Differential geometry 2023

Exercises 6

Let $\operatorname{Pr}_{k}^{n}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{k}$,

$$
\operatorname{Pr}_{k}^{n}(x)=\sum_{i=1}^{k} x^{i} \mathbf{e}_{i} .
$$

1. Let S be a k-dimensional embedded submanifold of a smooth manifold M. Use the subspace (relative) topology in S and the atlas given by the adapted (slice) charts

$$
\left\{\left(U \cap S, \phi_{S}\right):(U, \phi) \text { adapted chart }\right\}
$$

where $\phi_{S}=\left.\operatorname{Pr}_{k}^{n} \circ \phi\right|_{U \cap S}$. Prove that S is a smooth k-manifold.

Solution. The sets $S \cap U$ are open in relative topology for all $U \subset M$ open. The sets $S \cap U$ cover S because the coordinate neighbourhoods U cover M. The topological space S is Hausdorff and N_{2} because these properties are inherited from M. The mappings $\phi_{S}: S \cap U \rightarrow \operatorname{Pr}_{k}^{n}(\phi(U)) \subset \mathbb{E}^{k}$ are homeomorphisms as restrictions of homeomorphisms, so we see that S is locally Euclidean. Therefore, S with this structure is a topological manifold.

For (U, ϕ) and (V, ψ) smooth charts on M, consider the charts $\left(S \cap U, \phi_{S}\right)$ and $(S \cap$ $\left.V, \psi_{S}\right)$. Now, for $x \in \phi_{S}(S \cap U \cap V)$,

$$
\psi_{S} \circ \phi_{S}^{-1}(x)=\operatorname{Pr}_{k}^{n} \circ \psi \circ \phi^{-1}(x, 0)
$$

is smooth because it is the restriction of a smooth mapping to a coordinate plane. As ψ is a slice chart, $\psi_{S} \circ \phi_{S}^{-1}(x) \in V \cap \mathbb{E}^{k}$, and the mapping $\phi_{S} \circ \psi_{S}^{-1}$ is smooth as well. Thus, S is a smooth manifold.
2. Let $\tilde{f}: \mathbb{E}^{3} \rightarrow \mathbb{E}^{1}, f(y)=y_{3}$ for all $y \in \mathbb{E}^{3}$ in the standard coordinates of \mathbb{E}^{3}. Prove that $f=\left.\widetilde{f}\right|_{\mathbb{S}^{2}}: \mathbb{S}^{2} \rightarrow \mathbb{E}^{1}$ is a smooth function. Determine the critical points of f.

Solution. We check the smoothness using the (six) standard projection charts of \mathbb{S}^{2}, namely we let $k \in\{1,2,3\}$ and use both charts $\left(U_{k}^{+}, \operatorname{pr}_{k}\right)$ and $\left(U_{k}^{-}, \operatorname{pr}_{k}\right)$. For all points $x \in \operatorname{pr}_{k}\left(U_{k}^{ \pm}\right)=\left\{\operatorname{pr}_{k}\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{E}^{2}: \sum_{i \neq k} y_{i}^{2}<1\right\}$, we have

$$
f \circ\left(\left.\operatorname{pr}_{k}\right|_{U_{k}^{ \pm}}\right)^{-1}(x)=\left\{\begin{array}{cl}
x_{3} & \text { if } k \in\{1,2\}, \\
\pm \sqrt{1-\left(x_{1}^{2}+x_{2}^{2}\right)} & \text { if } k=3 .
\end{array}\right.
$$

In both cases, this is the formula of a smooth map and proves that f is smooth.
Recall that a point $p \in \mathbb{S}^{2}$ is called critical for f if $d f_{p}$ is not surjective, or equivalently that the Jacobian matrix of (the coordinate representative $f \circ\left(\left.\operatorname{pr}_{k}\right|_{U_{k}^{ \pm}}\right)^{-1}$ of) f is not surjective. Since $\operatorname{dim} \mathbb{E}^{1}=1$, this Jacobian matrix is a gradient and we just need to find the points $p \in \mathbb{S}^{2}$ such that, for a chart $\left(U_{k}^{ \pm}, \mathrm{pr}_{k}\right)$ containing p, we have the equality $\nabla\left(f \circ\left(\left.\operatorname{pr}_{k}\right|_{U_{k}^{ \pm}}\right)^{-1}\right)_{\left.\mathrm{pr}_{k}\right|_{U_{k}^{ \pm}}(p)}=0$. We compute

$$
\nabla\left(f \circ\left(\left.\operatorname{pr}_{k}\right|_{U_{k}^{ \pm}}\right)^{-1}\right)_{\left.\mathrm{pr}_{k}\right|_{U_{k}^{ \pm}}(p)}=\left\{\begin{array}{cl}
(0,0,1) & \text { if } k \in\{1,2\}, \\
\pm\left(\frac{p_{1}}{\sqrt{1-\left(p_{1}^{2}+p_{2}^{2}\right)}}, \frac{p_{2}}{\sqrt{1-\left(p_{1}^{2}+p_{2}^{2}\right)}}, 0\right) & \text { if } k=3 .
\end{array}\right.
$$

With the case $k=3$, we find that the critical points of f are $(0,0,1)$ and $(0,0,-1)$.
3. Let S be an embedded submanifold of a smooth manifold M. Let $p \in S$ and let $v \in T_{p} M$. Prove that $v \in T_{p} S$ (seen as a subspace of $T_{p} M$ with Proposition 5.18) if and only if there is a smooth path $\gamma: I \rightarrow M$, such that $\dot{\gamma}(0)=v$ and $\gamma(t) \in S$ for all $t \in I$.

