GROUPS AND THEIR REPRESENTATIONS - SECOND
PILE

KAREN E. SMITH

6. GROUP ACTIONS

Let (G, ) be a group, and X any set (finite or infinite).

Definition 6.1. An action of G on X is a map
GxX—-X

(g,2) —g-x
which satisfies

(1) g1+ (g2-x) = (g1 % go) - « for all g1,¢g2 € G and all z € X.
(2) eg-x=xforall v € X.

Intuitively, an action of G on X is a way to assign to each g in
G some transformation of X, compatibly with the group structure of
G. Formally, the action of a group G on a set X is equivalent to a
homomorphism of groups

p:G— Aut X,
defined by sending each ¢ in G to the set map
pg: X — X
T g- .
This map p, really is a bijection (that is, an element of Aut X') because
its inverse is explicitly seen to be p,-1. The fact that p is a group
homomorphism is essentially a restatement of condition (1): unraveling
the meaning of p(g1 - g2) = p(g1) o p(g2) we arrive at g; - (g2 - &) =
(g1 * g2) - « for all z € X. Sometimes this group homomorphism is
called the associated representation of the action or the permutation
representation of the action. Despite the fancy name, it is really just a

different packaging of the same idea: the action of a group GG on a set

X is tautologically equivalent to a homomorphism G — Aut X.
1
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The most obvious example of a group action is as follows: Let X
be any set, and take G = Aut X. By definition, G acts on X via
(¢, z) = ¢(x). The homorphism p is the identity map. To be even more
specific, take X = {1,2,...,n}. Then S, acts (tautologically) on X by
permutations.

Another easy example is the group G = GL,(R) of invertible n x n
matrices acting on the space R™ of column matrices by left multiplica-
tion. This is equivalent to giving a group homomorphism

G — Aut(R").

Of course, the image of this representation is the group GL(R") of all
(invertible) linear transformations of R", so we in fact have a group
homomorphism

G — GL(R").

As you know, this is the isomorphism obtained by identifying linear
transformations with matrices via the choice of the standard basis of
unit column vectors in R”.

In nature, groups act naturally on sets which often have some addi-
tional structure—for example, a vector space structure or a manifold
structure. Often, we are mostly interested in actions that respect this
additional structure. For example, in the example above, the group
G = GL,(R) acts on R™ in way that preserves the vector space struc-
ture of R™. That is, each element of G gives rise to a bijective linear
transformation of R™, which is of course a very special kind of bijective
self-map. We say that GL,,(R™) acts linearly R™.

Definition 6.2. A [linear representation of a group G on a vector space
V' is an action of G on the underlying set V' which respects the vector
space structure. More precisely, the corresponding group homomorp-
hism

G— AutV

has image in the subgroup GL(V') of linear transformations of V.

More succiently put, a linear representation of a group G on a vec-
tor space V' is a homomorphism G — GL(V). When the field is not
implicitly understood, we qualify by its name: For example, a complex
representation of a group G is a group homomorphism G — GL(V)
where V' is a complex vector space.
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Example 6.3. Let us consider some different actions of the dihedral
group D, of the square. Perhaps the simplest is the action of D, on the
set of vertices of the square. If we label the vertices {1,2,3,4}, say, in
clockwise order from the top right, this gives an action of D, on the set
{1,2,3,4}. The corresponding homomorphism to Aut {1,2,3,4} gives
a map

p:D4HS4

sending for example r; to the 4-cycle (1234) and the reflection H to
the permutation (12)(34). The group homomorphism p is injective—a
non-trivial symmetry of the square cannot fix all vertices. This is an
example of a faithful action:

Definition 6.4. A action of a group G on a set X is faithful if each
non-identity element of G gives rise to a non-trivial transformation
of X. Equivalently, an action is faithful if the corresponding group
homomorphism G — Aut X is injective.

Another easy example is the tautological action of D4 on the Eucli-
dean plane, inspired by the very definition of D4 as the rigid motions of
the plane which preserve the square. This action is also faithful. These
two different action give two different ways of viewing D, as a trans-
formation group—the first identifies D4 with a subgroup of Sy, and the
second identifies Dy with a subgroup of Aut (R?).

Let us consider this tautological linear representation
p: Dy — Aut (R?)

in detail. Fix coordinates so that the square is centered at the origin.
Then p sends the rotation r; to the corresponding rotation of R?, and
so on. Because both rotations and reflections are linear transformations
of R?, the image of p actually lies in GL(R?). Identifying elements of
R? with column vectors so that linear transformations are given by left
multiplication by 2 x 2 matrices, the elements rq, o, r3 respectively are
sent to the matrices

(V) (5 ) e (50)

respectively, whereas the reflections H,V, D and A are sent to

(0 5) () () me (50

O =
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respectively. Put differently, we can identify the symmetry group of the
square with the matrix group consisting of these seven 2 x 2 matrices
and the identity matrix.

The action of F* on a vector space. Let V' be a vector space
over a field F'. The multiplicative group F™* of the field acts on the set
V' by scalar multiplication. In fact, as an exercise, show that a set V'
is an F-vector space if and only if V' is an abelian group with an F*
action.

The actions of a group on itself by left multiplication. Let
(G, *) be any group, and write X for a second copy of the underlying
set of G. We have an action

GxX—-X

(9,7) = g*z
of G on itself (that is, X = G) by left multiplication.

The action of G on itself is faithful. Indeed, if g € G acts trivially on
every x € X, then gr = x for all x+ € X = G. But this implies that
g = eq, so the corresponding group homomorphism

p: G — AutG
g— |G — G; ©+— gz
is injective.
Thus, any group G is isomorphic to its image under this representa-
tion p. That is, we have proved

Theorem 6.5 (Cayley’s Theorem). Every group (G,x) is a transfor-
mation group. Specifically, G is isomorphic to a subgroup of Aut G.

As a corollary, this says that every group of (finite) order n is iso-
morphic to a subgroup of .S,,. Thus abstract groups always have conc-
rete realizations as permutation groups.

The action of group on itself by conjugation. Let G be any
group, and let X denote the underlying set of G. We have an action of
G on itself:

GxX—-X
1

(9,2) = gxazxg .
This is quite different from the previous action of G' on itself. For
example, it is not usually faithful! Indeed, an element ¢ € G fixes
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all x € X if and only if gx 2 g~ = z for all x € X. Equivalently, g
acts trivially on X if and only if ¢ commutes with all x € G, that is, if
and only if ¢ in in the center of G.

Exercise 6.6. Show the the kernel of the conjugation representation
p:G— AutG
g [G— G; v gzg™']
is the center of G.

In this example (and the previous), the set X on which G acts has
more structure than a mere set: it is of course a group! Do these actions
preserve the group structure of X? That is, is the induced map p(g) :
G — G actually a map of groups, ie, a group homomorphism?

For the action of G on itself by left multiplication, the group structure
is not preserved. Indeed, the identity element is not even sent to the
identity element. However, the conjugation action does preserve the
group structure:

G—G
x> grg”
is easily checked to be a group homomorphism. Thus this is a special
type of representation of GG. The image of the corresponding map
p:G— AutG

actually lands in the subgroup of group automorphisms, or self-isomorphisms
of G, denoted Autg,,G. For this reason, we can expect this represen-
tation to play an especially important role in the theory of groups.

