fact that jp,up0q “ p is immediate,
and the other claim follows by noting that sinhparcoshp´xp | qyqq “

a

xp | qy2 ´ 1.

Lemma 4.9. For any a P Hn and any u P aK, ja,upRq “ Hn X xa, uy. If a 2-plane T
intersects Hn, then T XHn is the image of a hyperbolic line.

Proof. Clearly, the image of ja,u is contained in the 2-plane xa, uy. The fact the image of
ja,u coincides with xa, uy X Hn follows from the second statement of the Lemma that we
prove below.

If T “ xe0, e1y, then Hn X T is a copy of the upper half of the hyperbola

tx P R2 : ´x2
0 ´ x

2
1 “ ´1u ,

and this intersection is parametrized by je0,e1 . If T “ xe0, vy for any v P eK0 , then there is
an element B P Opnq such that Be1 “ v and, consequently, an element B1 “ diagp1, Bq P
O`
p1, nq such that Be0 “ e0 and Be1 “ v. Thus, Hn X T “ B1pHn X xe0, e1yq coincides

with the image of the hyperbolic line B1 ˝ je0,e1 “ jB1e0,B1e1 “ je0,v, see Lemma 4.7.
If the plane T does not pass through e0 but intersectsHn, then Proposition 4.4 provides

an element A P O`
p1, nq such that T “ ApT0q for some plane T0 that intersects Hn at e0.

We saw above that this intersection is parametrized by a hyperbolic line je0,v for some
v P eK0 . As above, we see that Hn X T is parametrized by A ˝ je0,v “ jAe0,A,v.

The fact that the hyperbolic metric is indeed a metric is proved in the same way as
Proposition 3.3 in the spherical case. First we prove the law of cosines for triangles in
hyperbolic space. As we cannot use a metric yet, we consider triangles whose sides are
hyperbolic segments. The angles at the vertices are defined using the Riemannian metric.
We use the notation for triangles introduced in section 1.5.
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Figure 4.4 — A linear plane that intersects H2 seen from two different angles.

Figure 4.5 — A triangle in H2 with a vertice at e0.

Proposition 4.10 (The first hyperbolic law of cosines).

cosh c “ cosh a cosh b´ sinh a sinh b cos γ .

Proof. Let u and v be the initial tangent vectors of the hyperbolic segments from C to A
and from C to B. As u and v are orthogonal to C, we have as in the spherical case,

cosh c “ ´xA |By “ ´xcoshpbqC ` sinhpbqu | coshpaqC ` sinhpaqvy
“ coshpaq coshpbq ´ sinhpbq sinhpaqxu | vy .
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Theorem 4.11. Hyperbolic space is a uniquely geodesic metric space. Hyperbolic lines
are geodesic lines.

Proof. To show that the hyperbolic metric is a metric, let A,B,C P Hn. Using the
fixed notation for the hyperbolic triangle with vertices A, B and C, consider the strictly
increasing function f : r0, πs Ñ R,

fpγq “ cosh a cosh b´ sinh a sinh b cos γ,

that has a unique maximum at γ “ π with

γpπq “ cosh a cosh b` sinh a sinh b “ coshpa` bq .

The first law of cosines implies that cosh c ď coshpa ` bq, which yields the triangle in-
equality.

Now that we know that hyperbolic space is a metric space, hyperbolic lines are geodesic
lines by Lemma 4.7(2). If A and B are distinct points in Hn, there is a unique 2-plane T
through them. Thus, there is exactly one image of a hyperbolic line through these points.
Assume that there is a geodesic segment k : r0, dpA,Bqs Ñ Hn such that kp0q “ A,
kpdpA,Bqq “ B and the image of k is not contained in T . Let C P kpr0, dpA,Bqsq´T and
consider the triangle with vertices A, B and C and sides the unique hyperbolic segments
connecting A to B, B to C and C to A. As the function f is strictly increasing, equality
is possible in the triangle inequality only when γ “ π. This implies that the segments
from B to C and from C to A are contained in a hyperbolic line. This hyperbolic line
contains A and B and, therefore, the sides from B to C and from C to A are contained
in the side from A to B, but this is a contradiction. Thus, Hn is uniquely geodesic.

We will postpone the proof of the following important result until Section 5.3 where
the details are simplified by a smart choice of coordinates.

Theorem 4.12. Hyperbolic metric is the length metric of the Riemannian metric of
hyperbolic space.

4.4 Isometries of Hn

Proposition 4.13. O`
p1, nq acts transitively by isometries on Hn. In particular, IsompHnq

acts transitively on Hn.

Proof. Transitivity of the action was proved in Proposition 4.4 so it remains to show that
the elements of O`

p1, nq act as isometries. Let g P O`
p1, nq, and let x, y P Hn. By the

definition of the hyperbolic metric and of O`
p1, nq, we have

dpgpxq, gpyqq “ arcoshp´xgpxq | gpyqyq “ arcoshp´xx | yyq “ dpx, yq .

Example 4.14. (1) Let t P R. The matrix Lt of Example 4.3 acts on H2 as an isometry
that preserves the intersection of H2 with any affine 2-plane tx P M1,2 : x2 “ cu. In
particular, it stabilizes the geodesic line

` “ tx P H3 : x2 “ 0u .

December 7, 2020



4.4. Isometries of Hn 43

For any point p “ pa, b, 0q P `, we have

dpLtppq, pq “ arcoshp´xLtp | pyq “ arcoshpp´a2
` b2

q coshptqq “ |t| .

In chapter 5, we will see that all other points are moved a longer distance than |t|.
(2) If r ą 0, then the set

Hn
X tpcosh r, x̄q : x̄ P Rn

u “ tpcosh r, x̄q : x̄ P Rn , }x̄} “ sinh ru

is the sphere of radius r centered at the point e0 P Hn. If A P Opnq, the isome-
try diagp1, Aq P O`

p1, nq maps each sphere centered at e0 to itself, and the subgroup
tdiagp1, Aq P O`

p1, nq : A P Opnqu “ Stab e0 ă IsomHn acts transitively on each such
sphere.
(3) For each v P L 2 and c ă 0, the set

tx P H2 : xv |xy “ cu

is called a horosphere based at v. The mapping given by the matrix

Ns “

¨

˚

˝

1` s2

2 ´ s2

2 s
s2

2 1´ s2

2 s

s ´s 1

˛

‹

‚

P O`
p1, 2q

maps each horosphere based at p1, 1, 0q P L 2 to itself.
(4) Composing some number of the above mappings we obtain further examples of isome-
tries of the hyperbolic plane. For example, if p P H2, then there is some θ P R such that
Rθppq P `. Now, L´1

dpe0,pq
pRθppqq “ L´dpe0,pqpRθppqq “ e0, and for any φ P R, the mapping

S “ R´θ ˝ Ldpe0,pq ˝ Rφ ˝ L
´1
dpe0,pq

˝ Rθ is an isometry that fixes p and maps each sphere
centered at p to itself. The mapping S is conjugate4 to Rφ in IsompHnq.

The isometries introduced above are classified according to the conic sections they
correspond to. The mapping Lt and any of its conjugates in IsompHnq is called hyperbolic
because Lt maps each affine plane parallel to the px0, x1q-plane in M1,2 to itself, and
these planes intersect the light cone in hyperbola, except for the px0, x1q-plane itself that
intersects the lightcone in a pair of lines.

The mapping Rθ and any of its conjugates is called elliptic because Rθ preserves all
horizontal hyperplanes in M1,2 and their intersections with L 2, which are circles centered
at points of the 0:th coordinate axis.

The mapping Ns and any of its conjugates is called parabolic because it preserves all
affine hyperplanes tx PM1,2 : xv |xy “ cu, which intersect L 2 in a parabola when c ă 0.

As in the Euclidean and spherical geometries, we will now study a fundamental class
of isometries, reflections in a hyperplane.

If T is an pm` 1q-dimensional linear subspace of Rn`1 that intersects Hn, then T XHn is
an m-dimensional hyperbolic subspace of Hn. If m “ n´ 1, then T is a hyperplane.

Proposition 4.15. Let 1 ď m ă n. Any two hyperbolic m-dimensional subspaces of Hn

can be mapped to each other by isometries of Hn.
4If G is a group and g, h P G, then the elements g and hgh´1 are conjugate elements in G.
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Proof. Exercise.

Corollary 4.16. If 2 ď k ď n, then any k-dimensional hyperbolic subspace of Hn is
isometric to Hk.

Proof. The hyperplane tx P Hn : xk`1 “ xk`2 “ ¨ ¨ ¨ “ xn “ 0u is clearly isometric to Hk.
The claim follows from Proposition 4.15.

Any hyperplane T in M1,n is of the form T “ uK for some u PM1,n ´ t0u because the
Minkowski bilinear form is nondegenerate. Let H “ uKXHn be a hyperbolic hyperplane.
Since H intersects Hn, it contains a vector v for which xv | vy “ ´1. Proposition 4.5
implies that xu |uy ą 0, and after normalising, we may assume that u is a unit vector.

Let u P L n
` . The reflection in H “ uK XHn is the map

rHpxq “ x´ 2xx |uyu . (4.3)

Example 4.17. If u0 “ 0, then xx |uy “ px |uq for all x P M1,n. This implies that the
reflection in uK coincides with the Euclidean reflection in the hyperplane uK that contains
e0.

The proofs of the basic properties of reflections are natural modifications of those in
the spherical case. Note that the expression (4.3) defines a mapping in Minkowski space,
fixing the hyperplane uK. The reflection in hyperbolic space is, in fact, the restriction of
a reflection of Minkowski space.

Proposition 4.18. Let H be a hyperbolic hyperplane. Then
(0) rH maps Hn into itself.
(1) rH ˝ rH is the identity.
(2) rH P O`p1, nq.
(3) dprHpxq, yq “ dpx, yq for all x P Hn and all y P H.
(4) The fixed point set of rH is H

Proof. (0) Let x P Hn. Using bilinearity and symmetry of the Minkowski form and the
fact that u is a unit vector, we get

xrHpxq | rHpxqy “
@

x´ 2xx |uyu
ˇ

ˇx´ 2xx |uyu
D

“ xx |xy ´ 2xx |uyxx |uy ´ 2xx |uyxu |xy ` 4xx |uyxx |uyxu |uy
“ xx |xy “ ´1 .

Thus, rHpxq P L n
´ . Furthermore, for any v P H,

rHpvq “ v ´ 2xv |uyu “ v,

so there are points in Hn which are mapped to Hn. Since rH is continuous and preserves
the Minkowski form, rHpHnq Ă Hn.
(1) This easy computation is left as an exercise.
(2) Clearly, rH is a linear mapping, and it is a bijection by (1). As in (0), we get

xrHpxq | rHpyqy “
@

x´ 2xx |uyu
ˇ

ˇ y ´ 2xy |uyu
D

“ xx | yy .
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Thus, rH P Op1, nq. Claim (0) gives rH P O`
p1, nq.

(3) For any x P Hn and all y P H, we have

xrHpxq | yy “ xx´ 2xx |uyu | yy “ xx | yy ´ 2xx |uyxu | yy “ xx | yy,

where the final equality follows from the assumption u P HK.
(4) This follows immediately from (3) by taking x “ y P H.

The bisector of two distinct points p and q in Hn is the hyperplane

bispp, qq “ tx P Hn : dpx, pq “ dpx, qqu .

Lemma 4.19. If p, q P Hn, p ‰ q, then bispp, qq “ pp´ qqK XHn.

Proof. Exercise.

Proposition 4.20. (1) For any p, q P Hn, the bisector bispp, qq is a hyperbolic hyperplane.
(2) If H is a hyperplane in Hn and x, y P Hn ´H with rHpxq “ y, then H “ bispx, yq.
(3) If p, q P Hn, p ‰ q, then rbispp,qqppq “ q.
(4) Let φ P IsompHnq, φ ‰ id. If a P Hn with φpaq ‰ a, then the fixed points of φ are
contained in bispa, φpaqq.
(5) Let φ P IsompHnq, φ ‰ id. If H is a hyperplane such that φ|H is the identity, then
φ “ rH .

Proof. (1) Lemma 4.1 implies that

xp´ q | p´ qy “ ´2´ 2xp | qy ą 0 .

Let λ ą 0 and u P L n
` such that p´ q “ λv. Obviously, pp´ qqK “ vK. The second part

of Proposition 4.4 implies that there is an element A P O`
p1, nq such that Av “ e1. The

orthogonal complement of e1 is the hyperplane tx PM1,n : x1 “ 0u that contains e0. The
claim follows as A maps Hn to itself and pAvqK “ ApvKq.
(2) follows from Proposition 4.18(3).
(3) Using the computation from (1) above, we have

2xp | p´ qy “ 2pxp | py ´ xp | qyq “ ´2´ 2xp | qy “ |p´ q|2 .

Thus,
rbispp,qqppq “ p´ 2xp | p´ qy p´ q

|p´ q|2
“ q .

(4) If φpbq “ b, then dpa, bq “ dpφpaq, φpbqq “ dpφpaq, bq, so that b P bispa, φpaqq.
(5) is an instructive exercise.

Proposition 4.21. Any two reflections in hyperbolic hyperplanes of Hn are conjugate in
IsomHn.

Proof. Exercise.
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Next, we prove that all isometries of hyperbolic space are restrictions to Hn of linear
automorphisms of M1,n:

Theorem 4.22. IsompHnq “ O`
p1, nq.

The idea of the proof is to show that each isometry of Hn is the composition of
reflections in hyperbolic hyperplanes. Again, the proof follows the same ideas as in the
Euclidean and spherical cases.

Proposition 4.23. Let p1, p2, . . . , pk, q1, q2, . . . , qk P Hn be points that satisfy

dppi, pjq “ dpqi, qjq

for all i, j P t1, 2, . . . , ku. Then, there is an isometry φ P IsompHnq such that φppiq “ qi
for all i P t1, 2, . . . , ku. Furthermore, the isometry φ is the composition of at most k
reflections in hyperplanes.

Proof. The proof is formally exactly the same as that of Proposition 2.13.

Note that Proposition 4.23 implies that if T and T 1 are two triangles in Hn with equal
sides, then there is an isometry φ of Hn such that φpT q “ T 1.

Proof of Theorem 4.22. Let φ P IsompHnq. Let ta0, a1, . . . , anu be a set of points in Hn

which is not contained in any proper hyperbolic subspace. This is achieved by choosing
them so that they generate M1,n as a vector space. Proposition 4.23 implies that there
is an isometry φ0 P O`

p1, nq such that φ0pφpaiqq “ ai for all 0 ď i ď n. Since the set
of fixed points of φ0 ˝ φ contains the points a0, a1, . . . , an, the fixed point set of φ0 ˝ φ is
not contained in a proper hyperbolic subspace. Proposition 4.20(4) implies that φ0 ˝ φ is
the identity map. Thus, φ “ φ´1

0 . In particular, φ P O`
p1, nq, which is all we needed to

show.

Corollary 4.24. Any isometry of Hn can be represented as the composition of at most
n` 1 reflections.

Proposition 4.25. The stabilizer of any point x P Hn is isomorphic to Opnq.

Proof. Again, we follow the proof of the spherical case. The details are left as an exercise.

4.5 Triangles in Hn

The law of cosines implies that a triangle in En, Sn or Hn is uniquely determined up to
an isometry of the space, if the lengths of the three sides are known. In Euclidean space,
the three angles of a triangle do not determine the triangle uniquely. In Sn and Hn the
angles determine a triangle uniquely. For Hn, this is the content of

Proposition 4.26 (The second hyperbolic law of cosines).

cosh c “ cosα cos β ` cos γ
sinα sin β .
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Proof. This formula follows from the first law of cosines by a lengthy manipulation anal-
ogous to the proof of Proposition 3.5. See for example [Bea, p. 148–150].

The second law of cosines and Proposition 4.23 imply that if T and T 1 are two triangles
in Hn with equal sides, then there is an isometry φ of Hn such that φpT q “ T 1.

Proposition 4.27 (The hyperbolic law of sines).

sinh a
sinα “

sinh b
sin β “

sinh c
sin γ .

Proof. The first law of cosines implies that
ˆ

sinh c
sin γ

˙2

“
sinh2 a sinh2 b sinh2 c

2 cosh a cosh b cosh c´ cosh2 a´ cosh2 b´ cosh2 c` 1
.

The claim follows because this expression is symmetric in a, b and c.

The following two results on triangles will be useful later.

Proposition 4.28. For any 0 ă a, b, c for which a` b ą c, b` c ą a and c` a ą b, there
is a triangle with side lengths a, b and c. Any two such triangles are isometric.

Proof. The proof is analogous with that of Proposition 3.20 without the upper bound on
the lengths. We use the hyperbolic law of cosines in the construction. If a triangle with
the asserted properties exists, then the angle at C satisfies the cosine law. Therefore, we
can compute what this angle needs to be if we know that

ˇ

ˇ

ˇ

cosh a cosh b´ cosh c
sinh a sinh b

ˇ

ˇ

ˇ
ă 1 . (4.4)

The inequality c ă a` b implies

cosh c ă coshpa` bq “ cosh a cosh b` sinh a sinh b ,

which gives
´1 ă cosh a cosh b´ cosh c

sinh a sinh b .

The inequalities b` c ą a and c` a ą b give |a´ b| ă c, which implies

cosh c ą coshpa´ bq “ cosh a cosh b` sinh a sinh b ,

and we get
cosh a cosh b´ cosh c

sinh a sinh b ă 1 .

Now we can place the sides of length a and b starting at C in the correct angle γ. The
cosine law implies that the distance of the endpoints points A and B of these segments
is c. There geodesic arc from A to B is therefore the side opposite to C of the desired
length c.

The triangles are isometric by Proposition 4.23.

Proposition 4.29. Any triangle in Hn is contained in an isometrically embedded copy of
H2 in Hn.

December 7, 2020



48 Hyperbolic space

Proof. Any three points in the hyperboloid model Hn are contained in the intersection of
Hn with a 3-dimensional linear subspace of M1,n, which is an isometrically embedded copy
of the hyperbolic plane. The geodesic arc through any two of these points in is contained
in the same hyperbolic 2-plane by Lemma 4.9.

Using the hyperbolic law of cosines and the Taylor polynomials of hyperbolic functions
at 0, cosh t “ 1 ` t2

2 ` opt2q and sinh t “ t ` optq, we see that if the sides of a triangle
in hyperbolic space are short, then the sides satisfy the Euclidean law of cosines up to a
small error.

Exercises
4.1. Prove Lemma 4.2.
4.2. Prove Lemma 4.7.
4.3. Prove Proposition 4.15.
4.4. Prove Lemma 4.19.
4.5. Prove Proposition 4.20(5).
4.6. Prove Proposition 4.21.5

4.7. Prove Proposition 4.23.
4.8. Prove Proposition 4.25.6

5Use Proposition 4.15.
6Assume that we know IsomHn “ O`p1, nq and use transitivity.
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Chapter 5

Models of hyperbolic space

The hyperboloid model of hyperbolic space introduced in chapter 4 model is used in
many arithmetical applications and the closely related projective model has important
generalizations to complex and quaternionic hyperbolic spaces.

In this chapter, we consider a number of other models for hyperbolic space. Hyperbolic
space of dimension n is the class of all metric spaces isometric with the hyperboloid model
pHn, dq, and we can use any model that is best suited for the geometric problem at hand.
After this section we will often talk about the “upper halfplane model of H2” etc.

The underlying set of the Klein model and the Poincaré model is the unit ball in
Euclidean space. Therefore, we introduce a special notation for this set:

Bn is the unit ball in En.

In sections 5.2, 5.3 and 5.5, we use the geometric properties of inversions in spheres.
We refer to Appendix A for details on inversions.

5.1 Klein’s model
Each line in M1,n through the origin which intersects the hyperboloid model Hn, intersects
it in exactly one point, and it also intersects the embedded copy t1uˆBn in M1,n of Bn in
exactly one point. This correspondence determines a bijection K : Bn Ñ Hn, which has
the explicit expression

Kpxq “
p1, xq

a

1´ }x}2
.

The map K becomes an isometry when we define a metric on Bn by setting

dKpx, yq “ dpKpxq, Kpyqq “ arcosh 1´ px | yq
a

1´ }x}2
a

1´ }y}2
.

The metric space pBn, dKq is the Klein model of n-dimensional hyperbolic space.
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0.5
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2.0

p1, xq

Kpxq

‚

‚

Figure 5.1 — The map K used in the construction of the Klein model.

Proposition 5.1. The images of geodesic lines of the Klein model are Euclidean open
segments connecting two points in the Euclidean unit sphere.

Proof. A geodesic line in Hn is the intersection of Hn with a 2-plane in M1,n. The inter-
section of this plane with Bn ˆ t1u is the preimage under K of the geodesic line.

Proposition 5.1 implies that for any two distinct points a, b P Sn´1 “ BBn, there is a
unique image of a geodesic line sa, br in the Klein model. We call sa, br the geodesic line
with endpoints a and b in the Klein model of Hn. Note that if γ : R Ñ Hn is a geodesic
line and T P R, then the mapping t γTÞÑ γpt´ T q defined on R is a geodesic line such that
γpRq “ γT pRq.

