Differential geometry 2023

Exercises 7

Let V and W be vector spaces and let $L: V \to W$ be a linear mapping. The mapping $L^*: W^* \to V^*$,

 $L^*(\omega) = \omega \circ L$

is the *dual mapping* or the *transpose* of L.

1. (1) Prove that the dual mapping of a linear mapping is a linear mapping.

(2) Let $L_1: V_1 \to V_2$ and $L_2: V_2 \to V_3$ be linear mappings. Prove that

$$(L_2L_1)^* = L_1^*L_2^*.$$

Solution. (1) Let $L: V \to W$ be a linear mapping. Let $\omega_1, \omega_2 \in W^*$ and let $a_1, a_2 \in \mathbb{R}$. By the definitions of pullback and of linear combinations of linear transformations, for all $v \in V$, we have

$$L^*(a_1\omega_1 + a_2\omega_2)(v) = (a_1\omega_1 + a_2\omega_2) \circ L(v) = a_1\omega_1 \circ L(v) + a_2\omega_2 \circ L(v)$$

= $(a_1L^*\omega_1 + a_2L^*\omega_2)(v)$.

(2) By the definition of the dual mapping and the usual rules of the composition of mappings

$$(L_2L_1)^*\omega = \omega(L_2L_1) = (\omega L_2)L_1 = (L^*\omega)L_1 = L_1^*(L_2^*\omega) = (L_1^*(L_2^*)\omega)$$

for all $\omega \in V_3^*$.

Let $(v_1, v_2, \ldots v_n)$ be a basis of a vector space V. Let $\epsilon^1, \ldots, \epsilon^n \in V^*$ be a basis of V^* such that

 $\epsilon^{i}(E_{j}) = \delta^{i}_{j} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise} \end{cases}.$

Then $(\epsilon^1, \ldots, \epsilon^n)$ is dual to (v_1, v_2, \ldots, v_n) .

2. Let $L: V \to W$ be a linear mapping. Let (v_1, \ldots, v_n) be a basis of V and let (w_1, \ldots, w_m) be a basis of W. Let $(\bar{v}^1, \ldots, \bar{v}^n)$ and $(\bar{w}^1, \ldots, \bar{w}^m)$ be bases of the dual spaces V^* and W^* that are dual to the bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) . Let (a_j^i) be the matrix of L with respect to the bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) .¹ Prove that²

$$L^*\bar{w}^i = \sum_{j=1}^n a^i_j \bar{v}^j \,.$$

 $^1\mathrm{Recall}$ that this means that

$$Lv_j = \sum_{i=1}^m a_j^i w_i$$

for all $1 \leq j \leq n$.

²A shorter formulation of this exercise: Prove that the matrix of the transpose of a linear mapping is the transpose of the matrix of the linear mapping.

Solution. Let $L^*(\bar{w}^i) = \sum_{j=1}^n b_j^i \bar{v}^j$. First, using the duality of the bases of V and V^* , we get

$$L^{*}(\bar{w}^{i})v_{k} = \left(\sum_{j=1}^{n} b_{j}^{i} \bar{v}^{j}\right)v_{k} = \sum_{j=1}^{n} b_{j}^{i} \delta_{k}^{j} = b_{k}^{i}$$

Second, starting with the definition of the dual mapping, we get

$$L^{*}(\bar{w}^{i})v_{k} = (\bar{w}^{i} \circ L)v_{k} = \bar{w}^{i}(Lv_{k}) = \bar{w}^{i}(\sum_{j=1}^{m} a_{k}^{j}w_{j})$$
$$= \sum_{j=1}^{m} a_{k}^{j}\bar{w}^{i}(w_{j}) = \sum_{j=1}^{m} a_{k}^{j}\delta_{j}^{i} = a_{k}^{i}.$$

3. Let $X, Y \in \mathfrak{X}(\mathbb{E}^2 - \{0\}),$

$$X_x = -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2}$$
 ja $Y_x = x^1 \frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^2}$.

Find $\omega \in \mathfrak{X}^*(\mathbb{E}^2 - \{0\})$ such that $\omega(X) = 1$ and $\omega(Y) = 0$.

Solution. Let $\omega = a(x)dx^1 + b(x)dx^2$. Now, the equations $\omega_x X_x = 1$ and $\omega_x X_x = 0$ give the pair of equations

$$\begin{cases} -a(x)x^2 + b(x)x^1 = 1\\ a(x)x^1 + b(x)x^2 = 0 \end{cases}$$

has the unique solution $a(x) = \frac{-x^2}{\|x\|^2}$ and $b(x) = \frac{x^1}{\|x\|^2}$. Thus, $\omega = \frac{-x^2 dx^1 + x^1 dx^2}{\|x\|^2}.$

4. Let *M* be a smooth manifold and let $f, g \in \mathfrak{F}(M)$. Prove that (1) $d(fg) = f \, dg + g \, df$.

(2) if $g(p) \neq 0$ for all $p \in M$, then

$$d\Big(\frac{f}{g}\Big) = \frac{g\,df - f\,dg}{g^2}\,.$$

Solution. (1) Let $X \in \mathfrak{X}(M)$. The Leibnitz rule of vector fields gives

$$d(fg)X = X(fg) = fXg + gXf = fdgX + gdfX = (fdg + gdf)X.$$

(2) Observe first that by (1), we have $0 = d1 = d(\frac{1}{g}g) = \frac{1}{g}dg + gd(\frac{1}{g})$, which implies $d(\frac{1}{g}) = -\frac{dg}{g^2}$. Again by (1) we have

$$d\left(\frac{f}{g}\right) = d\left(\frac{1}{g}f\right) = \frac{1}{g}df + fd\left(\frac{1}{g}\right) = \frac{g\,df - f\,dg}{g^2}\,.$$

5. Let M and N be smooth manifolds and let $F: M \to N$ be a smooth mapping. Let $\omega, \tau \in \mathfrak{X}^*(N)$. Prove that $F^*(\omega + \tau) = F^*(\omega) + F^*(\tau)$.

Solution. Let X be a vector field. By definition of the pullback and the definition of the addition of forms, we have

$$F^*(\omega+\tau)X = (\omega+\tau)dFX = \omega dFX + \tau dFX = F^*\omega X + F^*\tau X = (F^*\omega + F^*\tau)X.$$