Differential geometry 2023

Exercises 12

1. (1) Let

$$
\begin{aligned}
\omega & =d x^{3} \in \Omega^{1}\left(\mathbb{S}^{2}\right), \\
\eta & =x^{2} x^{3} d x^{1}+x^{1} x^{3} d x^{2}+x^{1} x^{2} d x^{3} \in \Omega^{1}\left(\mathbb{S}^{2}\right)
\end{aligned}
$$

and let $\gamma:[-1,1] \rightarrow \mathbb{S}^{2}$,

$$
\gamma(t)=\left(\sqrt{1-t^{2}} \cos (t), \sqrt{1-t^{2}} \sin (t), t\right) .
$$

Determine the values of the integrals $\int_{\gamma} \omega$ and $\int_{\gamma} \eta$.

Solution. By the fundamental theorem for integration on curves, since x^{3} is a smooth function on \mathbb{S}^{2}, we have

$$
\int_{\gamma} \omega=\int_{\gamma} d x^{3}=x^{3}(\gamma(1))-x^{3}(\gamma(-1))=1-(-1)=2 .
$$

We notice that $\eta=d\left(x^{1} x^{2} x^{3}\right)$, hence we can once again use the fundamental theorem on the curve γ and obtain

$$
\int_{\gamma} \eta=\int_{\gamma} d\left(x^{1} x^{2} x^{3}\right)=x^{1} x^{2} x^{3}(\gamma(1))-x^{1} x^{2} x^{3}(\gamma(-1))=0-0=0 .
$$

2. Give an example of an oriented atlas of \mathbb{S}^{n}.

Solution. We begin with the atlas $\left\{\left(U_{+}, S_{+}\right),\left(U_{-}, S_{-}\right)\right\}$given by two stereographic projections: $U_{ \pm}=\mathbb{S}^{n}-\{(0, \ldots, 0, \pm 1)\}$ and

$$
S_{ \pm}(x)=\frac{\left(x_{1}, \ldots, x_{n-1}\right)}{1 \mp x_{n}}
$$

Their inverse is given on \mathbb{R}^{n-1} by

$$
S_{ \pm}^{-1}(y)=\frac{\left(2 y, \pm\left(\|y\|^{2}-1\right)\right)}{1+\|y\|^{2}} .
$$

We compute, for $y \neq 0$,

$$
S_{+} \circ S_{-}^{-1}(y)=\frac{y}{\|y\|^{2}}=S_{-} \circ S_{+}^{-1}(y)
$$

Their Jacobian matrix is then given by $\operatorname{Jac}\left(S_{ \pm} \circ S_{\mp}\right): y \mapsto \frac{1}{\|y\|^{2}} I_{n}-\frac{2}{\|y\|^{4}}\left(y_{i} y_{j}\right)_{1 \leq i, j \leq n}$. From linear algebra we know that, for any rank 1 matrix A, we have

$$
\operatorname{det}\left(I_{n}+A\right)=1+\operatorname{tr}(A)
$$

[^0]Here it gives, for all $y \neq 0$,
$\operatorname{det}\left(\operatorname{Jac}_{y}\left(S_{ \pm} \circ S_{\mp}\right)\right)=\frac{1}{\|y\|^{2 n}} \operatorname{det}\left(I_{n}-\frac{2}{\|y\|^{2}}\left(y_{i} y_{j}\right)_{1 \leq i, j \leq n}\right)=\frac{1}{\|y\|^{2 n}}\left(1-\frac{2}{\|y\|^{2}} \sum_{i=1}^{n} y_{i}^{2}\right)=-\frac{1}{\|y\|^{2 n}}$.
Thus the atlas $\left\{\left(U_{ \pm}, S_{ \pm}\right)\right\}$is not oriented. However, since it only consists of 2 charts, we can use the following trick: define a linear map $\phi: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ by $\phi(y)=\left(-y_{1}, y_{2}, \ldots, y_{n}\right)$. Then the atlas $\left\{\left(U_{+}, S_{+}\right),\left(U_{-}, \phi \circ S_{-}\right)\right\}$is an oriented atlas. Indeed, for every $y \neq 0$, we have

$$
\operatorname{det}\left(\operatorname{Jac}\left(\phi \circ S_{-} \circ S_{+}\right)(y)\right)=\operatorname{det}(\phi) \operatorname{det}\left(\operatorname{Jac}\left(S_{-} \circ S_{+}\right)(y)\right)=-\operatorname{det}\left(\operatorname{Jac}\left(S_{-} \circ S_{+}\right)(y)\right)>0
$$

Remark. Instead of computing the determinant of $\operatorname{Jac}_{y}\left(S_{ \pm} \circ S_{\mp}\right)$ for all $y \in \mathbb{E}^{n}-\{0\}$, it would have been sufficient to do it for only one such point y, for example $y=(1,0, \ldots, 0)$ (giving a diagonal matrix), and then to use the connectedness of $\mathbb{E}^{n}-\{0\}$ to argue that this (non vanishing anywhere) determinant has constant sign.
3. (1) Prove that the mapping - id: $\mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ preserves orientation if and only if n is even.
(2) Prove that the mapping - id: $\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ preserves orientation if and only if n is odd.2

