
Differential geometry 2023

Exercises 12

1. (1) Let

ω = dx3 ∈ Ω1(S2) ,

η = x2x3dx1 + x1x3dx2 + x1x2dx3 ∈ Ω1(S2)

and let γ : [−1, 1] → S2,

γ(t) =
(√

1 − t2 cos(t),
√

1 − t2 sin(t), t
)

.

Determine the values of the integrals
∫

γ ω and
∫

γ η.

Solution. By the fundamental theorem for integration on curves, since x3 is a smooth
function on S2, we have∫

γ
ω =

∫
γ

dx3 = x3(γ(1)) − x3(γ(−1)) = 1 − (−1) = 2.

We notice that η = d(x1x2x3), hence we can once again use the fundamental theorem on
the curve γ and obtain∫

γ
η =

∫
γ

d(x1x2x3) = x1x2x3(γ(1)) − x1x2x3(γ(−1)) = 0 − 0 = 0.

2. Give an example of an oriented atlas of Sn.1

Solution. We begin with the atlas {(U+, S+), (U−, S−)} given by two stereographic pro-
jections: U± = Sn − {(0, . . . , 0, ±1)} and

S±(x) = (x1, . . . , xn−1)
1 ∓ xn

Their inverse is given on Rn−1 by

S−1
± (y) =

(
2y, ±(∥y∥2 − 1)

)
1 + ∥y∥2 .

We compute, for y ̸= 0,

S+ ◦ S−1
− (y) = y

∥y∥2 = S− ◦ S−1
+ (y).

Their Jacobian matrix is then given by Jac(S± ◦S∓) : y 7→ 1
∥y∥2 In − 2

∥y∥4 (yiyj)1≤i,j≤n. From
linear algebra we know that, for any rank 1 matrix A, we have

det(In + A) = 1 + tr(A).
1The stereographic projections from the north and south poles form a smooth atlas that consists of

two charts.



Here it gives, for all y ̸= 0,

det(Jacy(S±◦S∓)) = 1
∥y∥2n

det(In− 2
∥y∥2 (yiyj)1≤i,j≤n) = 1

∥y∥2n

(
1− 2

∥y∥2

n∑
i=1

y2
i

)
= − 1

∥y∥2n
.

Thus the atlas {(U±, S±)} is not oriented. However, since it only consists of 2 charts, we
can use the following trick: define a linear map ϕ : En → En by ϕ(y) = (−y1, y2, . . . , yn).
Then the atlas {(U+, S+), (U−, ϕ ◦ S−)} is an oriented atlas. Indeed, for every y ̸= 0, we
have

det(Jac(ϕ ◦ S− ◦ S+)(y)) = det(ϕ) det(Jac(S− ◦ S+)(y)) = − det(Jac(S− ◦ S+)(y)) > 0.

Remark. Instead of computing the determinant of Jacy(S± ◦ S∓) for all y ∈ En − {0}, it
would have been sufficient to do it for only one such point y, for example y = (1, 0, . . . , 0)
(giving a diagonal matrix), and then to use the connectedness of En − {0} to argue that
this (non vanishing anywhere) determinant has constant sign.

3. (1) Prove that the mapping − id : En → En preserves orientation if and only if n is
even.
(2) Prove that the mapping − id : Sn → Sn preserves orientation if and only if n is odd.2

Solution. (1) We use the trivial atlas (En, id). The map id ◦(− id) ◦ id−1 = − id is linear
(hence equal to its Jacobian matrix) and has determinant (−1)n. Thus, it preserves
orientation iff n is even.
(2) We use the oriented atlas {(U+, S+), (U−, ϕ ◦ S−)} from Exercise 2. Since the map
− id is a (global but local would be sufficient) diffeomorphism, we know (continuity of
determinant) that it is sufficient to check that − id is order preserving in only one of these
two charts. We choose (U+, S+) and compute, for all y ∈ En,

S+ ◦ (− id) ◦ S−1
+ (y) = S+

(
− (2y, ∥y∥2 − 1)

1 + ∥y∥2

)
= − y

∥y∥2 .

Hence we have the formula for its Jacobian matrix: Jac(S+ ◦ (− id) ◦ S−1
+ ) = − Jac(y 7→

y
∥y∥2 ). Using the computation of the Jacobian of y 7→ y

∥y∥2 from Exercise 2, we obtain, for
all y ∈ En,

det(Jac(S+ ◦ (− id) ◦ S−1
+ )(y)) = (−1)n det(y′ 7→ y′

∥y′∥2 (y)) = (−1)n+1.

