Differential geometry 2023

Exercises 6

Let $\Pr_k^n \colon \mathbb{E}^n \to \mathbb{E}^k$,

$$\Pr_k^n(x) = \sum_{i=1}^k x^i \mathbf{e}_i.$$

1. Let S be a k-dimensional embedded submanifold of a smooth manifold M. Use the subspace (relative) topology in S and the atlas given by the adapted (slice) charts

$$\{(U \cap S, \phi_S) : (U, \phi) \text{ adapted chart}\},\$$

where $\phi_S = \Pr_k^n \circ \phi|_{U \cap S}$. Prove that S is a smooth k-manifold.

Solution. The sets $S \cap U$ are open in relative topology for all $U \subset M$ open. The sets $S \cap U$ cover S because the coordinate neighbourhoods U cover M. The topological space S is Hausdorff and N_2 because these properties are inherited from M. The mappings $\phi_S \colon S \cap U \to \operatorname{Pr}_k^n(\phi(U)) \subset \mathbb{E}^k$ are homeomorphisms as restrictions of homeomorphisms, so we see that S is locally Euclidean. Therefore, S with this structure is a topological manifold.

For (U, ϕ) and (V, ψ) smooth charts on M, consider the charts $(S \cap U, \phi_S)$ and $(S \cap V, \psi_S)$. Now, for $x \in \phi_S(S \cap U \cap V)$,

$$\psi_S \circ \phi_S^{-1}(x) = \Pr_k^n \circ \psi \circ \phi^{-1}(x,0)$$

is smooth because it is the restriction of a smooth mapping to a coordinate plane. As ψ is a slice chart, $\psi_S \circ \phi_S^{-1}(x) \in V \cap \mathbb{E}^k$, and the mapping $\phi_S \circ \psi_S^{-1}$ is smooth as well. Thus, S is a smooth manifold.

2. Let $\tilde{f}: \mathbb{E}^3 \to \mathbb{E}^1$, $f(y) = y_3$ for all $y \in \mathbb{E}^3$ in the standard coordinates of \mathbb{E}^3 . Prove that $f = \tilde{f}|_{\mathbb{S}^2}: \mathbb{S}^2 \to \mathbb{E}^1$ is a smooth function. Determine the critical points of f.

Solution. We check the smoothness using the (six) standard projection charts of \mathbb{S}^2 , namely we let $k \in \{1, 2, 3\}$ and use both charts $(U_k^+, \operatorname{pr}_k)$ and $(U_k^-, \operatorname{pr}_k)$. For all points $x \in \operatorname{pr}_k(U_k^{\pm}) = \{\operatorname{pr}_k(y_1, y_2, y_3) \in \mathbb{E}^2 : \sum_{i \neq k} y_i^2 < 1\}$, we have

$$f \circ (\operatorname{pr}_k|_{U_k^{\pm}})^{-1}(x) = \begin{cases} x_3 & \text{if } k \in \{1, 2\}, \\ \pm \sqrt{1 - (x_1^2 + x_2^2)} & \text{if } k = 3. \end{cases}$$

In both cases, this is the formula of a smooth map and proves that f is smooth.

Recall that a point $p \in \mathbb{S}^2$ is called *critical* for f if df_p is not surjective, or equivalently that the Jacobian matrix of (the coordinate representative $f \circ (\operatorname{pr}_k|_{U_k^{\pm}})^{-1}$ of) f is not surjective. Since $\dim \mathbb{E}^1 = 1$, this Jacobian matrix is a gradient and we just need to find the points $p \in \mathbb{S}^2$ such that, for a chart $(U_k^{\pm}, \operatorname{pr}_k)$ containing p, we have the equality $\nabla (f \circ (\operatorname{pr}_k|_{U_k^{\pm}})^{-1})_{\operatorname{pr}_k|_{U_k^{\pm}}(p)} = 0$. We compute

$$\nabla (f \circ (\operatorname{pr}_k|_{U_k^{\pm}})^{-1})_{\operatorname{pr}_k|_{U_k^{\pm}}(p)} = \begin{cases} (0,0,1) & \text{if } k \in \{1,2\}, \\ \pm \left(\frac{p_1}{\sqrt{1 - (p_1^2 + p_2^2)}}, \frac{p_2}{\sqrt{1 - (p_1^2 + p_2^2)}}, 0\right) & \text{if } k = 3. \end{cases}$$

With the case k = 3, we find that the critical points of f are (0, 0, 1) and (0, 0, -1).