If x0 P Bn and b P BBn, there is a unique geodesic ray ρx0,b : r0,8r Ñ Bn in the Klein
model of Hn such that ρx0,bp0q “ x0 and such that the Euclidean closure of the image
ρx0,bpr0,8rq “ rx0, br is the Euclidean closed segment rx0, bs.

Figure 5.2 — Three red lines through the origin that are parallel in the Klein model
with the line whose endpoints are p0, 1q and p1, 0q.
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Recall that in Euclidean plane geometry, two (geodesic) lines are {em parallel if they
do not intersect. The parallel axiom states that through any point P in the Euclidean
plane that is not contained in a line L, there is exactly one line that is parallel with L. It
easy to see using the Klein model that the parallel axiom does not hold in H2, see Figure
5.2

5.2 Poincaré’s ball model
Each affine line that passes through the point p´1, 0q P RˆRn “M1,n which intersects Hn,
intersects it in exactly one point, and it also intersects the n-dimensional ball t0u ˆ Bn
embedded in M1,n in exactly one point. This correspondence determines a bijection
P : Bn Ñ Hn,

P pxq “
p1` }x}2, 2xq

1´ }x}2 .

This expression is found by computing for any x P Bn that the point yt “ p0, xq ` tp1, xq
on the line through the points p0, xq and p´1, 0q of RˆRn “M1,n is in Hn if and only if
t “ 1`}x}2

1´}x}2 .

-2 -1 1 2

-1.0

-0.5

0.5

1.0

1.5

2.0

p0, xq

P pxq

‚

‚

Figure 5.3 — The map P used in the construction of the Poincaré model.

The map P becomes an isometry when we define a metric on Bn by setting

dP px, yq “ dpP pxq, P pyqq “ arcosh
`

1` 2 }x´ y}2

p1´ }x}2qp1´ }y}2q
˘

.

The metric space pBn, dP q is the Poincaré model of n-dimensional hyperbolic space.
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Lemma 5.2. The hyperbolic ball of radius r ą 0 centered at 0 in the Poincaré model
coincides with the Euclidean ball of radius tanh r

2 centered at 0. The Euclidean ball of
radius 0 ă R ă 1 centered at 0 coincides with the hyperbolic ball of radius log 1`R

1´R centered
at 0 in the Poincaré model.

Proof. If x P Bn, we have

dP px, 0q “ arcosh
`

1` 2 }x}2

1´ }x}2
˘

“ log 1` }x}
1´ }x} .

Both claims follow from this equation.

Proposition 5.3. The images of geodesic lines of the Poincaré model are the intersections
of the Euclidean unit ball with Euclidean circles and lines that are orthogonal to the unit
sphere.

Proof. The map h “ K´1 ˝ P is an isometry between the Poincaré and Klein models. A
computation1 shows that

hpxq “
2x

1` }x}2 .

The inversion ιp´1,0q,2 in the sphere centered at p´1, 0q P E1 ˆ En of radius
?

2 maps
t0u ˆ En Y t8u to Sn. It maps t0u ˆ Bn Y t8u to the upper hemisphere of Sn, fixing
t0u ˆ Sn´1. In coordinates,

ιp´1,0q,2pxq “
´1´ }x}2

1` }x}2 ,
2x

1` }x}2
¯

,

so that if pr : En`1 “ E1ˆEn Ñ En is the Euclidean orthogonal projection on the second
component of the product, we have

h “ pr ˝ιp´1,0q,2 .

The inversion ιp´1,0q,2 maps any circle in t0u ˆ Bn orthogonal to t0u ˆ Sn´1 to a circle
on the unit sphere in En`1 orthogonal to t0u ˆ Sn´1. These circles are orthogonal to
t0u ˆ En, and they are exactly the intersections of the unit sphere with 2-planes parallel
to the x0-axis, and thus, pr maps them to the geodesic lines of the Klein model. As h is
an isometry, the result follows.

Note that the mapping h from the Klein model to the Poincaré model is the restriction
of a homeomorphism of the Euclidean closure of Bn to itself. This extended mapping is the
identity in the boundary of Bn. Analogously with the case of the Klein model, Proposition
5.3 implies that for any two distinct points a, b P Sn´1 “ BBn, there is geodesic line sa, br
in the Poincaré model that we call the geodesic line with endpoints a and b in the Poincaré
model of Hn. If x0 P Bn and b P BBn, there is a unique geodesic ray ρx0,b : r0,8r Ñ Bn in
the Poincaré model of Hn such that ρx0,bp0q “ x0 and such that the Euclidean closure of
the image ρx0,bpr0,8rq “ rx0, br is a closed Euclidean segment or a closed circular segment
with one endpoint at b.

1This can be done by observing that h is a radial map and then solving the equation

p1, yq
a

1´ y2
“

´1` x2

1´ x2 ,
2x

1´ x2

¯

with 0 ď x, y ă 1.
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p1, yq

P pxq “ Kpyq

‚

‚

‚

Figure 5.4 — The construction of the map h from the Poincaré model to the Klein
model.

Figure 5.5 — Some geodesic lines and a ball in the Poincaré disk model of H2.

Proposition 5.4. The Riemannian metric of the ball model is 4p¨ | ¨q
p1´}x}2q2 .

Proof. For all tangent vector u P TxBp0, 1q, we have

DP pxqu “
´ 4px |uq
p1´ }x}2q2 ,

2u
1´ }x}2 `

4 px |uqx
p1´ }x}2q2

¯

PM1,n .
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Figure 5.6 — Geodesic rays starting at 0 and at p1
2 , 0q with circles centered at the same

points in the Poincaré disk model of H2.

Using this, for u, v in TxBn, we compute

xDP pxqu |DP pxqvy “ ´
16px |uqpx | vq
p1´ }x}2q4 `

4pu | vq
p1´ }x}2q2 `

16px |uqpx | vq
p1´ }x}2q3 `

16px |uqpx | vq}x}2
p1´ }x}2q4

“
4pu | vq

p1´ }x}2q2 .

Proposition 5.4 implies that the angles between tangent vectors of paths in the Poincaré
model are the same as the angles measured in the ambient Euclidean space.

5.3 The upper halfspace model
Let

Rn
` “ tx P Rn : xn ą 0u

be the n-dimensional upper halfspace. Let ι´en,2 be the inversion in the sphere of center
´en P En of radius

?
2. The map

F “ ι´en,2|Bn : Bn Ñ Rn
` (5.1)

is a bijection, which becomes an isometry if we use the metric

dRn`px, yq “ dP pF
´1
pxq, F´1

pyqq “ arcosh
`

1` }x´ y}
2

2xnyn
˘

(5.2)

in Rn
`.

The metric space pRn
`, dRn`q is the upper halfspace model of n-dimensional hyperbolic

space.

Example 5.5. An elementary computation shows that if x “ pa, xnq and y “ pa, ynq for
any a P Rn´1, then

dRn`px, yq “
ˇ

ˇ log xn
yn

ˇ

ˇ .
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x2 “ 0

H2

Figure 5.7 — Some geodesic lines in the upper halfplane model of H2.

It is very common to identify the upper halfplane model of H2 with the upper halfplane
in C, and we will often do this, as in the following Example 5.6(2) below.

Example 5.6. (1) Let n ě 3. The subspace tx P Rn
` : x2 “ ¨ ¨ ¨ “ xn´1 “ 0u with

the metric induced from the upper halfplane model is an isometrically embedded copy of
H2 in the upper halfspace model of Hn.
(2) Let 0 ă φ ă π. Then the distance of the points i and eiφ in the upper halfplane model
is

dR2
`
pi, eiφq “ arcosh

`

1` cos2 φ` p1´ sinφq2
2 sinφ

˘

“ arcosh 1
sinφ .

-1.0 -0.5 0.0 0.5 1.0

eiφ

φ

i

Figure 5.8 —

Proposition 5.7. The images of the geodesic lines of the upper halfspace model are the
intersections of the upper halfspace with Euclidean circles and lines that are orthogonal to
En´1 ˆ t0u.

Proof. The inversion used in the definition of the upper halfspace model maps lines and
circles to lines or circles and preserves angles. The claim follows from Proposition 5.3.
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´1

1

8

0

Figure 5.9 — The mapping F corresponds to the reflection in the red circle when pE2 is
identified with S2 by the stereographic projection. See section 3.3 and Appendix A.

Geodesic lines in the upper halfspace model are images under F of geodesic lines of
the Poincaré model. If one of the endpoints of a geodesic line in the Poincaré model is
´en, then F maps this geodesic line to a halfline orthogonal to En´1 ˆ t0u at one end,
and the other endpoint is mapped to 8 P pEn.

Proposition 5.7 implies that for any two distinct points a, b P En´1 ˆ t0u Y t8u, there
is geodesic line sa, br in the upper halfspace model that we call the geodesic line with
endpoints a and b in the upper halfspace model of Hn.

We have seen that the unit sphere in the Klein and Poincaré ball models and the set
En´1ˆt0uY t8u Ă xEn in the upper halfspace model have a geometric meaning, and that
there is a natural homeomorphism between these sets. In chapter 8, we will see that these
sets appear naturally as a geometrically defined boundary at infinity of Hn, and we will
use the notation B8Hn for this set from now on.

In practical applications, it is good to remember that a circle is perpendicular to
Eˆt0u Ă E2 if and only if its center is in Eˆt0u. In higher dimensions, this is no longer
true.

The following lemma records the expressions of the geodesics in the upper halfspace.

Lemma 5.8. Let x P Rn´1 and y ą 0. The mapping γx,y : RÑ Rn
`,

γx,yptq “ px, ye
t
q

is a geodesic line in the upper halfspace model of Hn such that γx,yp0q “ px, yq. For any
isometry g of the upper halfspace model, the mapping g ˝ γx,y is a geodesic line.
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Figure 5.10— The blue geodesic lines of the Poincaré model in this figure are the images
of the red geodesic lines of the Klein model. The angles at the points of intersection are
the same in hyperbolic plane but the angle in the ambient Euclidean space of the red lines
is not the same as that of the blue circular segments.

Proof. Apply Example 5.5.

Proposition 5.9. The Riemannian metric of the upper halfspace model is p¨ | ¨q

x2
n
.

Proof. The proof is similar to that of Proposition 5.4, using (the inverse of) the map F
defined in equation (5.1) to transfer the Riemannian metric from the ball to the upper
halfspace.

Proposition 5.9 implies that the angles between tangent vectors of paths in the upper
halfspace model are the same as the angles measured in the ambient Euclidean space.
The Klein model does not have this useful property. This is illustrated in Figure 5.10

Proof of Theorem 4.12. We will use the upper halfspace model to prove the result. Both
quantities are invariant under isometries of hyperbolic space. Therefore, it is sufficient to
show that the geodesic segment rp0, 1q, p0, T qs is the Riemannian geodesic segment from
p0, 1q to p0, T q for any T ą 0.

Let φ : r0, 1s Ñ Hn be a piecewise smooth path such that φp0q “ p0, 1q and φp1q “
p0, T q. 2 Let p : Hn Ñ r0, 1s,

ppx, sq “ p0, sq

for all x P Rn´1 and s ą 0, be the horospherical projection to the geodesic line s0,8r that
contains the points p0, 1q to p0, T q. Note that Dppx, squ “ un for all px, sq P Hn and all
u P Rn. This implies that

ˇ

ˇ
9pp ˝ φqpτq

ˇ

ˇ ď | 9φpτq| for all τ P r0, 1s.3 This gives the inequality
2We can assume that all paths are defined on r0, 1s because smooth reparametrization does not change

the Riemannian length of a path, see for example [Pet, Section 5.3].
3 9f is the notation we use for the derivative vector of a path f .
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we want:

`pφq “

ż 1

0

| 9φpτq|

φnpτq
dτ ě

ż 1

0

| 9pp ˝ φqpτq|

pp ˝ φqnpτq
dτ ě logpp ˝ φp1qq “ log T “ dpp0, 1q, p0, T qq .

Note that the second inequality is strict if the mapping t ÞÑ φnptq is not monotonous.
To complete the proof, note that if γ0,1 is the geodesic line of Lemma 5.8, γ0,1p0q “

p0, 1q, γplog T q “ p0, T q and

`pγ|r0,log T sq “

ż log T

0

| 9γptq|

γnptq
dt “

ż log T

0

yet

yet
dt “ log T .

5.4 Triangles in Hn (part 2)
The Poincaré model and the upper halfspace model are very useful in many proofs for
example because the angle between two tangent vectors is in these models is the same
as the Euclidean angle. We use this property to prove the following facts on triangles in
hyperbolic space.

Proposition 5.10. (1) The sum of the angles of a nondegenerate triangle in hyperbolic
space is strictly less than π.
(2) For any 0 ă α, β, γ ă π for which α ` β ` γ ă π, there is a triangle with angles
α, β and γ. Any two such triangles are isometric.

Proof. By Proposition 4.29, it suffices to consider the hyperbolic plane.
(1) Let T be a triangle with vertices A, B and C. We may assume that one of the vertices
A is the origin in the Poincaré disk model. Thus, two sides of the triangle are contained
in two radii of the ball and the third one is contained in a circle which is orthogonal to the
boundary of Bn. Consider the Euclidean triangle with the same vertices as T . The angles
β and γ are strictly smaller than the corresponding angles in the Euclidean triangle. This
implies the result as the angles of an Euclidean triangle sum to π.
(2) Let us consider the upper halfplane model of H2. Let 0 ă r ă 1. At most one of
the angles can be greater than or equal to π

2 , and we may assume that 0 ă α, β ă π
2 .

The geodesic line contained in the Euclidean circle with center cosα ą 0 and radius 1
intersects the geodesic line s0,8r at an angle α, and the geodesic line contained in the
Euclidean circle with center ´r cos β ă 0 and radius r intersects s0,8r at an angle β.
When 1´cosα

1`cosβ ă r ă sinα
sinβ , there are subsegments of these three geodesic lines that make

up a triangle where the third angle grows from 0 to π ´ α ´ β.

5.5 Isometries of the upper halfspace model
In the upper halfspace model, it is often convenient to move a geodesic line by an isometry
such that the endpoints of the geodesic in the model are 0 and 8. The following results
on isometries allow to do that and a bit more. We illustrate the utility of the transitivity
properties of the group of isometries in Proposition 5.14 and its corollaries, and in Lemma
5.20.
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

r “ 1´cosα
1`cosβ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1´cosα
1`cosβ ă r ă 1

β α

-2 -1 0 1 2

r « sinα
sinβ

Figure 5.11 — The idea of the proof of Proposition 5.10. Here α “ π
4 and β “ π

6 .

Let b P Rn´1 ˆ t0u Ă Rn. The mapping Tb : Rn
` Ñ Rn

`,

Tbpxq “ x` b ,

is a horizontal translation by b.
Let λ ą 0. The mapping Lλ : Rn

` Ñ Rn
`,

Lλpxq “ λx ,

is a dilation by factor λ.
Let Q0 P Opn´ 1q and let us use the notation x “ px̄, xnq. The mapping Q : Rn

` Ñ Rn
`,

Qpx̄, xnq “ pQ0px̄q, xnq ,

is an orthogonal mapping around the geodesic line s0,8r.
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Lemma 5.11. Let a, b P Rn´1 ˆ t0u Ă Rn and let λ ą 0.
(1) Tb ˝ ιa,r2 ˝ T´b “ ιa`b,r2.
(2) Lλ ˝ ι0,r2 ˝ L 1

λ
“ ι0,pλrq2.

Proof. Exercise.

Proposition 5.12. The maps

• Tb for any b P Rn´1 ˆ t0u Ă Rn,

• ιa,r2, for any a P Rn´1 ˆ t0u Ă Rn and any r ą 0 ,

• Lλ for any λ ą 0, and

• Q for any Q0 P Opn´ 1q

are isometries of the upper halfspace model.

Proof. Let us consider the inversion in the Euclidean unit sphere. It preserves all affine
rays from a, so it preserves the upper halfspace. To prove that its restriction to Hn is
an isometry, equation (5.2) implies that it is enough to show that the expression }x´y}2

xnyn
is

invariant under the inversion. Let us compute:

ι0,1pxq ´ ι0,1pyq

r2 “
x

}x}2
´

y

}y}2
“
x}y}2 ´ y}x}2

}x}2}y}2
,

which gives

}ι0,1pxq ´ ι0,1pyq}
2

ι0,1pxqnι0,1pyqn
“

}x}2}y}4´2px | yq}x}2}y}2`}x}4}y}2
}x}4}y}4

xnyn
}x}2}y}2

“
}x´ y}2

xnyn
.

The rest is left as an exercise.

Corollary 5.13. The subgroup of IsompHnq generated by dilations fixing 0 and horizontal
translations acts transitively on the upper halfspace model of Hn.

Proof. If x is in the upper half plane,

T´px1,x2,...xn´1,0qpxq “ p0, . . . , xnq “ Lxnen .

Thus,
x “ Tpx1,x2,...xn´1,0q ˝ Lxnen .

We will now apply the transitivity of the action of the group of isometries and of
suitable subgroups to geometric and topological questions.

Proposition 5.14. Balls in the upper halfspace model and in the Poincaré ball model are
Euclidean balls in the Euclidean space that contains the model.
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Proof. By Lemma 5.2, balls centered at the origin of the Poincaré ball model are Euclidean
balls. The inversion that maps the ball model to the upper halfspace model is an isometry,
and on the other hand it preserves generalized spheres. Thus, the images of the balls
centered at the origin are hyperbolic and Euclidean balls. The hyperbolic center of these
balls can be mapped to any other point in Hn by one of the isometries of Corollary 5.13.
These mappings preserve spheres, which implies that all balls in the upper halfspace model
are Euclidean balls. The rest of the claim follows by one more application of the inversion
that maps the ball model to the upper halfspace model.

Corollary 5.15. Hyperbolic space Hn is homeomorphic with the open unit ball of En.

Proof. The identity map from the Poincaré model to the Bn Ă En with the induced metric
is a homeomorphism by Proposition 5.14.

Corollary 5.16. Hyperbolic space Hn is a proper metric space.

Proposition 5.17. Let x1, x2, x3 and y1, y2, y3 be two triples of distinct points in the
boundary at infinity of Hn. There is an isometry of Hn which is the restriction of a
homeomorphism g of Hn Y B8Hn to itself such that gpxiq “ yi for all i P t1, 2, 3u.

Proof. Let us consider the question in the upper halfspace model. The mappings given
in Proposition 5.12 are clearly continuous mappings of pEn to itself.

It suffices to show that we can use a combination of these isometries to map x1, x2, x3
to 8, 0, p1, 0, . . . , 0q. If all points x1, x2, x3 are finite, map x1 by a translation T´x1 to 0
and then by the inversion ι to 8. Relabel ι ˝T´x1px2q and ι ˝T´x1px3q to x2 and x3. Map
x2 to 0 by a translation. This map keeps 8 fixed. Map x3 (again relabeled) to the unit
sphere by a dilation and then to p1, 0, . . . , 0q by the extension of an orthogonal map of
En´1. These two maps fix 8 and 0.

Proposition 5.18. Let x, y P Hn and a, b P B8Hn. There is an isometry of Hn which
is the restriction of a homeomorphism g of Hn Y B8Hn to itself such that gpxq “ y and
gpaq “ b.

Proof. Exercise.

In the proofs of Propositions 5.17 and 5.18, we used explicit isomorphisms of the upper
half plane model that are restrictions of homeomorphic self-maps of Hn Y B8Hn. In fact,
there is a result that generalizes this observation to all isometries:

Theorem 5.19. The isometries of Hn are restrictions of homeomorphic self-maps of
Hn Y B8Hn.

Proof. We could prove this by showing that all reflections in hyperplanes have this prop-
erty, and then using the fact that reflections generate IsomHn. The proof relies on showing
that in the upper halfplane model, reflections in hyperbolic hyperplanes are either con-
jugates of the map Q of Proposition 5.12 with Q0 a hyperplane reflection in En´1, or
inversions.

Instead, we postpone the proof until Chapter 8, where we prove a more general result
by a different method.
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For any r ą 0, the r-neighbourhood of any nonempty subset A Ă Hn is

NrpAq “ tx P Hn : dpx,Aq ă ru .

Figure 5.12 — Neighbourhoods of geodesic lines in the upper halfplane model and in
the Poincaré ball model of H2.

Lemma 5.20. Let L “ s0,8r in the upper halfspace model of Hn.
(1) p0, }x}q P Rn´1 ˆ R` is the unique closest point to x P Rn

` in L.
(2) The r-neighbourhood of L is the Euclidean infinite cone4

NrpLq “
 

x P Rn
` : cos>0pL, xq ą

1
cosh r

(

.

Proof. (1) The function

t ÞÑ cosh dpx, γ0,}x}ptqq “ 1` x2
1 ` x

2
2 ` ¨ ¨ ¨ ` x

2
n´1 ` pxn ´ }x}e

tq2

2xn}x}et

“
2xn}x}et ` x2

1 ` x
2
2 ` ¨ ¨ ¨ ` x

2
n´1 ` x

2
n ´ 2xn}x}et ` }x}2e2t

2xn}x}et

“
}x}2p1` e2tq

2xn}x}et
“
}x}

xn
cosh t

has a unique minimum at 0, and γ0,}x}p0q “ }x}en.
(2) Exercise.