Solution. (1) We use the trivial atlas $\left(\mathbb{E}^{n}, \mathrm{id}\right)$. The map id $\circ(-\mathrm{id}) \circ \mathrm{id}^{-1}=-\mathrm{id}$ is linear (hence equal to its Jacobian matrix) and has determinant $(-1)^{n}$. Thus, it preserves orientation iff n is even.
(2) We use the oriented atlas $\left\{\left(U_{+}, S_{+}\right),\left(U_{-}, \phi \circ S_{-}\right)\right\}$from Exercise 2. Since the map - id is a (global but local would be sufficient) diffeomorphism, we know (continuity of determinant) that it is sufficient to check that - id is order preserving in only one of these two charts. We choose $\left(U_{+}, S_{+}\right)$and compute, for all $y \in \mathbb{E}^{n}$,

$$
S_{+} \circ(-\mathrm{id}) \circ S_{+}^{-1}(y)=S_{+}\left(-\frac{\left(2 y,\|y\|^{2}-1\right)}{1+\|y\|^{2}}\right)=-\frac{y}{\|y\|^{2}} .
$$

Hence we have the formula for its Jacobian matrix: $\operatorname{Jac}\left(S_{+} \circ(-\mathrm{id}) \circ S_{+}^{-1}\right)=-\operatorname{Jac}(y \mapsto$ $\frac{y}{\|y\|^{2}}$. Using the computation of the Jacobian of $y \mapsto \frac{y}{\|y\|^{2}}$ from Exercise 2, we obtain, for all $y \in \mathbb{E}^{n}$,

$$
\operatorname{det}\left(\operatorname{Jac}\left(S_{+} \circ(-\mathrm{id}) \circ S_{+}^{-1}\right)(y)\right)=(-1)^{n} \operatorname{det}\left(y^{\prime} \mapsto \frac{y^{\prime}}{\left\|y^{\prime}\right\|^{2}}(y)\right)=(-1)^{n+1}
$$

The result follows.
4. Prove that the n-torus $\mathbb{T}^{n}=\mathbb{E}^{n} / \mathbb{Z}^{n}$ is orientable. ${ }^{3}$

Solution. The standard atlas on \mathbb{T}^{n} is given by

$$
\left\{\left(\pi\left(B_{\infty}\left(x, \frac{1}{2}\right)\right),\left(\pi_{\left\lvert\, B_{\infty}\left(x, \frac{1}{2}\right)\right.}\right)^{-1}\right): x \in \mathbb{E}^{n}\right\}
$$

where $\pi: \mathbb{E}^{n} \rightarrow \mathbb{T}^{n}$ is the canonical projection, which is locally invertible. Let $x, y \in$ \mathbb{E}^{n}. We see that, for all $z \in \pi^{-1}\left(\pi\left(B\left(x, \frac{1}{2}\right)\right)\right) \cap B\left(y, \frac{1}{2}\right)$, there exists $k \in \mathbb{Z}^{n}$ such that $\left(\pi_{\left\lvert\, B\left(x, \frac{1}{2}\right)\right.}\right)^{-1} \circ\left(\left(\pi_{\left\lvert\, B\left(y, \frac{1}{2}\right)\right.}\right)^{-1}\right)^{-1}(z)=z+k$. Since the latter composed map is smooth, the integer k does not depend on z. Hence, the Jacobian of $\left(\pi_{\left\lvert\, B\left(x, \frac{1}{2}\right)\right.}\right)^{-1} \circ\left(\left(\pi_{\left\lvert\, B\left(y, \frac{1}{2}\right)\right.}\right)^{-1}\right)^{-1}$ is constant equal to 1 , and the standard atlas on \mathbb{T}^{n} is already oriented.

[^1]5. The mapping $G: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ induced by the mapping $\widetilde{G}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}$,
$$
\widetilde{G}(x)=\left(\left(2+\cos \left(2 \pi x^{1}\right)\right) \cos \left(2 \pi x^{2}\right),\left(2+\cos \left(2 \pi x^{1}\right)\right) \sin \left(2 \pi x^{2}\right), \sin \left(2 \pi x^{1}\right)\right),
$$
is a smooth embedding of the 2-torus \mathbb{T}^{2} into \mathbb{E}^{3}. Compute
$$
\int_{\mathbb{T}^{2}} G^{*}\left(x^{3} d x^{1} \wedge d x^{2}\right)
$$

Solution.

Solution 1.

