
Differential geometry 2023

Exercises 4

1. (1) Let F : M → N be a smooth mapping and let p ∈ M . Prove that dFp is a linear
mapping.
(2) Let M1, M2 and M3 be smooth manifolds and let F1 : M1 → M2 and F2 : M2 → M3
be smooth mappings. Prove that d(F2 ◦ F1)p = (dF2)F1(p)(dF1)p.

Solution. (1) Let v, w ∈ TpM and let λ, µ ∈ R. Let f ∈ C∞(N). Then

dFp(λv + µw)f = (λv + µw)(f ◦ F ) = λv(f ◦ F ) + µw(f ◦ F )
= λ(dFpv)f + µ(dFpw)f = (λ(dFpv) + µ(dFpw))f .

(2) Let v ∈ TpM1 and let f ∈ C∞(M3). Then

(d(F2)F1(p)d(F1)pv)f = (d(F1)pv)(f ◦ F2) = v(f ◦ F2 ◦ F1) = d(F2 ◦ F1)vf .

2. (1) Prove that the differential of the identity map of a smooth manifold M at a point
p ∈ M is idTpM .
(2) Let F : M → N be a smooth diffeomorphism and let p ∈ M . Prove that dFp is a linear
bijection and that (dFp)−1 = (dF−1)F (p).

Solution. (1) If v ∈ TpM and f ∈ C∞(M), then

d(idM)pvf = vf ◦ idM = vf = idTpM f .

(2) This follows directly from part (2) of Exercise 1 and part (1) of this exercise.

3. The spherical coordinates of a point x ∈ E3 \ {0} are given by

x = (r cos θ1 sin θ2, r sin θ1 sin θ2, r cos θ2) .

Let p ∈ E3 − {0}. Compute the expressions of the tangent vectors ∂
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Solution. Let

Φ: ]0,∞[ × ]−π, π[ × ]−π
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2 [ → U = E3 − {x ∈ E3 : x3 ≤ 0}

Φ(r, θ1, θ2) = (r cos θ1 sin θ2, r sin θ1 sin θ2, r cos θ2) .
(Such a restriction is necessary for Φ to be injective, since the coordinates (r, θ1, θ2) and
(r, θ1 + π,−θ2) both correspond to the same points in E3). The inverse mapping Φ−1 is a
coordinate mapping. By considering the charts ϕ = Φ−1 and ψ = id, we get
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4. Let M1 and M2 be smooth manifolds and let πk : M1 × M2 → Mk be the projection
mappings πk(p1, p2) = pk for k ∈ {1, 2}. Let p = (p1, p2) ∈ M1 × M2. Prove that the
mapping d(π1)p × d(π2)p : Tp(M1 ×M2) → Tp1(M1) × Tp2(M2),

d(π1)p × d(π2)p(v) = (d(π1)p(v), d(π2)p(v)) ,

is a linear isomorphism.1

Solution. The vector spaces Tp(M1 ×M2) and Tp1(M1) × Tp2(M2) are finite-dimensional
and their dimensions are equal so we know that the spaces are isomorphic. The content
of the exercise is to check that the natural mapping is an isomorphism.

Let (Ui, ϕi) be smooth charts at pi ∈ Mi for i ∈ {1, 2}. Let v ∈ Tp1M1. By Proposition
3.11, there is a smooth path γ : I → M1 such that γ(0) = p1 and γ̇(0) = v. Define the
path γ̃ : I → M1 ×M2 by

γ̃(t) = (γ(t), p2) .

As γ = π1 ◦ γ̃, we have, as in the proof of Proposition 3.12,

v = γ̇(0) = ˙(π1 ◦ γ̃)(0) = (dπ1)p
˙̃γ(0) .

On the other hand, the mapping π2 ◦ γ̃ is constant. Thus,

0 = ˙(π2 ◦ γ̃)(0) = (dπ2)p
˙̃γ(0) ,

which implies d(π1)p × d(π2)p( ˙̃γ(0)) = (v, 0). Similarly, we can show that any vector
(0, w) ∈ Tp1(M1) × Tp2(M2) is in the range and the claim follows by linearity.

(Using the notations and the result from Exercise 2 of the previous exercise sheet,
one can prove that the inverse map of d(π1)p × d(π2)p is explicitly given by the formula
f(u, v) = d(ip2)p1(u) + d(ip1)p2(v)).

Let G be a smooth manifold and that G is a multiplicative group such that the mappings
µ : G × G → G, µ(g, h) = gh and ι : G → G, ι(g) = g−1 are smooth. Then G is a Lie
group.

5. Let G be a Lie group and let e ∈ G be its neutral element. Prove that2

dµ(e,e)(v, w) = v + w

and3

dι(e,e)(v) = −v .

Solution. By Proposition 3.11, there is a smooth path γ0 : I → G such that γ̇(0) = v. The
path γ : I → G×G, γ(t) = (γ0(t), e) is smooth and γ̇(0) = (v, 0).4 Note that µ ◦ γ = γ0.
By Proposition 3.12, we have

dµ(e,e)(v, 0) = ˙(µ ◦ γ)(0) = γ̇0(0) = v .

1Use the product of the charts of M1 and M2 as charts on the product manifold as usual. Consider
coordinate vectors.

2Compute first dµ(e,e)(v, 0) using velocity vectors of paths. Note that we are identifying Te(G × G)
with TeG × TeG.

3Consider the mapping g 7→ µ(g, ι(g)) = e.
4Here we identify T(e,e)G × G with TeG × TeG.



Similarly, we get dµ(e,e)(0, w) = w and, by linearity, dµ(e,e)(v, w) = v + w.
Let ν : G → G × G, ν(g) = (g, ι(g)). Now dνe = (d(idG)e, dιe) = (id, dιe). Note that

the function µ ◦ ν is constant equal to e, which implies

0 = dµ ◦ νe = dµ(e,e)dνe(v) = v + dιe(v)

for for all v ∈ TeG.