Exercise 6.7. Suppose a group G acts on a set X. The stabilizer of a
point x € X is the set Stab(z) = {g € Glg - x = z}.

(1) Show that Stab(z) is a subgroup of G.

(2) Compute the stabilizer in D, of a vertex of the square, under
the tautological action.

(3) Characterize a faithful action in terms of stabilizers.

Exercise 6.8. Suppose a group G acts on a set X. The orbit of a point
x € X is the set O(z) = {y € G | there exists g € G such that y =

g-x}.

(1) Compute the orbit of a vertex of the square under the tautolo-
gical action of Djy.
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(2) Compute the orbit of a point z € G under the action of G on
itself by left multiplication.

(3) Compute the orbit of a point z € C under the action of the
circle group U(1) by multiplication.

7. LINEAR REPRESENTATIONS

We repeat the fundamental concept: a linear representation of G on
a vector space V is a way of assigning a linear transformation of V
to each element of GG, compatible with the group structure of G. More
formally, We

Definition 7.1. A linear representation of a group G on a vector space
V' is a group homomorphism

G — GL(V).

We will usually omit the word “linear”and just speak of a repre-
sentation of a group on a vector space, unless there is a chance of
confusion. There are many ways to refer to this fundamental idea; in
addition to the ways already described, we sometimes also say “V is a
G-representation”or V' is a G-module.

We say that a representation has dimension d if the vector space
dimension of V' is d. (Some books call this the degree of d). The repre-
sentation is faithful if this group map is injective.

For example, The tautological representation of D, on R? in-
duced by the action of D,, on the plane by linear transformations is
a two-dimensional representation of D,,. We explicitly described the
map D, — GL(R?) in the previous lecture for n = 4. The tautological
representation is faithful since every non-identity element of Dy is some
non-trivial transformation of the plane.

Every group admits a trivial representation on every vector space.
The trivial representation of G on V' is the group homomorphism G —
GL(V) sending every element of G to the identity transformation. That
is, the elements of G all act on V' trivially—by doing nothing.

Suppose a group G acts on a set X. There is an associated (linear)
permutation representation defined over any field. Consider the F-
vector space on basis elements e, indexed by the elements x of X. Then
G acts by permuting the basis elements via its action on X. That is
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g - ez = €4, For example, S3 has a three-dimensional representation
defined by

Ss — GL(R?)
sending, for example,
010 001 00 1
(12)— (1 0 O); (13)— [0 1 Of; (123)— (1 O O
001 1 00 010

An important type of permutation representation is the Regular
Representation induced by the action of a group G on itself by left
multiplication. The regular representation over the field F, for example
is the group homomorphism

G — GL(FI
g [T - FlGl — F'Gl; ey, — egh} )

For example, we have a representation of D, on R® induced this way.
The regular representation is defined even when G is infinite, but we
won’t usually use it except for finite groups. The regular representation
is faithful, since every mnon-identity element of G moves each basis
element to some other basis element: g - e, = ey, for all g and h in G.
In particular, the orbit of any basis vector is the full set of basis vectors
{eg}gsec. That is, G acts transitively on our chosen basis.

A subrepresentation of a representation of G on a vector space V'
is a subvector space which is also a G-representation under the same
action of GG. Put differently, a subspace W of V' is a subrepresentation
if W is invariant under G—that is, if g - w € W for all ¢ € G and all
w € W. In terms of the group homomorphism

p:G— GL(V),
W is a subrepresentation if and only if p factors through the subgroup
Gw ={¢ € GL(V)| o(W) C W}
of GL(V') of linear transformations stabilizing W.

For example, every subspace is a subrepresentation of the trivial
representation on any vector space, since the trivial G action obviously
takes every subspace back to itself. At the other extreme, the tautolo-
gical representation of D, on R? has no proper non-zero subrepresen-
tations: there is no line taken back to itself under every symmetry of
the square, that is, there is no line left invariant by Djy.
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The permutation representation of D, on R? induced by the ac-
tion of Dy on a set of four basis elements {e,eq,e3,e4} indexed by
the vertices of a square does have a proper non-trivial subrepresenta-
tion. For example, consider the one dimensional subspace spanned by
e1 + ey +e3+e4. When Dy acts on this, it simply permutes the indices
of the e;, and there sum remains unchanged. Thus for all g € G, we ha-
ve g (AN A) = (A A A) for all vectors in this one-dimensional
subspace of R*. That is, D, acts trivially on this one-dimensional
subrepresentation. In particular, trivial representations can be non-
trivial subrepresentations of a non-trivial representation of G.

Another subrepresentation of the permutation representation of Dy
on R* is the subspace W C R* of vectors whose coordinates sum to
0. Clearly, when D, acts by permuting the coordinates, it leaves their
sum unchanged. For example H sends (1,2,3,—6) to (—6,3,2,1) if
the vertices are labelled counterclockwise from the upper right. The
space W is a three dimensional subrepresentation of the permutation
representation of D, on R*. Note that is also non-trivial; the elements
of G do move around the vectors in the space W.

Direct Sums of Representations.

Suppose a group G acts on the vector spaces V and W (over the
same field, F). We can define an action of G ”coordinate-wise” on their
direct sum as follows:

g(v,w):(gv,gw)EVEBW

Note that if V' has basis vy,...,v, and W has basis wy,...w,,, then
the direct sum has basis vy, ..., vy, w1, ... w, (where v; is interpreted
to mean (v;,0), etc). With this choice of basis for the direct sum, the
matrix of every g acting on V & W will be the block diagonal matrix

( pl(()g) 02(()9) )

obtained from the n X n matrix p;(g) describing the action of g on V
in given basis, and the m x m matrix ps(g) describing the action of g
on W in its given basis.

For example, we have a three-dimensional real representation of Dy
defined as follows:

g- (m,y,z) = (g ’ (JZ,y),Z),
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where g(x,y) denotes the image of (x,y) under the tautological action
of Dy on R2. In the standard basis, for example, the element r; € Dy
acts by the matrix

0 -1 0

1 0 0

0 0 1
This representation is the direct sum of the tautological and the one-
dimensional trivial representations of Djy.

Of course, we also have a representation of D, on R?® where D, acts
trivially in the z-direction and by the tautological action in the yz
plane direction: ¢ - (z,y,2) = (2,9 - (y,2)). This is also a direct sum
of the trivial and tautological representation. In fact, just thinking
about these actions there is a very strong sense in which they are “the
same.” We are led to the following definition:

Definition 7.2. Two linear representations V and W of G (over the sa-
me field) are isomorphic if there is a vector space isomorphism between
them that preserves the G-action—that is, if there exists an isomorp-
hism ¢ : V. — W such that g - ¢(v) = ¢(g-v) for all v € V and all
g€q.

The idea that ¢ preserves the G action is also expressed by the
following commutative diagram, which mush hold for all g € G:

For example, the two representation of D, discussed above are iso-
morphic under the isomorphism which switches the z and z coordina-
tes.

