Differential geometry 2023

Exercises 5

1. Prove that the mapping $\Phi: \mathbb{S}^{1} \times \mathbb{E}^{1} \rightarrow T \mathbb{S}^{1}, \Phi(p, s)=\left.s \frac{\partial}{\partial \theta}\right|_{p}$ is a smooth diffeomorphism.

Solution. The tangent space $T_{p} \mathbb{S}^{1}$ is 1-dimensional for all $p \in \mathbb{S}^{1}$. Thus, $T_{p} \mathbb{S}^{1}$ is generated by the tangent vector $\left.\frac{\partial}{\partial \theta}\right|_{p}$. This implies that the mapping Φ is a bijection with inverse $\Phi^{-1}\left(\left.s \frac{\partial}{\partial \theta}\right|_{p}\right)=(p, s)$. Therefore, it suffices to show that Φ is a local diffeomorphism. Let (U, ϕ) be an angle chart on \mathbb{S}^{1}, use the canonical chart of \mathbb{E}^{1}, the product chart on $U \times \mathbb{E}^{1}$, and the chart associated with (U, ϕ) on $T \mathbb{S}^{1}$. In these charts Φ corresponds to the identity mapping $(x, s) \mapsto(x, s)$, which is a diffeomorphism.
2. Let M be a smooth n-manifold. Let $X_{1}, X_{2}, \ldots, X_{n} \in \mathfrak{X}(M)$ be smooth vector fields such that the tangent vectors $X_{1}(p), X_{2}(p), \ldots, X_{n}(p) \in T_{p} M$ are linearly independent for all $p \in M$. Prove that there is a smooth diffeomorphism $F: M \times \mathbb{E}^{n} \rightarrow T M$.

Solution. Set $H(p, v)=\sum_{k=1}^{n} v^{k} X_{k}(p)$. To check its smoothness, fix $p \in M, v \in \mathbb{E}^{n}$ and use the chart $\left(U \times \mathbb{E}^{n}, \phi \times \operatorname{id}_{\mathbb{E}^{n}}\right)$ of $M \times \mathbb{E}^{n}$ around (p, v), as well as the chart $(T U, \psi)$ of $T M$ associated to (U, ϕ) around $H(p, v)$. We compute, for all $(x, u) \in \phi(U) \times \mathbb{E}^{n}$,

$$
\begin{aligned}
\psi \circ H \circ\left(\phi^{-1} \times \operatorname{id}_{\mathbb{E}^{n}}\right)(x, u) & =\psi\left(H\left(\phi^{-1}(x), u\right)\right)=\psi\left(\sum_{k=1}^{n} u^{k} X_{k}\left(\phi^{-1}(x)\right)\right) \\
& =\left(x, d \phi_{\phi^{-1}(u)}\left(\sum_{k=1}^{n} u^{k} X_{k}\left(\phi^{-1}(x)\right)\right)\right) \\
& =\left(x, \sum_{k=1}^{n} u^{k} d \phi_{\phi^{-1}(u)}\left(X_{k}\left(\phi^{-1}(x)\right)\right)\right),
\end{aligned}
$$

which is smooth (since its first coordinate clearly is, and its second one is a combination of smooth coordinates, since X_{1}, \ldots, X_{n} are smooth, with coordinates given by the smooth projections $\left.u \mapsto u^{k}\right)$. Set $A(x, u)$ the $n \times n$ matrix of columns given by $d \phi_{\phi^{-1}(u)}\left(X_{k}\left(\phi^{-1}(x)\right)\right)$ for $1 \leq k \leq n$. By the hypothesis on X_{1}, \ldots, X_{n}, this matrix is always invertible. And since matrix inversion is a smooth map of $\mathrm{GL}_{n}(\mathbb{R})$, the local inverse of H on $\phi(U) \times \mathbb{E}^{n}$ is smooth. Finally, since H is globally a bijection, it is indeed a diffeomorphism.
3. Let M be a smooth manifold. Let $p \in M$ and let $v_{p} \in T_{p} M$. Prove that there is a smooth vector field $X \in \mathfrak{X}(M)$ such that $X_{p}=v_{p}$.

Solution. Let (U, ϕ) be a chart centered at p. Let $v_{p}=\left.\sum_{k=1}^{n} c^{k} \frac{\partial}{\partial x^{k}}\right|_{p}$ and let $Y \in \mathfrak{X}(U)$ be the constant vector field $Y=\sum_{k=1}^{n} c^{k} \frac{\partial}{\partial x^{k}}$. Let $\eta \in \mathfrak{F}(M)$ be a smooth bump at p such that its support is contained in U. Then $Z=\left.\left.\eta\right|_{U} Y\right|_{U} \in \mathfrak{X}(U)$ and $Z_{p}=v_{p}$. Let X be the vector field defined by

$$
X(q)= \begin{cases}Z(q) & \text { if } q \in U, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

If $q \in M-U$, then there is an open neighbourhood $V \ni q$ such that $\left.X\right|_{V}=0$. Thus X is smooth.
4. Let M be a smooth n-manifold. Prove that $\mathfrak{X}(M)$ is a real vector space and an $\mathfrak{F}(M)$ module.