Solution. Let $v \in T_{p} S$. By Proposition 3.12, there is a smooth path $\gamma: I \rightarrow S$ such that $\dot{\gamma}(0)=v$. Let $i: S \rightarrow M$ be the inclusion map. Then $i \circ \gamma$ is a smooth path and $(i \circ \gamma)(0)=d i_{p} \dot{\gamma}(0)=d i_{p} v$.

On the other hand, if $\eta: I \rightarrow M$ is a smooth path such that $\eta(t) \in S$ for all $t \in I$, then $\eta=i \circ \eta_{S}$, where η_{S} is η considered as a map to S (it is a corestriction, sometimes written $\left.\eta\right|^{S}$. Now $\dot{\eta}(0)=d i_{p} \dot{\eta}_{S}(0) \in d i_{p}\left(T_{p} S\right)$.
4. Let $\widetilde{\nu}: \mathbb{E}^{3} \rightarrow \mathbb{E}^{6}$,

$$
\widetilde{\nu}(x)=\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \sqrt{2} x_{2} x_{3}, \sqrt{2} x_{1} x_{3}, \sqrt{2} x_{1} x_{2}\right) .
$$

(1) Prove that $\widetilde{\nu}\left(\mathbb{S}^{2}\right) \subset \mathbb{S}^{5}$.
(2) Prove that $\left.\widetilde{\nu}\right|_{\mathbb{S}^{2}}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{5}$ is a smooth immersion.
(3) Prove that the mapping $\nu: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$,

$$
\nu([x])=\left[x_{1}^{2}: x_{2}^{2}: x_{3}^{2}: \sqrt{2} x_{2} x_{3}: \sqrt{2} x_{1} x_{3}: \sqrt{2} x_{1} x_{2}\right]
$$

is a smooth embedding.

Solution. (1) For all $x \in \mathbb{S}^{n}$, we have

$$
1=1^{2}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{2}=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+2 x_{1}^{2} x_{2}^{2}+2 x_{2}^{2} x_{3}^{2}+2 x_{3}^{2} x_{1}^{2}=\|\widetilde{\nu}(x)\|^{2} .
$$

(2) The Jacobian matrix of $\widetilde{\nu}$ is

$$
D \widetilde{\nu}(x)=\left(\begin{array}{ccc}
2 x_{1} & 0 & 0 \\
0 & 2 x_{2} & 0 \\
0 & 0 & 2 x_{3} \\
0 & \sqrt{2} x_{3} & \sqrt{2} x_{2} \\
\sqrt{2} x_{3} & 0 & \sqrt{2} x_{1} \\
\sqrt{2} x_{2} & \sqrt{2} x_{1} & 0
\end{array}\right) .
$$

If x_{1}, x_{2}, x_{3} are all nonzero, then

$$
\operatorname{det}\left(\begin{array}{ccc}
2 x_{1} & 0 & 0 \\
0 & 2 x_{2} & 0 \\
0 & 0 & 2 x_{3}
\end{array}\right)=8 x_{1} x_{2} x_{3} \neq 0 .
$$

If $x_{1} \neq 0$, then

$$
\operatorname{det}\left(\begin{array}{ccc}
2 x_{1} & 0 & 0 \\
\sqrt{2} x_{3} & 0 & \sqrt{2} x_{1} \\
\sqrt{2} x_{2} & \sqrt{2} x_{1} & 0
\end{array}\right)=4 x_{1}^{3} \neq 0
$$

and so on. This implies that the rank of the differential matrix is 3 outside the origin. In particular, its restriction to $T_{p} \mathbb{S}^{2}$ has rank 2 at all $p \in \mathbb{S}^{2}$. This implies that $\widetilde{\nu}$ is an immersion.

In this question, we used the general following fact: for any immersion $f: M \rightarrow N$ between smooth manifolds and for any embedded submanifold S of M, the restriction
$f_{\mid S}: S \rightarrow M$ is still an immersion. To see this, first use the proposition (from the lecture notes) stating that the injection $i_{S}: S \rightarrow M$ is an embedding hence an immersion, then for all $p \in S$, apply the chain rule and to obtain $d\left(f_{\mid S}\right)_{p}=d\left(f \circ i_{S}\right)_{p}=d f_{p} \circ d\left(i_{S}\right)_{p}$.
(3) Note that $\widetilde{\nu}(x)=\widetilde{\nu}(y)$ if and only if $x= \pm y$: Clearly, $\widetilde{\nu}(-x)=\widetilde{\nu}(x)$ for all $x \in$ \mathbb{S}^{2}. Equality of the first three components implies that there are constants $u_{1}, u_{2}, u_{3} \in$ $\{-1,1\}$ such that $x_{1}=u_{1} y_{1}, x_{2}=u_{2} y_{2}$ and $x_{3}=u_{3} y_{3}$. The three last equations imply that $u_{1}=u_{2}=u_{3}$. This implies that $\widetilde{\nu}$ is compatible with the equivalence relation ${ }^{11}$ used in the definition of \mathbb{P}^{2}, and that the mapping ν is injective.

