Funktionaalianalyysi Exercises 1, 15.1.2018

1. Let V be a K-vector space. Let $I \neq \emptyset$ be an index set and let H_{α} be a vector subspace of V for every $\alpha \in I$. Prove that the intersection $\bigcap_{\alpha \in I} H_{\alpha}$ is a vector subspace.

2. Let V be a vector space and let $X \subset V, X \neq \emptyset$. Proe that

$$\langle X \rangle = \left\{ \sum_{i=1}^{k} \lambda_i x_i : \lambda_i \in \mathbb{K}, \ x_i \in X, \ k \in \mathbb{N} - \{0\} \right\}.$$

3. Prove that $\ell^{\infty}(\mathbb{K})$ and $\ell^{1}(\mathbb{K})$ are vector subspaces of $\mathscr{F}(\mathbb{N},\mathbb{K})$.

4. Prove that

$$c(\mathbb{K}) = \{ \omega \in \mathscr{F}(\mathbb{N}, \mathbb{K}) : \exists \lim_{n \to \infty} \omega(n) \in \mathbb{R} \}$$

is a vector subspace of $\mathscr{F}(\mathbb{N},\mathbb{K})$ and that $\lim : c(\mathbb{K}) \to \mathbb{K}$,

$$\lim \omega = \lim_{k \to \infty} \omega(k) \,,$$

is a linear mapping.

5. Prove that $C^0([0,1],\mathbb{R})$ is an infinite-dimensional real vector space.

6. Let U be a vector space and let $(W, \|\cdot\|_W)$ be a normed space. Let $L: U \to W$ be a linear bijection. Prove that

 $||u|| = ||Lu||_W$

defines a norm in U.

7. Let $I \subset \mathbb{R}$ be a compact interval. Prove that

$$||f||_{\mathcal{C}^{1},1} = ||f||_{\infty} + ||f'||_{\infty}$$

is a norm in $C^1(I)$.

8. Let V be a normed space and let

$$S(0,1) = \{ x \in V : ||x|| = 1 \}.$$

Let $\operatorname{pr}_S: V - \{0\} \to S(0, 1)$ be the mapping defined by setting $\operatorname{pr}_S(x) = \frac{x}{\|x\|}$ for all $x \in V - \{0\}$. Prove that pr_S is continuous.