Solution. Let $p \in M$. Take (U, ϕ) a chart containing p and $(T U, \psi)$ the associated map of $T M$. We recall the definition

$$
\psi:(q, v) \mapsto\left(\phi(q), d \phi_{q}(v)\right) \in \phi(U) \times \mathbb{E}^{n} \subset \mathbb{E}^{2 n}
$$

where the derivation $d \phi_{q}(v)$ is identified with a vector in \mathbb{E}^{n} by the bijection $v^{\prime} \mapsto \partial_{v^{\prime} \mid \phi(q)}$. Let $X, Y \in \mathfrak{X}(M)$ and $\alpha \in \mathbb{R}$. Then, we compute, for all $u \in \phi(U)$,

$$
\begin{aligned}
& \psi \circ(\alpha X) \circ \phi^{-1}(u)=\psi\left(\alpha X_{\phi^{-1}(u)}\right)=\left(u, d \phi_{\phi^{-1}(u)}\left(\alpha X_{\phi^{-1}(u)}\right)\right)=\left(u, \alpha d \phi_{\phi^{-1}(u)}\left(\alpha X_{\phi^{-1}(u)}\right),\right. \\
& \text { and } \psi \circ(X+Y) \circ \phi^{-1}(u)=\left(u, d \phi_{\phi^{-1}(u)}\left(X_{\phi^{-1}(u)}+d \phi_{\phi^{-1}(u)}\left(Y_{\phi^{-1}(u)}\right),\right.\right.
\end{aligned}
$$

because of the linearity of $d \phi_{\phi^{-1}(u)}$. These two formulae give smooth maps since they come from linear combinations of the coordinates of

$$
\psi \circ X \circ \phi^{-1}(u)=\left(u, d \phi_{\phi^{-1}(u)}\left(X_{\phi^{-1}(u)}\right)\right.
$$

and

$$
\psi \circ Y \circ \phi^{-1}(u)=\left(u, d \phi_{\phi^{-1}(u)}\left(Y_{\phi^{-1}(u)}\right)\right.
$$

(which are smooth by definition of vector fields). This proves that $\mathfrak{X} M$ is a real vector space.

For all $f \in \mathfrak{F}(M)\left(=C^{\infty}(M)\right)$, we define $f X: M \rightarrow T M$ by the formula, for all $p \in M$, $(f X)(p)=f(p) X_{p} \in T_{p} M$. With this definition, all the axioms of an $\mathfrak{F}(M)$-module are verified for the space $\mathfrak{X}(M)$. It only remains to show that $(f, X) \mapsto f X$ is well defined from $\mathfrak{X}(M)$ to $\mathfrak{X}(M)$. Fix $f \in \mathfrak{F}(M)$. In other words, we want to show that $f X$ is smooth. Take the charts (U, ϕ) and $(T U, \psi)$ defined above. Then we compute

$$
\begin{aligned}
\psi \circ(f X) \circ \phi^{-1}(u) & =\psi\left(f\left(\phi^{-1}(u)\right) X_{\phi^{-1}(u)}\right)=\left(u, d \phi_{\phi^{-1}(u)}\left(f\left(\phi^{-1}(u)\right) X_{\phi^{-1}(u)}\right)\right) \\
& =\left(u, f\left(\phi^{-1}(u)\right) d \phi_{\phi^{-1}(u)}\left(X_{\phi^{-1}(u)}\right)\right),
\end{aligned}
$$

since $d \phi_{\phi^{-1}(u)}$ is linear. This is the formula of a smooth map since X and f are smooth.
5. (1) Let v be a derivation of an algebra A. Prove that $v(1)=0$.
(2) Let v_{1} and v_{2} be derivations of an algebra A. Prove that $v_{1} v_{2}-v_{2} v_{1}$ is a derivation.

Solution. (1) $v(1)=v(1 \cdot 1)=1 v(1)+v(1) 1=2 v(1)$ implies $v(1)=0$.
(2) Let $f \in A$. Then

$$
\begin{aligned}
\left(v_{1} v_{2}-v_{2} v_{1}\right)(a b)= & v_{1} v_{2}(a b)-v_{2} v_{1}(a b)=v_{1}\left(v_{2}(a) b+a v_{2}(b)\right)-v_{2}\left(v_{1}(a) b+a v_{1}(b)\right. \\
= & \left(v_{1} v_{2}(a) b+v_{2}(a) v_{1}(b)+v_{1}(a) v_{2}(b)+a v_{1} v_{2}(b)\right) \\
& \quad-\left(v_{2} v_{1}(a) b+v_{1}(a) v_{2}(b)+v_{2}(a) v_{1}(b)+a v_{2} v_{1}(b)\right. \\
= & \left(v_{1} v_{2}(a) b+a v_{1} v_{2}(b)\right)-\left(v_{2} v_{1}(a) b+a v_{2} v_{1}(b)\right) \\
= & \left(v_{1} v_{2}-v_{2} v_{1}\right)(a) b+a\left(v_{1} v_{2}-v_{2} v_{1}\right)(b) .
\end{aligned}
$$