If L1 is a geodesic line in the upper halfspace model, we can map it to L by a com-
position of the isometries used in Proposition 5.17. These isometries are conformal maps
which map the set of spheres and hyperplanes in pEn to itself. It is easy to see that the
neighbourhoods NrpL

1q are cones or bananas with opening angles at the endpoints given
by Lemma 5.20, see Figure 5.12. As the isometry used to map the ball model to the upper
halfspace model is an inversion, the r-neighbourhoods of geodesic lines in the ball model
are bananas.

4>0pL, xq is the angle between the Euclidean ray L and the Euclidean ray from 0 through x.
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5.6 Generalized triangles in Hn.
We now extend the definition of triangles and allow some of the vertices to be points at
infinity of Hn:

A (generalized) triangle consists of three distinct points A,B,C P Hn Y B8Hn, called the
vertices, and of the geodesic arcs, rays or lines, called the sides, connecting the vertices.
If all vertices of a triangle ∆ are in B8Hn, then ∆ is an ideal triangle.

Proposition 5.21. (1) Any generalized triangle in Hn is contained in an isometrically
embedded copy of H2 in Hn.
(2) If ∆ and ∆1 are ideal triangles in Hn, there is an isometry γ P IsomHn such that
γp∆q “ ∆1.

Proof. Exercise.

Next, we prove an analog of the second law of cosines for a special kind of generalized
triangles. Note that the first law of cosines cannot be generalized to this setting as the
triangle in question has two infinitely long sides.

Proposition 5.22. Let A,B P Hn and let C P B8Hn. Then

cosh c “ 1` cosα cos β
sinα sin β . (5.3)

B

β

α

β

α

A

Figure 5.13 —

Proof. By proposition 5.21, it is enough to consider the hyperbolic plane. We use the
upper halfplane model and normalize, using Proposition 5.17 with x1 “ C, x2 and x3 the
endpoints of the geodesic line through A and B, and y1 “ 8, y2 “ ´1 and y3 “ 1, so that
A and B are on the Euclidean unit circle and C “ 8.

Now, A “ p´ cosα, sinαq and B “ pcos β, sin βq. The result follows from equation
(5.2), as

1` }A´B}
2

2A2B2
“ 1` pcosα ` cos βq2 ` psinα ´ sin βq2

2 sinα sin β “
1` cosα cos β

sinα sin β .
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The special case of equation (5.3) with β “ π
2 :

cosh c “ 1
sinα (5.4)

is known as the angle of parallelism. Another useful form of equation (5.4) is

c “ log cot α2 . (5.5)

Note that equation (5.3) agrees with the second law of cosines if we define that

the angle at a vertex at infinity is 0.

From now on, we will use this convention.

5.7 Halfspaces and polytopes
Proposition 4.20 implies that hyperbolic hyperplanes are bisectors of two distinct points
in Hn. Using this, we can prove

Proposition 5.23. Hyperplanes in the upper halfspace model are Euclidean hyperplanes
orthogonal to the boundary at infinity or intersections with the upper halfspace of Euclidean
spheres whose center is in the boundary at infinity.

Proof. Let x, y be points in the upper halfplane model. Using equation 5.2, we see that
the bisector of x and y consists of the solutions z in the upper halfspace of the equation

}x´ z}

xn
“
}y ´ z}

yn
. (5.6)

If xn “ yn, then equation 5.6 defines an affine plane in En that is orthogonal to the
boundary at infinity because it is a translate of the orthogonal complement of the x ´ y
whose nth coordinate is 0.

If xn ‰ yn, then equation 5.6 defines a sphere centered at yn
xn´yn

x ` xn
yn´xn

y, which is
in the boundary at infinity.

The two connected components of the complement of a hyperplane P Hn are open hyper-
bolic halfspaces. Their closures in Hn are closed hyperbolic halfspaces.

Lemma 5.24. Closed and open halfspaces are convex in Hn.

Proof. Exercise.

If I is a finite or countable index set and pHiqiPI is a collection of closed halfplanes in Hn

with nonempty intersection P “
Ş

iPI Hi such that pBHiqiPI is a locally finite collection of
hyperplanes,a then P is a locally finite polytope in Hn.
In dimension n “ 2, polytopes are polygons and in dimension n “ 3, polyhedra.

aThis means that for any compact K Ă Hn, the set ti P I : K X BHi ‰ Hu is finite.
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Figure 5.14 — Three polygons in the upper halfplane model of the hyperbolic plane.

Lemma 5.25. Let X be a uniquely geodesic metric space. Let Kα Ă X be convex sets for
all α P A. Then

Ş

αPAKα is convex or empty.

Proof. Exercise.

Proposition 5.26. Polytopes in Hn are convex.

5.8 Riemannian metrics, area and volume
The Riemannian metrics of the ball and upper halfspace models are conformal metrics:
their expressions are a positive function times the Euclidean Riemannian metric of the
underlying subset of En.

The Riemannian structure defines a natural volume form and a volume measure on
hyperbolic space: If V is for example an open subset of n-dimensional hyperbolic space,
and λn is the n-dimensional Lebesgue measure, the volume of V is

VolpV q “
ż

V

2n dλnpxq
p1´ }x}2qn

in the Poincaré ball model and

VolpV q “
ż

V

dλnpxq

xnn

in the upper halfspace model.

Proposition 5.27. The volume of a ball in hyperbolic space is

VolpBpx, rqq “ VolpSn´1
q

ż r

0
sinhn´1 t dt.

In the hyperbolic plane, we have

VolpB2
px, rqq “ 4π sinh2 r

2

for all x P H2.
The length of a circle of radius r in H2 is 2π sinh r.
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Proof. As the isometry group acts transitively, the volume of each ball of a fixed radius
is the same. Thus, it suffices to consider balls centered at the origoin in the Poincaré
ball model. Recall that the Euclidean radius of a ball of hyperbolic radius r centered at
0 in the Poincaré model is tanh r

2 . In order to compute the volume of the ball of radius
r, recall that the Lebesgue measure is given in the spherical coordinates (x Ø pr, uq) by
dλnpxq “ rn´1dVolSn´1puq, and thus, using a change of variables sØ tanh t

2 , we get

VolpBpx, rqq “ VolpBp0, rqq “ VolpSn´1
q

ż tanh r
2

0

2nsn´1

p1´ s2qn
ds

“ 2n´1 VolpSn´1
q

ż r

0
sinhn´1 t

2 coshn´1 t

2 dt

“ VolpSn´1
q

ż r

0
sinhn´1 t dt.

The computation of the length of a circle is left as an execise.

It is clear from the expression of the volume, that for all x P Hn, we have

VolpBnpx, rqq „ VolpSnq
2n´1 epn´1qr ,

as r Ñ 8. Thus, the volume of balls in hyperbolic space grows exponentially with the
radius, much faster than in Euclidean space.

Proposition 5.28. The area of the polygon in H2 bounded by a generalized triangle with
angles α, β and γ is π ´ pα ` β ` γq.

Proof. Any triangle T can be described as the difference of two triangles with one vertex
at infinity. By the additivity of area and angles in the hyperbolic plane, we may restrict
to this special case. Using Proposition 5.17, we can assume that that A and B are on the
Euclidean unit circle and that the vertex C has been moved to infinity. Now, the area of
T is

ż

T

dλ2pxq

x2
2

“

ż cosβ

´ cospαq

ż 8

?
1´x2

1

dx1dx2

x2
2

“

ż cosβ

cospπ´αq

dx1
a

1´ x2
1
“ π ´ α ´ β .

Exercises
5.1. Fill in the details of the proof of Proposition 5.4.
5.2. Compute the radius of the red ball in Figure 5.5.
5.3. Fill in the details of the proof of Proposition 5.9.
5.4. Prove that a ball in hyperbolic space has a unique center.
5.5. Compute the hyperbolic radius and center of the ball tz P H2 : |z ´ ci| ď 1u for all
c ą 1 in the upper halfplane model of H2.5

5.6. Prove Lemma 5.11.
5.7. Complete the proof of Proposition 5.12.6

5We identify the upper halfplane model of H2 with the upper halfplane in C.
6Use Lemma 5.11 for inversions.
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5.8. Prove Proposition 5.18.
5.9. Prove Lemma 5.20(2).
5.10. Prove Proposition 5.21.
5.11. Prove Lemma 5.24.
5.12. Prove Lemma 5.25.
5.13. Prove that the length of a circle of radius r in H2 is 2π sinh r.
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Appendix A

Inversive geometry

A.1 One-point compactification
Lemma A.1. Let pX, τq be a topological space and let 8 be a point that is not an element
of X. Let pX “ X Y t8u and let

τ8 “ tU Ă pX : 8 P U ja pX ´ U Ă X is closed and compactu.

Then pτ “ τ Y τ8 is a topology in pX.

Proof. See the basic course in topology.

Let X be a topological space that is not compact. The topological space pX is the one
point compactification or the Aleksandroff compactification of X.

Theorem A.2. Let pX, τq be a topological space that is not compact. The one point
compactification of X is compact and pXq

pτ “ pX. The topology of pX induces the original
topology of X on X.

Proof. Let pUαqαPJ be an open cover of pX. There is an index α8 P J such that 8 P Uα8 .
The sets UαXX form an open cover of X´Uα8 in X. As X´Uα8 is compact in X, there
is some finite J0 Ă J such that pX ´ Uα8 Ă

Ť

αPJ0
Uα. The finite collection pUαqαPJ0Ytα8u

is a cover of pX.
The subset X is dense in pX because, by definition, every open neighbourhood of

8 intersects X. The topology pτ induces the topology τ in X because τ consists, by
definition of elements of τ and of sets formed as the union of an element of τ and t8u.

Example A.3. The stereographic projection S : Sn ´ te3u Ñ En “ En ˆ t0u Ă En`11is
the mapping

S pxq “
px1, x2, . . . , xnq

1´ xn`1
.

1from the north pole to the level of the equator
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70 Inversive geometry

It is a homeomorphism that maps each point x P Sn ´ ten`1u to the unique point in En
(thought of as the hyperplane E2ˆt0u in E3)on the affine line through en`1 and x. Setting
S pen`1q “ 8 we obtain a homeomorphism S : Sn Ñ xEn.

The one-point compactification of the Euclidean plane appears in complex analysis
as the Riemann sphere C Y t8u. For example, the mapping z ÞÑ 1

z
becomes a self-

homeomorphism of the Riemann sphere if we set 0 ÞÑ 8 and 8 ÞÑ 0.

S pyq

e3

x

S pxq

y

Figure A.1 — Stereographic projection is the restriction to the sphere of an inversion
whose center is the

A.2 Inversions
In this short section, we review some basic material on inversions.

Let c P En and let α P R´ t0u. The mapping ιc,α : En ´ tcu Ñ En ´ tcu,

ιc,αpxq “ c` α
x´ c

}x´ c}2
,

is an α-inversion with a pole at c. The number α is called the power of the inversion.

Example A.4. In the complex plane,

ι0,1pzq “
z

|z|2
“

1
z̄
.
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Clearly, for all x P En ´ tcu, we have

px´ c | ιc,αpxq ´ cq “ α

and ιc,α ˝ ιc,α “ id |En´t0u. If α ą 0, then the restriction of ιc,α to the sphere of center c
and radius

?
α is the identity. The points x and ιpxq are on the same ray starting at c,

and they satisfy
}x´ c}}ιc,r2pxq ´ c} “ r2 .

Let c P En and r ą 0. The mapping ιc,r2 is the inversion in the sphere of radius r centered
at c.

We extend the definition of an inversion ιc,r to the one-point compactification pEn of
En by setting ιc,αpcq “ 8 and ιc,αp8q “ c.

Example A.5. ιen`1,2|Sn “ S : Sn Ñ pEn.

Spheres and hyperplanes in En are generalized hyperplanes.

Proposition A.6. Let c P En and let α P R´ t0u. The inversion ιc,α maps

(1) the affine subspaces that contain c to themselves,

(2) spheres passing through c to affine hyperplanes that do not contain c,

(3) affine hyperplanes that do not contain c to spheres passing through c, and

(4) spheres that do not pass through c to spheres that do not pass through c.

Proof. (1) is clear from the expression of the inversion.
(2) Clearly, it is enough to consider the case c “ 0. For any a P En ´ t0u, the sphere
BBpa, }a}q passes through 0 and

BBpa, }a}q “ tx P En : }x}2 “ 2px | aqu .

This implies that for any x P BBpa, }a}q, we have i0,αpxq “ αx
2px | aq , and this gives pipxq | aq “

α
2 . Thus,

i0,αpBBpa, }a}qq “
 

y P En : py | aq “ α

2
(

,

which is a hyperplane.
(3) follows from (2) and the fact that i20,α “ id |En´t0u.
(4) Consider the sphere BBpa, ρq with ρ ‰ }a}. If x1, x2 P BBpa, ρq are on a line L (through
0), then x1`x2

2 is the orthogonal projection of a on L, and we have

}x1 ` x2}
2
` }x1 ` x2 ´ 2a}2 “ 4}a}2

and
}x1 ´ x2}

2
` }x1 ` x2 ´ 2a}2 “ 4}ρ2

}
2 .

Thus,
px1 |x2q “ }a}

2
´ ρ2 ,
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and therefore x2 “ ι0,}a}2´ρ2px1q, and we have “ ι0,}a}2´ρ2pBBpa, ρqq “ BBpa, ρq. A simple
computation shows that for any α, β P R´ t0u, we have ια ˝ ιβpxq “ α

β
x for all x ‰ 0, so

we get
ι0,α “

α

}a}2 ´ ρ2 ι0,}a}2´ρ2 ,

which implies ι0,αpBBpa, ρqq “ pBBpa, ρqq.

Let D be an open subset of En. A mapping F : D Ñ En is locally conformal, if it
preserves the angles between tangent vectors. Clearly, any mapping whose differential
at any point is the composition of an orthogonal transformation and a dilation is locally
conformal. A homeomorphism which is a locally conformal map is called a conformal
mapping. Sometimes one wants to be more precise and say that mappings which preserve
angles and orientation are (directly) conformal and those that preserve angles but reverse
the orientation are indirectly conformal.

Proposition A.7. Let c P En and let α P R´ t0u. The inversion ιc,α is conformal.

Proof. Observe that ιc,α “ Tc ˝ ι0,α ˝ T´c. Translations and dilation by α are clearly
conformal mappings so it suffices to prove the claim for the standard inversion ι0,1. Note
that

Dι0,1pxq “
1
}x}2

In ´
2
}x}4

xTx ,

where Tx is the transpose of x when x is a column vector. Observe that TDι0,1pxq “ Dι0,1pxq
and that

Dι0,1pxq
2
“

1
}x}2

I3 ´
4
}x}6

xxT `
4
}x}8

xTxxTx “
1
}x}2

In .

Thus, Dι0,1pxq is a multiple of an orthogonal matrix.

Exercises
A.1. Fill in the details Example A.5.
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Chapter 6

Gromov-hyperbolic spaces

Gromov-hyperbolic spaces form a class of geodesic metric spaces where some geomet-
ric features are similar to hyperbolic space. There are several equivalent definitions of
Gromov-hyperbolicity in the literature, most of which formalize the idea that triangles
are thin or slim in these spaces in a controlled way. In this chapter, we introduce Gromov-
hyperbolic spaces in the same way as they are defined in [BH] and the introduction of
[GdlH]. We will also discuss the definition used by [BS], and we will show that these
definitions give the same class of Gromov hyperbolic spaces.

6.1 δ-hyperbolic spaces
The first definition captures a feature of triangles in hyperbolic spaces:

Let X be a geodesic metric space and let δ ą 0. A triangle ∆ satisfies the Rips conditiona

with constant δ if any side of ∆ is contained in the union of the closed δ-neighbourhoods
of the other two.

aor is δ-slim as in [BH]

Proposition 6.1. All triangles in Hn satisfy the Rips condition with constant logp1`
?

2q.

Proof. By Proposition 4.29, it suffices to consider H2. Let x, y and z be the vertices of
a nondegenerate triangle in the upper halfplane model of the hyperbolic plane. Using
the transitivity properties of the isometry group,1 we may assume that the geodesic line
containing the edge rx, ys is s´1, 1r, which is the intersection of the Euclidean unit circle
with the upper halfplane. Furthermore, using reflections in the imaginary axis and the
Euclidean unit circle, we may assume that Re x ă Re y and that the Euclidean distance
of z from 0 is greater than 1. Using an isometry ι´1,2 ˝Lt ˝ ι´1,2 with an appropriate t P R,
we may assume that z is in the imaginary axis as in Figure 6.1.

1See Proposition 5.17.
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π
4

logp1`
?

2qx

z

y

Figure 6.1 — The ideas of Example 6.2.

Let us show that rx, ys Ă N logp1`
?

2qprx, zsqYN logp1`
?

2qpry, zsq, using the ideal triangle
with vertices at 0, 1 and 8. If p P rx, ys Ă H2, then the shortest geodesic segment from
s´1,8r to p passes through rx, zsY rz, ys, and similarly for the shortest geodesic segment
from s´1,8r to p. It is easy to check with the help of Lemma 5.20 that s´1, 1r is contained
in the union of the closed logp1`

?
2q-neighbourhoods2 of the geodesic lines s´1,8r and

s´1,8r. Thus, the distance from p to rx, zs Y rz, ys is at most logp1`
?

2q.

Let X be a geodesic metric space. If all triangles in X satisfy the Rips condition with
constant δ, then X is a δ-hyperbolic space.
If X is δ-hyperbolic for some δ ą 0, then X is A Gromov hyperbolic space.

Example 6.2. (1) We showed in Proposition 6.1 that Hn is logp1`
?

2q-hyperbolic.

(2) En is not a hyperbolic space if n ě 2. If ∆ is a non-degenerate triangle in En, the
midpoint of any one of the sides is at a positive finite distance s from the union of the
two others. If k ą 0, the image of ∆ under the homothety (stretch map) x ÞÑ kx is a
triangle where the corresponding distance is ks. Letting k grow to 8 proves the claim.

(3) If X is a a geodesic metric space such that the diameter diamX of X is finite, then
X is diamX-hyperbolic. We are not interested in spaces like this.

(4) Any R-tree is 0-hyperbolic: Let X be an R-tree and let x, y, z P X. If rx, ys X rx, zs “
txu, then rx, ys Y rx, zs is an arc with endpoints y and z. Thus, it is the unique arc that
joins y to z, in particular, rx, ysY rx, zs “ ry, zs. If rx, ysX rx, zs “ rx,ws for some w ‰ x,
then rw, ys X rw, zs “ twu and ry, zs “ ry, ws X rw, zs Ă rx, ys Y rx, zs.

In particular, E1 is Gromov-hyperbolic.

(5) The bi-infinite simplicial3 ladder is Gromov-hyperbolic. See Figure 6.3.

2arcosh 1
cos π

4
“ logp1`

?
2q.

3Recall from section 1.4 that this means we have a metric graph with constant edge length 1.
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x

y

z

w

‚

‚

‚

Figure 6.2 — A triangle with vertices x, y and z in a tree.

Figure 6.3 — The bi-infinite simplicial ladder.

6.2 Gromov product
Let X be a metric space and let x, y, z P X. There is a unique triple of positive numbers
rx, ry, rz ą 0 such that

$

’

&

’

%

rx ` ry “ dpx, yq

rx ` rz “ dpx, zq

ry ` rz “ dpy, zq .

(6.1)

The solutions to this system of equation are important enough to have a name:

Let X be a metric space and let x, y, z P X. The Gromov product of y and z with respect
to x is

py | zqx “
1
2pdpx, yq ` dpx, zq ´ dpy, zqq .

Note that the triangle inequality implies that the Gromov product is nonnegative:
py | zqx for all x, y, z P X in any metric space X.
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x y

z

py | zqx

py | zqx px | zqy

px | zqy

px | yqz

px | yqz

Figure 6.4 — The geometric meaning of the solution of the system (6.1).

A metric tree with three sides and four vertices such that one vertex has degree 3 and
three vertices have degree 1 is a tripod.

3 1

2

Figure 6.5 — The tripod T∆ of a triangle ∆ with side lengths 3, 4 and 5.

Lemma 6.3. Let X be a geodesic metric space and let ∆ be a triangle with vertices x, y, z.
Let T∆ be the tripod with side lengths py | zqx, px | zqy and px | yqz. There is mapping
f∆ : ∆ Ñ T∆ such that the restriction of f∆ to any side of ∆ is an isometry.

Proof. This is clear as the Gromov products give the solution of the system of equations
(6.1).

Note: In many statements and proofs starting from Lemma 6.4, the notation
ra, bs means some or any geodesic segment with endpoints a and b in places
where the actual choice of the possible geodesic segments is not important.

Lemma 6.4. Let X be a geodesic metric space. Let ∆ be a triangle with vertices x, y, z P
X. Then

py | zqx ď dpx, ry, zsq .
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Proof. Let w P ry, zs be a closest point to x. By Lemma 6.3, there is a point rw P

rx, ys Y rx, zs such that f∆pwq “ f∆p rwq. We may assume that rw P rx, ys. Note that
dpy, rwq “ dpy, wq and, as w P ry, zs, py | zqx ď dpx, rwq. Thus,

py | zqx ď dpx, rwq “ dpx, yq ´ dpy, rwq “ dpx, yq ´ dpy, wq ď dpx,wq “ dpx, ry, zsq .

