JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Exercise set 6 Tue Nov 2.2010 14.30-16.00 MaD-355

Topological vector spaces

- **6.1.** Prove that the weak topology $\sigma(E, F)$ is Hausdorff if and only if the duality separates E:n.
- **6.2.** Provet that if E is a locally convex Hausdorff-space, then $\sigma(E, E^*)$ is Hausdorff-topology.
- **6.3.** We call a **locally convex** topology τ of E compatible with the duality (E, F), if

$$E_{\tau}^* = F$$
.

. For example if E is locally convex Hausdorff-space, the weak toplogy $\sigma(E, E^*)$ is compatible with (E, E^*) . Also the original topology of E of course is compatible. Is $\sigma(E, E^*)$ the finest — or maybe the roughest — compatible with (E, E^*) topology?

- **6.4.** Assume that (E, F) a separ dual pair.
- a) Prove that a balanced, convex set A has the same closure in all topologies compatible with the dual pair (E, F).
- b) In fact, it is redundant to assume that A is balanced. (Hint : Banachin sep thm..)
 - c) Does every topology compatible with (E, E^*) have the same barrels? Find a condition which is ewuivalent to the existence of a separ. dual pair (E, F).
- **6.5.** Assume that E topological vector space and E^* its topological dual. Prove that if the dual pair (E, E^*) separates E, then E is a Hausdorff–space.
- **6.6.** Let E and F ne vector spaces, dim $E < \infty$.. Find a condition equivalent to the existence of a separ duality (E, F).
- **6.7.** Assume that E has the topology $\sigma(E, E')$ (algebraic dual!). Prove that if $A \subset E$ is bounded, then a) there exist a finite dimensional subspace $G \subset E$ such, that $A \subset G$
 - b) E: s every vector subspace is closed
 - c) E: s every vector subspace ha a topological supplement.
- **6.8.** Assume that E is an infinitely dimensional locally convex Hausdorff-avaruus. Prove that E^*_{σ} is not normable.
- **6.9.** Assume that E is an infinitely dimensional normed space. Prove that the zero vector of the dual $: 0 \in E^*$ belongs to the closure of $\{x' \mid ||x'|| = 1\}$ in the topology $\sigma(E^*, E)$.