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32. Representations of the group SL2(R)

Example 32.1. Recall

SL2(R) =

{
A =

[
x y
z w

]∣∣∣∣ detA = xw − yz = 1

}
and

sl2(R) =

{
A =

[
a b
c d

]∣∣∣∣TrA = a+ d = 0

}
We have (in the exercises) already found the following irreducible repre-
sentations for SL2(R):

(1) The trivial representation; one-dimensional,
(2) The tautological representation; one-dimensional,
(3) The symmetric powers of the above Symd(R2), where d =

2, 3, . . . .

we will prove that there ore no other irreducible representations. This
is far from obvious. The idea of the proof is to use the fact that a
representation of a Lie group is irreducible (if and ) only if its derivative
is irreducible as a lie algebra representation. We will prove that the
lie algebra sl2(R) has no other irreducible representations except the
derivatives of the group representations listed above. In fact we will
classify the irreducible representations of the corresponding complex
lie algebra sl2(C).

Proposition 32.2. The derivative of an irreducible finite dimensio-
nal representation ρ of a Lie group G, at the neutral element, is an
irreducible representation of the group’s lie algebra deρ : G → gl(V ). 1

CORRECT THE FINNISH TEXT!

1Irreducibility of ρ and irreducibility of its derivative are in fact equivalent, but
we will need only this half of the statement here.
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Todistus. Let ρ : G → GL(V ) be an irreducible representation of the
lie group G. If deρ : G → gl(V ) were reducible, it would have a proper
nonzero sub-representation i.e. a proper nonzero subspace W , invariant
under actions of elements in G.

One can show2 that W is a subrepresentation of ρ also which is
impossible. �

The next task b is to find the derivatives of the group represen-
tations listed above. For brevity, we denote the tautological repre-
sentation of SL2(R) by Sym1(R2) and the trivial representation by

Sym0(R2). The standard basi vectors of R2 are e1 =

[
1
0

]
and e2 =[

0
1

]
, so the basis vectors of the symmetric product Symd(R2) are

ed1, e
d−1
1 e2, e

d−2
1 e22, . . . , e1e

d−1
2 and ed2, and the matrix A ∈ SL2(R) acts

on the basis vector ed−i1 ei2 by[
x y
z w

]
(ed−i1 ei2) = (Ae1)

d−i(Ae2)
i = (xe1 + ze2)

d−i(ye1 + we2)
i.

The derivative of this is found by repeatedly using the formula for the
derivative of a bilinear mapping, and we arrive at the following lemma:

Lemma 32.3. Let V and W be representations of the Lie group G.

(a) Let V ⊗W be their tensor product, i.e. g(v ⊗ w) = gv ⊗ gw for
all g ∈ G, v ∈ V,w ∈ W . Taking the derivative at the neutral element
gives the corresponding lie algebra representation

X(v ⊗ v) = Xv ⊗ w + v ⊗Xv,

where each X is the derivative of the corresponding Lie group repre-
sentation.

(b) Let Symd(V ) be a symmetric power of the representation V . Ta-
king the derivative at the neutral element gives the corresponding lie
algebra representation

X(ea1
1 · ea2

2 . . . ead
d ) =

d∑
k=1

ak e
a1
1 · ea2

2 . . . eak−1
k . . . ead

d ·Xek,

where possible symbols e0j stand for nothing.

2Find a proof!
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Todistus. (a) is a consequence of the bilinear mapping derivation formu-
la. Väite (b) follows from (a) and a simple factor space argument. �

Next we use the lemma to determine the derivative of the second
symmetric power of the tautological representation of GL2(R). The lie

algebra sl2(R) has the generators X =

[
0 1
0 0

]
and Y =

[
0 0
1 0

]
and as

a vector space it has a basis {X, Y,H}, where H = [X, Y ] =

[
1 0
0 −1

]
.

The representation Sym2(R2) of sl2(R) is determined by the action
of these basis vectors on the basis vectors of the representation space
Sym2(R2). (In fact it would be sufficient to consider the action of the
generators X and Y , but it turns out to be easier to take all three.)
The basis vectors of Sym2(R2) are e21, e1 · e2 and e22. Let us calculate
the actions by the previous lemma ??.