Let X be a geodesic metric space and let δ ą 0. A triangle ∆ in X is δ-thin if dpa, bq ď δ
for all b P f´1

∆ pf∆paqq and all a P ∆.

Lemma 6.5. Let X be a geodesic metric space. If ∆ is a δ-thin triangle with vertices
x, y, z P X. Then

py | zqx ď dpx, ry, zsq ď py | zqx ` δ .

Proof. The first inequality holds by Lemma 6.4. To prove the second, let v0 be the central
vertex of T∆, and let a P f´1

∆ pv0q X rx, ys and b P f´1
∆ pv0q X ry, zs. By assumption, we get

dpx, ry, zsq ď dpx, aq ` dpa, bq ď py | zqx ` δ .

Lemma 6.6. A δ-thin triangle satisfies the Rips condition with constant δ.

Proof. Exercise.

Proposition 6.7. Let X be a δ-hyperbolic space. Then all triangles in X are 4δ-thin.

Proof. Assume that there is a triangle ∆ with vertices x, y, z P X that is not 4δ-thin. Then
(changing the names of the vertices if necessary) there are points u P rx, ys and v P rx, zs
such that f∆puq “ f∆pvq and dpu, vq ą 4δ. By continuity and as we are assuming a strict
inequality dpu, vq ą 4δ, we may choose the points u and v such that

dpx, uq “ dpx, vq ă py | zqx . (6.2)

x

y

z

u

v f∆pxq f∆pzq

f∆pyq

f∆puq “ f∆pvq

Figure 6.6 — The choice of u and v.

Lemma 6.4 applied to triangles with vertices x, u and v, and with vertices y, u and v
implies that

dpv, rx, ysq “ min
`

d
`

v, rx, us
˘

, d
`

v, ru, ys
˘˘

ě min
`

px |uqv, py |uqv
˘

. (6.3)
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Furthermore, using the assumption that dpx, uq “ dpx, vq,

2px |uqv “ dpx, vq ` dpu, vq ´ dpx, uq “ dpu, vq

and

2py |uqv “ dpy, vq ` dpu, vq ´ dpy, uq

“ dpy, vq ` dpu, vq ´ pdpy, xq ´ dpx, uqq

“ dpu, vq ` pdpy, vq ` dpx, vq ´ dpy, xqq

“ dpu, vq ` 2px | yqv ě dpu, vq

Combining these observations with the inequality (6.3), we get

dpv, rx, ysq ě
1
2dpu, vq ą 2δ.

In particular, dpx, vq ą 2δ and there is a unique point p P rx, vs with dpp, vq “ δ and

dpp, rx, ysq ą δ . (6.4)

It remains to estimate the distance from p to ry, zs: Lemma 6.4 and the inequality (6.2)
imply

dpp, ry, zsq ě dpx, ry, zsq ´ dpp, xq ě py | zqx ´ dpp, xq

ą dpx, vq ´ dpx, pq “ dpp, vq “ δ .
(6.5)

The inequalities (6.4) and (6.5) show that the triangle ∆ does not satisfy the Rips condi-
tion with constant δ.

6.3 Approximation of paths by geodesics
In this section, we prove a technical result that is useful in section 7.2. The proof makes
strong use of δ-hyperbolicity.

Proposition 6.8. Let X be a δ-hyperbolic space. Let γ : r0, 1s Ñ X be a rectifiable
path4 and let j : r0, dpγp0q, γp1qs Ñ X be a geodesic segment such that jp0q “ γp0q and
jp1q “ γp1q. For any t P r0, dpγp0q, γp1qqs,

dpjptq, γpr0, 1sqq ď δ log2 `pγq ` 1 .

Proof. We may assume that `pγq ě 1 and that γ is parametrized proportional to ar-
clength.5

Let N P N such that `pγq
2 ď 2N ď `pγq. Let t P r0, dpγp0q, γp1qqs. Let ∆1 be a triangle

with vertices γp0q, γp1q and γp1
2q such that one of the sides is the image of the geodesic

segment j. As X is δ-hyperbolic,

γptq P N δ

`

„

γp0q, γp12q


˘

YN δ

`

„

γp
1
2q, γp1q



˘

.

December 7, 2020



6.3. Approximation of paths by geodesics 81

yN

γp1q

γp1
2q

γp0q jptq

γp1
4q

y2

y1

Figure 6.7 —

Thus, there is a point y1 P
“

γp0q, γp1
2q
‰

Y
“

γp1
2q, γp1q

‰

such that dpjptq, y1q ď δ. If y1 P
“

γp0q, γp1
2q
‰

, let ∆2 be a triangle with vertices γp0q, γp1
4q and γp

1
2q. Otherwise, let ∆2 be

the triangle with vertices γp1
2q, γp

3
4q and γp1q.

Assume that we are in the first case. Then, using δ-hyperbolicity as above, there is
a point y2 P

“

γp0q, γp1
4q
‰

Y
“

γp1
4q, γp

1
2q
‰

such that dpy1, y2q ď δ. We continue inductively,
and construct a finite sequence of points y1, y2, . . . , yN such that dpyk, yk`1q ď δ for all
1 ď k ď N´1. Note that, by construction, yN P

“

γp k2N q, γp
k`1
2N q

‰

for some 0 ď k ď 2N´1,
and therefore, dpyN , γpr0, 1sqq ď `pγq

2N`1 ď 1. The triangle inequality gives the estimate

d
`

jptq, γpr0, 1s
˘

q ď Nδ ` 1 ď log2 `pγq ` 1 .

Note that in the Euclidean plane, the distance to from the center of a half-circle to the
half-circle grows linearly with the radius. In the hyperbolic plane, we saw in Proposition
5.27 that the length of a circle of radius r is 2π sinh r „ πer.

Exercises
6.1. Prove Lemma 6.6.
6.2. Let T be a simplicial tree. Let x0 P X and let ρ1, ρ2 : r0,8r Ñ T be geodesic rays
such that ρ1p0q “ ρ2p0q “ x0 and ρ1 ‰ ρ2. Prove that the limit limtÑ8pρ1ptq | ρ2ptqqx0 ex-
ists.6

6.3. Let ρ1, ρ2 : r0,8r Ñ H2 be geodesic rays such that ρ1p0q “ ρ1p0q “ 0 in the Poincaré
disk model and ρ1 ‰ ρ2. Prove that pρ1ptq | ρ2ptqq0 is bounded.7

6.4. Let ρ1, ρ2 : r0,8r Ñ E2 be geodesic rays such that ρ1p0q “ ρ1p0q “ 0 and ρ1 ‰ ´ρ2.
Prove that pρ1ptq | ρ2ptqq0 is not bounded.

4A path γ is rectifiable if `pγq ă 8.
5See [BH, Remark I.1.22] for the second assumption.
6Prove that the function t ÞÑ pρ1ptq | ρ2ptqqx0 is constant for large t.
7Lemma 6.5 and Proposition 4.26 can be useful.
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Chapter 7

Quasi-isometries and hyperbolicity

In this chapter, we introduce quasi-isometric embeddings and quasi-isometries that are
important classes of mappings in coarse geometry. These mappings distort large distances
moderately but in smaller scale they may behave badly but not too badly. In particular,
quasi-isometric embeddings are allowed to have discontinuities and not to be injective.

In sections 7.4 and 7.5 we discuss some basic objects of geometric group theory and
group actions on geodesic metric spaces. We conclude the chapter with a proof of an
important result of Švarc and Milnor.

7.1 Quasi-isometric embeddings and
quasi-isometries

In this section, we study a class of mappings between metric spaces that is natural in the
study of the large scale geometry of metric spaces.

Let pX, dXq and pY, dY q be metric spaces and let λ ě 1, c ě 0. A mapping F : X Ñ Y is
a pλ, cq-quasi-isometric embedding if

1
λ
dXpx, x

1
q ´ c ď dY pF pxq, F px

1
qq ď λdXpx, x

1
q ` c

for all x, x1 P X.

The definition of quasi-isometric embeddings does not require continuity or injectiv-
ity of the mapping. In particular, that quasi-isometric embeddings do not have to be
embeddings in the usual sense.
Example 7.1. (1) Isometric embeddings are p1, 0q-quasi-isometric embeddings.
(2) If X is a bounded metric space and x0 P X, then the constant mapping x ÞÑ x0 is
a quasi-isometric embedding. The inclusion mapping tx0u ãÑ X is a quasi-isometric
embedding.
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The floor, ceiling and nearest integer functions are defined by setting for all t P E,

ttu “ maxtm P Z : m ď tu ,

rts “ mintm P Z : m ě tu , and

rts “

#

ttu, if t P
Ť

nPZrn, n`
1
2s

rts, otherwise .

In the definition of the nearest integer mapping, we have made a choice for the elements
of Z` 1

2 to map them to the smaller of the two nearest integers.
Example 7.2. The functions t¨u, r¨s, r¨s : E1 Ñ Z are p1, 1q-quasi-isometric embeddings.

Let I Ă E1 be an interval. A pλ, cq-isometric embedding i : I Ñ X is a pλ, cq-quasigeodesic.
More precisely, it is

(1) a pλ, cq-quasigeodesic segment, if I “ r0, bs is a (closed) bounded interval,

(2) a pλ, cq-quasigeodesic ray, if I “ r0,`8r, and

(3) a pλ, cq-quasigeodesic line, if I “ E1.

Lemma 7.3. Let X, Y and Z be metric spaces.
(1) If F : X Ñ Y is a pλF , cF q-quasi-isometric embedding and G : Y Ñ Z is a pλG, cGq-
quasi-isometric embeddings, then G˝F is a pλGλF , λGcF `cGq-quasi-isometric embedding.
(2) If j : I Ñ X is a geodesic and F : X Ñ Y is a pλ, cq-quasi-isometric embedding, then
F ˝ j is a pλ, cq-quasigeodesic.

Proof. Exercise.

Let pX, dXq and pY, dY q be metric spaces and let λ ě 1, c ě 0. If F : X Ñ Y and
F : Y Ñ X are quasi-isometric embeddings and there is a constant K ě 0 such that

dXpx, F ˝ F pxqq ď K

and
dY py, F ˝ F pyqq ď K

for all x P X and all y P Y , then F is a quasi-isometry, F is a quasi-inverse of F , and X
and Y are quasi-isometric spaces.

Lemma 7.4. If F : X Ñ Y and G : Y Ñ Z be quasi-isometries, then G ˝ F is a quasi-
isometry.

Proof. Let F and G be the quasi-inverses of F and G. Lemma 7.3 implies that G ˝F and
F ˝G are quasi-isometric embeddings. Let K ě 0 be such that dpy,G ˝Gpyqq ď K for all
y P Y , and let G be a pλ, cq quasi-isometric embedding. Now, dpF pxq, G ˝GpF pxqqq ď K
for all x P X, and thus,

dpx, pF ˝Gq ˝ pG ˝ F qpxqq ď dpx, F pF pxqqq ` d
`

F pF pxqq, F pG ˝GpF pxqqq
˘

ď λK ` c
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for all x P X. The corresponding estimate for dpy, pG ˝ F q ˝ pF ˝ Gqpyqq is shown in the
same way. Thus, F ˝G is a quasi-inverse of G ˝ F .

Example 7.5. (1) If X is a bounded metric space and x0 P X, then the constant
mapping x ÞÑ x0 is a quasi-isometry, the identity is its quasi-inverse.
(2) The functions t¨u, r¨s, r¨s : E1 Ñ Z are quasi-isometries. These three functions are
quasi-inverses of the inclusion map Z ãÑ E1.

Proposition 7.6. Let pX, dXq and pY, dY q be metric spaces. Let F : X Ñ Y be a quasi-
isometric embedding such that suptdY py, F pXqq : y P Y u ă 8.1 Then F is a quasi-
isometry.

Proof. Exercise.

Example 7.7. The space Zn with the metric induced from En is quasi-isometric with
En: the inclusion map is an isometric embedding and dpx,Znq ď

?
n

2 for all x P En.
The main result of this chapter is the stability of Gromov-hyperbolicity under quasi-

isometries. We will prove it at the end of section 7.3 as a corollary of the results in section
7.2.

Theorem 7.8. Let X and Y be geodesic metric spaces. If X and Y are quasi-isometric,
then X is Gromov-hyperbolic if and only if Y is Gromov-hyperbolic.

7.2 Stability of quasigeodesics
In this section, we will prove that the image of a pλ, cq-quasigeodesic segment in a δ-
hyperbolic space is not far from a geodesic segment connecting its endpoints, and that
the distance of these two sets depends only on the parameters λ, c and δ.

Let X be a metric space. The Hausdorff distance of two nonempty subsets A,B Ă X is

dHauspA,Bq “ inftε ą 0 : A Ă NεB, and B Ă NεAu .

The Hausdorff distance of mappings f, g : Z Ñ X is

dHauspf, gq “ dHauspfpZq, gpZqq .

We use the Hausdorff distance to measure how much two subsets of a metric space
differ but, in the general case, Hausdorff distance is not a metric because the distance of
a bounded set and an unbounded set is infinite and because the Hausdorff distance of a
set and its closure is 0.

Let E ‰ H. A function d : E ˆ E Ñ r0,8s is an extended pseudometric in E if

(1) dpx, xq “ 0 for all x P E,

(2) dpx, yq “ dpy, xq for all x, y P E, and

(3) dpx, yq ď dpx, zq ` dpz, yq for all x, y, z P E (the triangle inequality).
1The image F pXq is quasidense in Y .
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Lemma 7.9. Let X be a metric space. Hausdorff distance is an extended pseudometric
in the set of nonempty subsets of X.

Proof. Exercise.

Theorem 7.10. Let δ ě 0, λ ě 1 and c ě 0. There is a constant R “ Rpδ, λ, cq ě 0 such
that the following holds: If γ : I Ñ X is a pλ, cq-quasigeodesic segment in a δ-hyperbolic
space X, then the Hausdorff distance of γpIq from any geodesic segment with the same
endpoints as γ is at most R.

Proof. Let γ : r0, bs Ñ X be a pλ, cq-quasigeodesic segment. For convenience, to replace b
by an integer, let γ1 : r0, rbss Ñ X,

γ1ptq “

#

γptq, if t P r0, bs
γpbq otherwise .

The mapping γ1 is a pλ, c` 1q-quasigeodesic segment that has the same image as γ.
Step 1. First, we construct a continuous quasigeodesic segment γ2 close to γ1. Let
σi : ri´1, is Ñ X be affinely reparametrized geodesic arcs or constant mappings such that
σipi´ 1q “ γ1pi´ 1q and σipiq “ γ1piq for all i P t1, 2, . . . , rbsu. Let

γ2 “ σ1 ˚ σ2 ˚ ¨ ¨ ¨ ˚ σb .

This mapping is continuous as the product (or concatenation) of geodesic arcs.

γpbq “ γ2prbsq

γ2pr0, rbssq

γpr0, bsq

γp0q “ γ2p0q

Figure 7.1 — The possibly disconnected quasigeodesic arc γ and a continuous quasi-
geodesic arc γ2.

As γ1 is a pλ, c` 1q-quasigeodesic segment, we have

dpγ1pi´ 1q, γ1piqq ď λ` c` 1 (7.1)

for all i P t1, 2, . . . , rbsu. As σi is parametrized relative to the arclength for all i, this
implies dpγ2ptq, γ2prtsqq ď

λ`c`1
2 for all t P r0, rbss. By the pλ, c ` 1q-quasigeodesity of γ1,

we have
dpγ1ptq, γ1prtsqq ď λ

ˇ

ˇt´ rts
ˇ

ˇ` c` 1 ď λ

2 ` c` 1

for all t P r0, rbss. The triangle inequality and the fact that the mappings γ1 and γ2 coincide
at the integers gives now

dpγ1ptq, γ2ptqq ď λ`
3
2pc` 1q ,
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and as a consequence,

dHaus
`

γ1pr0, rbssq, γ2pr0, rbssq
˘

ď λ`
3
2pc` 1q . (7.2)

It remains to show that γ2 is quasigeodesic. Let 0 ď t, t1 ď rbs. Using the triangle
inequality, the fact that γ1 and γ2 agree at the integers in r0, rbss and the definition of a
quasigeodesic segment, we get the estimate

dpγ2ptq, γ2pt
1
qq ď d

`

γ2prtsq, γ2prt
1
sq
˘

` d
`

γ2ptq, γ2prtsq
˘

` d
`

γ2pt
1
q, γ2prt

1
sq
˘

ď d
`

γ1prtsq, γ1prt
1
sq
˘

`
λ` c` 1

2 `
λ` c` 1

2
ď λ

ˇ

ˇrts ´ rt1s
ˇ

ˇ` c` 1` λ` c` 1
ď λ|t´ t1| ` λ` 2c` 2` λ ,

and, similarly,

dpγ2ptq, γ2pt
1
qq ě d

`

γ2prtsq, γ2prt
1
sq
˘

´ pλ` c` 1q

ě
1
λ

ˇ

ˇrts ´ rt1s
ˇ

ˇ´ pλ` 2pc` 1qq (7.3)

ě
1
λ
|t´ t1| ´

1
λ
´ pλ` 2pc` 1qq .

Combining these two estimates show that γ2 is a pλ, 2pλ` c` 1qq-quasigeodesic segment.
Step 2. Let j : r0, dpγp0q, γpbqqs Ñ X be a geodesic segment such that jp0q “ γp0q and
jp1q “ γp1q. We now prove that there is a constant H “ Hpδ, λ, cq such that

j
`

r0, dpγp0q, γpbqqs
˘

Ă N H

`

γ2pr0, rbssq
˘

.

By continuity and compactness,

D “ max
 

dpjptq, γ2pr0, rbssq : t P r0, dpγp0q, γpbqqs
(

ă 8 .

Let t0 P r0, dpγp0q, γpbqqs such that dpjpt0q, γ2pr0, rbssqq “ D. In particular,

dpγp0q, jpt0qq, dpγp1q, jpt0qq ě D

and Bpjpt0q, Dq X γ2pr0, rbssq “ H.
Let t´ “ maxp0, t0 ´ 2Dq and t` “ minp0, t0 ` 2Dq. Let z´, z` P γ2pr0, rbssq such that

dpjpt´, z´q, dpjpt`q, z`q ď D. Let s´, s` P r0, 1s such that z˘ “ γ2ps˘q. Let η be the path
obtained by concatenating a geodesic segment from jpt´q to z´, γ2|rs´,s`s and a geodesic
segment from z` to jpt`q. The distance from jpt0q to the image of η is at least D and the
triangle inequality implies that

dpz´, z`q ď 6D . (7.4)

Recall that γ2 is a concatenation of reparametrized geodesic arcs and constant map-
pings. Thus, using equation (7.1), we have

`pγ2|rs´,s`sq ď pλ` c` 1qprs`s ´ rs´s ` 2q .
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η

jpt´q t0 jpt`q

z`z´

Figure 7.2 — The path η.

Combining this with the inequalities (7.3) and (7.4), we get that there are nonnegative
constants K,K 1 such that

`pηq ď KD `K 1
` 2D “ pK ` 2qD `K 1 .

Proposition 6.8 gives the estimate

D ď δ log2 `pηq ` 1 ď δ log2pK ` 2qD `K 1
q ` 1 .

This inequality does not hold for large D and it gives the existence of an upper bound
D0 for D that only depends on δ, λ and c. We have proved that

j
`

r0, dpγp0q, γpbqqs
˘

Ă N D0

`

γ2pr0, rbssq
˘

. (7.5)

Step 3. Let ru, vs Ă r0, rbss be a maximal interval such that γ2pru, vsq is contained in
the complement of ND0`1pjpr0, dpγp0q, γpbqqsqq. Note that by (7.5),

jpr0, dpγp0q, γpbqqsq Ă ND0`1pγ2|r0,urq YND0`1pγ2|sv,rbssq .

As jpr0, dpγp0q, γpbqqsq is connected and its subsets jpr0, dpγp0q, γpbqqsq XND0`1pγ2|r0,urq

and jpr0, dpγp0q, γpbqqsqXND0`1pγ2|rv,rbsrq are nonempty, they must intersect. Thus, there
are u1 P r0, ur, v1 P sv, rbss and t0 P r0, dpγp0q, γpbqqs such that

dpγ2pu
1
q, jpt0qq, dpγ2pv

1
q, jpt0qq ă D0 ` 1 .

In particular, dpγ2pu
1q, γ2pv

1qq ă 2pD0 ` 1q. As in Step 2, this implies

`pγ2|ru1,v1sq ď 2KpD0 ` 1q `K 1 ,

and we see that

γ2pr0, rbssq Ă N
pK`1qpD0`1q`K1

2

`

jpr0, dpγp0q, γpbqqsq
˘

. (7.6)

Equations (7.2), (7.5) and (7.6) give the claim of the theorem.
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7.3 Quasitriangles and the proof of Theorem 7.8
In this section, we introduce quasitriangles that are made up of quasigeodesic arcs and
use this tool to prove the invariance of Gromov-hyperbolicity under quasi-isometries.