3. Let S be an embedded submanifold of a smooth manifold M. Let $p \in S$ and let $v \in T_pM$. Prove that $v \in T_pS$ (seen as a subspace of T_pM with Proposition 5.18) if and only if there is a smooth path $\gamma \colon I \to M$, such that $\dot{\gamma}(0) = v$ and $\gamma(t) \in S$ for all $t \in I$.

Solution. Let $v \in T_pS$. By Proposition 3.12, there is a smooth path $\gamma \colon I \to S$ such that $\dot{\gamma}(0) = v$. Let $i \colon S \to M$ be the inclusion map. Then $i \circ \gamma$ is a smooth path and $(i \circ \gamma)(0) = di_p \dot{\gamma}(0) = di_p v$.

On the other hand, if $\eta: I \to M$ is a smooth path such that $\eta(t) \in S$ for all $t \in I$, then $\eta = i \circ \eta_S$, where η_S is η considered as a map to S (it is a corestriction, sometimes written $\eta|^S$). Now $\dot{\eta}(0) = di_p \dot{\eta}_S(0) \in di_p(T_pS)$.

4. Let $\widetilde{\nu} \colon \mathbb{E}^3 \to \mathbb{E}^6$,

$$\tilde{\nu}(x) = (x_1^2, x_2^2, x_3^2, \sqrt{2}x_2x_3, \sqrt{2}x_1x_3, \sqrt{2}x_1x_2).$$

- (1) Prove that $\tilde{\nu}(\mathbb{S}^2) \subset \mathbb{S}^5$.
- (2) Prove that $\widetilde{\nu}|_{\mathbb{S}^2} \colon \mathbb{S}^2 \to \mathbb{S}^5$ is a smooth immersion.
- (3) Prove that the mapping $\nu \colon \mathbb{P}^2 \to \mathbb{P}^5$

$$\nu([x]) = [x_1^2 : x_2^2 : x_3^2 : \sqrt{2}x_2x_3 : \sqrt{2}x_1x_3 : \sqrt{2}x_1x_2]$$

is a smooth embedding.

Solution. (1) For all $x \in \mathbb{S}^n$, we have

$$1 = 1^2 = (x_1^2 + x_2^2 + x_3^2)^2 = x_1^4 + x_2^4 + x_3^4 + 2x_1^2x_2^2 + 2x_2^2x_3^2 + 2x_3^2x_1^2 = \|\tilde{\nu}(x)\|^2.$$

(2) The Jacobian matrix of $\tilde{\nu}$ is

$$D\widetilde{\nu}(x) = \begin{pmatrix} 2x_1 & 0 & 0\\ 0 & 2x_2 & 0\\ 0 & 0 & 2x_3\\ 0 & \sqrt{2}x_3 & \sqrt{2}x_2\\ \sqrt{2}x_3 & 0 & \sqrt{2}x_1\\ \sqrt{2}x_2 & \sqrt{2}x_1 & 0 \end{pmatrix}.$$

If x_1, x_2, x_3 are all nonzero, then

$$\det \begin{pmatrix} 2x_1 & 0 & 0 \\ 0 & 2x_2 & 0 \\ 0 & 0 & 2x_3 \end{pmatrix} = 8x_1x_2x_3 \neq 0.$$

If $x_1 \neq 0$, then

$$\det\begin{pmatrix} 2x_1 & 0 & 0\\ \sqrt{2}x_3 & 0 & \sqrt{2}x_1\\ \sqrt{2}x_2 & \sqrt{2}x_1 & 0 \end{pmatrix} = 4x_1^3 \neq 0$$

and so on. This implies that the rank of the differential matrix is 3 outside the origin. In particular, its restriction to $T_p\mathbb{S}^2$ has rank 2 at all $p \in \mathbb{S}^2$. This implies that $\tilde{\nu}$ is an immersion.

In this question, we used the general following fact: for any immersion $f: M \to N$ between smooth manifolds and for any embedded submanifold S of M, the restriction

 $f_{|S}: S \to M$ is still an immersion. To see this, first use the proposition (from the lecture notes) stating that the injection $i_S: S \to M$ is an embedding hence an immersion, then for all $p \in S$, apply the chain rule and to obtain $d(f_{|S})_p = d(f \circ i_S)_p = df_p \circ d(i_S)_p$.

