Differential geometry 2023

Exercises 4

1. (1) Let $F: M \rightarrow N$ be a smooth mapping and let $p \in M$. Prove that $d F_{p}$ is a linear mapping.
(2) Let M_{1}, M_{2} and M_{3} be smooth manifolds and let $F_{1}: M_{1} \rightarrow M_{2}$ and $F_{2}: M_{2} \rightarrow M_{3}$ be smooth mappings. Prove that $d\left(F_{2} \circ F_{1}\right)_{p}=\left(d F_{2}\right)_{F_{1}(p)}\left(d F_{1}\right)_{p}$.

Solution. (1) Let $v, w \in T_{p} M$ and let $\lambda, \mu \in \mathbb{R}$. Let $f \in \mathrm{C}^{\infty}(N)$. Then

$$
\begin{aligned}
d F_{p}(\lambda v+\mu w) f & =(\lambda v+\mu w)(f \circ F)=\lambda v(f \circ F)+\mu w(f \circ F) \\
& =\lambda\left(d F_{p} v\right) f+\mu\left(d F_{p} w\right) f=\left(\lambda\left(d F_{p} v\right)+\mu\left(d F_{p} w\right)\right) f .
\end{aligned}
$$

(2) Let $v \in T_{p} M_{1}$ and let $f \in \mathrm{C}^{\infty}\left(M_{3}\right)$. Then

$$
\left(d\left(F_{2}\right)_{F_{1}(p)} d\left(F_{1}\right)_{p} v\right) f=\left(d\left(F_{1}\right)_{p} v\right)\left(f \circ F_{2}\right)=v\left(f \circ F_{2} \circ F_{1}\right)=d\left(F_{2} \circ F_{1}\right) v f
$$

2. (1) Prove that the differential of the identity map of a smooth manifold M at a point $p \in M$ is $\mathrm{id}_{T_{p} M}$.
(2) Let $F: M \rightarrow N$ be a smooth diffeomorphism and let $p \in M$. Prove that $d F_{p}$ is a linear bijection and that $\left(d F_{p}\right)^{-1}=\left(d F^{-1}\right)_{F(p)}$.

Solution. (1) If $v \in T_{p} M$ and $f \in \mathrm{C}^{\infty}(M)$, then

$$
d\left(\operatorname{id}_{M}\right)_{p} v f=v f \circ \operatorname{id}_{M}=v f=\operatorname{id}_{T_{p} M} f .
$$

(2) This follows directly from part (2) of Exercise 1 and part (1) of this exercise.
3. The spherical coordinates of a point $x \in \mathbb{E}^{3} \backslash\{0\}$ are given by

$$
x=\left(r \cos \theta_{1} \sin \theta_{2}, r \sin \theta_{1} \sin \theta_{2}, r \cos \theta_{2}\right) .
$$

Let $p \in \mathbb{E}^{3}-\{0\}$. Compute the expressions of the tangent vectors $\left.\frac{\partial}{\partial r}\right|_{p},\left.\frac{\partial}{\partial \theta_{1}}\right|_{p}$ and $\left.\frac{\partial}{\partial \theta_{2}}\right|_{p}$ in the basis that consists of the vectors $\left.\frac{\partial}{\partial x^{1}}\right|_{p},\left.\frac{\partial}{\partial x^{2}}\right|_{p}$ and $\left.\frac{\partial}{\partial x^{3}}\right|_{p}$.