Let X be a metric space and let λ ě 1 and c ě 0. A pλ, cq-quasitriangle in X is a triple
q∆ “ tj1, j2, j3u of pλ, cq-quasigeodesic segments such that the terminus of ji is the origin
of ji`1 with the index i considered cyclically mod 3.
The quasigeodesic segments j1, j2 and j3 are the sides of q∆.
The endpoints of the quasigeodesic segments j1, j2 and j3 are the vertices of ∆.

Lemma 7.3 implies that the image of a triangle by a quasi-isometric embedding is a
quasitriangle. Naturally, we extend the Rips condition2 to quasitriangles:

Let X be a geodesic metric space and let δ ą 0. A quasitriangle q∆ satisfies the Rips
condition (for quasigeodesic triangles) with constant M if any side of q∆ is contained in
the union of the closed M -neighbourhoods of the other two.

Corollary 7.11. Let X be a δ-hyperbolic space and let λ ě 1 and c ě 0. There is a
constant M “Mpδ, λ, cq such that all pλ, cq-quasitriangles of X satisfy the Rips condition
with constant M .

Proof. Exercise

Theorem 7.12. Let X be a geodesic metric space and let Y be a δ-hyperbolic space. Let
F : X Ñ Y be a pλ, cq-quasi-isometric embedding. Then there is a constant δ1 such that
X is δ1-hyperbolic.

Proof. Let j1 : I1 Ñ X, j2 : I2 Ñ X, j3 : I3 Ñ X be the sides of a triangle ∆ in X.
Corollary 7.11 implies that the quasitriangle with sides F ˝j1, F ˝j2 and F ˝j3 isMpδ, λ, cq-
thin.

Let t P I1. Corollary 7.11 implies that there is some s P I2 Y I3 such that

dpF ˝ j1ptq, F ˝ jkpsqq ďMpδ, λ, cq ,

where k P t1, 2u. This implies that

dpj1ptq, jkpsqq ď λdpF ˝ j1ptq, F ˝ jkpsqq ` c ď λMpδ, λ, cq ` c ,

and the analogous estimate for the sides j2 and j3. Thus, ∆ satisfies the Rips condition
with constant δ1 “ λMpδ, λ, cq ` c.

Proof of Theorem 7.8. Let F : X Ñ Y be a quasi-isometry let F : Y Ñ X be its quasi-
inverse. Theorem 7.12 applied to these two mappings implies the claim.

2See section 6.1.

December 7, 2020



90 Quasi-isometries and hyperbolicity

7.4 Hyperbolic groups
Simplicial graphs associated with finitely generated groups are important examples in the
theory of Gromov-hyperbolic spaces.

A subset S Ă G is a symmetric set of generators of G if S generates G and s P S if and
only if s´1 P S and the identity element of G is not in S.
A group G is finitely generated if it has a finite generating set.

Let G be a group and let S be a symmetric set of generators of G. The Cayley graph
G pG,Sq is the graph with V G pG,Sq “ G and EG pG,Sq “ GˆS, opg, sq “ g, tpg, sq “ gs
and pg, sq “ pgs, s´1q.
The simplicial graph defined on G pG,Sq is also called the Cayley graph G pG,Sq.

Example 7.13. (1) The set S “ t´3,´2, 2, 3u Ă Z is a finite symmetric set of generators
of the additive group of integers Z. The Cayley graph G pZ, Sq looks very different from
the Cayley graph G pZ, t´1, 1uq shown in Example 1.10(1).

0´1´2´3´4´5 1 2 3 4 5
. . .. . .

Figure 7.3 — Part of the Cayley graph G
`

F2, ta, b, a
´1, b´1u

˘

of the free group on two
generators.

(2) A word on the alphabet A “ ta, b, a´1, b´1u is a finite sequence s1s2 . . . sn with n P
N and si P A for all i P t1, 2, . . . , nu, including the empty word e that corresponds to
n “ 0. A word is reduced if it does not include subwords aa´1, a´1a, bb´1 or b´1b. We
denote the set of reduced words by RpA q. If u “ s1 ¨ ¨ ¨ sm and w “ t1 ¨ ¨ ¨ tn are reduced
words on A , the juxtaposition u˚w of u and w is the word obtained by successively deleting
the forbidden subwords from the word s1 ¨ ¨ ¨ smt1 ¨ ¨ ¨ tn. The free group on two generators
is the group F2 “ pRpA q, ˚q. See [Rot, Ch. 11]. The Cayley graph G pF2, ta, b, a

´1, b´1uq is
the regular tree of degree 4, see figure 7.4.

Let G be a group and let S be a symmetric set of generators of G. The word metric dS in
G associated with the generating set S is defined by

dSpg, hq “ mintn P N : g´1h “ s1s2 ¨ ¨ ¨ sn, s1, s2, . . . , sn P Su .

Note that, if G is a group, e P G is the identity element and S Ă G is a symmetric
generating set, by construction,

dSpg, hq “ dSpe, g
´1hq . (7.7)
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a

a

b

b
a´1

a´1

b´1

b´1

a

b

a´1

b´1
a´1b

ba

‚

‚

‚‚

‚

‚

‚

Figure 7.4 — Part of the Cayley graph G
`

F2, ta, b, a
´1, b´1u

˘

of the free group on two
generators.

Lemma 7.14. The metric of the simplicial graph G pG,Sq induces a metric on V G pG,Sq
such that the identity map GÑ G “ V G pG,Sq is an isometric embedding.

Proof. Exercise.

Lemma 7.15. Let G be a group and let S be a symmetric set of generators of G. The
metric spaces G pG,Sq and pG, dSq are quasi-isometric.

Proof. The claim follows from Lemma 7.14, Proposition 7.6 and the fact that G pG,Sq “
N 1

2
pV G pG,Sqq.

Lemma 7.16. Let S and T be finite symmetric generating sets of a group G. The identity
map id : pG, dSq Ñ pG, dT q is a quasi-isometry.

Proof. Exercise.

Proposition 7.17. Let S and T be finite symmetric generating sets of a group G. The
Cayley graphs G pG,Sq and G pG, T q are quasi-isometric.

Proof. The claim follows from Lemmas 7.15, 7.16 and 7.4.

Proposition 7.17 and Theorem 7.8 imply that the following definition makes sense:

A finitely generated group G is a hyperbolic group if G pG,Sq is Gromov-hyperbolic for
some symmetric generating set S of G.

Example 7.18. (1) The free group on two generators is a hyperbolic group. In fact,
the free group on n generators is hyperbolic for all n P N, its Cayley graph with respect
to a symmetric set of free generators is a tree with degree 2n.
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(2) The word metric of the symmetric generating set S “ t˘ei : 1 ď i ď nu in Zn coincides
with the induced metric of the norm } ¨ }1 of Rn, which is equivalent with the Euclidean
metric. This observation combined with Example 7.7 shows that Zn with any word metric
is quasi-isometric with En. In particular, Zn is not hyperbolic for n ě 2 by Theorem 7.8
and Example 6.2(2).

7.5 Group actions and the Švarc-Milnor lemma
Let SpAq be the group of permutations of a set A. A group G acts on A if there is a
homomorphism φ : GÑ SpAq. The homomorphism φ is an action of G on A.
Let X be a topological space. A group G acts on pX, dq by homeomorphisms if there is a
homomorphism φ : GÑ HomeopX, dq.
Let pX, dq be a metric space. A group G acts on pX, dq by isometries if there is a
homomorphism φ : GÑ IsompX, dq.

If a group G acts on a set A and will use the notation

g ¨ a “ φpgqpaq “
`

φpgq
˘

paq

for all g P G and all a P A. If the group is a subgroup of the permutation group of A,
the notation gpaq is natural to use, and if we have an action of a group of matrices on a
vector space with a fixed basis, the usual notation of matrix multiplication is used.
Example 7.19. Any finitely generated group acts on itself and on its Cayley graph by
isometries. If G is a group and g P G, the mapping Lg : G Ñ G, Lgpg1q “ gg1, is left
multiplication by g. If S is a finite symmetric generating set of G, then

dSpgg1, gg2q “ mintn P N : pgg1q
´1gg2 “ g´1

1 g2 “ s1s2 ¨ ¨ ¨ sn, s1, s2, . . . , sn P Su

“ dSpg1, g2q

for all g, g1, g2 P G. Thus, the mappings Lg are isometries. As Lgh “ Lg˝Lh for all g, h P G,
we see that the mapping g ÞÑ Lg is an action by isometries on pG, dSq. Consequently, it
induces an isometry of the Cayley graph.

Lemma 7.20. Let X be a metric space and let G be a finitely generated group that acts
on X by isometries and let x0 P X. For any symmetric generating set S of G, there is a
constant M such that

dpg1 ¨ x0, g2 ¨ x0q ďMdSpg1, g2q

for all g1, g2 P G.

Proof. Let
M “ maxtdpx0, s ¨ x0q : s P Su .

Let g P G and let s1, s2, . . . , sn P S such that g “ s2s2 ¨ ¨ ¨ sn, and let gk “ s2s2 ¨ ¨ ¨ sk for
all 1 ď k ď n and let g0 “ e be the identity of G. The triangle inequality and the fact
that G acts by isometries give

dpx0, g ¨ x0q ď

n
ÿ

k“1
dpgk´1 ¨ x0, gk ¨ x0q “

n
ÿ

k“1
dpx0, sk ¨ x0q ď nM .
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g ¨ x0

x0

s1 ¨ x0

s1s2 ¨ x0 s1s2 ¨ ¨ ¨ sk´1 ¨ x0

Thus, dpx0, g ¨ x0q ď MdSpe, gq. Equation (7.7) and and the fact that G acts by
isometries implies the claim:

dpg1 ¨ x0, g2 ¨ x0q “ dpx0, g
´1g2 ¨ x0q ďMdSpe, g

´1
1 g2q “MdSpg1, g2q

Let A be a set and let G be a group that acts on A. If a P A, the set

G ¨ a “ tg ¨ a : g P Gu

is the G-orbit of a. The quotient seta is

G\A “ tG ¨ a : a P Au .

If X is a topological space, the quotient space of X by G is the set G\X with the quotient
topology of the equivalence relation defined by the partition of X to G-orbits. The
mapping π : X Ñ G\X, πpxq “ G ¨ x, is the canonical projection.
The action by homeomorphisms of a group G on a topological space X is cocompact if
G\X is compact.

aDo not confuse the notation with the commonly used notation z for the difference of sets!

Example 7.21. Zn acts cocompactly on En by translations, b¨x “ x`b for all b P Zn and
all x P En. The quotient space Zn\En is an n-torus.

The action of a group G on a metric space X is proper if for all compact subsets K Ă X

tg P G : K X g ¨K ‰ Hu

is finite.

Lemma 7.22. Let pX, dq be a proper metric space and let G be a group that acts on X
properly by isometries. Let π : X Ñ G\X be the canonical projection. The expression

d̄px, yq “ min
 

dprx, ryq : πprxq “ x, πpryq “ y
(

defines a metric on G\X.

Proof. Exercise.

Let pX, dq be a metric space and let G be a group that acts on X properly by isometries.
the metric d̄ on G\X defined in Lemma 7.22 is the quotient metric.
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For compact subsets A,B Ă X let

dpA,Bq “ mintdpa, bq : a P A, b P Bu .

Recall that dpA,Bq ą 0 if the compact sets A and B are disjoint.

Theorem 7.23 (Švarc, Milnor). Let X be a proper geodesic space and let G be a group
that acts on X cocompactly and properly by isometries. Then G is finitely generated and
the mapping G Φ

Ñ X, g ÞÑ g ¨ x0, is a quasi-isometry for any x0 P X.

Proof. Let R ă 8 be the diameter of the compact metric space G\X. Let x0 P X Let
K “ Bpx0, Rq. Note that the choice of K implies that

X “
ď

gPG

g ¨K . (7.8)

Let e P G be the identity and let

S “ tg P G : g ¨K XK ‰ Hu ´ teu .

The set S is finite because we assume that the action of G is proper. If x P s ¨K XK,
then s´1 ¨ x P s´1K XK, and therefore s P S if and only if s´1 P S.

Let us show that S is a generating set of G.
As K is compact and G acts properly, the number

r “ min
 

dpK, g ¨Kq : g P G´ pS Y teuq
(

(7.9)

is positive.3 Let g P G´pSYteuq. Let rx0, g ¨x0s be a geodesic segment and choose points
x1, x2, . . . , xk “ g ¨ x0 P rx0, g ¨ x0s such that dpxj´1, xjq ă r for all 1 ď j ď k. Using (7.8),
we can choose g0 “ e, g1, . . . , gk P G such that dpxi, gi ¨ x0q ď R. See Figure 7.5.

Let si “ g´1
i´1gi for all 1 ď i ď k. As g´1

i ¨ xi P K by the choice of gi for all 1 ď i ď k,
we have

dpK, si ¨Kq ď d
`

g´1
i´1 ¨ xi´1 , sig

´1
i xi

˘

“ dpxi´1xiq ă r .

The definition of r implies that si P S. As

g “ gk “ s1s2 ¨ ¨ ¨ sk , (7.10)

we see that S is a generating set of G.
Lemma 7.20 gives the estimate dpg1 ¨ x0, g2 ¨ x0q ďMdSpg1, g2q for all g1, g2 P G, so to

prove that Φ is a quasi-isometry, it is enough to find an inequality in the reverse direction.
Again, it suffices to bound dSpe, gq by dpx0, g ¨ x0q for all g P G. We may assume that
the points x1, x2, . . . , xk “ g ¨ x0 P rx0, g ¨ x0s are chosen so that dpxi´1, xiq ă R for all
1 ď i ď k. Furthermore, k can be chosen to be minimal with this property, which implies
the bound

k ď
dpx0, g ¨ x0q

R
` 1 .

Equation (7.10) now gives the desired estimate dSpe, gq ď dpx0,g¨x0q
R

` 1.
3Exercise 7.12
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g ¨ x0x0 xixi´1

gi´1 ¨ x0

gi ¨ x0

Figure 7.5 —

Example 7.24. Let p, q, r P N ´ t0, 1u such that 1
p
` 1

q
` 1

r
ă 1. Let ∆pp, q, rq be

a triangle polygon in H2 with angles π
p
, π
q
and π

r
. Note that such a triangle exists by

Proposition 5.10(2).
The subgroup Γp,q,r of IsomH2 generated by the reflections in the sides of ∆pp, q, rq is

a hyperbolic triangle group. It can be shown that the images under Γp,q,r of the polygon
∆pp, q, rq tile H2:

ď

gPΓp,q,r

gp∆pp, q, rqq “ H2

and if g, h P Γp,q,r, g ‰ h, then either gp∆pp, q, rqq X p∆pp, q, rqq is a side or a vertex
of both triangles or gp∆pp, q, rqq X ∆pp, q, rq “ H. In particular, the action of Γp,q,r on
H2 is proper and cocompact. See for example [Bea, §10.6] for details. Thus, Γp,q,r is a
hyperbolic group by Proposition 7.23.

Exercises
7.1. Let X be a geodesic metric space. Let p1, p2, p3, p4 P X and let j1, j2 and j3 be
geodesic segments such that jk connects pk to pk`1 for all k P t1, 2, 3u. Assume that
dpp1, p2q “ dpp3, p4q “ C. Prove that j “ j1 ˚ j2 ˚ j3 : r0, dpp2, p3q ` 2Cs Ñ X is a
p1, 4Cq-quasigeodesic segment.
7.2. Prove Lemma 7.3.
7.3. Let F : X Ñ Y be a pλ, c ` 1q-quasi-isometric embedding. Find an upper bound
on the diameter of the set F´1pyq for all y P F pXq.
7.4. Prove Proposition 7.6.4

4Some choices need to be made.
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Figure 7.6 — The tiling the hyperbolic plane defined by the triangle group ∆p2, 4, 6q.

7.5. Prove Lemma 7.9.
7.6. Prove that the mapping γ1 in the proof of Theorem 7.10 is a pλ, c`1q-quasi-isometric
embedding.
7.7. Prove Corollary 7.11.
7.8. Prove that the word metric is a metric.
7.9. Prove Lemma 7.14.
7.10. Prove Lemma 7.16.5

7.11. Prove Lemma 7.22.
7.12. Prove that r ą 0 in equation (7.9).
7.13. Show that the bi-infinite simplicial ladder of Example 6.2(5) and Figure 6.3 is a
Cayley graph of Zˆ pZ{2Zq. Show that Zˆ pZ{2Zq is a hyperbolic group.6

5Note that we are assuming that the generating sets are finite.
6Theorem 7.8 may be useful. The hyperbolicity of the bi-infinite ladder was stated in Example 6.2(5)

without a proof...
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Chapter 8

Boundary at infinity

In the Poincaré ball model, hyperbolic space appears to have a boundary as a subset of
En. In chapter 5, we saw that the unit sphere Sn´1 has a geometric meaning in terms of
the endpoints of geodesic lines. In this chapter, we introduce an abstract definition of the
boundary at infinity of a metric space that is naturally identified as sets with the unit
sphere in the Poincaré model and with Rn´1 ˆ t0u Y t8u

8.1 Asymptotic rays
Let X be a metric space. The space of geodesic rays of X is

G`pXq “ tgeodesic rays ρ : r0,8r Ñ Xu ,

and the space of geodesic rays of X with origin p is

G`pX, pq “ tρ P G`pXq : ρp0q “ pu .

Two geodesic rays ρ1, ρ2 P G`pXq are asymptotic, ρ1 „ ρ2, if

sup
tPr0,8r

dpρ1ptq, ρ2ptqq ă 8 .

Lemma 8.1. Let X be a metric space. Asymptoticity is an equivalence relation in G`pXq.

Proof. This is immediate from the triangle inequality.

Proposition 8.2. Two geodesic rays ρ1, ρ2 P G`pHnq are asymptotic if and only if they
have the same endpoint in the Poincaré ball model or in the upper halfspace model.

Proof. As the inversion F “ ι´en,2 used to identify the two models in section 5.3 is a
self-homeomorphism of the extended space pEn, it suffices to consider the upper halfspace
model.
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98 Boundary at infinity

Assume that the geodesic rays ρ1 and ρ2 have the same endpoint in the upper halfspace
model. Using Proposition 5.17, we can assume that the common endpoint is 8. Now,
there are x̄, ȳ P En´1 and xn, yn ą 0 such that ρ1ptq “ px̄, xne

tq and ρ2ptq “ pȳ, yne
tq. We

can estimate the distance dpρ1ptq, ρ2ptqq
1

cosh dpρ1ptq, ρ2ptqq “
x2
n ` y

2
n

2xnyn
`
}x̄´ ȳ}2

2xnyn
e´2t

ď
x2
n ` y

2
n

2xnyn
`
}x̄´ ȳ}2

2xnyn

for all t ě 0, which implies asymptoticity.
If the rays ρ1 and ρ2 have different endpoints in the model, we can assume that these

points are 8 and 0. Now, ρ1 is as above and maxtě0pρ2qn “M ă 8. For large t,

dpρ1ptq, ρ2ptqq ě dpρ1ptq, px̄,Mqq “ log xn
M
` tÑ 8

as tÑ 8. This shows that the rays are not asymptotic.

The following characterization of asymptoticity is sometimes useful.

Proposition 8.3. Let X be a metric space. Two geodesic rays ρ1, ρ2 P G`pXq are asymp-
totic if and only if the Hausdorff distance of their images is finite.

Proof. It is clear that asymptotic rays are at finite Hausdorff distance from each other.
Let ρ1, ρ2 : R Ñ X be geodesic rays and let K ą 0 be such that dHauspρ1, ρ2q ă K.

By assumption, for all t ě 0, there is some st ě 0 such that dpρ1ptq, ρ2pstqq ď K. The
triangle inequality gives the double inequality

dpρ1ptq, ρ1p0qq ´ 2K ď dpρ2pstq, ρ2ps0qq ď dpρ1ptq, ρ1p0qq ` 2K ,

and as the mappings ρ1 and ρ2 are isometric embeddings,

t´ 2K ď |st ´ s0| ď t` 2K .

In particular, |st ´ t| ď s0 ` 2K, and this implies for all t ě 0 the estimate

dpρ1ptq, ρ2ptqq ď dpρ1ptq, ρ2pstqq ` dpρ2pstq, ρ2ptqq ď K ` s0 ` 2K “ s0 ` 3K ,

so the rays ρ1 and ρ2 are asymptotic.

We illustrate the use of Proposition 8.2 by an alternative proof of Proposition 8.2.

Second proof of Proposition 8.2. Assume that the geodesic rays ρ1 and ρ2 have the same
endpoint in the upper halfspace model. Using Proposition 5.17, we can assume the end-
point is 8. Now, there are x̄, ȳ P En´1 and xn, yn ą 0 such that ρ1ptq “ px̄, xne

tq and
ρ2ptq “ pȳ, yne

tq. We may assume that xn ď yn. Using Proposition 5.9, we see that

ρ2pr0,8rq Ă N 1ρ1pr0,8rq and ρ1pr0,8rq Ă N 1ρ2pr0,8rq ,

which implies asymptocity by Proposition 8.2.
The argument for rays with different endpoints is the same as in the first proof.
1See equation (5.2).
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In Gromov-hyperbolic spaces, the Hausdorff distance of asymptotic rays is controlled
by the constant δ if we forget an initial segment of the rays. This is in strong contrast with
Euclidean space where the Hausdorff distance of asymptotic geodesic rays is unbounded.

