Differential geometry 2023

Exercises 7

Let V and W be vector spaces and let $L: V \rightarrow W$ be a linear mapping. The mapping $L^{*}: W^{*} \rightarrow V^{*}$,

$$
L^{*}(\omega)=\omega \circ L
$$

is the dual mapping or the transpose of L.

1. (1) Prove that the dual mapping of a linear mapping is a linear mapping.
(2) Let $L_{1}: V_{1} \rightarrow V_{2}$ and $L_{2}: V_{2} \rightarrow V_{3}$ be linear mappings. Prove that

$$
\left(L_{2} L_{1}\right)^{*}=L_{1}^{*} L_{2}^{*}
$$

Solution. (1) Let $L: V \rightarrow W$ be a linear mapping. Let $\omega_{1}, \omega_{2} \in W^{*}$ and let $a_{1}, a_{2} \in \mathbb{R}$. By the definitions of pullback and of linear combinations of linear transformations, for all $v \in V$, we have

$$
\begin{aligned}
L^{*}\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right)(v) & =\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \circ L(v)=a_{1} \omega_{1} \circ L(v)+a_{2} \omega_{2} \circ L(v) \\
& =\left(a_{1} L^{*} \omega_{1}+a_{2} L^{*} \omega_{2}\right)(v) .
\end{aligned}
$$

(2) By the definition of the dual mapping and the usual rules of the composition of mappings

$$
\left(L_{2} L_{1}\right)^{*} \omega=\omega\left(L_{2} L_{1}\right)=\left(\omega L_{2}\right) L_{1}=\left(L^{*} \omega\right) L_{1}=L_{1}^{*}\left(L_{2}^{*} \omega\right)=\left(L_{1}^{*}\left(L_{2}^{*}\right) \omega\right.
$$

for all $\omega \in V_{3}^{*}$.

Let $\left(v_{1}, v_{2}, \ldots v_{n}\right)$ be a basis of a vector space V. Let $\epsilon^{1}, \ldots, \epsilon^{n} \in V^{*}$ be a basis of V^{*} such that

$$
\epsilon^{i}\left(E_{j}\right)=\delta_{j}^{i}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Then $\left(\epsilon^{1}, \ldots, \epsilon^{n}\right)$ is dual to $\left(v_{1}, v_{2}, \ldots v_{n}\right)$.
2. Let $L: V \rightarrow W$ be a linear mapping. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V and let $\left(w_{1}, \ldots, w_{m}\right)$ be a basis of W. Let $\left(\bar{v}^{1}, \ldots, \bar{v}^{n}\right)$ and $\left(\bar{w}^{1}, \ldots, \bar{w}^{m}\right)$ be bases of the dual spaces V^{*} and W^{*} that are dual to the bases $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$. Let $\left(a_{j}^{i}\right)$ be the matrix of L with respect to the bases $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right) \cdot{ }^{1}$ Prove that ${ }^{2}$

$$
L^{*} \bar{w}^{i}=\sum_{j=1}^{n} a_{j}^{i} \bar{v}^{j}
$$

[^0]Solution. Let $L^{*}\left(\bar{w}^{i}\right)=\sum_{j=1}^{n} b_{j}^{i} \bar{v}^{j}$. First, using the duality of the bases of V and V^{*}, we get

$$
L^{*}\left(\bar{w}^{i}\right) v_{k}=\left(\sum_{j=1}^{n} b_{j}^{i} \bar{v}^{j}\right) v_{k}=\sum_{j=1}^{n} b_{j}^{i} \delta_{k}^{j}=b_{k}^{i}
$$

Second, starting with the definition of the dual mapping, we get

$$
\begin{aligned}
L^{*}\left(\bar{w}^{i}\right) v_{k} & =\left(\bar{w}^{i} \circ L\right) v_{k}=\bar{w}^{i}\left(L v_{k}\right)=\bar{w}^{i}\left(\sum_{j=1}^{m} a_{k}^{j} w_{j}\right) \\
& =\sum_{j=1}^{m} a_{k}^{j} \bar{w}^{i}\left(w_{j}\right)=\sum_{j=1}^{m} a_{k}^{j} \delta_{j}^{i}=a_{k}^{i} .
\end{aligned}
$$

3. Let $X, Y \in \mathfrak{X}\left(\mathbb{E}^{2}-\{0\}\right)$,

$$
X_{x}=-x^{2} \frac{\partial}{\partial x^{1}}+x^{1} \frac{\partial}{\partial x^{2}} \quad \text { ja } \quad Y_{x}=x^{1} \frac{\partial}{\partial x^{1}}+x^{2} \frac{\partial}{\partial x^{2}} .
$$

Find $\omega \in \mathfrak{X}^{*}\left(\mathbb{E}^{2}-\{0\}\right)$ such that $\omega(X)=1$ and $\omega(Y)=0$.

Solution. Let $\omega=a(x) d x^{1}+b(x) d x^{2}$. Now, the equations $\omega_{x} X_{x}=1$ and $\omega_{x} X_{x}=0$ give the pair of equations

$$
\left\{\begin{array}{r}
-a(x) x^{2}+b(x) x^{1}=1 \\
a(x) x^{1}+b(x) x^{2}=0
\end{array}\right.
$$

has the unique solution $a(x)=\frac{-x^{2}}{\|x\|^{2}}$ and $b(x)=\frac{x^{1}}{\|x\|^{2}}$. Thus,

$$
\omega=\frac{-x^{2} d x^{1}+x^{1} d x^{2}}{\|x\|^{2}}
$$

4. Let M be a smooth manifold and let $f, g \in \mathfrak{F}(M)$. Prove that
(1) $d(f g)=f d g+g d f$.
(2) if $g(p) \neq 0$ for all $p \in M$, then

$$
d\left(\frac{f}{g}\right)=\frac{g d f-f d g}{g^{2}} .
$$

Solution. (1) Let $X \in \mathfrak{X}(M)$. The Leibnitz rule of vector fields gives

$$
d(f g) X=X(f g)=f X g+g X f=f d g X+g d f X=(f d g+g d f) X .
$$

(2) Observe first that by (1), we have $0=d 1=d\left(\frac{1}{g} g\right)=\frac{1}{g} d g+g d\left(\frac{1}{g}\right)$, which implies $d\left(\frac{1}{g}\right)=-\frac{d g}{g^{2}}$. Again by (1) we have

$$
d\left(\frac{f}{g}\right)=d\left(\frac{1}{g} f\right)=\frac{1}{g} d f+f d\left(\frac{1}{g}\right)=\frac{g d f-f d g}{g^{2}} .
$$

5. Let M and N be smooth manifolds and let $F: M \rightarrow N$ be a smooth mapping. Let $\omega, \tau \in \mathfrak{X}^{*}(N)$. Prove that $F^{*}(\omega+\tau)=F^{*}(\omega)+F^{*}(\tau)$.

Solution. Let X be a vector field. By definition of the pullback and the definition of the addition of forms, we have

$$
F^{*}(\omega+\tau) X=(\omega+\tau) d F X=\omega d F X+\tau d F X=F^{*} \omega X+F^{*} \tau X=\left(F^{*} \omega+F^{*} \tau\right) X
$$

[^0]: ${ }^{1}$ Recall that this means that

 $$
 L v_{j}=\sum_{i=1}^{m} a_{j}^{i} w_{i}
 $$

 for all $1 \leq j \leq n$.
 ${ }^{2}$ A shorter formulation of this exercise: Prove that the matrix of the transpose of a linear mapping is the transpose of the matrix of the linear mapping.