The result follows.

4. Prove that the n-torus Tn = En/Zn is orientable.3

Solution. The standard atlas on Tn is given by

{
(
π(B∞(x,

1
2)), (π|B∞(x, 1

2 ))−1
)

: x ∈ En}

where π : En → Tn is the canonical projection, which is locally invertible. Let x, y ∈
En. We see that, for all z ∈ π−1(π(B(x, 1

2))) ∩ B(y, 1
2), there exists k ∈ Zn such that

(π|B(x, 1
2 ))−1 ◦ ((π|B(y, 1

2 ))−1)−1(z) = z + k. Since the latter composed map is smooth, the
integer k does not depend on z. Hence, the Jacobian of (π|B(x, 1

2 ))−1 ◦ ((π|B(y, 1
2 ))−1)−1 is

constant equal to 1, and the standard atlas on Tn is already oriented.
2Use the oriented atlas from Problem 2 .
3Recall that local inverses of the quotient mapping π : En → Tn form a smooth atlas.



5. The mapping G : T2 → E3 induced by the mapping G̃ : E2 → E3,
G̃(x) =

(
(2 + cos(2πx1)) cos(2πx2), (2 + cos(2πx1)) sin(2πx2), sin(2πx1)

)
,

is a smooth embedding of the 2-torus T2 into E3. Compute∫
T2

G∗(x3dx1 ∧ dx2) .

Solution.
Solution 1.
In this solution, we find an explicit formula for the form G∗(x3dx1 ∧ dx2), and then we
integrate it. We denote by ds1 ∧ ds2 the usual orientation form on T2, obtained by the
charts in Exercise 4. We compute

G∗(x3dx1 ∧ dx2) =x3(G(s))
( 2∑

i=1

∂G̃1

∂si
dsi

)
∧

( 2∑
j=1

∂G̃2

∂sj
dsj

)
= sin(2πs1)

(
− 2π sin(2πs1) cos(2πs2)ds1 − (2 + cos(2πs1))2π sin(2πs2)ds2

)
∧

(
− 2π sin(2πs1) sin(2πs2)ds1 + (2 + cos(2πs1))2π cos(2πs2)ds2

)
= − 4π2 sin(2πs1)2(2 + cos(2πs1)) ds1 ∧ ds2.

Thus we have∫
T2

G∗(x3dx1 ∧ dx2) = −4π2
∫ 1

0

∫ 1

0
sin(2πs1)2(2 + cos(2πs2)) ds1ds2

= −4π2
∫ 1

0
sin(2πs1)2 ds1 ×

∫ 1

0
(2 + cos(2πs2)) ds2

= −4π2 1
2 × 2 = −4π2.

Solution 2 (with Stokes’s theorem).
The torus G(T2) is the usual embedded torus in E3 or radii 2 and 1. Let us denote by
T the associated solid torus. The Stokes orientation on the torus G(T2) is given by the
one on E3 and outward normal vectors based on ∂T = G(T2). Using this orientation
on G(T2) and the orientation on T2 defined in Exercise 4 (hence G preserves orientation
iff G ◦ π = G̃ does), we check the preserving/reversing of orientation of G̃ at the point
x = (0, 0), thus G(x) = (3, 0, 0) and an associated outward pointing vector is (1, 0, 0). We
get

det
(
(1, 0, 0), dG̃x(1, 0), dG̃x(0, 1)

)
=

∣∣∣∣∣∣∣
1 0 0
0 0 3π
0 2π 0

∣∣∣∣∣∣∣ = −6π2 < 0.

Thus G is orientation reversing. Then, by the pullback (or "change of variable") formula
for integration of forms on manifold applied to the embedding G̃, we obtain∫

T2
G∗(x3dx1 ∧ dx2) = −

∫
G(T2)

x3dx1 ∧ dx2.

By Stokes’s Theorem, we get∫
G(T2)

x3dx1 ∧ dx2 =
∫

T
dx3 ∧ dx1 ∧ dx2 =

∫
T

dx1 ∧ dx2 ∧ dx3 =
∫

T
dx1dx2dx3 = vol(T ).

where T has volume (2π × 2) × (π × 12) = 4π2 (to find the general formula for the volume
of a torus, you may use a polar change of variable twice, first from (x1, x2) to (r, θ), then
from (r, x3) to (ρ, ω)). In the end, we obtain∫

T2
G∗(x3dx1 ∧ dx2) = −4π2.