Proposition 8.4. Let X be a δ-hyperbolic space. Let ρ1 and ρ2 be asymptotic geodesic
rays in X.
(1) If ρ1p0q “ ρ2p0q, then dpρ1ptq, ρ2ptqq ď 2δ for all t ě 0.
(2) For all large enough t, there is some st ě 0 such that dpρ1ptq, ρ2pstqq ď 2δ.
(3) For all large enough t, there is some u P R such that dpρ1ptq, ρ2pt´ uqq ď 6δ.

Proof. Let
K “ sup

tPr0,8r
dpρ1ptq, ρ2ptqq .

(1) The triangle with sides ρ1|r0,ts, ρ2|r0,ts and rρ1ptq, ρ2ptqs satisfies the Rips confition with
constant δ. If 0 ď s ă t´pK`δq, then dpρ1psq, rρ1ptq, ρ2ptqsq ą δ by the triangle inequality.
The Rips condition implies that there is some s2 P r0, ts such that dpρ1psq, ρ2ps2qq ď δ.
The triangle inequality implies that |s´ s2| ď δ.

ρ2psq

ρ1ptq

ρ2ptq

ď K

ρ1p0q “ ρ2p0q K ` δ

K ` δ

ρ1psq

(2) Let t ą K ` δ and let T ą t `K ` 2δ. As in (1), there is a point yt P rρ2p0q, ρ1pT qs
such that dpρ1ptq, yyq ď δ and similarly, dpyt, ρ2pstqq ď δ for some st ě 0.

ρ2pstq

ρ1p0q

ρ1pT q

ρ2pT q

ρ2p0q

ď K
ď K

ρ1ptq

yt

This implies the claim by the triangle inequality.
(3) Let t0 ą K ` δ. By (2), there is some st0 ě 0 such that dpρ1pt0q, ρ2pst0qq ď 2δ. Let
u “ st0 ´ t0.

Note that there is some T0 ě t0 such that st ą st0 for t ą T0: Assume that st ď st0 .
By assumption, dpρ1ptq, ρ2ptqq ď K. The triangle inequality gives

2δ ě dpρ1ptq, ρ2pstqq ě dpρ2ptq, ρ2pstqq ´ dpρ2ptq, ρ1ptqq ě t´ st ´K ě t´ s0 ´K ,
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that implies the bound f ď st0 `K ` 2δ.
Let t ą T0. The triangle inequality implies that

dpρ2pstq, ρ2pt` uqq “ |t` u´ st| “ |pt´ t0q ´ pst ´ pt0 ` uqq|

“ |pt´ t0q ´ pst ´ st0q| “ |dpρ1ptq, ρ1pt0qq ´ dpρ2pstq, ρ2pst0qq| ď 4δ .

The claim follows from this estimate and (2) by the triangle inequality.

8.2 The boundary at infinity
Let X be a metric space. Let „ be the asymptoticity equivalence relation on G`pXq. The
quotient set

B8X “ G`pXq{„

is the boundary at infinitya of X. The equivalence class of a ray ρ

ρp8q “ tρ1 P G`X : ρ „ ρ1u

is its point at infinity.
aThis set is also called the space at infinity and the Gromov boundary of X.

Proposition 8.2 implies that the boundary at infinity of hyperbolic space coincides
with the definition we gave in section 5.3 for the Klein, Poincaré and upper halfspace
models.

Lemma 8.5. Let X be a metric space. The rule

g ¨ ρp8q “ pg ˝ ρqp8q

for all g P IsompXq and all ξ “ ρp8q defines an action of IsompXq on X.

Proof. Let ρ1, ρ2 P G`pXq. If g P IsompXq, then dpg ˝ ρ1ptq, g ˝ ρ2ptqq “ dpρ1ptq, ρ2ptqq.
Thus ρ1 and ρ2 are asymptotic if and only if g ˝ ρ1 and g ˝ ρ2 are asymptotic. This
implies that the mapping ρp8q ÞÑ g ¨ ρp8q is well defined and a bijective selfmap of
B8X. The associativity of the composition of mappings implies that we have an action
of IsompXq.

Let X be a metric space. The space of geodesic lines of X is

G pXq “ tgeodesic lines ρ : RÑ Xu .

If g P G pXq, let ρg`, ρ´g P G`pXq, ρ`g “ g|r0,8r and ρ´g : t ÞÑ gp´tq The endpoints
(at infinity) of g are the negative endpoint gp´8q “ ρ´g p8q and the positive endpoint
gp8q “ ρ`g p8q.

Example 8.6. (1) For any S P R, let TS : R Ñ R be the translation TSptq “ t ` S. If
g P G pXq, then g ˝ TS P G pXq and g ˝ TSp˘8q “ gp˘8q for all S P R.
(2) In chapter 5, we saw that for any ξ1, ξ2 P B8Hn, ξ1 ‰ ξ2, there is a unique geodesic
line in Hn with endpoints ξ1 and ξ2.
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(3) In E2, every geodesic line has infinitely many geodesic lines with equal endpoints at
infinity and disjoint images. On the other hand, if g1, g2 P G pE2q with g1p8q “ g2p8q,
then g1p´8q “ g2p´8q.

Let X be a metric space and let ξ1, ξ2 P B8X. If there is a geodesic line g P G pXq with
gp´8q “ ξ1 and gp8q “ ξ2 that is unique up to translation of the domain of definition
R,a let

sξ1, ξ2r “ gpRq .
aas in Example 8.6(1)

Lemma 8.7. Let X be a metric space and let ξ1, ξ2 P B8X. Let g P IsompXq. Then
g
`

sξ1, ξ2r
˘

“ sg ¨ ξ1, g ¨ ξ2r.

Proof. Exercise.

8.3 The boundary at infinity of a simplicial tree
In this section, let X be an R-tree and let p P X.

Lemma 8.8. Let X be a an R-tree and let ρ1, ρ2 P G`pXq. Then ρ1 and ρ2 are asymptotic
if and only if there are constants T1, T2 such that ρ1ptq “ ρ2pt` T2q for all t ě T1.

Proof. Let
T0 “ sup

 

t P s0,8s : ρ1ptq P ρ2ps0,8sq
(

.

If T0 ă 8, then
dpρ1ptq, ρ2ps0,8sqq ě t´ T0 Ñ 8

as tÑ 8. Thus, in this case, the rays ρ1 and ρ2 are not asymptotic.
If T0 “ 8, then let

T1 “ min
 

t P s0,8s : ρ1ptq P ρ2ps0,8sq
(

,

and let T 12 ě 0 such that ρ1pT1q “ ρ2pT
1
2q. Then, ρ1ptq “ ρ2pt´T1`T2q for all t ě T1.

Lemma 8.9. Let X be an R-tree and let p P X. For all ρ P G`pXq, there is a unique ray
ρp P G`pX, pq such that ρpp8q “ ρp8q.

Proof. Let ρpT q P ρ
`

r0,8r
˘

be the closest point to p. The path ρp “ rp, ρpT qs ˚ρ|rT,8r is a
geodesic ray because X is an R-tree, and clearly ρpp8q “ ρp8q. Uniqueness follows from
Lemma 8.8.

Lemma 8.10. Let X be an R-tree and let p P X and ξ1, ξ2 P B8X, ξ1 ‰ ξ2. There is a
unique geodesic line in g P G pXq with endpoints gp´8q “ ξ1 and gp8q “ ξ2 such that
gp0q is the closest point to p in gpRq.

Proof. Exercise.
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We saw in Exercise 6.2 that the limit limtÑ8pρ1ptq | ρ2ptqqp exists for any ρ1, ρ2 P

G`pX, pq, ρ1 ‰ ρ2, if X is an R-tree, and in fact,

lim
tÑ8

pρ1ptq | ρ2ptqqp “ d
`

p, sρ1p8q, ρ2p8qr
˘

for any such pair of rays.

Let X be an R-tree, let p P X and let ξ1, ξ2 P B8X. The Gromov product of ξ1 and ξ2 with
respect to p is

pξ1 | ξ2qx “ d
`

p, sξ1, ξ2r
˘

if ξ1 ‰ ξ2 and pξ | ξqx “ 8 for all ξ P B8X.

Let X ‰ H. A function d : X ˆX Ñ r0,8r is an ultrametric in X if

(1) dpx, xq “ 0 for all x P X and dpx, yq ą 0 if x ‰ y,

(2) dpx, yq “ dpy, xq for all x, y P X, and

(3) dpx, yq ď maxpdpx, zq, dpz, yqq for all x, y, z P X (the ultrametric inequality).

The pair pX, dq is a ultrametric space.

Lemma 8.11. Let X be an R-tree and let p P V X. The expression

dppξ1, ξ2q “ e´pξ1 | ξ2qp

is an ultrametric in BX.2

Proof. Exercise.

A metric space is perfect if it has no isolated points. It is totally disconnected if its
connected subsets are sets with one point.

Proposition 8.12. Let X be a simplicial tree such that the degree of each vertex is at
least 3, and let p P V X.
(1) The metric space pB8X, dpq is perfect and totally disconnected.
(2) If the degree of each vertex is bounded, then pB8X, dpq is compact.

Proof. Any ultrametric space with more than one point is totally disconnected because
all open balls are closed.

Let ξ P B8X, and let ρ P G`pX, pq with ρp8q “ ξ. By assumption, for each n P N,
there is a ray ρn P G`pX, pq such that ρ and ρn coincide exactly on the interval r0, ns.
Thus,

dppξ, ρnp8qq “ dppρp8q, ρnp8qq “ e´n Ñ 0
as nÑ 8, and pB8X, dpq is perfect.
(2) Exercise.

2We use the convention e´8 “ 0. It is not essential to take p to be a vertex, it could be any point in
the tree.
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Corollary 8.13. Let X be a simplicial tree such that the degree of each vertex is finite
and at least 3, and let p P X. The metric space pB8X, dpq is homeomorphic to the Cantor
1
3-set.

Proof. Every nonempty, compact, perfect, totally disconnected metric space is homeo-
morphic to the Cantor set, see [HY, Cor. 2-98].

The following result shows that the metrics in the boundary of an R-tree depend on
the basepoint in a controlled manner:

Proposition 8.14. Let X be an R-tree and let p, q P X. The metrics dp and dq are
equivalent.

Proof. The triangle inequality gives for any ξ1, ξ2 P B8X

d
`

q, sξ1, ξ2r
˘

´ dpp, qq ď d
`

p, sξ1, ξ2r
˘

ď d
`

q, sξ1, ξ2r
˘

` dpp, qq ,

and, consequently, the estimate

e´dpp,qqdqpξ1, ξ2q ď dppξ1, ξ2q ď edpp,qqdqpξ1, ξ2q .

Proposition 8.15. Let X be an R-tree and let p P X. Let g P IsompXq. The mapping
ξ ÞÑ g ¨ ξ is a biLipschitz mapping.

Proof. Exercise.

Exercises
8.1. Determine the boundary at infinity of the bi-infinite ladder.
8.2. Prove Lemma 8.7.
8.3. Prove Lemma 8.10.
8.4. Prove Lemma 8.11.
8.5. Prove Proposition 8.12(2).
8.6. Prove Proposition 8.15.
8.7. Show that it is not possible to define a Gromov product in the boundary of the
bi-infinite ladder by setting

pρ1p8q | ρ2p8qqp “ lim
tÑ8

pρ1ptq | ρ2ptqqp

for some basepoint p.
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Chapter 9

Topology of the boundary at infinity

In this chapter, we study a compactification of a proper Gromov-hyperbolic space X. The
compactification is constructed using generalized geodesic rays.

9.1 Generalized rays
Let X be a geodesic metric space and let p P X. For each x P X, there is at least
one geodesic segment with endpoints p and x. In order to consider all these geodesic
segments, along with all the geodesic rays starting at p, as elements of a single topological
space, we introduce the space of generalized rays as a subspace of the topological space
of continuous mappings Cpr0,8r, Xq with the topology of compact convergence.1

Let X be a metric space. A mapping ω : r0,8r Ñ X is a generalized geodesic ray if ω
is a geodesic ray or there is some m ě 0 such that ω|r0,ms is a geodesic segmenta and
ωptq “ ωpmq for all ω P rm,8r.
The space of generalized geodesic rays of X is

qG`pXq “ tgeneralized geodesic rays ω : r0,8r Ñ Xu Ă Cpr0,8r, Xq

and the space of generalized geodesic rays of X with origin p is

qG`pX, pq “ tω P qG`pXq : ωp0q “ pu Ă qG`pXq .

If σ : r0, bs Ñ X is a geodesic segment, the interpretation of σ as a generalized geodesic
ray is qσ` P qG` such that qσ`|r0,bs “ σ and qσ`ptq “ σpbq for all t ě b.
If σ P qG`pXq ´ G`pXq, the endpoint of σ is

σp8q “ lim
tÑ8

σptq .

aincluding the case m “ 0
1See Appendix B for the definitions and basic properties of the topological space Cpr0,8r, Xq.
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106 Topology of the boundary at infinity

Note that every generalized geodesic ray that is not a geodesic ray is obtained from a
geodesic ray as the interpretation of a geodesic segment.

Lemma 9.1. Let X be a metric space and let p P X. The spaces qG`pXq and qG`pX, pq
are closed subsets of Cpr0,8r, Xq for all p P X.

Proof. Let f be a poinf of accumulation2 of qG`pXq. Let K Ă r0,8r be compact. By
assumption, for each and n P N ´ t0u, there is an element gn P BKpf,

1
n
q X qG`pXq.3 By

definition of BKpf,
1
n
q, the restrictions gk|K converge to f uniformly on K. Exercise 9.2

implies that f P qG`pXq.
The other claim is proved in a similar way.

Theorem 9.2. Let X be a proper metric space and let p P X. The space qG`pX, pq is
compact and limit point compact for all p P X.

Proof. Let t P r0,8r. By definition of generalized geodesics, ωptq P Bpp, tq for all ω P
qG`pX, pq. As X is proper and qG`pX, pq is closed, we may apply Corollary B.4 to conclude
that qG`pX, pq is compact.

Compactness does not imply sequential compactness in general in topological spaces.
However, every infinite subset of a compact space has an accumulation point, and the
argument of the proof of Lemma 9.1 implies that qG`pX, pq is limit point compact.

9.2 The boundary at infinity and rays with a fixed
origin

The compactness of the space of generalized rays allows us to use sequences of generalized
rays that converge uniformly on compact sets to prove various existence results. We begin
with the observation that in a proper Gromov-hyperbolic space, each asymptoticity class
of geodesic rays can be represented by rays with a prescribed origin.

Proposition 9.3. Let X be a proper Gromov-hyperbolic space and let q P X. For any
ρ P G`X, there is a ray ρq P G`pXq with ρqp0q “ q and ρqp8q “ ρp8q.

Proof. Let X be δ-hyperbolic. Let σn : In Ñ X be a geodesic segment with endpoints
q and ρpnq for all n P N. The sequence }pσnq` has a convergent subsequence by Theorem
9.3. The limit is a geodesic ray because dpq, ρpnqq Ñ 8 as nÑ 8.

Let us now prove that ρqp8q “ ρp8q. Let rq, ρp0qs be a geodesic segment. Let
t ą 2pdpρp0q, qq ` δq “ m. The triangle inequality implies that dpρptq, xq ą δ for all
x P rq, ρp0qs. Let s ě m. Uniform convergence on compact sets and the Rips condition
on the triangle with sides rq, ρp0qs, ρpr0,M sq and σMpIMq imply that for some integer
M ą s,

d
`

ρpsq, ρqpr0,8rq
˘

ď d
`

ρpsq,~pσMq`pr0,8sq
˘

` 1 ď δ ` 1 .

Thus, the image of ρ is contained in the closed m` δ ` 2-neighbourhood of the image of
ρq. Similary, the image of ρq is contained in a neighbourhood of the image of ρ.

2Sometimes these points are called limit points as in [Mun] or cluster points.
3See Appendix B.1 for the definition of BKpf,

1
n q.
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ρpm` 4q

ρpmq

σm

q

ρp0q

ρpm` 1q
ρpm` 2q

ρpm` 3q

Figure 9.1 —

ρp0q

ρpMq
ρpmq

q

δ

1

ρpsq

Figure 9.2 — The construction of a geodesic ray with prescribed endpoints.

Corollary 9.4. Let X be a proper Gromov-hyperbolic space and let p P X. The boundary
at infinity B8X is naturally identified with G`pX, pq{„.

Proof. The construction ρ ÞÑ ρp for any ray ρ P qG`pXq described in Proposition 9.3
induces a bijection G`pXq{„Ñ G`pX, pq{„.

9.3 Visibility
Eberlein and O’Neill [EO] introduced the following class of spaces as a generalization of
simply connected negatively curved Riemannian manifolds.

A geodesic metric space X is a visibility space if for any two ξ1, ξ` P B8X, with ξ´ ‰ ξ`,
there is a geodesic line g P G pXq with gp´8q “ ξ´ and gp8q “ ξ`.

Example 9.5. (1) Hyperbolic space Hn is a visibility space for all n ě 2 by Propositions
5.1, 5.3 and 5.7.
(2) R-trees are visibility spaces by Lemma 8.10.
(3) En is not a visibility space when n ě 2: If geodesic lines g1, g2 P G pEnq are parallel,
the lines t ÞÑ g1p´tq and t ÞÑ g2p´tq are parallel. Thus, given ξ P B8En, there is a unique
ξ1 P B8En such that there is a geodesic line with endpoints ξ and ξ1.
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108 Topology of the boundary at infinity

In order to prove that proper Gromov-hyperbolic spaces are visibility spaces, we in-
troduce generalized geodesic lines analogously with the generalized geodesic rays defined
in section 9.1.

Let X be a metric space. A continuous mapping ω : RÑ X is a generalized geodesic line
if ω is a geodesic line or there is some closeda interval I Ă R such that ω|I is an isometric
embedding and ω is locally constant in the complement of I.
The space of generalized geodesic lines of X is

qG pXq “ tgeneralized geodesic lines ω : E1
Ñ Xu Ă CpE1, Xq .

If I is a closed interval and σ : I Ñ X is a geodesic segment or a generalized geodesic ray,
let qσ P qG such that qσ|I “ σ and qσ is locally constant in R´ I.

anot necessarily bounded

Lemma 9.6. Let X be a metric space. The space qG pXq is a closed subset of C
`

E1, X
˘

.

Proof. Similar to the proof of Theorem 9.1, exercise.

Theorem 9.7. Let X be a proper metric space and let K Ă X be compact. The space
tg P qG pXq : gp0q P Ku is compact.

Proof. Similar to the proof of Theorem 9.2, exercise.

Theorem 9.8. Proper Gromov-hyperbolic spaces are visibility spaces.

Proof. Let X be a proper δ-hyperbolic space. Let p P X and let ρ1, ρ2 P G`pX, pq with
ρ1p8q ‰ ρ2p8q. As the rays ρ1 and ρ2 are not asymptotic, there is some T ą 0 for which
mintdpρ1pT q, ρ2ptqq : t ě 0u ě δ.

For n P N, let σ0
n : r0, bns Ñ X be a geodesic segment with endpoints σ0

np0q “ ρ1pnq and
σ0
npbnq “ ρ2pnq. The Rips condition implies that for each n P N such that n ě T , there is

some tn P r0, bns such that pn “ σ0
nptnq P Bpρ1pT q, δq.

We reparametrize the geodesic segments σ0
n as the mappings σn : r´tn, bn ´ tns Ñ X,

σnptq “ σ0
npt ` tnq for all n ě T . Theorem 9.7 implies that the sequence pσnqjPN has a

convergent subsequence and the limit is a geodesic line g.
By the Rips condition, the Hausdorff distance of σnpInq to ρ1

`

r0, nr
˘

Y ρ2
`

r0, nr
˘

is at
most δ. Thus, the same holds for the image of g. But this implies that gp´8q “ ξ1 and
gp8q “ ξ2.

9.4 Quasi-isometries and the boundary at infinity
In this section we use quasigeodesic rays that were introduced in section 7.1 to study
the behaviour of the boundary at infinity under quasi-isometric embeddings and quasi-
isometries. We begin by introducing convenient notation in analogy with that used for
geodesic rays.
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ρ2p8q

pn

p

ρ1p8q

ρ1pT q

Figure 9.3 — The construction of a geodesic line with prescribed endpoints.

Let X be a metric space. The set of quasigeodesic rays of X is

QG`pXq “ tquasigeodesic rays ρ : r0,8r Ñ Xu ,

and the set of quasigeodesic rays of X with origin p is

QG`pX, pq “ tρ P QG`pXq : ρp0q “ pu .

Two quasigeodesic rays ρ1, ρ2 P G`pXq are asymptotic, ρ1 „ ρ2, if the Hausdorff distance
of their images is finite. The equivalence class ρp8q of a quasigeodesic ray ρ is its point
at infinity.

