Differential geometry 2023

Exercises 12

1. (1) Let

$$\begin{split} & \omega = dx^3 \in \Omega^1(\mathbb{S}^2) \,, \\ & \eta = x^2 x^3 dx^1 + x^1 x^3 dx^2 + x^1 x^2 dx^3 \in \Omega^1(\mathbb{S}^2) \end{split}$$

and let $\gamma \colon [-1,1] \to \mathbb{S}^2$,

$$\gamma(t) = \left(\sqrt{1 - t^2}\cos(t), \sqrt{1 - t^2}\sin(t), t\right).$$

Determine the values of the integrals $\int_{\gamma} \omega$ and $\int_{\gamma} \eta$.

Solution. By the fundamental theorem for integration on curves, since x^3 is a smooth function on \mathbb{S}^2 , we have

$$\int_{\gamma} \omega = \int_{\gamma} dx^3 = x^3(\gamma(1)) - x^3(\gamma(-1)) = 1 - (-1) = 2.$$

We notice that $\eta = d(x^1x^2x^3)$, hence we can once again use the fundamental theorem on the curve γ and obtain

$$\int_{\gamma} \eta = \int_{\gamma} d(x^1 x^2 x^3) = x^1 x^2 x^3 (\gamma(1)) - x^1 x^2 x^3 (\gamma(-1)) = 0 - 0 = 0.$$

2. Give an example of an oriented atlas of $\mathbb{S}^{n,1}$

Solution. We begin with the atlas $\{(U_+, S_+), (U_-, S_-)\}$ given by two stereographic projections: $U_{\pm} = \mathbb{S}^n - \{(0, \ldots, 0, \pm 1)\}$ and

$$S_{\pm}(x) = \frac{(x_1, \dots, x_{n-1})}{1 \mp x_n}$$

Their inverse is given on \mathbb{R}^{n-1} by

$$S_{\pm}^{-1}(y) = \frac{\left(2y, \pm(\|y\|^2 - 1)\right)}{1 + \|y\|^2}$$

We compute, for $y \neq 0$,

$$S_+ \circ S_-^{-1}(y) = \frac{y}{\|y\|^2} = S_- \circ S_+^{-1}(y).$$

Their Jacobian matrix is then given by $\operatorname{Jac}(S_{\pm} \circ S_{\mp}) : y \mapsto \frac{1}{\|y\|^2} I_n - \frac{2}{\|y\|^4} (y_i y_j)_{1 \leq i,j \leq n}$. From linear algebra we know that, for any rank 1 matrix A, we have

$$\det(I_n + A) = 1 + \operatorname{tr}(A).$$

¹The stereographic projections from the north and south poles form a smooth atlas that consists of two charts.

Here it gives, for all $y \neq 0$,

$$\det(\operatorname{Jac}_y(S_{\pm} \circ S_{\mp})) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \left(1 - \frac{2}{\|y\|^2} \sum_{i=1}^n y_i^2\right) = -\frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} \det(I_n - \frac{2}{\|y\|^2} (y_i y_j)_{1 \le i,j \le n}) = \frac{1}{\|y\|^{2n}} (y_i y_j)_{1 \le i,j \le n})$$

Thus the atlas $\{(U_{\pm}, S_{\pm})\}$ is not oriented. However, since it only consists of 2 charts, we can use the following trick: define a linear map $\phi : \mathbb{E}^n \to \mathbb{E}^n$ by $\phi(y) = (-y_1, y_2, \ldots, y_n)$. Then the atlas $\{(U_+, S_+), (U_-, \phi \circ S_-)\}$ is an oriented atlas. Indeed, for every $y \neq 0$, we have

 $\det(\operatorname{Jac}(\phi \circ S_{-} \circ S_{+})(y)) = \det(\phi) \det(\operatorname{Jac}(S_{-} \circ S_{+})(y)) = -\det(\operatorname{Jac}(S_{-} \circ S_{+})(y)) > 0.$

Remark. Instead of computing the determinant of $\operatorname{Jac}_y(S_{\pm} \circ S_{\mp})$ for all $y \in \mathbb{E}^n - \{0\}$, it would have been sufficient to do it for only one such point y, for example $y = (1, 0, \ldots, 0)$ (giving a diagonal matrix), and then to use the connectedness of $\mathbb{E}^n - \{0\}$ to argue that this (non vanishing anywhere) determinant has constant sign.