X(e21) = 2e1 ·Xe1 = 2e1 · 0 = 0

X(e21) = Xe1 · e2 + e1 ·Xe2 = 0 · e2 + e1 · e1 = e21

X(e22) = 2e2 ·Xe2 = 2e2 · e1 = 2e1 · e2.
Expressing the images of the basis vectors in the basis gives the matrices
of the action of X;

Mat(Sym2(X)) =

0 1 0
0 0 2
0 0 0

 .
Vastaavasti lasketaan

Mat(Sym2(Y )) =

0 0 0
1 0 0
0 2 0

 .
The action of the third basis vector H of the lie algebra sl : 2(R) is the
classical bracket of these actions o X and Y , but instead of calculating
it by matrix algebra we can find out its action directly, which turns
out to be useful in the later generalisation to higher powers; we can in
fact calculate Symd(H) for higher powers right now: The effect of H
on any basis vector of the symmetric power is

H(ed−i1 ei2) = (d− i)ed−i−1
1 ei2He1 + ied−i1 ei−1

2 He2

= (d− i)ed−i−1
1 ei2e1 − ied−i1 ei−1

2 e2

= (d− i)ed−i1 ei2 − ied−i1 ei2

= (d− 2i) ed−i1 ei2.
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In particular, for d = 2 we have

Mat(Sym2(H)) =

2 0 0
0 0 0
0 0 −2

 ,
a diagonal matrix. From the calculation above it is obvious thatMat(Symd(H))
will be diagonal in the above basis for any d. Also, it is clear that its
diagonal elements form a finite arithmetic sequence with difference 2,
like this: d11 = d, d− 2, d− 4, . . . , ddd.

Lemma 32.4. The basis element H =

[
1 0
0 −1

]
of sl2(R) acts diago-

nally not only in the in the tautological representation and its symmet-
ric powers but in all other irreducible3 representations as well.

Todistus. To be added later, ??? �

Remark 32.5. It is a fact that all so called semi-simple lie algebras G
(like sln(R)) have the following property: If any element X ∈ G acts
diagonally in the tautological representation, then it will act diagonally
in all other representations as well.

To prove that we have found all irreducible representations of SL2(R),
we now only have to prove that there are no other irreducible lie al-
gebra representations of sl2(R) except the symmetric powers studied
above.

By algebraic completeness of the field C it is easier to study complex
than real lie algebras. therefore we find it useful to complexify SL2(R)
by the following construction:

Remark 32.6. Let V be a representation of the lie algebra sl2(R). Then
”the same vector space with complex coefficients”, V ⊗ C is a repre-
sentation of the corresponding complex lie algebra sl2(R) ⊗ C. (Take
the same matrices!).

If W is a sub-representation of a representation V of the lie algebra
sl2(R)4, then W ⊗C is a complex sub-representation of the representa-
tion V ⊗C of the complex lie algebra sl2(R)⊗C. In particular, if V ⊗C
is irreducible, then also the original representation V is irreducible.5

3?
4This works for any lie algebra, in my opinion.
5The converse is false: We have constructed an irreducible representation, whose

complexification was reducible.
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So for proving that we have found all irreducible representations of
sl2(R), it is enough to prove that their complexifications are the only
irreducible representations of the complex lie algebra sl2(R)⊗C 6. This
is the next theorem.

Theorem 32.7. The only finite dimensional irreducible representa-
tions of the lie algebra sl2(C) are the symmetric powers Symd(C2) of
the tautological representation.

Todistus. The matrices of the symmetric powers are the same for cor-
responding real and complex representations, i.e. the ones studied abo-
ve.

Let us consider any finite dimensional (irr?) representation V of the
lie algebra sl2(C). In the tautological representation, the lie algebra

sl2(C) is generated, even spanned by the matrices X =

[
0 1
0 0

]
, Y =[

0 0
1 0

]
and H =

[
1 0
0 −1

]
. Since we expect H to act diagonally, let us

consider it first. By the 7Lemma??, the action is diagonal , so V splits
into a finite direct sum V = ⊕α∈CVα, where H acts as multiplication
by α in each subspace Hα kertomisena luvulla α. This is expressed by
calling Vα the eigenspace of H with eigenvalue α.