Solution. Let

$$
\begin{gathered}
\Phi:] 0, \infty[\times]-\pi, \pi[\times]-\frac{\pi}{2}, \frac{\pi}{2}\left[\rightarrow U=\mathbb{E}^{3}-\left\{x \in \mathbb{E}^{3}: x_{3} \leq 0\right\}\right. \\
\Phi\left(r, \theta_{1}, \theta_{2}\right)=\left(r \cos \theta_{1} \sin \theta_{2}, r \sin \theta_{1} \sin \theta_{2}, r \cos \theta_{2}\right)
\end{gathered}
$$

(Such a restriction is necessary for Φ to be injective, since the coordinates $\left(r, \theta_{1}, \theta_{2}\right)$ and $\left(r, \theta_{1}+\pi,-\theta_{2}\right)$ both correspond to the same points in $\left.\mathbb{E}^{3}\right)$. The inverse mapping Φ^{-1} is a coordinate mapping. By considering the charts $\phi=\Phi^{-1}$ and $\psi=\mathrm{id}$, we get

$$
\begin{aligned}
\left.\frac{\partial}{\partial r}\right|_{\Phi\left(r^{\prime}, \theta_{1}^{\prime}, \theta_{2}^{\prime}\right)} & =\cos \theta_{1}^{\prime} \sin \theta_{2}^{\prime} \frac{\partial}{\partial x^{1}}+\sin \theta_{1}^{\prime} \sin \theta_{2}^{\prime} \frac{\partial}{\partial x^{2}}+\cos \theta_{2}^{\prime} \frac{\partial}{\partial x^{3}} \\
\left.\frac{\partial}{\partial \theta_{1}}\right|_{\Phi\left(r^{\prime}, \theta_{1}^{\prime}, \theta_{2}^{\prime}\right)} & =-r^{\prime} \sin \theta_{1}^{\prime} \sin \theta_{2}^{\prime} \frac{\partial}{\partial x^{1}}+r^{\prime} \cos \theta_{1}^{\prime} \sin \theta_{2}^{\prime} \frac{\partial}{\partial x^{2}} \\
\left.\frac{\partial}{\partial \theta_{2}}\right|_{\Phi\left(r^{\prime}, \theta_{1}^{\prime}, \theta_{2}^{\prime}\right)} & =r^{\prime} \cos \theta_{1}^{\prime} \cos \theta_{2}^{\prime} \frac{\partial}{\partial x^{1}}+r^{\prime} \sin \theta_{1}^{\prime} \cos \theta_{2}^{\prime} \frac{\partial}{\partial x^{2}}-\sin \theta_{2}^{\prime} \frac{\partial}{\partial x^{3}}
\end{aligned}
$$

4. Let M_{1} and M_{2} be smooth manifolds and let $\pi_{k}: M_{1} \times M_{2} \rightarrow M_{k}$ be the projection mappings $\pi_{k}\left(p_{1}, p_{2}\right)=p_{k}$ for $k \in\{1,2\}$. Let $p=\left(p_{1}, p_{2}\right) \in M_{1} \times M_{2}$. Prove that the mapping $d\left(\pi_{1}\right)_{p} \times d\left(\pi_{2}\right)_{p}: T_{p}\left(M_{1} \times M_{2}\right) \rightarrow T_{p_{1}}\left(M_{1}\right) \times T_{p_{2}}\left(M_{2}\right)$,

$$
d\left(\pi_{1}\right)_{p} \times d\left(\pi_{2}\right)_{p}(v)=\left(d\left(\pi_{1}\right)_{p}(v), d\left(\pi_{2}\right)_{p}(v)\right)
$$

is a linear isomorphism. ${ }^{1}$

Solution. The vector spaces $T_{p}\left(M_{1} \times M_{2}\right)$ and $T_{p_{1}}\left(M_{1}\right) \times T_{p_{2}}\left(M_{2}\right)$ are finite-dimensional and their dimensions are equal so we know that the spaces are isomorphic. The content of the exercise is to check that the natural mapping is an isomorphism.