The following result allows us to represent the boundary at infinity using quasirays
instead of geodesic rays.

Proposition 9.9. Let X be a proper Gromov-hyperbolic space and let q P X. For any
ρ P QG`pX, qq, there is a ray ρ̄σ P G`pX, qq such that ρ̄p8q “ ρp8q.

Proof. The existence of ρ̄ is proved in the same way as Proposition 9.3. Note that
dpρp0q, ρptqq Ñ 8 as tÑ 8 because ρ is a quasi-isometric embedding. The asymptoticity
follows from Theorem 7.10.

Note that Proposition 9.9 has no analog in En, see Exercise 9.5.

Corollary 9.10. Let X be a proper Gromov-hyperbolic space and let p P X. The boundary
at infinity B8X is naturally identified with QG`pXq{„ and QG`pX, pq{„.

Proposition 9.11. Let X and Y be metric spaces. Let ρ1, ρ2 P G`pXq and let F : X Ñ

Y be a quasi-isometric embedding. Then ρ1p8q “ ρ2p8q if and only if F ˝ ρ1p8q “

F ˝ ρ2p8q.

Proof. Exercise.
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Corollary 9.12. Let X be a metric space and let Y be a proper Gromov-hyperbolic space.
A quasi-isometric embedding F : X Ñ Y induces an injective mapping F8 : B8X Ñ B8Y .

Proposition 9.13. Let X and Y be proper Gromov-hyperbolic spaces and let F : X Ñ

Y be a quasi-isometry. The mapping F8 : B8X Ñ B8Y ,

F8pρp8qq “ pF ˝ ρqp8q ,

is a bijection.

Proof. Let F : Y Ñ X be a quasi-inverse of F and let K ě 0 such that

dpF ˝ F pxq, xq ď K and dpF ˝ F pyq, yq ď K (9.1)

for all x P X and all y P Y . If ρ P G`pXq, then F ˝ F ˝ ρ P QG`pXq, and (9.1) implies
that dpF ˝ F ˝ ρptq, ρptqq ď K for all t P r0,8r. Thus

F8 ˝ F8pρp8q “ F ˝ F ˝ ρp8q “ ρp8q .

An analogous argument gives F8 ˝ F8 “ id, so F8 is a bijection.

Example 9.14. The boundary at infinity of the bi-infinite ladder is naturally identified
with B8E1 “ t´8,8u because these two spaces are quasi-isometric by Proposition 7.6.

9.5 A topology on X Y B8X

In this section, we define a topology in the union of a proper Gromov-hyperbolic space X
and its boundary at infinity, and obtain a geometrically natural compactification of X.

Let X be a metric space and let p P X. The mapping E : qG`pX, pq Ñ X Y B8X,
Epρq “ ρp8q, is the endpoint map.

Proposition 9.15. The restriction of the endpoint map E : qG`pX, pq ´ G`pX, pq Ñ X is
a quotient map.

Proof. Let A Ă X be closed. Let gn P E´1pAq such that gn Ñ g as n Ñ 8. Then
gnp8q P A for all n P N and gp8q “ limnÑ8 gnp8q P A as A is closed. Thus, g P E´1pAq,
so E is continuous.

Let A Ă X such that E´1pAq is closed. Let ak P A be a sequence that converges in
X. Let gk P E´1pAq such that gkp8q “ ak for all k P N. This sequence has a convergent
subsequence gnk Ñ g P E´1pAq as k Ñ 8 by Theorem 9.2, and ank “ gnkp8q Ñ gp8q P A.
Thus, A is closed.

Let „
E
be the equivalence relation in qG`pX, pq defined by g „

E
g1 if and only if gp8q “ g1p8q.

Corollary 9.16. X is homeomorphic with
`

qG`pX, pq ´ G`pX, pq
˘

{„
E
.
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Proof. The claim follows from Proposition 9.15 by Proposition B.7.

The topology (based at p) of XYB8X is the quotient topology of the topology of compact
convergence on qG`pX, pq.

Theorem 9.17. Let X be a proper Gromov-hyperbolic space. The space X Y B8X is
compact and X is open and dense in X Y B8X.

Proof. The quotient map from qG`pXq to qG`pXq{„
E
is continuous and qG`pXq is compact by

Theorem 9.2, and the image of a compact space under a continuous mapping is compact.
Corollary 9.16 implies that X is open in X Y B8X. If ξ P B8X, then ξ “ ρp8q for

some ρ P G`pX, x0q. The sequence pρ|r0,ksqkPN converges to ρ.

Example 9.18. The space Hn Y B8Hn is homeomorphic to the closed unit ball in En.
Consider the Poincaré ball model. The image of the neighbourhood Br0,rspρ, εq, with
r, ε ą 0, of geodesic rays ρ P G`pH2, 0q in H2 Y B8H2 is the union of the hyperbolic ball
Bpρprq, εq and the intersection of a sector with the annulus tz P H2 : dpz, 0q ą ru of the
unit disk as in Figure 9.4. Clearly, these neighbourhoods and the topology of H2 generate
the topology of the closed unit ball.

Figure 9.4 — A neighbourhood of the boundary point 1 P B8H2 consists of the union of
an annular sector and a ball.

Example 9.19. Let X be a regular tree with constant degree 3, and let x0 P V X.
We saw in Lemma 8.9 that the boundary at infinity of X is identified with the space of
geodesic rays G`pX, x0q. Let ρ P G`pX, x0q, r P N and ε ą 0. As X is a tree,

Br0,rspρ, εq “ tρ
1
P qG`pX, x0q : dpρptq, ρ1ptqq ă ε for all t P r0, rsu

“ tρ1 P qG`pX, x0q : ρ1|r0,rs “ ρ|r0,rsu ,
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See Figure 9.5. Notice that

Br0,rspρ, εq X B8X “ Bpρp8q, e´1
q

for the metric dx0 defined in section 8.3. Thus, we see that the topology defined in this
section agrees with the metric topology in the boundary of X.

x0

Figure 9.5 — The part of the tree bounded by the blue wedge is Br0,4spρ, εq for any ray
ρ P G`pX, x0q that enters the wedge and a small ε ą 0.

Exercises
9.1. Let X be a metric space, let m ą 0 and let jk : r0,ms Ñ X be geodesic segments.
Assume that the sequence pjkqkPN converges uniformly to a mapping j. Prove that j is a
geodesic segment.
9.2. LetX be a metric space and let gk P qG`pXq for all k P N such that gk Ñ g uniformly
on compact sets. Prove that g P qG`pXq.
9.3. Prove Lemma 9.6.
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9.4. Prove Theorem 9.7.4

9.5. Let γ : r0,8r Ñ E2, γptq “ pt, logp1` tqq be a parametrization in polar coordinates
pr, θq of the logarithmic spiral. Prove that γ is a p

?
2, 0q-quasigeodesic ray.5 Is there a

geodesic ray in E2 asymptotic to γ?
9.6. Prove Proposition 9.11.

4You may assume the result of Lemma 9.6.
5The length of a path is at least the distance of its endpoints.
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Chapter 10

CAT(´1) spaces

In this chapter, we will begin the study of CATpκq-spaces that formalize the concept of
metric spaces with curvature bounded above by κ with κ P R. We will then study some
basic properties of CATp0q-spaces that are spaces of non-positive curvature, and later
concentrate on CATp´1q-spaces as a convenient class of spaces of negative curvature.
If κ ă 0, then CATpκq-spaces are Gromov-hyperbolic spaces, and all the theory from
chapters 6 to 9 is applicable.

10.1 Comparison geometry
If pX, dq is a metric space and k ą 0 is a constant, then pX, kdq is a metric space. For
example, pSn, kdSnq is isometric with the sphere of radius k. In particular, pSn, kdSnq is not
isometric with Sn. Similarly, it can be seen for example by considering the configuration
studied in Exercise 5.2 and Figure 5.5 that the spaces pHn, kdHnq are not isometric for
different parameters k ą 0. On the other hand the mapping F : pRn, } ¨ }q Ñ pRn, k} ¨ }q,
F pxq “ 1

k
x, is an isometry for any norm } ¨ }.

After these observations, the following family of 2-dimensional metric spaces appears
reasonable.

Let κ P R. The metric space

Xκ “

$

’

&

’

%

S2
κ “

`

S2, 1?
κ
dS2

˘

if κ ą 0
E2 if κ “ 0 .
H2
κ “

`

H2, 1?
´κ
dH2

˘

if κ ă 0

is the model space of curvature κ.

With this definition, the space Xκ is the unique 2-dimensional simply-connected Rie-
mannian manifold of Riemannian curvature κ. In this course, we do not discuss Rieman-
nian geometry to any depth, and refer to for example [O’N] or [Pet] and [BH, Appendix
of Ch. II.1] for these topics.
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116 CAT(´1) spaces

In comparison geometry, metric spaces are compared with the model spaces defined
above using the geometric properties of triangles.

Let pX, dq be metric space and let x, y, z P X be three distinct points. Let κ P R. If there
are points x̄, ȳ, z̄ P Xκ, the triangle with vertices x, y, z P Xκ is a comparison triangle of
x, y, z in Xκ.
If ∆ is a triangle in X, the comparison triangle of its vertices is the comparison triangle of
∆.

Proposition 10.1. Let κ P R. Let X be a metric space and let x, y, z P X. The triple
tx, y, zu has a comparison triangle in Xκ for κ ď 0.

Proof. As X is a metric space, the side lengths of ∆px, y, zq satisfy the assumptions of
Propositions 2.4 and 5.10.

Comparison triangles exist also in the spherical model spaces Xκ for κ ą 0 if the sum
of the pairwise distances of the three points is at most the length of the equator of the
sphere Xκ. For simplicity, we will restrict to κ ď 0 although the general case is important
even when the main interest is in negatively curved spaces. See for example [BH, Chapter
II.5].

The proof of the following lemma is based on repeated application of the cosine law
in Xκ. In H2

κ, with the standard notations for triangles as in section 1.5, the cosine law
takes the form

coshp
?
´κcq “ coshp

?
´κaq coshp

?
´κbq ´ sinhp

?
´κaq sinhp

?
´κbq cos γ .

This cosine law follows directly from the hyperbolic cosine law of Proposition 4.10. Recall
that the Euclidean cosine law was proved in Proposition 2.2.

Lemma 10.2 (Aleksandrov’s lemma). Let κ ď 0. Let A,B,C,D,A1, B1, C 1, D1 P Xκ such
that B and C are in different components of the complement of the line through A and
D such that dpA,Bq “ dpA1, B1q, dpA,Cq “ dpA1, C 1q dpB,Dq ` dpD,Cq “ dpB1, C 1q and
D1 P rB1, C 1s such that dpB,Dq “ dpB1, D1q. Let α, β, γ and η ě π be the interior angles
in the quadrilateral with vertices A, B, C and D, and let α1, β1 and γ1 be the interior
angles of the triangle with vertices A1, B1 and C 1. Then α1 ě α, β1 ě β, γ1 ě γ and
dpA1, D1q ě dpA,Dq.

Proof. Let ∆1 be the triangle with vertice A1, B1 and C 1. The triangle inequality implies
that dpB,Cq ď dpB1, C 1q. Thus, the cosine law applied to the triangle with vertices A, B
and C and to ∆1 implies that α ď α1.

Let rC be the unique point on the geodesic line through B and D such that dpB, rCq “
dpB,Dq ` dpD,Cq and dpD, rCq “ dpD,Cq. The angle at D of the triangle with vertices
A, D and rC, is not greater than the angle at D in the triangle with vertices A, D and C.
Thus, the cosine law implies that

dpA, rCq ď dpA,Cq “ dpA1, C 1q .

Thus, the cosine law applied to the triangle with vertices A, B and rC and to ∆1 implies
that β ď β1. An analogous argument shows that γ ď γ1.

The cosine law applied to the triangle with vertices A, B and D and to the triangle
with vertices A1, B1 and D1 implies that dpA,Dq ď dpA1, D1q.
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D

D1

α
A

C

B

B1

C 1
γ1

α1

A1

rC

β

β1

γ

η

Figure 10.1 — Aleksandrov’s lemma.

Aleksandrov’s lemma is an important technical tool in many proofs in comparison
geometry.

10.2 CATpκq spaces

Let X be a geodesic metric space and let κ ď 0. Let ji : Ii Ñ X, i P t1, 2, 3u be geodesic
segments that form a triangle ∆ in X, and let ji : Ii Ñ Xκ be the sides of the comparison
triangle ∆ of ∆ such that jip0q “ jip0q for all i P t1, 2, 3u. Then p “ jiptq is the comparison
point of a point p “ jiptq for t P Ii and i P t1, 2, 3u.

Most of the time, we suppress the notation of the geodesic segments forming a triangle
using formulations such as

Let p P rx, ys be the comparison point of p P rx, ys

meaning that p P rx, ys is the unique point with dpx, pq “ dpx, pq and dpy, pq “ dpy, pq.
Here, if X is not uniquely geodesic, the notation rx, ys refers to one of the geodesic
segments connecting x to y.

q

y z

x

y z

p p

x

q

Figure 10.2 — A triangle in a metric space and its comparison triangle in X0 “ E2.
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Let κ ă 0. A geodesic metric space X is a CATpκq-spacea if for all x, y, z P X and any
points p P rx, ys and q P rx, zs, the comparison points p̄ and q̄ satisfy dpp, qq ď dpp, qq.

aThe letters CAT refer to E. Cartan, A. D. Aleksandrov and V. A. Toponogov who studied similar
conditions for curvature.

It is, in fact, sufficient to check the defining inequality in the case that one of the
points is a vertex of the triangle:

Proposition 10.3. Let X be a geodesic metric space and let κ ď 0. Then X is a CATpκq-
space if and only if for all x, y, z P X and p P ry, zs, dpx, pq ď dpx, pq.

Proof. Exercise.

Example 10.4. (1) Hn is a CATp´1q-space.
(2) R-trees are CATpκq-spaces for all κ ď 0: Let X be an R-tree and let x, y, z P X. Let
x, y, z P H2 be the vertices of a comparison triangle. Let γ : r0, dpy, zqs Ñ X be a the
unique geodesic segment with γp0q “ y and γpdpy, zqq “ z. If 0 ď t ď px | zqy, then

dpγptq, xq “ dpy, xq ´ t ď dpγptq, xq

because the distance dpγptq, xq decreases at maximal speed for any geodesic in any geodesic
metric space. The claim for px | zqy ď t ď dpy, zq is checked in the same way.

Lemma 10.5. Let κ1 ď κ2 ď 0. Let x1, y1, z1 P Xκ1 and x2, y2, z2 P Xκ2 such that
dpx1, y1q “ dpx2, y2q, dpx1, z1q “ dpx2, z2q and >x1py1, z1q “ >x2py2, z2q. Then dpy1, z1q ě

dpy2, z2q.

Proof. Let us use polar coordinates pr1, θ1q centered at x1 and pr2, θ2q centered at x2. In
polar coordinates, the Riemannian metric of Xκ has the expression

ds2
“ dr2

`
1

?
´κ

sinh2
p
?
´κrqdθ2

“ dr2
` fpκ, rq2dθ2 ,

and if κ “ 0, we have the Euclidean plane with the Riemannian metric ds2 “ dr2` r2dθ2,
and we set fp0, rq “ r.

For fixed r ą 0, the mapping κ ÞÑ fpκ, rq is strictly decreasing. Therefore, the mapping
pr1, θ1q ÞÑ pr2, θ2q strictly decreases the length of each tangent vector that is not radial.
Thus, dpy1, z1q ě dpy2, z2q.

Lemma 10.6. Let κ1 ď κ2 ď 0. Let x1, y1, z1 P Xκ1 and x2, y2, z2 P Xκ2 such that
dpx1, y1q “ dpx2, y2q, dpx1, z1q “ dpx2, z2q and dpy1, z1q “ dpy2, z2q. Then the angles of the
triangle with vertices x1, y1 and z1 are not greater than the corresponding angles of the
triangle with vertices x2, y2 and z2.

Proof. This is an immediate consequence of Lemma 10.5.

Lemma 10.7. Let κ1 ď κ2 ď 0. Then Xκ1 is a CATpκ2q-space.
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Proof. Let x1, y1, z1 P Xκ1 and x2, y2, z2 P Xκ2 such that dpx1, y1q “ dpx2, y2q, dpx1, z1q “

dpx2, z2q and dpy1, z1q “ dpy2, z2q. Let p1 P ry1, z1s and let p2 be its comparison point in
ry2, z2s.

Let x1, y1, z1, p1 P Xκ2 such that the triangles with vertices x1, y1, p1 and x1, z1, p1 are
comparison triangles of the triangles with vertices x1, y1, p1 and x1, z1, p1 and the points
y1 and z1 are in different components of the complement of the geodesic line through the
points x1 and p1.

Let γ and γ1 be the angles at p1 of the triangles with vertices x1, p1 and z1 and with
vertices x1, p1 and y1, respectively. Lemma 10.6 implies that γ1 ě γ1 and γ11 ě γ11. In
particular, γ1`γ

1
1 ě π, and we may apply Aleksandrov’s lemma1 to the quadrilateral with

vertices x1, y1, p1 and z1 and to the triangle with vertices x2, y2 and z2 to conclude that
dpx1, p1q “ dpx1, p1q ď dpx2, p2q. Thus, Xκ1 is a CATpκ2q-space by Proposition 10.3.

γ11

x1 x2

y2

z1

p1

γ1

p1 p2

x1

y1

y1

z1
z2

γ1
γ2

γ12γ11

Figure 10.3 — The triangles in the proof of Lemma 10.7.

It follows from Lemma 10.7 that the classes of CATpκq-spaces are naturally nested in
terms of the real parameter κ.

Proposition 10.8. If κ ă κ1 ď 0 and X is a CATpκq space, then X is a CATpκ1q space.

Proof. This is a consequence of Lemma 10.7.

As the metric of Xκ for κ is obtained from that of the hyperbolic plane by multiplying
with the factor 1?

´κ
, it is sufficient to concentrate on (locally) CATp´1q spaces when we

study negatively curved spaces. In many cases, it is sufficient to only assume that the
space is a CATp0q-space.

1Lemma 10.2
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Proposition 10.9. CATp0q-spaces are uniquely geodesic.

Proof. Let X be a CATp0q-space and let x, y P X. Let j1 and j2 be geodesic segments such
that j1p0q “ j2p0q “ x and j1pdpx, yqq “ j2pdpx, yqq “ y. Let z “ j1ptq, 0 ď t ď dpx, yq be
in the image of j1 and consider the triangle ∆ whose vertices are x, y and z and whose
sides are j1|r0,ts, j1|rt,dpx,yqs and j2. The Euclidean comparison triangle of ∆ is degenerate.
As X is a CATp´1q space, we get dpj1ptq, j2ptqq ď }j1ptq ´ j2ptq} “ 0. Thus, j1ptq “ j2ptq
for all t P r0, dpx, yqs, which implies j1 “ j2.

Proposition 10.10. Balls are strictly convex in CATp0q spaces.

Proof. Exercise.

Proposition 10.11. CATp´1q-spaces are logp1`
?

2q-hyperbolic.

Proof. Exercise.

A metric space X is contractible if there is a continuous mapping F : r0, 1sˆX Ñ X such
that F p0, ¨q is a constant mapping and F p1, ¨q is the identity mapping.a

aThe identity map is null-homotopic.

Proposition 10.12. CATp0q-spaces are contractible.

Proof. Let x0 P X. For each x P X, there is a unique geodesic segment gx P qG`pX, x0q with
gxp8q “ x because X is uniquely geodesic by Proposition 10.9. Let F : r0, 1s ˆX Ñ X,

F pt, xq “ gxpt dpx0, xqq .

For fixed x P X, the mapping t ÞÑ gxpt dpx0, xqq is an affinely reparametrized geodesic
segment. By comparison with a triangle with vertices x0 “ 0, x1 and x2 in E2,

dpF pt1, x1q, F pt2, x2qq “ d
`

gx1pt1 dpx0, x1qq, gx2pt2 dpx0, x2qq
˘

ď }t1x1 ´ t2x2} ď |t1 ´ t2|}x1} ` t2}x1 ´ x2}

ď |t1 ´ t2|}x1} ` }x1 ´ x2} “ |t1 ´ t2|dpx0, x1q ` dpx1, x2q

for all t1, t2 P r0, 1s and all x1, x2 P X. Thus, F is continuous.

Proposition 10.12 implies that the class of CATpκq-spaces with κ ă 0 does not con-
tain all Gromov-hyperbolic spaces because for example the bi-infinite ladder is Gromov-
hyperbolic but not contractible.

Exercises
10.1. Prove Proposition 10.3.
10.2. Prove Proposition 10.10.
10.3. Prove Proposition 10.11.
10.4. Let X be a CATp0q-space and let p P X. Let ρ1, ρ2 P G`pX, pq be asymptotic
rays. Prove that ρ1 “ ρ2.

December 7, 2020



Chapter 11

The boundary at infinity of a
CATp´1q-space

In this chapter we study the boundary at infinity of a CATp´1q-space. In particular, we
define a Gromov product and a metric in the boundary at infinity.

11.1 Some hyperbolic geometry
In this section we prove that triangles with a short side and two long sides have very long
thin parts.