Next find the action of X in each Vα. We will prove that Xv ∈ Vα+2

for v ∈ Vα. Verifying this relies on a clever idea: Let v ∈ Vα, soHv = αv.

HXv = [H,X]v +XHv,

but in the group GL2(R) we have

[H,X] =

[
1 0
0 −1

] [
0 1
0 0

]
−
[
0 1
0 0

] [
1 0
0 −1

]
= 2

[
0 1
0 0

]
= 2X,

so [H,X] = 2X also holds for the representation matrices, in particular

HXv = [H,X]v +XHv = 2Xv +Xαv = (2 + α)Xv.

Therefore Xv ∈ Vα+2.

Similarly Y : Vα → Vα−2. These observations have significant con-
sequences:

6which is the same as sl2(C)
7UNPROVED!
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Let α0 ∈ C be an eigenvalue of H, so Vα0 6= {0}. Then the direct
sum

⊕m∈ZVα0+2m ⊂ V

is a sub-representation of V , since both generators of the lie algebra
sl2(R), X and Y map it onto itself. But by assumption the representa-
tion is irreducible, and Vα0 6= {0}. therefore

⊕m∈ZVα0+2m = V.

since V was assumed finite dimensional, every eigenspace Vα0+2m of H
is finite dimensional and only finite many are non zero. This means

V = Vλ ⊕ Vλ+2 ⊕ · · · ⊕ Vλ+2n.

since the representation matrices are invertible, all Vλ, Vλ+2, . . . , Vλ+2n =
Vµ are n.8

Let v ∈ Vµ. Then 〈v, Y v, Y v, . . . , Y nv〉 = V , since also this is an
invariant subspace of the invariant representation, since both Y and H
map it onto itself, and also X does the same, since

X(Y pv) = p(µ− p+ 1)(Y p−1v),

which can be proved by induction:

Initial case p=0: Observe that XY pv = XY 0v = Xv = 0, since we
assumed v ∈ Vµ.So the laim is true for p = 0.

Induction step: Assume

XY p−1v = (p− 1)(µ− (p− 2))Y p−2v.

Use Y : Vα → Vα−2 to calculate:

XY pv = XY Y p−1v

= [X, Y ]Y p−1v + (XY − [X, Y ])Y p−1v

= [X, Y ]Y p−1v + (Y X)Y p−1v

= [X, Y ]Y p−1v + Y XY p−1v

= HY p−1v + Y (p− 1)(µ− (p− 2))Y p−2v

= (µ− 2(p− 1))Y p−1v + (p− 1)(µ− (p− 2))Y p−1v

=
(
(µ− 2(p− 1)) + (p− 1)(µ− (p− 2))

)
Y p−1v

=
(
µp− p2 + p+ 0

)
Y p−1v

= p(µ− p+ 1)Y p−1v,

8By the same argument Vλ+2m 6= {0}, where m ∈ Z. Contradiction! What is
wrong??
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which is what is needed for the induction step.

The result 〈v, Y v, Y v, . . . , Y nv〉 = V implies that the spaces Vα are
one dimensional.

By choosing p = (1
2
(µ− λ) + 1) we get Y p−1v ∈ Vλ, so Y pv = 0 and

0 = X(0) = X(Y pv) = p(µ− p+ 1)(Y p−1v),

from which it follows that (µ − p + 1) = 0 same as 0 = (µ − 1
2
(µ −

λ) − 1 + 1) = 1
2
(µ + λ), toisin sanoen λ = −µ, so V is a sum of one

dimensional eigenspaces of H:

V = V−µ ⊕ V−µ+2 ⊕ · · · ⊕ Vµ−2 ⊕ Vµ.
In particular, all eigenvalues are even or all odd depending of whether
0 is an eigenvalue or not.

What we have found out, proves that the representation appears in
the original list. This is what we wanted to prove.

Terminology remark: The eigenvalues H are called the weights of
their eigenvectors. The number µ ∈ Nis the largest weight of the repre-
sentation in question. 9 �

9What is its connection to the dimension of the corresponding symmetric power?


