Funktionaalianalyysi Exercises 4, 5.2.2018

Let $T: \ell^{\infty}(\mathbb{K}) \to \ell^{\infty}(\mathbb{K})$ be the linear mapping defined by setting

$$(T\omega)(k) = \frac{\omega(k)}{k+1}$$

for all $\omega \in \ell^{\infty}(\mathbb{K})$ and all $k \in \mathbb{N}$.

1. Prove that T is bounded and that $T^{-1}: T(\ell^{\infty}(\mathbb{K})) \to \ell^{\infty}(\mathbb{K})$ is not bounded.

2. Prove that $T(\ell^{\infty}(\mathbb{K}))$ is not a closed subspace of $\ell^{\infty}(\mathbb{K})$.

3. Let $\|\cdot\|$ and $\|\cdot\|'$ be equivalent norms in a vector space V. Prove that $(V, \|\cdot\|)$ is a Banach space if and only if $(V, \|\cdot\|')$ is a Banach space.

4. Let X and Y be Banach spaces and let us use the norm

 $||(x,y)|| = \max(||x||_X, ||y||_Y)$

- in $X \times Y$. Prove that $X \times Y$ is a Banach space.
- **5.** Prove that $c(\mathbb{K})$ is a closed subspace of $(\ell^{\infty}(\mathbb{K}), \|\cdot\|_{\infty})$.
- **6.** Let $1 \leq p < q < \infty$. Prove that $\ell^p(\mathbb{K})$ is a dense subspace of $\ell^q(\mathbb{K})$.²
- **7.** Let $p \in [1, \infty]$ and let $\tau \in \ell^{p'}$. Let $L_{\tau} \colon \ell^p(\mathbb{K}) \to \mathbb{K}$,

$$L_{\tau}(\omega) = \sum_{i=0}^{\infty} \omega(i)\tau(i)$$

Prove that the mapping $T \colon \ell^{p'}(\mathbb{K}) \to (\ell^p(\mathbb{K}))'$

$$T(\tau) = L_{\tau}$$

is linear.

8. Prove that $\ell^{\infty}(\mathbb{K})$ is isometrically isomorphic with $(\ell^{1}(\mathbb{K}))'$.

¹Let $(f_k)_{k=1}^{\infty}$ be a Cauchy sequence in c. As ℓ^{∞} is a Banach space, the sequence $(f_k)_{k=1}^{\infty}$ converges. Prove that the limit is a convergent sequence.

 $^{^{2}}$ Example 2.11.