3. (1) Prove that the mapping $-id: \mathbb{E}^n \to \mathbb{E}^n$ preserves orientation if and only if n is even.

(2) Prove that the mapping $-\operatorname{id}: \mathbb{S}^n \to \mathbb{S}^n$ preserves orientation if and only if n is odd.²

Solution. (1) We use the trivial atlas $(\mathbb{E}^n, \mathrm{id})$. The map $\mathrm{id} \circ (-\mathrm{id}) \circ \mathrm{id}^{-1} = -\mathrm{id}$ is linear (hence equal to its Jacobian matrix) and has determinant $(-1)^n$. Thus, it preserves orientation iff n is even.

(2) We use the oriented atlas $\{(U_+, S_+), (U_-, \phi \circ S_-)\}$ from Exercise 2. Since the map - id is a (global but local would be sufficient) diffeomorphism, we know (continuity of determinant) that it is sufficient to check that - id is order preserving in only one of these two charts. We choose (U_+, S_+) and compute, for all $y \in \mathbb{E}^n$,

$$S_+ \circ (-\operatorname{id}) \circ S_+^{-1}(y) = S_+ \left(-\frac{(2y, \|y\|^2 - 1)}{1 + \|y\|^2} \right) = -\frac{y}{\|y\|^2}$$

Hence we have the formula for its Jacobian matrix: $\operatorname{Jac}(S_+ \circ (-\operatorname{id}) \circ S_+^{-1}) = -\operatorname{Jac}(y \mapsto \frac{y}{\|y\|^2})$. Using the computation of the Jacobian of $y \mapsto \frac{y}{\|y\|^2}$ from Exercise 2, we obtain, for all $y \in \mathbb{E}^n$,

$$\det(\operatorname{Jac}(S_+ \circ (-\operatorname{id}) \circ S_+^{-1})(y)) = (-1)^n \det(y' \mapsto \frac{y'}{\|y'\|^2}(y)) = (-1)^{n+1}.$$

The result follows.

4. Prove that the *n*-torus $\mathbb{T}^n = \mathbb{E}^n / \mathbb{Z}^n$ is orientable.³

Solution. The standard atlas on \mathbb{T}^n is given by

$$\left\{ \left(\pi(B_{\infty}(x, \frac{1}{2})), (\pi_{|B_{\infty}(x, \frac{1}{2})})^{-1} \right) : x \in \mathbb{E}^{n} \right\}$$

where $\pi : \mathbb{E}^n \to \mathbb{T}^n$ is the canonical projection, which is locally invertible. Let $x, y \in \mathbb{E}^n$. We see that, for all $z \in \pi^{-1}(\pi(B(x, \frac{1}{2}))) \cap B(y, \frac{1}{2})$, there exists $k \in \mathbb{Z}^n$ such that $(\pi_{|B(x, \frac{1}{2})})^{-1} \circ ((\pi_{|B(y, \frac{1}{2})})^{-1})^{-1}(z) = z + k$. Since the latter composed map is smooth, the integer k does not depend on z. Hence, the Jacobian of $(\pi_{|B(x, \frac{1}{2})})^{-1} \circ ((\pi_{|B(y, \frac{1}{2})})^{-1})^{-1}$ is constant equal to 1, and the standard atlas on \mathbb{T}^n is already oriented.

²Use the oriented atlas from Problem 2 .

³Recall that local inverses of the quotient mapping $\pi \colon \mathbb{E}^n \to \mathbb{T}^n$ form a smooth atlas.

5. The mapping $G: \mathbb{T}^2 \to \mathbb{E}^3$ induced by the mapping $\tilde{G}: \mathbb{E}^2 \to \mathbb{E}^3$,

$$\widetilde{G}(x) = \left((2 + \cos(2\pi x^1)) \cos(2\pi x^2), (2 + \cos(2\pi x^1)) \sin(2\pi x^2), \sin(2\pi x^1) \right),$$

is a smooth embedding of the 2-torus \mathbb{T}^2 into $\mathbb{E}^3.$ Compute

$$\int_{\mathbb{T}^2} G^*(x^3 dx^1 \wedge dx^2)$$

Solution.

