Differential geometry 2023

Exercises 3

1. Prove that the quotient mapping $\pi \colon \mathbb{S}^n \to \mathbb{P}^n$, $\pi(x) = [x]$, is a smooth local diffeomorphism.

Solution. Let $p \in \mathbb{S}^n$. We may assume that $p_{n+1} > 0$. Let us use the smooth chart $\operatorname{pr}_{n+1} \colon U_{n+1}^+ \to \mathbb{E}^n$, $\operatorname{pr}_{n+1}(x) = (x_1, x_2, \ldots, x_n)$ for \mathbb{S}^n and the smooth chart $\phi_{n+1} \colon U_{n+1} \to \mathbb{E}^n$,

$$\phi_{n+1}([x_1:x_2:\cdots:x_{n+1}]) = \left(\frac{x_1}{x_{n+1}},\frac{x_2}{x_{n+1}},\ldots,\frac{x_n}{x_{n+1}}\right)$$

for \mathbb{P}^n . We saw in the lectures ¹that

$$\phi_{n+1} \circ \pi \circ \operatorname{pr}_{n+1}^{-1}(y) = \phi_{n+1} \circ \pi(y_1, y_2, \dots, y_n, \sqrt{1 - \|y\|^2})$$
$$= \phi_{n+1} \left([y_1 : y_2 : \dots : y_n : \sqrt{1 - \|y\|^2}] \right)$$
$$= \left(\frac{y_1}{\sqrt{1 - \|y\|^2}}, \frac{y_2}{\sqrt{1 - \|y\|^2}}, \dots, \frac{y_n}{\sqrt{1 - \|y\|^2}} \right)$$

defines a smooth mapping, and similarly for other smooth charts $pr_k: U_k^{\pm}$, so π is smooth.

To show that π is a local diffeomorphism, first notice that it is injective on U_{n+1}^+ (and similarly on each U_k^{\pm}). On U_{n+1} , the inverse of this restriction is given by

$$(\pi_{|U_{n+1}^+})^{-1} : [x_1 : x_2 : \dots : x_{n+1}] \mapsto \frac{\operatorname{sgn}(x_{n+1})}{\|x\|} (x_1, \dots, x_{n+1}).$$

Then, we compute

$$pr_{n+1} \circ (\pi_{|U_{n+1}^+})^{-1} \circ \phi_{n+1}^{-1}(x_1, \dots, x_n) = pr_{n+1} \circ (\pi_{|U_{n+1}^+})^{-1}([x_1 : \dots : x_n : 1])$$
$$= pr_{n+1} \frac{1}{\sqrt{1 + ||x||^2}}(x_1, \dots, x_n, 1)$$
$$= pr_{n+1} \frac{1}{\sqrt{1 + ||x||^2}}(x_1, \dots, x_n)$$

which is the formula on a smooth mapping, thus is this local inverse of π and hence π is a local diffeomorphism.

(The mapping π is not a (global) diffeomorphism as it is not injective: $\pi(0, \ldots, 0, 1) = \pi(0, \ldots, 0, -1)$ by definition of \mathbb{P}^n .)

2. Let M and N be smooth manifolds and let $q_0 \in N$. Let $i_{q_0} \colon M \to M \times N$ be the mapping $i_{q_0}(p) = (p, q_0)$. Prove that i_{q_0} is smooth.

Solution. Let $p_0 \in M$. Take a chart (U, ϕ) of M containing p_0 and a chart $(U' \times V, \phi' \times \psi)$ of $M \times N$ containing $i_{q_0}(p_0) = (p_0, q_0)$ (i.e. $p_0 \in U'$ and $q_0 \in V$). Then we compute, for all $x \in \phi(U \cap U')$,

$$(\phi' \times \psi) \circ i_{q_0} \circ \phi^{-1}(x) = (\phi' \times \psi)(\phi^{-1}(x), q_0) = (\phi' \circ \phi^{-1}(x), \psi(q_0)),$$

which defines a smooth map.

 $^{^{1}}Example 2.8(2)$

3. Prove that the mapping $F: \mathbb{T}^1 \to \mathbb{S}^1$, $F(s + \mathbb{Z}) = (\cos(2\pi s), \sin(2\pi s))$ is smooth.

Solution. Let $\pi : \mathbb{R} \to \mathbb{T}^1$ denote the canonical projection. Take $p \in \mathbb{T}^1$ and $x \in \pi^{-1}(p)$. Around p, we use the chart (U, π^{-1}) given by the local inverse $(\pi_{|]x-\frac{1}{3},x+\frac{1}{3}[})^{-1}$ on $U = \pi(]x - \frac{1}{3}, x + \frac{1}{3}[]$). Let us assume that $\cos(2\pi x)$ is positive, that is to say $F(p) = (\cos(2\pi x), \sin(2\pi x))$ has a positive first coordinate. Then, we can take the chart $(U_1^+, \operatorname{pr}_1)$ of \mathbb{S}^1 . We compute, for all $s \in]x - \frac{1}{3}, x + \frac{1}{3}[] \cap \cos^{-1}(\mathbb{R}^*_+)$,

$$\operatorname{pr}_1 \circ F \circ \pi(s) = \sin(2\pi s).$$

4. Let *M* be a smooth *n*-manifold and let $F: U \to F(U) \subset \mathbb{E}^n$ be a smooth diffeomorphism. Prove that (U, F) is a smooth chart.

Solution. Let $p \in M$ and let (V, ϕ) be a smooth chart at p. As a diffeomorphism, F is a homeomorphism (it is needed in the definition of a chart!). We saw in class that ϕ is a diffeomorphism, so $F \circ (\phi|_{U \cap V})^{-1}$ is a diffeomorphism as the composition of two diffeomorphisms. This shows that F is compatible with the maximal atlas.

5. Let A and B be matrices such that $AB = I_n$ and $BA = I_m$. Prove that $B = A^{-1}$ and n = m.

Solution. A priori, we only know that A is of dimensions $n \times m$ and that B is $m \times n$. Suppose n < m. Then, A is of rank at most n, and by composition, so is the product BA, which is absurd since the rank of I_m is m. Symmetrically, we cannot have n > m, hence n = m, these matrices are square and A is then the inverse of B by definition of the inverse of a (square) matrix.

6. Let M be a smooth manifold and let $p \in M$. Prove that Der(p) is a vector space.

Solution. The set of derivations is nonempty as the 0-operator is clearly a derivation at p. Let $v, w \in \text{Der}(p)$ and let $\lambda, \mu \in \mathbb{R}$. We know from linear algebra that $\lambda v + \mu w$ is a linear function. Let $f \in C^{\infty}(M)$. Then by definition of a linear combination of mappings, as v and w are derivations, and by definition of a linear combination of mappings again

$$\begin{aligned} (\lambda v + \mu w)(fg) &= \lambda v(fg) + \mu w(fg) \\ &= \lambda (v(f) g(p) + f(p) v(g)) + \mu (w(f)g(p) + f(p)w(g)) \\ &= (\lambda v + \mu w)(f) g(p) + f(p)(\lambda v + \mu w)(g) \,, \end{aligned}$$

which shows that $(\lambda v + \mu w) \in \text{Der}(p)$.