There are many different words for the notion of a homomorphism
of representations of a group G, probably because representation theo-
ry is used in so many different places in mathematics and science. You
may here the terms “G-linear mapping”, “G-module mapping,”or even
just “a map of representations of G-—they all mean the same thing.
The adjective “linear”is often suppressed: if they representations are
linear, so also are the homorphisms between them assumed to be [i-
near homomorphisms. But, depending on the context, it may also be
interesting to study group actions on, say, a topological space, in which
case the corresponding representations should be continuous, and the
maps between them as well should be continuous.
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Of course, we can also define a notion of mapping or homomorphism
for G-representations:

Definition 7.3. A homomorphism of G-representations is a map ¢ :
V' — W which preserves both the vector space structure and the G-
action. That is, it is a linear map ¢ of vector spaces (over the same
field) satisfying g - ¢(v) = ¢(g - v) for all v € V and all g € G.

An isomorphism of G-representations is simply a bijective homo-
morphism.
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THE FOLLOWING LECTURE IS IN FINNISH. THE ENGLISH VERSION -
covering this again - CONTINUES ON PAGE 13.

Definition 7.4. Lineaaristen esitysten homomorfismi on lineaariku-
vaus, joka sdilyttdd G:n toiminnan. Tarkemmin sanoen: Olkoot V' ja
W saman ryhmén F-lineaarisia esityksid. Lineaarikuvaus ¢ : V. — W
on niiden esitysten homomorfismi, jos p(g-v) = g-p(v) Vv € V, Vg € G,
toisin sanoen ¢ : V' — W on homomorfismi, jos diagramma

Vv £
lyg lg
| VAN

kommautos.

Example 7.5. Esimerkkejé:

On helppo tarkastaa, ettid isomorfismi on sama asia kuin sellainen
homomorfismi, jolle myds kddnteinen lineaarikuvaus ¢=! : W — V on
esitysten homomorfismi.

Aliesitys antaa homomorfismin: Olkoot W ja V esityksia kuten yll& ja
W c V. Silloin inkluusioikuvaus ¢ : W — V : x + z on injekstiivinen
lineaarikuvaus ja samalla G-esityshomomorfismi, onhan ¢(g) - w) =

g-o(w).

Periaatteessa jokainen injektiivinen esityshomomorfinsmi on tallainen,
silla injektiivinen lineaarikuvaus on vektoriavaruuksien isomorfiaa vail-
le sama asia kuin inkluusiokuvaus.

Vastaavasti saadaan esimerkki surjektiivisesta esityshomomorfismis-
ta tarkastelemalla vektoriavaruuksien suoran summan projektiokuvaus-
ta toiselle komponentille eli lineaarikuvausta ¢ =7 : W aV — V :
(x,y) — y. Selvisti m on surjektio ja 7(g - w,g-v) = g - v ja myos
g-m(w,v) =g-v.

Esitysavaruuksien W ja V' vilinen lineaarikuvaus ei tietenkéin yleensé
ole esityshomomorfismi. Kahden eri esityksen vililld on sentddn aina
olemassa homomorfismi, nimittdin nollakuvaus, mutta niiden valilla ei
tarvitse olla olemassa injektiivistd eikéd surjektiivista homomorfismia,
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vaikka vektoriavasruuksien vililla aina on joko injektiivinen tai surjek-
tiivinen lineaarikuvaus ulotteisuuksista riippuen. Esimerkkiné tarkas-
tellaan kahta dihedraalisen ryhmén D, esitysté, joista ensimmaéinen ol-
koon tautologinen toiminta, ts. W = R%ja D, toimii kuten méiritelmissiin.
VIITE Olkoon toisena Dy:n esityksenéd permutaatioesitys avaruudessa
V = R* eli nelién nurkilla indeksoitujen kantavektorien permutoin-
ti. VIITE Kysytéddn, onko ollenkaan olemassa injektiivistd esitysho-
momorfismia néiden valilla? Voisi kokeilla umpimahkaén esimerkiksi
kuvaamalla ¢ : (z,y) — (x,y,0,0). Tdméa ei ainakaan ole esitysho-
momorfismi, koska f, o ¢ ei ole sama kuin ¢ o f,, silli! esimerkiksi
¢Of:r($7 y) = ¢<£L‘, _y) = (.ﬁL’, -y, 07 0)7 mutta fxo¢ : (xay) = (05 07 y,l')
Tassé siis lineaarikuvaus, joka ei sdilyté esitystd. Onko siis ollenkaan
olemassa lineaarista injektiota 7 : R? — R*, joka esitykset? Vastaus
saadaan myohemmin.

Huomautus ja mé#iritelmé: Tarkastellaan ryhmén GL,(R) tau-
tologista toimintaa avaruudessa R" eli, kun kanta on valittu, n x n-
matriiseina. Aliryhmé SL,(R) = {M € GL,(R) | det M = 1} toi-
mii samalla tavalla. Tamé ei tietenkéén voi olla aliesitys.Esitetédvana
on kokonaan eri ryhma! Téllaiselle tilanteelle annetaan eri nimi. Ylei-
sesti kysymys on siitd, ettd jokainen G esitys méérittelee aliryhmén
H C G esityksen, joka on nimeltdén alkuperiisen esityksen rajoittuma
(NAINKO, VIITE) aliryvhméén H. Tété ideaa voi vield yleistiiz: Jokai-
seen ryhmahomomorfismiin f : H — G ja esitykseen p : G — GL(F)
liittyy esitys f*(p) = po f: H — GL(FF), joka on nimeltdén esityksen
p pull-back?.

Kiintedéan vektoriavaruuteen V' ja ryhmahomomorfismiin ¥ : H — G
liittyy néin pullback-funktori, joka liittda jokaiseen ryhmén G lineaari-
seen esitykseen p : G — GL(V):ssé ryhmén H esityksen f*(p) : H —
GL(V). Siis:

f*:{G:n esitykset V ssi}— {H:mn esitykset V ssi}:p+— po f.
On syyté tarkastaa, ettd po f todella on ryhmén H esitys. Sitéd varten
on todettava kaksi ominaisuutta: (VIITE)

(1) (&2 PL €yg Iﬁ>: Idv
(2) ja (po f)(h1-hs) = p(f(h1-hs)) = p(f(h))op(f(he)) =
= (po f)(h)o(po f)(ha).

L#. on heijastus (a,b) — (a, —b).
2Hyv#i suomalaista nimed ei taida olla keksitty vieli.
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ENGLISH COVERING THE SAME

An isomorphism of G-representations is simply a bijective homomor-
phism. On the other hand, it might be better to think of an isomor-
phism as a homomorphism ¢ : V' — W which has an inverse, because
this way of thinking is valid in any category.®> But for representations,
you can check that if ¢ : V' — W is a bijective linear transformation,
then the inverse map ¢~ : W — V is also a linear map, and that if ¢
preserves the group action, so does ¢~ 1: g-¢(v) = ¢(g-v) forallv € V
if and only if 7! - ¢~ H(w) = ¢ (¢! - w) for all w € W.

The inclusion of any subrepresentation W of a representation V' of
a group G provides an example of an injective homomorphism of repre-
sentations: ¢ : W < V obviously satisfies g¢(w) = ¢(gw) because, by
definition of subrepresentation, the action of G is the same on elements
of W whether we think of them in W or V.

