Funktionaalianalyysi Exercises 7, 26.2.2018

1. Let \mathscr{A} be the collection of linearly independent subsets of a vector space V that contain a linearly independent set E as a subset. Let C be a chain in the partially ordered set (\mathscr{A}, \subset) . Prove that

$$M = \bigcup_{B \in C} B \subset V$$

is linearly independent.

2. Let $(V, (\cdot | \cdot))$ be an inner product space. Assume that for some $u, v \in V$ the equation

$$[x \mid u) = (x \mid v)$$

holds for all $x \in V$. Prove that u = v.

3. Prove that an inner product defines a norm by setting

$$\|x\| = \sqrt{(x \mid x)} \,.$$

4. Let $(V, (\cdot | \cdot))$ be a complex inner product space. Prove that

$$\operatorname{Im}(x \mid y) = \frac{1}{4} \left(\|x + iy\|^2 - \|x - iy\|^2 \right)$$

for all $x, y \in V$.

5. Let H_1 and H_2 be inner product spaces. Let $\phi: H_1 \to H_2$ be an isometric linear bijection. Prove that

$$(\phi(x) \mid \phi(y)) = (x \mid y)$$

for all $x, y \in H_1$.

6. Prove that the parallelogram rule

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}$$

holds for the norm of an inner product space.

7. Let $(V, (\cdot | \cdot))$ be an inner product space. Prove that the norm given by the inner product is strictly subadditive:

$$||x+y|| < ||x|| + ||y||$$

for all $x, y \in V$ unless $x = \lambda y$ or $y = \lambda x$ for some $\lambda \ge 0$.

8. Prove that $\|\cdot\|_1$ is not a strictly subadditive norm in \mathbb{R}^2 .