(3) Note that $\tilde{\nu}(x) = \tilde{\nu}(y)$ if and only if $x = \pm y$: Clearly, $\tilde{\nu}(-x) = \tilde{\nu}(x)$ for all $x \in \mathbb{S}^2$. Equality of the first three components implies that there are constants $u_1, u_2, u_3 \in \{-1, 1\}$ such that $x_1 = u_1y_1$, $x_2 = u_2y_2$ and $x_3 = u_3y_3$. The three last equations imply that $u_1 = u_2 = u_3$. This implies that $\tilde{\nu}$ is compatible with the equivalence relation used in the definition of \mathbb{P}^2 , and that the mapping ν is injective.

As \mathbb{P}^2 is compact, and ν is injective, Proposition 5.10 implies that it suffices to show that ν is a smooth immersion. Let $q \in \mathbb{P}^2$. The mapping $\pi \colon \mathbb{S}^2 \to \mathbb{P}^2$, $\pi(x) = [x]$, is a local diffeomorphism so there is an open neighbourhood $V \ni q$ such that π has a smooth local inverse $\check{\pi} \colon V \to \mathbb{S}^2$ that satisfies $\pi \circ \check{\pi} = \mathrm{id}_V$. As $\nu = \widetilde{\nu} \circ \check{\pi}$, the differential $d\nu_q = d\widetilde{\nu}_{\check{\pi}(q)}d\check{\pi}_q$ is injective as a composition of two injective linear mappings. This implies that ν is a smooth immersion.

5. Let X_1, X_2, X_3 be vector fields in \mathbb{E}^4 ,

$$\begin{split} X_1(x) &= -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} + x^4 \frac{\partial}{\partial x^3} - x^3 \frac{\partial}{\partial x^4} \,, \\ X_2(x) &= -x^3 \frac{\partial}{\partial x^1} - x^4 \frac{\partial}{\partial x^2} + x^1 \frac{\partial}{\partial x^3} + x^2 \frac{\partial}{\partial x^4} \,, \\ X_3(x) &= -x^4 \frac{\partial}{\partial x^1} + x^3 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^3} + x^1 \frac{\partial}{\partial x^4} \,. \end{split}$$

- (1) Prove that X_1, X_2, X_3 define smooth vector fields on the regular submanifold $\mathbb{S}^3 \subset \mathbb{E}^4$.
- (2) Prove that $X_1(p), X_2(p), X_3(p)$ are linearly independent for all $p \in \mathbb{S}^3$.
- (3) Prove that $T\mathbb{S}^3$ is diffeomorphic with $\mathbb{S}^3 \times \mathbb{E}^3$.

Solution. (1) As \mathbb{S}^3 is a smooth submanifold, Proposition 5.3(1) implies that the mappings $X_1|_{\mathbb{S}^3}$, $X_2|_{\mathbb{S}^3}$ and $X_3|_{\mathbb{S}^3}$ are smooth. Note that

$$\left(x \, | \, \left(-x^2, x^1, x^4, -x^3 \right) \right) = -x^1 x^2 + x^2 x^1 + x^3 x^4 - x^4 x^3 = 0 \, ,$$

$$\left(x \, | \, \left(-x^3, -x^4, x^1, x^2 \right) \right) = -x^1 x^3 - x^2 x^4 + x^3 x^1 + x^4 x^2 = 0 \quad \text{and} \quad$$

$$\left(x \, | \, \left(-x^4, x^3, -x^2, x^1 \right) \right) = -x^1 x^4 + x^2 x^3 - x^3 x^2 + x^4 x^1 = 0 \, .$$

Thus, $X_1|_{\mathbb{S}^3}(x), X_2|_{\mathbb{S}^3}(x), X_3|_{\mathbb{S}^3}(x) \in T_x \mathbb{S}^n$ for all $x \in \mathbb{S}^n$. Example 5.20 implies that $X_1|_{\mathbb{S}^3}, X_2|_{\mathbb{S}^3}, X_3|_{\mathbb{S}^3} \in \mathfrak{X}(\mathbb{S}^n)$.

- (2) A computation shows that the four 3×3 -subdeterminants of the coefficients of the three vector fields are $-x^4||x||^2$, $-x^2||x||^2$, $x^3||x||^2$ and $x^1||x||^2$. If $x \neq 0$, then at least one of these is nonzero, and we conclude that the vector fields are linearly independent at all $x \in \mathbb{S}^3$.
- (3) This follows from the claim of Problem 2 of Exercises 5.

 $^{^{1}}x \sim y$ if and only if $y = \pm x$