The projection 7 : VW — V from a direct sum of G-representations
onto either factor is an example of a surjective homomorphism. Again,
that this map is G-linear is easy to verify directly from the definitions

(do it!).

Although it is far from obvious, these examples—isomorphism, in-
clusion, and projection—form the only homomorphisms between rep-
resentations of a fixed group G in a certain sense. Perhaps this is not
surprising: a similar fact is true for vector spaces. If ¢ : V. — W is
a linear map of vector spaces, then because V' = im ¢ @ ker ¢, every
mapping of vector spaces essentially factors as projection onto the im-
age followed by inclusion of the image into the target. On the other
hand, nothing like this is remotely true for most sorts of maps between
mathematical objects: there are all sorts of group homomorphisms,
such as Z — Z,, which are not of this sort.

7.1. A non-Example. Let us consider two representations of Dy: the
tautalogical representation 7' (which is the vector space R?, with the
tautological D, action) and the vertex permutation representation V'
(namely, the vector space R* with basis elements indexed by the vertices
of a square, with the action of D4 given by permuting the vertices
according to the action of D, on the vertices.) Of course, there are

3For example, an isomorphism in the category of topological spaces—or
homeomorphism— is not the same as a bijective continuous map: we also require
the inverse to be continuous.
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many linear mappings from R? to R*. Do any of these preserve the
group action? That is, are any of them homomorphism of the Dy-
representations T — V. Of course, stupidly, we could take the zero-
map T — V mapping every element of R? to R*. This preserves the
group action, but it is not interesting. Can we find any injective maps?

Let us consider whether the inclusion
i:R*? - R*
sending
(2, y) = (2,9,0,0)
is Dy-linear. For example, does this preserve the action of the element
ry in Dy. We have that ry - (z,y) = (—y,x) for the representation
T, which yields (—y,z,0,0) under the inclusion map i, where as r; -
(,y,0,0) = (0,z,y,0) for the representation V. This means that 4

does not respect the group structure— the linear map ¢ is not a map
of representations of Dj.

ENGLISH CONTINUING WITH NEW

7.2. Searching for sub-representations. Can there be any injective
map of representations 7" — V7 If so, then the image of T would
be a two-dimensional subspace of the four-dimensional space V' where
the the vertex permutation representation restricts to the tautological
representation. Is this possible? Essentially, we are asking whether
there is any two-dimensional square in four space on which the vertex
permutation action of D, (given by permuting the coordinates as Dy
permutes the vertices of a square) agrees with the usual symmetries
of that square. Clearly, this can happen only if there is a set of four
points in R* spanning a two-dimensional subspace invariant under this
action.

To understand the permutation action of Dy on R* it is helpful to
identify D, with the subgroup of S, generated by the 4-cycle (1234) (the
rotation r1) and the transposition (13) (the reflection A). Formally, we
are embedding D, in S, by sending each symmetry to the corresponding
permutation of the vertices. The 4-cycle acts by cycling the coordinates
(one spot to the right, say), and the transposition acts by switching
the first and third coordinates. Since D, is generated by these two
elements, a subspace is invariant under Dy if and only if it is invariant
under these two elements (Prove it!).
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To see whether the permutation representation has any subrepre-
sentation isomorphic to T', then, we are looking for four points in R*
spanning a two-dimensional subspace, and invariant under these two
transformations, which can serve as the vertices of a square. Can one of
these points be, say (1,0,0,0)? Note that when r; acts on this vector in
V', it moves it to (0,1,0,0). When it acts again—in other words when
ro acts on (1,0,0,0)— we get (0,0,1,0). Again, and we get (0,0,0, 1),
and then we cycle back to (1,0,0,0). Thus, any vector subspace of
V' containing (1,0,0,0) and invariant under D,* must contain each of
the four standard basis elements—that is, it must be V, since these
span V. Indeed, it is easy to check that this sort of thing happens for
“most vectors:” typically, the orbit of a randomly chosen vector in V
will consisting of (eight) vectors which span V.

To find interesting subrepresentations of V', we can look for non-zero
vectors whose orbits span proper subspaces of V. One way is to find
vectors with small orbits. For example, the vector (1,1,1,1) is fixed
by D,. It spans a one dimensional sub-representation of V' where D,
acts trivially, as we have already noted.

Another vector with a small orbit is w = (—1,1,—1,1). Note that
r1 acts on wy to produce (1,—1,1, —1), which is —w. Also, the reflec-
tion A acts by permuting the first and third coordinates, which means
it fixes w. Since every element in Dy is an iterated composition of
the generators r; and A, we see that w spans a one-dimensional sub-
representation of V. This is not a trivial representation—some element
acts by multiplication by —1.

How does this help us find two dimensional sub-representations of
V' isomorphic to T', or show non any exist? Well, clearly if one does
exist, it can not contain (1, 1,1, 1), since is a faithful representation and
no subspaces are pointwise fixed. Nor could it contain (1,—1,1, —1)
since r; acts there by multiplication by —1 but 7, is never scalar
multiplication on 7. Thus, we need to look for a vector in V' whose
orbit does not contain either of these two special vectors (nor anything
in their span).

Consider the vector (1,1, —1,—1). Its orbit produces the four points

(1,1,-1,-1), (=1,1,1,-1), (=1,-1,1,1), (1,-1,—1,1),

40r even the smaller group of rotations Ry.
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and so it does generate a two-dimensional sub-representation 7" of V'
(which has basis, for example, (1,1, —1,—1),(—1,1,1,—1).) It is easy
to check that the vertex permutation action of Dy on T does restrict
to the tautological representation of D4 on this two-plane. Indeed, the
four points described above serve nicely as the vertices of a square on
which D, acts by the usual symmetry actions. So V' does contain a
sub-representation isomorphic to 7.

Finally, it is not hard to check that V' decomposes as the direct sum
of the three sub-representations:

V= [R((1,1,-1,-1),(-1,1,1,-1))| PR, 1,1, 1) PR(1, ~1,1, -1),

where the first summand is isomorphic to the tautological representa-
tion of D, and the second summand is a trivial representation of Dy,
but the third is not isomorphic to either of these. Furthermore, none of
these three sub-representations can be further decomposed. Although
it is not obvious, we will soon prove that every representation of a finite
group on a complex (say) vector space decomposes as a direct sum of
wrreducible representations.

We isolate for future reference a simple idea used in the previous
example:

Lemma 7.6. Let V be a linear representation of a group G. Let W be
a sub-vector space of V', spanned by the elements wy, ..., w;. Then W
s a subrepresentation if and only if g -w; € W for alli=1,...,t and
each g in one fixed generating set for G.

Proof. We leave this as an easy exercise, but point out the only slightly
more subtle point: If an element g leaves W invariant, then also ¢!
does. Indeed, the linear transformation g : V' — V is invertible, which
means that restricted to W, it is also invertible. So ¢g=! defines its
inverse, also on W. O

7.3. The kernel, image and cokernel of a map of representa-
tions. The category of G-representations and their maps is very nice
from an algebraic point of view: we can form kernel representations,
image representations, quotient representations and cokernel represen-
tations.
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Proposition 7.7. Let ¢ : V — W be a homomorphism of linear rep-
resentations of a group G. Then the kernel is a subrepresentation of V
and the image is a subrepresentation of W.