Let $\left(U_{i}, \phi_{i}\right)$ be smooth charts at $p_{i} \in M_{i}$ for $i \in\{1,2\}$. Let $v \in T_{p_{1}} M_{1}$. By Proposition 3.11, there is a smooth path $\gamma: I \rightarrow M_{1}$ such that $\gamma(0)=p_{1}$ and $\dot{\gamma}(0)=v$. Define the path $\widetilde{\gamma}: I \rightarrow M_{1} \times M_{2}$ by

$$
\widetilde{\gamma}(t)=\left(\gamma(t), p_{2}\right)
$$

As $\gamma=\pi_{1} \circ \widetilde{\gamma}$, we have, as in the proof of Proposition 3.12,

$$
v=\dot{\gamma}(0)=\left(\pi_{1} \circ \widetilde{\gamma}\right)(0)=\left(d \pi_{1}\right)_{p} \dot{\tilde{\gamma}}(0)
$$

On the other hand, the mapping $\pi_{2} \circ \widetilde{\gamma}$ is constant. Thus,

$$
0=\left(\pi_{2} \dot{\circ} \widetilde{\gamma}\right)(0)=\left(d \pi_{2}\right)_{p} \dot{\tilde{\gamma}}(0),
$$

which implies $d\left(\pi_{1}\right)_{p} \times d\left(\pi_{2}\right)_{p}(\dot{\tilde{\gamma}}(0))=(v, 0)$. Similarly, we can show that any vector $(0, w) \in T_{p_{1}}\left(M_{1}\right) \times T_{p_{2}}\left(M_{2}\right)$ is in the range and the claim follows by linearity.
(Using the notations and the result from Exercise 2 of the previous exercise sheet, one can prove that the inverse map of $d\left(\pi_{1}\right)_{p} \times d\left(\pi_{2}\right)_{p}$ is explicitly given by the formula $\left.f(u, v)=d\left(i_{p_{2}}\right)_{p_{1}}(u)+d\left(i_{p_{1}}\right)_{p_{2}}(v)\right)$.

Let G be a smooth manifold and that G is a multiplicative group such that the mappings $\mu: G \times G \rightarrow G, \mu(g, h)=g h$ and $\iota: G \rightarrow G, \iota(g)=g^{-1}$ are smooth. Then G is a Lie group.
5. Let G be a Lie group and let $e \in G$ be its neutral element. Prove that t^{2}

$$
d \mu_{(e, e)}(v, w)=v+w
$$

and ${ }^{3}$

$$
d \iota_{(e, e)}(v)=-v .
$$

Solution. By Proposition 3.11, there is a smooth path $\gamma_{0}: I \rightarrow G$ such that $\dot{\gamma}(0)=v$. The path $\gamma: I \rightarrow G \times G, \gamma(t)=\left(\gamma_{0}(t), e\right)$ is smooth and $\dot{\gamma}(0)=(v, 0){ }_{4}^{4}$ Note that $\mu \circ \gamma=\gamma_{0}$. By Proposition 3.12, we have

$$
d \mu_{(e, e)}(v, 0)=(\mu \circ \gamma)(0)=\dot{\gamma}_{0}(0)=v .
$$

[^0]Similarly, we get $d \mu_{(e, e)}(0, w)=w$ and, by linearity, $d \mu_{(e, e)}(v, w)=v+w$.
Let $\nu: G \rightarrow G \times G, \nu(g)=(g, \iota(g))$. Now $d \nu_{e}=\left(d\left(\mathrm{id}_{G}\right)_{e}, d \iota_{e}\right)=\left(\mathrm{id}, d \iota_{e}\right)$. Note that the function $\mu \circ \nu$ is constant equal to e, which implies

$$
0=d \mu \circ \nu_{e}=d \mu_{(e, e)} d \nu_{e}(v)=v+d \iota_{e}(v)
$$

for for all $v \in T_{e} G$.

[^0]: ${ }^{1}$ Use the product of the charts of M_{1} and M_{2} as charts on the product manifold as usual. Consider coordinate vectors.
 ${ }^{2}$ Compute first $d \mu_{(e, e)}(v, 0)$ using velocity vectors of paths. Note that we are identifying $T_{e}(G \times G)$ with $T_{e} G \times T_{e} G$.
 ${ }^{3}$ Consider the mapping $g \mapsto \mu(g, \iota(g))=e$.
 ${ }^{4}$ Here we identify $T_{(e, e)} G \times G$ with $T_{e} G \times T_{e} G$.