Solution 1.

In this solution, we find an explicit formula for the form $G^*(x^3dx^1 \wedge dx^2)$, and then we integrate it. We denote by $ds^1 \wedge ds^2$ the usual orientation form on \mathbb{T}^2 , obtained by the charts in Exercise 4. We compute

$$\begin{aligned} G^*(x^3 dx^1 \wedge dx^2) = & x^3(G(s)) \Big(\sum_{i=1}^2 \frac{\partial \tilde{G}_1}{\partial s^i} ds^i \Big) \wedge \Big(\sum_{j=1}^2 \frac{\partial \tilde{G}_2}{\partial s^j} ds^j \Big) \\ = & \sin(2\pi s^1) \Big(-2\pi \sin(2\pi s^1) \cos(2\pi s^2) ds^1 - (2 + \cos(2\pi s^1)) 2\pi \sin(2\pi s^2) ds^2 \Big) \\ & \wedge \Big(-2\pi \sin(2\pi s^1) \sin(2\pi s^2) ds^1 + (2 + \cos(2\pi s^1)) 2\pi \cos(2\pi s^2) ds^2 \Big) \\ = & -4\pi^2 \sin(2\pi s^1)^2 (2 + \cos(2\pi s^1)) ds^1 \wedge ds^2. \end{aligned}$$

Thus we have

$$\int_{\mathbb{T}^2} G^*(x^3 dx^1 \wedge dx^2) = -4\pi^2 \int_0^1 \int_0^1 \sin(2\pi s_1)^2 (2 + \cos(2\pi s_2)) \, ds_1 ds_2$$
$$= -4\pi^2 \int_0^1 \sin(2\pi s_1)^2 \, ds_1 \times \int_0^1 (2 + \cos(2\pi s_2)) \, ds_2$$
$$= -4\pi^2 \frac{1}{2} \times 2 = -4\pi^2.$$

Solution 2 (with Stokes's theorem).

The torus $G(\mathbb{T}^2)$ is the usual embedded torus in \mathbb{E}^3 or radii 2 and 1. Let us denote by T the associated solid torus. The Stokes orientation on the torus $G(\mathbb{T}^2)$ is given by the one on \mathbb{E}^3 and outward normal vectors based on $\partial T = G(\mathbb{T}^2)$. Using this orientation on $G(\mathbb{T}^2)$ and the orientation on \mathbb{T}^2 defined in Exercise 4 (hence G preserves orientation iff $G \circ \pi = \tilde{G}$ does), we check the preserving/reversing of orientation of \tilde{G} at the point x = (0,0), thus G(x) = (3,0,0) and an associated outward pointing vector is (1,0,0). We get

$$\det\left((1,0,0), \ d\tilde{G}_x(1,0), \ d\tilde{G}_x(0,1)\right) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 3\pi \\ 0 & 2\pi & 0 \end{vmatrix} = -6\pi^2 < 0.$$

Thus G is orientation reversing. Then, by the pullback (or "change of variable") formula for integration of forms on manifold applied to the embedding \tilde{G} , we obtain

$$\int_{\mathbb{T}^2} G^*(x^3 dx^1 \wedge dx^2) = -\int_{G(\mathbb{T}^2)} x^3 dx^1 \wedge dx^2.$$

By Stokes's Theorem, we get

$$\int_{G(\mathbb{T}^2)} x^3 dx^1 \wedge dx^2 = \int_T dx^3 \wedge dx^1 \wedge dx^2 = \int_T dx^1 \wedge dx^2 \wedge dx^3 = \int_T dx_1 dx_2 dx_3 = \text{vol}(T).$$

where T has volume $(2\pi \times 2) \times (\pi \times 1^2) = 4\pi^2$ (to find the general formula for the volume of a torus, you may use a polar change of variable twice, first from (x_1, x_2) to (r, θ) , then from (r, x_3) to (ρ, ω)). In the end, we obtain

$$\int_{\mathbb{T}^2} G^*(x^3 dx^1 \wedge dx^2) = -4\pi^2$$