Proof. Since the kernel and image of ¢ are subvector spaces, we only
have to check that each is invariant under the G-action. Suppose that
v € V is in the kernel of V', and g € G. We need to check that g - v
is in the kernel of ¢. But ¢(g - v) = g¢o(v) because ¢ is G-linear, and
go(v) = ¢g-0 = 0 since v is in the kernel of ¢ and ¢ acts by linear
transformations (so preserves the zero).

The proof for the image is also straightforward: g - ¢(v) = ¢(g-v) is
in the image of ¢. U

Whenever there an inclusion of linear G-representations W C V,
the quotient representation /W can be defined. Indeed, we define
V/W as the quotient vector space with the G-action defined by

g-T=q-0
where v is any representative of the class. This does not depend on the
choice of representative, since if ¥ = ', then v — v' € W, and whence

g-v—g-v' € g-W C W, which of course means g-v and g-v’ represent
the same class of V/WW.

In particular, the cokernel V/im¢ of any homomorphism ¢ : V- — W
of representations of G is also a representation of G.
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A LECTURE IN FINNISH - THE SAME REAPPEARS BELOW IN
ENGLIsH, P 21

8. REDUSOITUVUUS JA REDUSOITUMATTOMUUS

Seuraavassa ryhmén esitykselld tarkoitetaan, kun ei toisin sanota,
F-lineaarista esitysté jossain F-vektoriavaruudessa. Téasséa F on kunta,
usein R tai C.

Definition 8.1. Esitys V on redusoitumaton, jos silld ei ole yhtdén
aitoa nollasta eroavaa aliesitysté.

Example 8.2. . (0) Jokainen yksiulotteinen esitys on tietenkin redusoi-
tumaton.

(1) Dihederaalisen ryhmén D, tautologinen esitys avaruudessa R?
on redusoitumaton, sillé kaksiulotteisella avaruudella R? ei ole muita
aitoja nollasta eroavaia aliavaruuksia kuin yksiulotteiset, eikd niistéa
mikéddn ole invariantti edes 90 asteen kierrossa saati koko ryhmén Dy
kaikkien alkioiden vaikutuksissa.

Dihederaalisen ryhmén D, permutaatioesitys avaruudessa (2)R* on
redusoitumaton, silld ainakin vektorin

V=¢€] t+eyt+e3+ey4=

—_ =

virittdmé yksiluotteinen aliavaruus Wy =< v >= {\v | A€ R} CR?
on luonnollisesti invaritantti jopa kaikkien kantavektoriehin ey, es, €3, €4
kohdistuvien permutaatioiden suhteen. Edellisessé luvussa huomattiin,
ettd tietysti myos aliavaruus Wy =< e; — 25 + e3 + e3 > on invariant-
ti Dy, vaikka ei kaikkien permutaatioiden suhteen. Liséksi ryhmén
D, esitykselld on myos kaksiulotteinen invariantti aliavaruus, nimittéin
Wi < e —29+e3— €3,61 — 29 —e3+ e3 >, minké valiton keksiminen ei
ehké ole aivan helppoa. Huomasimme edelld myés, ettd tdmé kaksiu-
lotteinen aliesitys on isomorfinen Dy,n tautologisen esityksen kanssa ja
siis edellisen esimerkin nojalla redusoitumaton. Voi pohtia, onko R*:114
mitddn muuta kaksiulotteista invarianttia aliavaruutta, tai jopa toista

sellaista, jossa aliesitys olisi isomorfinen tautologisen esityksen kanssa.
(Ei ole!)
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Kiinnitetddn viela huomiota siihen, ettd W3 nayttda olevan kahden
aikaisemman esityksen suoran summan < ey +es+e3+4e3,e1 —25+ €3 —
es > ortogonaalinen komplementti avaruuden R?* tavallisen sisdtulon
mielessd, toisin sanoen (v|u) = 0 aina, kun v € Wy & Wy ja u € W3, Ai-
nakin on selvéi, ettd 16ytdméamme aliavaruudet ovat lineaarisesti riip-
pumattomia ja virittavit siis yhteensé 14142 -ulotteisen avaruuden eli
koko esitysavaruuden R*, joka niin on niiden suora summa. Tutkimam-
me permutaatioesitys on siis kolmen redusoitumattoman aliesityksensé
suora summa.

(3) Adrettomille additiiviselle ryhmille (R, +) voi médritelld esityk-
sen avaruudessa R? asettamalla

SR

01 } € GL(R?).

eli kuvaamalla \ — [

PIIRRAN KUVAN!

Talla esitykselld on invariantti aliavaruus eli aliesitys, nimittain vek-

0
taa huomaamalla, ettd perdti v — v €< v >. Muita epétriviaaleja
invariantteja aliavaruuksia ei siten olekaan, silld kaksiulotteisen esityk-
sen epdatriviaalit aliesitykset ovat tietenkin yksiulotteisia, eikd miké&éan

torin v = { } virittdmaé suora eli xz-akseli. Asia on helppo tarkas-

x-akselista eroava suora kuvaudu itselleen edes kuvauksessa [ (1) 1 }

C 1 A
saati kaikissa { 01 }

Tutkittava esitys osoittautui siis redusoituvaksi, mutta siind mielessé
erilaiseksi kuin edellinen esimerkki, ettd nyt redusoitumattomia aliesi-
tyksid on niin vihin, ettd koko esitysavaruutta, joka tissd oli R?, ei
voikaan lausua niiden summana.

Definition 8.3. Olkoon V ryhmén G esitys. Joukon S C V' wirittdma
aliesitys on pienin aliesitys W C V, joka siséltad joukon S. Erityisesti,
jos S on é&érellinen joukko S = {zy,...}, niin joukon S virittdmaa
aliesitystd sanotaan vektorien xi, ... wvirittdmdks: aliesitykseksi.

Remark 8.4. Joukon S C V virittdmé aliesitys on aina olemassa, sill&
mielivaltaisen monen, myos ddrettoméan monen, esityksen leikkaus on
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aina esitys, joten pienin aliesitys W C V, joka siséltda joukon S on
ﬂ{W’ | S C W' jaW' on Vi aliesitys.}

Remark 8.5. Esitys V' on redusoitumaton, jos ja vain jos se on jokaisen
vektorin v € V' virittdma aliesitys eli, jos jokaisen vektorin v € V' rata
virittdd lineaarisesti koko vektoriavaruuden V.

Theorem 8.6. Taydellinen redusoituvuus Olkoon ddrellisen ryhmdn
G esitys V' ddrellisulotteinen F-vektoriavaruus, missi bF = R tai C.
Silloin V' on redusoitumattomien aliesityksiensd suora summa. (Lause
pdtee itse asiassa yleisemmdllekin kunnalle F, kunhan sen karakteris-
tika ei ole 2, vaan 2 # 0. Esimerkiksi kunta Zy ei todellakaan kelpaa.)



GROUPS AND THEIR REPRESENTATIONS - SECOND PILE 21

THE SAME LECTURE IN ENGLISH
9. IRREDUCIBLE REPRESENTATIONS.

Definition 9.1. A representation of a group on a vector space is irre-
ducible if there are no proper non-trivial subrepresentations.