In this solution, we find an explicit formula for the form $G^{*}\left(x^{3} d x^{1} \wedge d x^{2}\right)$, and then we integrate it. We denote by $d s^{1} \wedge d s^{2}$ the usual orientation form on \mathbb{T}^{2}, obtained by the charts in Exercise 4. We compute

$$
\begin{aligned}
G^{*}\left(x^{3} d x^{1} \wedge d x^{2}\right)= & x^{3}(G(s))\left(\sum_{i=1}^{2} \frac{\partial \widetilde{G}_{1}}{\partial s^{i}} d s^{i}\right) \wedge\left(\sum_{j=1}^{2} \frac{\partial \widetilde{G}_{2}}{\partial s^{j}} d s^{j}\right) \\
= & \sin \left(2 \pi s^{1}\right)\left(-2 \pi \sin \left(2 \pi s^{1}\right) \cos \left(2 \pi s^{2}\right) d s^{1}-\left(2+\cos \left(2 \pi s^{1}\right)\right) 2 \pi \sin \left(2 \pi s^{2}\right) d s^{2}\right) \\
& \wedge\left(-2 \pi \sin \left(2 \pi s^{1}\right) \sin \left(2 \pi s^{2}\right) d s^{1}+\left(2+\cos \left(2 \pi s^{1}\right)\right) 2 \pi \cos \left(2 \pi s^{2}\right) d s^{2}\right) \\
= & -4 \pi^{2} \sin \left(2 \pi s^{1}\right)^{2}\left(2+\cos \left(2 \pi s^{1}\right)\right) d s^{1} \wedge d s^{2} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\int_{\mathbb{T}^{2}} G^{*}\left(x^{3} d x^{1} \wedge d x^{2}\right) & =-4 \pi^{2} \int_{0}^{1} \int_{0}^{1} \sin \left(2 \pi s_{1}\right)^{2}\left(2+\cos \left(2 \pi s_{2}\right)\right) d s_{1} d s_{2} \\
& =-4 \pi^{2} \int_{0}^{1} \sin \left(2 \pi s_{1}\right)^{2} d s_{1} \times \int_{0}^{1}\left(2+\cos \left(2 \pi s_{2}\right)\right) d s_{2} \\
& =-4 \pi^{2} \frac{1}{2} \times 2=-4 \pi^{2}
\end{aligned}
$$

Solution 2 (with Stokes's theorem).

The torus $G\left(\mathbb{T}^{2}\right)$ is the usual embedded torus in \mathbb{E}^{3} or radii 2 and 1 . Let us denote by T the associated solid torus. The Stokes orientation on the torus $G\left(\mathbb{T}^{2}\right)$ is given by the one on \mathbb{E}^{3} and outward normal vectors based on $\partial T=G\left(\mathbb{T}^{2}\right)$. Using this orientation on $G\left(\mathbb{T}^{2}\right)$ and the orientation on \mathbb{T}^{2} defined in Exercise 4 (hence G preserves orientation iff $G \circ \pi=\widetilde{G}$ does), we check the preserving/reversing of orientation of \widetilde{G} at the point $x=(0,0)$, thus $G(x)=(3,0,0)$ and an associated outward pointing vector is $(1,0,0)$. We get

$$
\operatorname{det}\left((1,0,0), d \widetilde{G}_{x}(1,0), d \widetilde{G}_{x}(0,1)\right)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 3 \pi \\
0 & 2 \pi & 0
\end{array}\right|=-6 \pi^{2}<0
$$

Thus G is orientation reversing. Then, by the pullback (or "change of variable") formula for integration of forms on manifold applied to the embedding \widetilde{G}, we obtain

$$
\int_{\mathbb{T}^{2}} G^{*}\left(x^{3} d x^{1} \wedge d x^{2}\right)=-\int_{G\left(\mathbb{T}^{2}\right)} x^{3} d x^{1} \wedge d x^{2} .
$$

By Stokes's Theorem, we get

$$
\int_{G\left(\mathbb{T}^{2}\right)} x^{3} d x^{1} \wedge d x^{2}=\int_{T} d x^{3} \wedge d x^{1} \wedge d x^{2}=\int_{T} d x^{1} \wedge d x^{2} \wedge d x^{3}=\int_{T} d x_{1} d x_{2} d x_{3}=\operatorname{vol}(T)
$$

where T has volume $(2 \pi \times 2) \times\left(\pi \times 1^{2}\right)=4 \pi^{2}$ (to find the general formula for the volume of a torus, you may use a polar change of variable twice, first from $\left(x_{1}, x_{2}\right)$ to (r, θ), then from $\left(r, x_{3}\right)$ to $\left.(\rho, \omega)\right)$. In the end, we obtain

$$
\int_{\mathbb{T}^{2}} G^{*}\left(x^{3} d x^{1} \wedge d x^{2}\right)=-4 \pi^{2}
$$

[^0]: ${ }^{1}$ The stereographic projections from the north and south poles form a smooth atlas that consists of two charts.

[^1]: ${ }^{2}$ Use the oriented atlas from Problem 2 .
 ${ }^{3}$ Recall that local inverses of the quotient mapping $\pi: \mathbb{E}^{n} \rightarrow \mathbb{T}^{n}$ form a smooth atlas.