As \mathbb{P}^{2} is compact, and ν is injective, Proposition 5.10 implies that it suffices to show that ν is a smooth immersion. Let $q \in \mathbb{P}^{2}$. The mapping $\pi: \mathbb{S}^{2} \rightarrow \mathbb{P}^{2}, \pi(x)=[x]$, is a local diffeomorphism so there is an open neighbourhood $V \ni q$ such that π has a smooth local inverse $\check{\pi}: V \rightarrow \mathbb{S}^{2}$ that satisfies $\pi \circ \check{\pi}=\mathrm{id}_{V}$. As $\nu=\widetilde{\nu} \circ \check{\pi}$, the differential $d \nu_{q}=d \widetilde{\nu}_{\widetilde{\pi}(q)} d \check{\pi}_{q}$ is injective as a composition of two injective linear mappings. This implies that ν is a smooth immersion.
5. Let X_{1}, X_{2}, X_{3} be vector fields in \mathbb{E}^{4},

$$
\begin{aligned}
& X_{1}(x)=-x^{2} \frac{\partial}{\partial x^{1}}+x^{1} \frac{\partial}{\partial x^{2}}+x^{4} \frac{\partial}{\partial x^{3}}-x^{3} \frac{\partial}{\partial x^{4}}, \\
& X_{2}(x)=-x^{3} \frac{\partial}{\partial x^{1}}-x^{4} \frac{\partial}{\partial x^{2}}+x^{1} \frac{\partial}{\partial x^{3}}+x^{2} \frac{\partial}{\partial x^{4}} \\
& X_{3}(x)=-x^{4} \frac{\partial}{\partial x^{1}}+x^{3} \frac{\partial}{\partial x^{2}}-x^{2} \frac{\partial}{\partial x^{3}}+x^{1} \frac{\partial}{\partial x^{4}} .
\end{aligned}
$$

(1) Prove that X_{1}, X_{2}, X_{3} define smooth vector fields on the regular submanifold $\mathbb{S}^{3} \subset \mathbb{E}^{4}$.
(2) Prove that $X_{1}(p), X_{2}(p), X_{3}(p)$ are linearly independent for all $p \in \mathbb{S}^{3}$.
(3) Prove that $T \mathbb{S}^{3}$ is diffeomorphic with $\mathbb{S}^{3} \times \mathbb{E}^{3}$.

Solution. (1) As \mathbb{S}^{3} is a smooth submanifold, Proposition 5.3(1) implies that the mappings $\left.X_{1}\right|_{\mathbb{S}^{3}},\left.X_{2}\right|_{\mathbb{S}^{3}}$ and $\left.X_{3}\right|_{\mathbb{S}^{3}}$ are smooth. Note that

$$
\begin{aligned}
& \left(x \mid\left(-x^{2}, x^{1}, x^{4},-x^{3}\right)\right)=-x^{1} x^{2}+x^{2} x^{1}+x^{3} x^{4}-x^{4} x^{3}=0, \\
& \left(x \mid\left(-x^{3},-x^{4}, x^{1}, x^{2}\right)\right)=-x^{1} x^{3}-x^{2} x^{4}+x^{3} x^{1}+x^{4} x^{2}=0 \quad \text { and } \\
& \left(x \mid\left(-x^{4}, x^{3},-x^{2}, x^{1}\right)\right)=-x^{1} x^{4}+x^{2} x^{3}-x^{3} x^{2}+x^{4} x^{1}=0 .
\end{aligned}
$$

Thus, $\left.X_{1}\right|_{\mathbb{S}^{3}}(x),\left.X_{2}\right|_{\mathbb{S}^{3}}(x),\left.X_{3}\right|_{\mathbb{S}^{3}}(x) \in T_{x} \mathbb{S}^{n}$ for all $x \in \mathbb{S}^{n}$. Example 5.20 implies that $\left.X_{1}\right|_{\mathbb{S}^{3}},\left.X_{2}\right|_{\mathbb{S}^{3}},\left.X_{3}\right|_{\mathbb{S}^{3}} \in \mathfrak{X}\left(\mathbb{S}^{n}\right)$.
(2) A computation shows that the four 3×3-subdeterminants of the coefficients of the three vector fields are $-x^{4}\|x\|^{2},-x^{2}\|x\|^{2}, x^{3}\|x\|^{2}$ and $x^{1}\|x\|^{2}$. If $x \neq 0$, then at least one of these is nonzero, and we conclude that the vector fields are linearly independent at all $x \in \mathbb{S}^{3}$.
(3) This follows from the claim of Problem 2 of Exercises 5.

[^0]
[^0]: ${ }^{1} x \sim y$ if and only if $y= \pm x$