For example, the tautological representation T" of Dy is irreducible: if
there were some proper non-zero subrepresentation, it would have to be
one dimensional, but clearly no line in the plane is left invariant under
the symmetry group of the square. Indeed, the plane R? is irreducible
even under the action of the subgroup R, of rotations.

On the other hand, the vertex permutation representation is not
irreducible. For example, the line spanned by the vector (1,1,1,1) or
either of the two other subspaces described above in Example 13.1 are
non-zero proper subspaces.

Another example of an irreducible representation is the tautological
representation of GL(V') on a vector space V. Indeed, given any non-
zero vector v € V, we can always find a linear transformation taking v
to any other non-zero vector. In other words, GL(V') acts transitively
on the set of non-zero vectors, so there can be no proper subset of V'
left invariant under this action, other than the single element set {0}.

On the other hand, the action of GL,(R) on the space of n x m real
matrices by left multiplication (in other words, by row operations) is
not irreducible. For example, the subspace of n X m matrices whose
last column is zero certainly invariant under row operations.

To check whether or not a representation is irreducible, it is helpful
to think about sub-representations generated by certain elements:

Definition 9.2. Let V' be any representation of a group G, and S be
any subset® of V. The sub-representation generated by S is the smallest
sub-representation of V' containing the set .S, that is

N w.

Wsub-rep of Vcontaining S

Semphasis: S need be a subset only, not necessarily a sub-representation or even
a subspace
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Put differently, the sub-representation of a G-representation V' gen-
erated by a subset S is the vector space spanned by the vectors in the
G-orbits of all the elements in .S. For example, the sub-representation of
the vertex permutation representation V' of D4 generated by (1,0,0,0)
is the whole of V, since r; takes (0,1,0,0), ry takes (1,0,0,0) to
(0,0,1,0) and r3 takes (1,0,0,0) to (0,0,0,1).

The following easy fact is more or less obvious:

Proposition 9.3. A representation is irreducible if and only if it is
generated (as a representation) by any one non-zero vector.

Example 9.4. Consider the additive group G = (R, +). This has a
representation on R? given by the group homomorphism

(R, +) — GLy(R)

1 A
A= ( 0 1 ) .
Explicitly, the element A\ in G acts by sending a column vector [ :yc }

to { v —Z}\y } . Clearly, the x-axis is a G-invariant subspace—-indeed
G acts trivially on the one-dimensional subspace of vectors of the form

[ 8 } . In particular, this is not an irreducible representation of (R, +).

Are there any other interesting sub-representations? Let us take any

Z 1 where

b # 0. When some non-trivial element X in G acts on R?, it sends this

at b } , which is obviously not a scalar multiple of [ ¢ }

vector not in this sub-representation already identified, say

b b

since A # 0. Thus, these two vectors span the whole of R?. This shows
that no vector off the z-axis can generate a proper sub-representation—
the x-axis is the only proper non-zero sub-representation of V. Thus,
this two-dimensional representation of the additive group (R, +) has ex-
actly one irreducible non-zero proper sub-representation. In particular,
it can not be decomposed into a direct sum of irreducible representa-
tions!

element to [

Example 9.5. Whether or not a representation is irreducible depends
on the field over which in is defined. For example, we have already
observed that the tautological representation of the rotation group Ry
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on R? is irreducible. Explicitly, this is the representation

R4 — GL2 (R)

R AU 2N W A B U W A U P S (0 B )
" 1 0 )" 0 —1 /) "3 1 0 ) 7N 0o 1 )

Of course, we can also think of this as a representation of the group
Z4, in which case, we will call it the rotation representation of Z,.
Of course, the elements 1, —1 and 0 make sense in any field F, so we
can consider the “same” action of R4 on F?, for any field! For example,
the group map above can be taken to have target say, G Ls(C), instead

Let us consider whether the complex rotation representation has any
interesting sub-representations. If so, there must be some complex

a : : . .
vector which generates a one-dimensional sub-representation of

b
C2. In particular, we must have

(1]

for each r; € R4 and some complex scalar \;, depending on r;. Since
R, is generated by rq, we see that it is enough to check this condition
just for r1: the condition for r, will follow with Ay taken to be A?, and
the condition for 73 will follow with A3 = A? (of course, the condition
for the identity element e holds in any case, with the corresponding A
taken to be 1).

That is, the one-dimensional subspace of C? spanned by [ Z } is

invariant under R, if and only if [ “ } is an eigenvector of the linear

b
transformation r;. In this case, A\; is the corresponding eigenvalue.

Over C, of course, every linear transformation has eigenvectors! In-
deed, we can find them by computing the zeros of the characteristic
polynomial. For the transformation given by r;, which is represented

by the matrix ( 0 —IA

1 0 > , the characteristic polynomial is

B T 1IN\ _ o
X(T)—det<_1 T)—T + 1.
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It’s roots are the complex numbers ¢ and —i, and we easily compute
the corresponding eigenvectors to be

HESN!

Thus, the two dimensional complex rotation representation of R4 de-
composes into the two one-dimensional representations

c{j]@c[—li].

The idea of a wrreducible object comes up in other algebraic categories
as well.® For example, we can ask what groups have the property that
they contain no (normal, say) proper non-trivial subgroups: these are
called the simple groups. Mathematicians have spend the better part
of the last century classifying all the finite simple groups. In other
settings, this task is much easier: for example, a vector space has
proper non-trivial subspaces if and only if it has dimension one.

Of course, once one understands all the simple groups (or the “sim-
plest objects” in any category), the next step is to understand how
every group can be built up from these simple ones. Again, for vec-
tor spaces, this is quite easy to understand: every (finite dimensional)
vector space is a direct sum of “simple”—meaning one-dimensional—
vector spaces. For groups, the story is more complicated. For example,
the group Z, is not simple, as the element {0,2} forms a proper sub-
group. However, nor can Z, be isomorphic to the direct sum of two
smaller groups in a non-trivial way (prove it!). There is a whole the-
ory of extensions for groups which treats the question of how arbitrary
groups can be build up from simple ones. This is a beautiful story, but
not one we digress to discuss here.

Returning to our main interest: what happens for representations?
Can every representation of a group be built up out of irreducible ones
in some easy to understand way? The answer is as nice as possible, at
least for finite groups over familiar fields:

6The language of category theory is so ubiquitous in algebra that, even though
we do not need it, it is probably a good idea for the student to start hearing it, at
least informally.
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CONTINUATION IN ENGLISH

Theorem 9.6. Fvery representation of a finite group on vector space
over R or C is (isomorphic to) a direct sum of irreducible sub-representations.

In Example 13.1, we explictly found such a decomposition for the
vertex permutation representation V for D,. Let us now prove the
general case.

Proof. Let V' be a representation of a finite group G over R or C. If V
has no proper non-zero sub-representations, we are done. Otherwise,
suppose that W is such a sub-representation. By fixing any wvector
space complement U for W inside V', we can decompose V as a direct
sum of vector space V= W & U. Of course U may not be invariant
under the G-action, so there is still work to be done.