Let L be a geodesic line in Hn. Lemma 5.20(1) implies that for each p P Hn, there is
a unique point πLppq P L for which dpp, Lq “ dpp, πLppqq.

Lemma 11.1. Let L be a geodesic line in Hn. For any p R L, the geodesic arc rp, πLppqs
is orthogonal to L.

Proof. Exercise.

Let L be a geodesic line in Hn. The map πL : Hn Ñ L is the closest point map of L.

Proposition 11.2. The closest point map πL is 1-Lipschitz. More precisely, for any
p, q P Hn,

dpπLppq, πLpqqq ď dpp, qq

with equality only if p, q P L.

Proof. Normalize so that L is the geodesic line with endpoints at 0 and 8. For any x P L,

π´1
L pxq “ ty P Hn : }y} “ }x}u .

Let us minimize the hyperbolic distance between any pair of points x, y P Hn such that
πLpxq “ πLppq and πLpyq “ πLpqq. Recall from section 5.3 that

dpx, yq “ arcosh
`

1` }x´ y}
2

2xnyn
˘

.
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The Euclidean distance }x´ y} is minimal when x and y are on the same ray from 0 and
the product xnyn is maximal when x and y are on L.

Lemma 11.3. Let p, q P Hn and let ρ P G pHn, pq. Let ε ą 0. If

max
´

dpp, qq, log 4 sinh dpp, qq
ε

¯

ă t ă T ,

then d
`

ρptq, rq, ρpT qs
˘

ă ε.

q

ρpT qρptq

ρpdpp, qqq

φpT q

θptq

p

Proof. Let θpT q be the angle at ρpT q and let φpT q be the angle at q in the triangle with
vertices p, q and ρpT q. The hyperbolic law of sines1 gives the equation

sin θpT q “ sinφpT q sinh dpp, qq
sinhT .

Let L be the unique geodesic line that contains the geodesic segment rq, ρpT qs. Lemma
11.2 implies that dpπLpρptqq, ρpT qq ď dpρptq, ρpT qq. Thus πLpρptqq is the closest point to
ρptq in the segment rq, ρpT qs. Lemma 11.1 implies that the segment rρptq, πLpρptqqs meets
rq, ρpT qs orthogonally at πLpρptqq.

The hyperbolic sine law applied to the triangle with vertices ρptq, πLpρptqq and ρpT q
implies

sinh dpρptq, πLpρptqqq “
sinφpT q sinh dpp, qq sinhpT ´ tq

sinhT ď
sinh dpp, qq sinhpT ´ tq

sinhT .

An elementary computation shows that the right side of this inequality is smaller than
ε if t ą log 4 sinh dpp,qq

ε
. The claim follows as t ă sinh t for t ě 0.

11.2 Asymptotic rays
In this section we collect some results on asymptotic rays in a CATp´1q. The first one
strengthens the conclusion of Proposition 9.4 for these spaces.

Proposition 11.4. Let X be a proper CATp´1q-space and let p P X and ξ P B8X. There
is a unique geodesic ray ρ P G`pX, pq with ρp8q “ ξ.

1Proposition 4.27
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Proof. CATp´1q-spaces are Gromov-hyperbolic by Proposition 10.11. Existence of the ray
follows from Proposition 9.4. As X is a CATp0q-space by Proposition 10.8, uniqueness of
the ray follows from Exercise 10.4.

The estimate of Lemma 11.3 is very rough and an optimal value is not important for
us. The important content of this result is that the lower bound on t depends only on
dpp, qq and ε. This is generalized in the following proposition:

Proposition 11.5. Let X be a CATp´1q-space. Let p, q P X and let ε ą 0. There is
some constant M ą 0 such that if w P X with dpp, wq, dpq, wq ě M , x P rp, dpp, wqs with
M ď dpp, xq ďM , then dpx, rq, wsq ď ε.

Proof. This follows directly by comparison from Lemma 11.3.

Proposition 11.6. Let X be a CATp´1q-space. Let ρ1, ρ2 P G`pXq with ρ1p8q “ ρ2p8q.
(1) limtÑ8 dpρ1ptq, ρ2q “ 0.
(2) There is some T P R such that limtÑ8 d

`

ρ1ptq, ρ2pT ` tq
˘

“ 0.

Proof. When X is proper, the claim follows by modifying the proof of Proposition 8.4
where δ-hyperbolicity is replaced by the thinness of long triangles given by Proposition
11.5. We leave the general case as an exercise.

11.3 The Busemann cocycle
In this section, we introduce the Busemann cocycle, and horoballs and horospheres that
are subsets of the CATp´1q-space defined using the Busemann cocycle. In Example
11.12, we find a geometric meaning in terms of horospheres for the spheres tangent to the
boundary at infinity in the upper halfplane model and the Poincaré model of hyperbolic
space.

LetX be a CATp´1q-space. The Busemann cocycle ofX is the map β : B8XˆXˆX Ñ R
defined by

pξ, x, yq ÞÑ βξpx, yq “ lim
tÑ`8

dpρptq, xq ´ dpρptq, yq ,

where ρ is any geodesic ray ending at ξ.

Proposition 11.7. Let X be a CATp´1q-space. The Busemann cocycle is well-defined.

Proof. Let ρ P G`pXq. The function

t ÞÑ fxptq “ dpρptq, xq ´ t “ dpρptq, xq ´ dpρptq, ρp0qq

is decreasing because if t ą s, we have

dpx, ρptqq ď dpx, ρpsqq ` dpρpsq, ρptqq “ dpx, ρpsqq ` t´ s .

Furthermore,
t “ dpρp0q, ρptqq ď dpρp0q, xq ` dpx, ρptqq ,
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so that dpx, ρptqq ´ t ě ´dpρp0q, xq for all t ě 0. Thus the limit limtÑ8 fxptq exists. As
βpρp8q, x, yq “ fyptq ´ fxptq, the limit in the definition of the Busemann cocycle exists
for a fixed ρ.

Let ρ1, ρ2 P G`pXq such that ρp8q “ ρ1p8q. By Proposition 11.6, we have

lim
tÑ`8

dpρ1ptq, xq ´ dpρ1ptq, yq “ lim
tÑ`8

dpρ2pT ` tq, xq ´ dpρ2pt` T q, yq ,

which shows that the definition of the Busemann cocycle is independent of the ray used
in its definition.

Example 11.8. (1) Let x “ px, xnq, y “ px, xnq P Hn in the upper halfspace model. Let
ρ P G`pHn, pq, ρptq “ px, xnetq, and let ξ “ 8 “ ρp8q. Theorem 4.12 and Proposition 5.9
give the estimates

t` log xn
yn
“ dpρptq, y, xne

t
q ď dpρptq, yq ď dpρptq, py, xne

t
qq ` dpy, xne

t, yq

for large t, which implies that
β8px, yq “ log yn

xn
.

(2) If X is an R-tree, if p P X is such that rx, ξr X ry, ξr “ rp, ξs, then

βξpx, yq “ dpx, pq ´ dpy, pq . (11.1)

Lemma 11.9. If x, y, z P X, ξ P B8X and let g P IsompXq. Then
(1) |βξpx, yq| ď dpx, yq.
(2) βg¨ξpgpxq, gpyqq “ βξpx, yq.
(3) βξpx, yq ` βξpy, zq “ βξpx, zq.

Proof. (1) The triangle inequality gives the bounds

´dpx, yq ď dpρptq, xq ´ dpρptq, yq ď dpx, yq

for all t ě 0.
(2) Exercise.
(3) Trivially, we have the equation dpρptq, xq ´ dpρptq, yq ` dpρptq, yq ´ dpρptq, zq for all
t ě 0. The claim follows by taking the limit tÑ 8.

Let X be a CATp´1q-space. Let L be a geodesic line in X and let ξ P B8X be one
of its endpoints. The horosphericala projection map of L with respect to ξ is the map-
ping hL,ξ : X Ñ L defined by setting hL,ξppq to be the unique point on L such that
βξpp, hL,ξppqq “ 0.

aWhen X “ H2, this mapping is usually called the horocyclic projection map.

Note that if L “ sξ, ηr, the maps hL,ξ and hL,η are usually not the same mapping. See
figure 11.1 for an example in the hyperbolic plane.
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Proposition 11.10. Let X be a CATp´1q-space. Let L be a geodesic line and let ξ P B8X
be one of its endpoints. The horospherical projection hL,ξ is 1-Lipschitz. More precisely,
for any p, q P X,

dphL,ξppq, hL,ξpqqq ď dpp, qq

with equality only if p, q P L.

Proof. Exercise.

(a)

1

(b)

1´1

1?
2

´1
2

1
2

Figure 11.1 — (a) Horocycles centered at 1 P B8H2 in the Poincaré model.
(b) The horocyclic projections with respect to the two endpoints of the geodesic line
L “ s´1, 1r are different in H2: hL,1p 1?

2 “ ´
1
2q and hL,´1p

1?
2 “

1
2q.

Let X be a CATp´1q-space. Let ξ P B8X and let x P X. The (closed) horoball centred at
ξ through x is

H pξ, xq “ ty P X : βξpx, yq ě 0u ,

and
BH pξ, xq “ ty P X : βξpx, yq “ 0u ,

the is the horospherea centred at ξ through x.
aWhen X “ H2, horospheres are usually called horocycles.

Proposition 11.11. Let X be a CATp´1q-space.
(1) Horoballs are nonempty closed convex2 subsets of X.
(2) Let ξ P B8X and let x P X. If g P IsompXq, then gpH pξ, xqq “ H pg ¨ ξ, gpxqq.

Proof. (1) Exercise.
(2) This is a direct consequence of Lemma 11.9.

2In fact, they are strictly convex.
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Example 11.12. Let x “ px, xnq P Hn in the upper halfspace model. Example 11.8
implies that

H p8, xq “ ty P Hn : yn ě xnu .

For each x P Rn´1 ˆ t0u “ B8Hn, x “ Tx ˝ ι0,1p8q. The mapping gx “ Tx ˝ ι0,1
is an isometry of Hn and it is a composition of two reflections in hyperplanes and the
inversion ι0,1. Thus, gx maps the horoballs centered at 8 to Euclidean balls that are
tangent to B8Hn at x. Proposition 11.11 implies that gxpH p8, yqq “ H px, gxpyqq. In
the ball model, horoballs are Euclidean balls tangent to B8Hn “ Sn´1.

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure 11.2 — Horoballs in the upper halfplane model of H2.

11.4 Gromov product in the boundary at infinity
In section 8.3, we extended the Gromov product of an R-tree to the boundary at infinity
by a limiting construction. This is not possible for Gromov-hyperbolic spaces in general
in such a simple manner, see Exercise 8.7. However, the construction works for CATp´1q-
spaces as we will now see.

Lemma 11.13. Let X be a proper CATp´1q-space, let x0 P X and let ξ1, ξ2 P B8X. Let
ρ1, ρ2 P G`pX, x0q with ρ1p8q “ ξ1 and ρ2p8q “ ξ2. Let p P sξ1, ξ2r. Then

lim
tÑ8

`

ρ1ptq | ρ2ptq
˘

x0
“

1
2
`

βξ1px0, pq ` βξ2px0, pq
˘

.
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Proof. Let γ P G pXq such that γp´8q “ ξ1 and γp8q “ ξ2. Then,

βξ1px0, pq ` βξ2px0, pq “ lim
tÑ8

`

dpx0, ρ1ptqq ´ dpρ1ptq, pqq ` lim
tÑ8

pdpx0, ρ2ptqq ´ dpρ2ptq, pq
˘

“ lim
tÑ8

`

dpx0, ρ1ptqq ` dpx0, ρ2ptqq ´ pdpρ1ptq, pqq ` dpρ2ptq, pqq
˘

“ lim
tÑ8

`

dpx0, ρ1ptqq ` dpx0, ρ2ptqq ´ dpρ1ptq, ρ2ptqq
˘

,

where the final equation follows from Proposition 11.6.

Let X be a proper CATp´1q space. The Gromov product of ξ1, ξ2 P B8X with respect to
x0 P X is

pξ1 | ξ2qx0 “ lim
tÑ8

pρ1ptq | ρ2ptqqx0 ,

where ρ1, ρ2 P G`pX, x0q with ρ1p8q “ ξ1 and ρ2p8q “ ξ2.

As in the case of R-trees, we use the Gromov product at infinity to define a metric:

Let X be a proper CATp´1q space. The Gromov-Bourdon visual metric of B8X with
basepoint x0 is

dx0pξ1, ξ2q “

#

e´pξ1 | ξ2qx0 if ξ1 ‰ ξ2

0 if ξ1 “ ξ2.

Let x0, x1, x2 P X and let x0, x1, x2 P H2 be the vertices of the comparison triangle of
x0, x1, x2. Let

αx0px1, x2q “ sin >x0px1, x2q

2
Lemma 11.14. If X is a CATp´1q space, x0 P X and t ą 0, then αx0 is a metric in the
sphere BBpx0, tq

Proof. The usual formulae of trigonometric and hyperbolic functions give

αx0px1, x2q “ sin >x0px1, x2q

2 “

c

1´ cos>x0px1, x2q

2

“

d

cosh dpx1, x2q ´ cosh
`

dpx0, x1q ´ dpx0, x2q
˘

2 sinh dpx0, x1q sinh dpx0, x2q
.

Thus, if dpx0, x1q “ dpx0, x2q “ t,

αx0px1, x2q “

c

cosh dpx1, x2q ´ 1
2 sinh2 t

. (11.2)

As the mapping t ÞÑ
?

cosh t´ 1 on r0,8r is increasing and convex and vanishes only at
0, we conclude that αx0 is a metric.

Lemma 11.15. Let X be a proper CATp´1q space and let ρ1, ρ2 P G`pX, x0q. Then

lim
tÑ8

αx0pρ1ptq, ρ2ptqq “ dx0pρ1p8q, ρ2p8qq .
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Proof. Using equation (11.2), we have

lim
tÑ8

αx0pρ1ptq, ρ2ptqq “

c

lim
tÑ8

cosh dpρ1ptq, ρ2ptqq

2 sinh2 t

“

c

lim
tÑ8

edpρ1ptq,ρ2ptqq

e2t

“ e´pρ1p8q | ρ2p8qqx0 .

Proposition 11.16. The Gromov-Bourdon visual metric is a metric.

Proof. The properties of the metric on the expanding spheres are preserved in the limit.

Example 11.17. The visual distance d0pξ1, ξ2q of two points ξ1, ξ2 P B8Hn “ Sn´1 in
the Poincaré ball model of Hn is half the length of the Euclidean segment rξ1, ξ2s.

Exercises
11.1. Prove Lemma 11.1.
11.2. Give a detailed proof of Proposition 11.6(1) for proper CATp´1q-spaces.
11.3. Give a detailed proof of Proposition 11.6(2) for proper CATp´1q-spaces.
11.4. Prove Proposition 11.6 without the assumption that X is proper.
11.5. Let X be a regular tree with constant degree 3, and let x0 P V X and let ξ P B8X.
Describe the horoball H pξ, x0q. Draw a picture.
11.6. Prove Lemma 11.9(2).
11.7. Prove Proposition 11.10.
11.8. Prove Proposition 11.11(1).3

3It is sufficient to use that X is a CATp0q-space.
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Complements on topology

B.1 Topology of compact convergence
Let X be a topological space and let Y be a metric space. A sequence pfkqkPN of mappings
fk : X Ñ Y converges uniformly on compact sets to a mapping f : X Ñ Y if the sequence
pfk|KqkPN converges uniformly for compacts subsets K Ă X.

Uniform convergence on compact subsets defines a topology on the space of continuous
mappings.

Let X be a topological space and let Y be a metric space. For f P CpX, Y q, K Ă

X compact and ε ą 0, let

BKpf, εq “ tg P CpX, Y q : max
xPK

dpfpxq, gpxqq ă εu .

The topology generated by

tBKpf, εq : f P CpX, Y q, K Ă X compact, ε ą 0u

is the topology of compact convergence in CpX, Y q.

Proposition B.1. Let X be a topological space and let Y be a metric space. A sequence
of functions pfkqkPN, fk P CpX, Y q converges uniformly on compact sets if and only if it
converges in the topology of compact convergence.

Proof. Exercise.

B.2 The theorems of Arzelà and Ascoli
Let X be a topological space and let Y be a metric space. A subset F Ă CpX, Y q is
equicontinuous if for all x0 P X for all ε ą 0 there is an open neighbourhood of x0 such
that dpfpxq, fpx0qq ă ε for all f P F .
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Example B.2. If pX, dXq and pY, dY q are metric spaces, the family M -Lipschitz map-
pings

LipMpX, Y q “ tf : X Ñ Y : dY pfpx1q, fpx2qq ďMdXpx1, x2q for all x1, x2 P Xu

is equicontinuous: the condition dXpx1, x2q ă
ε
M

implies dY pfpx1q, fpx2qq ă ε for all
f P LipMpX, Y q and all x1, x2 P X.

Theorem B.3 (Arzelà and Ascoli). Let X be a topological space and let Y be a metric
space. Let F Ă CpX, Y q be a subset that consists of equicontinuous mappings such that
the sets Fx “ tfpxq : f P F u have compact closures for all x P X. Then F is contained
in a compact subset of CpX, Y q.

Proof. See [Mun, Thm. 47.1].

Corollary B.4 (Arzelà and Ascoli). Let X be a topological space and let Y be a metric
space. Let F Ă CpX, Y q be a closed subset that consists of equicontinuous mappings such
that the sets Fx “ tfpxq : f P F u have compact closures for all x P X. Then F is
compact.

Another version of the theorem of Arzelà and Ascoli that one often sees is also useful.

Let pX, dXq and pY, dY q be metric spaces. A family F Ă CpX, Y q is uniformly equicon-
tinuousa if for all ε ą 0 there is δ ą 0 such that dY pfpxq, fpyqq ă ε for all f P F when
dXpx, yq ă δ.

aBeware of the terminology: [BH] call this property equicontinuity.

Theorem B.5 (Arzelà and Ascoli). Let X be a separable metric space and let Y compact
metric space. Any sequence pfkqkPN, of uniformly equicontinuous mappings fk : X Ñ Y
has a subsequence that converges uniformly on compact subsets. The limit mapping is
uniformly continuous.

Proof. See [BH, Lemma I.3.10].

B.3 Quotient mappings
If X is a topological space and „ is an equivalence relation in X, the quotient set X{„ has
a natural quotient topology, where V Ă X{ „ is open if and only if its preimage in X is
open. See for example [Mun, §22].

Let X and Y be topological spaces. A mapping q : X Ñ Y is a quotient map if it is a
continuous surjection and q´1pUq is open only if U is open.

Lemma B.6. A continuous surjection q : X Ñ Y is a quotient map q´1pF q is closed only
if F is closed.

Proof. Exercise.
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Surjective continuous maps that are open or closed are quotient maps but not all
quotient maps are open or closed mappings.

Proposition B.7. Let X and Y be topological spaces and let q : X Ñ Y be a continuous
surjection. Let „ be the equivalence relation in X defined by setting x„ x1 if and only if
qpxq “ qpx1q. The spaces Y and X{ „ are homeomorphic if and only if q is a quotient
map.

Proof. See [Mun, Cor. 22.3]

Exercises
B.1. Prove Proposition B.1.
B.2. Prove Lemma B.6.
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Appendix C

Projects

Writing a report on one of the projects below is part of the requirement for passing the
course in addition to getting at least 50% for the exercises. The aim of each project is to
study the material using the given sources, or any other source, and to write a presentation
in a style compatible with this course.

The projects should be completed by the end of January 2021. If you finish earlier,
you can of course return the project earlier and get credit for the course earlier.

It is possible that more options for the projects appear in the last two weeks of the
course.

If you do not have access to the literature indicted in the project descriptions, let me
know. Note that [Mun] is available at the internet library http://archive.org.

C.1 The theorem of Arzelà and Ascoli
Study the proof of Theorem B.3 for example using [Mun, Thm. 47.1], and write a pre-
sentation where you introduce the required required material etc. You may assume that
Tychonoff’s theorem is known but include its statement in the presentation.

C.2 The 4-point condition
A geodesic metric space X satisfies the 4-point condition with constant δ ą 0 if

px | yqw ě min
`

px | zqw, py | zqw
˘

´ δ

for all x, y, z, w P X.

Theorem C.1. A a geodesic metric space X is Gromov-hyperbolic if and only if it satisfies
the 4-point condition with some constant δ ą 0.

Study the proof of Theorem C.1 from [BS, §2.1] or [BH, p. 410-411].
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C.3 Metrically convex spaces
There are other notions of non-positive curvature than the CATp0q-condition. A slightly
weaker one is the convexity of the metric.

A geodesic metric space X is metrically convex if for any two affinely reparametrized
geodesic segments j1, j2 : r0, 1s Ñ X, the function t ÞÑ dpj1ptq, j2ptqq is convex.

Introduce the concept of metric convexity and prove that normed spaces and CATp0q-
spaces are metrically convex. Prove also that metrically convex spaces are contractible.
Material for this project is found at [BH, Prop. II.2.2] and in Section 8.1 of [Pap], in
particular, Proposition 8.1.8.
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