Funktionaalianalyysi Exercises 3, 29.1.2018

1. Prove that a real normed space V is separable if and only if the subset $S(0,1) = \{x \in V : ||x|| = 1\}$ is separable.¹

2. Let V and W be vector spaces. Prove that the subset Lin(V, W) of linear mappings is a vector subspace of $\mathscr{F}(V, W)$.

3. Let V and W be normed spaces. Prove that the subset $\text{Lin}_b(V, W)$ bounded of linear mappings is a vector subspace of Lin(V, W).

4. Prove that two norms $\|\cdot\|$ and $\|\cdot\|'$ of a vector space V are equivalent if and only if id: $(V, \|\cdot\|) \to (V, \|\cdot\|')$ is a bounded linear mapping whose inverse is bounded.

5. Let

$$V = (\{f \in C^0([0,1],\mathbb{R}) : f(1) = 0\}, \|\cdot\|_{\infty}).$$

Prove that the subspace

$$H = \left\{ f \in V : \int_{[0,1]} f = 0 \right\}$$

is closed.

6. The fundamental theorem of calculus implies that the linear mapping

$$\mathscr{I}: \left(\mathcal{C}^{0}([0,1]), \|\cdot\|_{\infty} \right) \to \left(\{ g \in \mathcal{C}^{1}([0,1]) : g(0) = 0 \}, \|\cdot\|_{\infty} \right)$$

defined by

$$(\mathscr{I}f)(x) = \int_0^x f(t) \, dt$$

is a bijection. Prove that \mathscr{I} is bounded and that \mathscr{I}^{-1} is not bounded.

7. Let $V \neq \{0\}$. Prove that

$$||T|| = \sup_{v \in V - \{0\}} \frac{||Tv||_W}{||v||_V} = \sup_{||v||_V = 1} ||Tv||_W.$$

8. Let V_1, V_2, V_3 be normed spaces and let $S: V_1 \to V_2$ and $T: V_2 \to V_3$ be bounded linear mappings. Prove that $||T \circ S|| \leq ||T|| ||S||$. Give an example where the inequality is strict.

¹If $T \subset S(0,1)$ is a countable dense subset, considet $\widetilde{T} = \{rt : r \in \mathbb{Q}, r > 0, t \in T\}.$