Using this vector space decomposition of V|, we get a projection
m V. — W onto the first factor. Although this linear map is not
necessarily a homomorphism of G-representations, we will “average it
over G” to construct a G-linear map from it. To this end, define

o V=W
1 -1
UH@ZQ-W(Q - v).
geG

Although it looks complicated, this is really just a simple projection of
V onto W. Indeed, we are simply summing a finite collection of linear
maps V — W, since the composition gomog~! breaks down as a linear
map of V, followed by the projection onto W, followed again by the
action of g on W, taking us back to W. Also, since 7 is the identity
map on W, it is easy to check that g o m o ¢g~! is the identity map of
W for each g: summing over all the elements of G and then dividing
by the order, of course, it follows that ¢ is the identity map on the
subspace W.

The linear projection ¢ is much better than the arbitrary m we began
with: it is a homomorphism of G-representations! To check this, we
just compute, for any h € G,

h~¢<v>—ﬁzh-<g-w<g—l-v>>

geG
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whereas

o(h-v) = ,—(1;|Zg-ﬂ(gl (h-v)).

geG

Unravelling the meaning of these expressions, we see that they are the
same: we are simply summing up the expressions of the form g-(7(g~!x
h) - v) over the elements g of G in two different orders. In other words,
for any h € G, we have h - ¢p(v) = ¢(h - v), so that the linear map ¢ is
a homomorphism of representations of G.

Now, because the kernel of a G-representation map is a G-representation,
it follows that there is a subspace W’ in V on which G acts and the
decomposition

Vewaeow

is a decomposition of G-representations. Indeed, g € G acts on v =
w+w by g-v=g-w+g-w'. Since both ¢g-w and g - w’ belong to
the respective subspaces W and W', the G-action is “coordinatewise”
as needed. 0

Let us try to understand this proof in some examples we have already
studied. Let V be the vertex permutation representation of D, and
consider the sub-representation L spanned by (—1,1,—1,1). How can
we construct a Dy-representation complement?

First, take any vector space complement U—say U consists of the
vectors in R whose last coordinate is zero. The induced projection
m:V — L maps

€ —Ty

X2 Ty
i —

x3 —Ty

Xy Ty

Now averaging over the eight elements of D, we have

T x
L 22 1 . -1 | T2
N I = S A Al Il
gE€EDy
Ty Ty

Thinking about the action of D4 on the sub-representation L of V', we
see that the element r,r3, H and V all act by multiplication by —1,
where as the others act by the identity. Thus this expression (with the
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elements ordered as in the table on page 3) simplifies as % of

I T2 ZT3 Ty T2 T3 Tyq

X2 xs3 Ty Ty T T2 €3
s -7 + —T —T +7 —T

T3 Ty I T Ty I )

Ty Ty ) xs3 T3 T4 €

Now applying the map 7 and simplifying further, we see that

¢o:V —1L
sending
T -1
x 1 1
Iz |—>1<£L'2+$4—.T1—1}3) 1
Ty 1

is a Dy linear map. [Of course, we have proven this in general in our
proof of Theorem 15.1, but you should verify explicitly for yourself that
¢ respects the action of Dy.|

Now, the kernel of ¢, like any homomorphisms of G-representations,
will be a G-representation. Indeed, it is the three-dimensional rep-
resentation W = {(x1, 29,3, 24) |21 + 23 = 2o + 24} C RY Thus
V= L& W as representations of G. Now, since W has an invariant
subspace, namely the space L spanned by (1,1, 1, 1), we can repeat this
process to construct a G-representation complement to L in W. You
should do it, and verify that this produces the sub-representation 1"
we found above, spanned by (1,1, —1,—1) and (1,—1,—1,1).

Again, we have decomposed the four-dimensional G-representation
V' as the direct sum 7" @ L @ R(1,1,1,1). This is essentially an algo-
rithm for decomposing any representation: we keep choosing invariant
subspaces and constructing their G-invariant complements until none
of the sub-represents we construct this way has any invariant subspaces.
Thus we have proved:

Theorem 9.7. Any finite dimensional real or complex representation
of a finite group can be decomposed into a direct sum of irreducible
sub-representations.

Such a representation is said to be completely reducible or semi-
simple.

The theorem does not say anything about what irreducible repre-
sentations appear in the decomposition of a given one, and whether or

Iy
Ty
T3
T2
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not there might be more than one to decompose in this way. Indeed,
we made several choices along the way to proving it: a choice of an
original invariant subspace, then the choice of a vector space comple-
ment. Might these result in different decompositions? Or, might all
choices lead ultimately to the same decomposition—might there be a
unique way to decompose into irreducibles? The rigidity in Example
13.1 makes this plausible, perhaps.

Unfortunately, it is too optimistic to hope for a unique decomposi-
tion. Indeed, consider the trivial representation of any group G on a
two-dimensional vector space V. Now any decomposition of V' as a vec-
tor space will also be a decomposition of V' as a G-representation, and
clearly, there are many ways to decompose V' into two one-dimensional
subspaces. On the other hand, these one-dimensional sub-representations
are all isomorphic to eachother, so it is true that the ismorphism-types
of G-representations and the number of times each appears is the same
for any decomposition. We will soon prove a theorem asserting some-
thing like this very generally.

Remark 9.8. Why the restriction on the field? The restriction to R
or C is not really necessary, but is just to keep everything as familiar
as possible. Indeed, the statement is valid for any field of character-
istic zero—-for example, the rational numbers Q, the field of Laurent
polynomials C((¢)) or many others. The only restriction we have is
that “division by |G| makes sense.” For example, if G where a group
with p elements for some prime number p, we could not consider vector
spaces over the finite I, of p elements. On the other hand, we can state
that Fvery finite dimensional representation over a field F of a finite
group G decomposes as a sum of irreducible representations, provided
the order of G s invertible in IF.

9.1. A digression on some uses of representation theory. Sup-
pose that a group acts on a set X, and that set X has

Put differently, if X belongs to some interesting category of mathe-
matical objects, we often look at automorphisms of X in that category
instead of merely the automorphisms of X as a set. The term category
can be taken here in its precise technical meaning or more informally,
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depending on the reader’s background and inclination.” In the cate-
gory of vector spaces, an automorphism is simply an invertible linear
map, so another notation for subgroup GL(X) of Aut X that pre-
serve the vector space structure of X is Autyeq.sp(X). The notation
Autyeet sp(X) indicates that we are considering automorphisms in the
category of vector spaces.

Roughly speaking, a category is a collection of mathematical objects
with some common structure, and a notion of mappings between them
respecting that structure. For example, we have the category of groups
(with group homomorphisms), the category of vector spaces over a fixed
field (with linear mappings), the category of topological spaces (with
continuous mappings), the category of smooth manifolds (with smooth
mappings), and the category of sets (with set mappings), to name just
a few familiar categories.

In any category (whether groups, topological spaces, etc), there is
a notion of “sameness” for our objects: groups are “the same” if they
are isomorphic, topological spaces are “the same” if they are home-
omorphic, and so on. In general, X — Y and ¥ — X which are
mutually inverse. The automorphisms, or self-isomorphisms, of a fixed
object X in any category form a group under composition. For exam-
ple, the automorphisms of a set X is simply the group Aut X already
discussed, and the automorphisms of a vector space V is the group
GL(V) of linear transformations of V. Likewise, if X is a topological
space, the group Auty,,(X) of self-homeomorphisms from to itself is a
group, which may be very large in general.

A functor is a mapping from one category to another, which of
course, preserves the structures. For example, a functor I' from the cat-
egory of topological spaces to the category of groups is a gadget which
assigns to each topological space X, some group I'(X), and to each
continuous mapping of topological spaces X — Y some corresponding
group homomorphism I'(X) — T'(Y'). For example, the assignment of
the fundamental group to each topological space is a functor from the
category {Top} to {Gp}. Naturally, the assignment must satisfy some
basic properties in order to be a functor: it should send the identity
map in one category to the identity map in the other for example, and

"The language of category theory is so ubiquitous in algebra that, even though
we do not need it, it is probably a good idea for the student to start hearing it, at
least informally.
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it is should preserve compositions. The reader can look up the pre-
cise definition of a functor in any book on category theory (or most
graduate level texts on algebra).

Representation theory is so useful in physics and mathematics be-
cause group actions—symmetries— are everywhere, on all sorts of
structures from individual molecules to space-time. We have invented
nice functors to transform these actions into actions on vector spaces—
that is, into linear representations of groups. And finally, linear algebra
is something we have plenty of tools for—even computers can be easily
programmed to do linear algebra. So although linear representations
of groups on vector spaces may seem quite abstract and algebraic,
it is an excellent way of understanding symmetry at the micro-and-
macroscopic levels throughout the universe.

10. SUB-REPRESENTATIONS.

Unless otherwise explicitly stated, we now consider only finite di-
mensional linear representations.

A sub-representation is a subvector space which is also a G-representation
under the same action of G. More precisely

Definition 10.1. Let V be a linear representation of a group G. A
subspace W of V' is a sub-representation if W is invariant under G—
that is, if g-w € W for all g € G and all w € W.

In terms of the group homomorphism
p:G— GL(V),
W is a sub-representation if and only if p factors through the subgroup
Gw ={¢ € GL(V)| o(W) C W}
of linear transformations stabilizing W.

For example, every subspace is a sub-representation of the trivial
representation on any vector space, since the trivial G action obvi-
ously takes every subspace back to itself. At the other extreme, the
tautological representation of D, on R? has no proper non-zero sub-

representations: there is no line taken back to itself under every sym-
metry of the square, that is, there is no line left invariant by Djy.
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The vertex permutation representation of D, on R* induced by the
action of D, on a set of four basis elements {ey, e, €3, €4} indexed by the
vertices of a square does have a proper non-trivial sub-representation.
For example, the one dimensional subspace spanned by e; +e5+e3+ ¢4
is fixed by Dy— when D, acts, it simply permutes the e; so their sum
remains unchanged. Thus for all ¢ € G, we have g - (A, \,\,\) =
(A, A\, A, A) for all vectors in this one-dimensional subspace of R*. That
is, D4 acts trivially on this one-dimensional sub-representation.

Another sub-representation of the vertex permutation representation
of D, on R* is the subspace W C R* of vectors whose coordinates sum
to 0. Clearly, when D, acts by permuting the coordinates, it leaves their
sum unchanged. For example H sends (1, 2,3, —6) to (—6, 3,2, 1) if the
vertices are labelled counterclockwise from the upper right. The space
W is a three dimensional sub-representation of the permutation repre-
sentation of Dy on R*. Note that W is a non-trivial sub-representation
the elements of G do move around the vectors in the space W.

10.1. The Standard Representation of S,,. One important repre-
sentation is the standard representation of .S,,, which is defined as a
sub-representation of the permutation representation of S,,. Let .S,, act
on a vector space of dimension n, say C", by permuting the n vectors
of a fixed basis (say, the standard basis of unit column vectors in C").
Note that the subspace spanned by the sum of the basis elements is
fixed by the action of S,—that is, it is a sub-representation on which
Sy acts trivially. But more interesting, the n — 1-dimensional subspace

T
X2

w={|". | Y z=0}ccCn

Tn

is also invariant under the permutation action. This is called the stan-
dard representation of S,,.

11. DIRECT SUMS OF REPRESENTATIONS.

Suppose a group G acts on the vector spaces V and W (over the
same field, ). We can define an action of G “coordinate-wise” on
their direct sum of follows:

g(v,w):(gv,gw)EV@W
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Note that if V' has basis vy,...,v, and W has basis wy,...w,,, then
the direct sum has basis vy, ..., v,, w1, ... w,, (where v; is interpreted
to mean (v;,0), etc). With this choice of basis for the direct sum, the
matrix of every g acting on V' & W will be the block diagonal matrix

( Plég) /02(()9) )

obtained from the n x n matrix p;(g) describing the action of g on V/
in given basis, and the m x m matrix ps(g) describing the action of g
on W in its given basis.

For example, we have a three-dimensional real representation of D,
defined as follows:

g- (:E,y,z) = (g ’ (J],y),Z),

where g(x,y) denotes the image of (z,y) under the tautological action
of Dy on R?. In the standard basis, for example, the element 7, € Dy
acts by the matrix

0 -1 0
1 0 0
0 0 1

This representation is the direct sum of the tautological and the one-
dimensional trivial representations of Djy.

Of course, we also have a representation of D, on R?® where D, acts
trivially in the z-direction and by the tautological action in the yz
plane direction: g-(x,y,z) = (z,¢9- (y, 2)). This is also a direct sum of
the trivial and tautological representation. In fact, just thinking about
these actions there is a very strong sense in which they are “the same.”
We are led to the following definition:

Definition 11.1. Two linear representations V' and W of G (over
the same field) are isomorphic if there is a vector space isomorphism
between them that preserves the G-action—that is, if there exists an
isomorphism ¢ : V' — W such that g ¢(v) = ¢(g-v) for all v € V and
all g € G.

The idea that ¢ preserves the G action is also expressed by the
following commutative diagram, which must hold for all g € G:

v v
¢ | ol .
g, W
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For example, the two representation of D, discussed above are isomor-
phic under the isomorphism which switches the x and z coordinates.

We are especially interested in decomposing representations in direct
sums of sub-representations. For example, the permutation represen-
tation of S,, on C" is easily seen to be isomorphic to the direct sum of
the trivial and standard sub-representations discussed in 10.1 above:

1

cacl | @w
1

where W is the subspace of vectors whose coordinates sum to zero.

12. MAPPINGS OF REPRESENTATIONS.

Given two representations of a fixed group G over the same field, we
define a mapping between them as follows:

Definition 12.1. A homomorphism of (linear) G-representations is a
map ¢ : V — W which preserves both the vector space structure and
the G-action. That is, it is a linear map ¢ of vector spaces (over the
same field) satisfying g - ¢(v) = ¢(g - v) for all v € V and all g € G.

There are many different words for the notion of a homomorphism of
representations, probably because representation theory is used in so
many different places in mathematics and science. The terms “G-linear
mapping”, “G-module mapping,” or even just “a map of representa-
tions of G” are common. The adjective “linear” is often suppressed:
if the representations are linear, so also are the homorphisms between
them assumed to be linear homomorphisms. But, depending on the
context, it may also be interesting to study group actions on, say,
a topological space, in which case the corresponding representations
should be continuous, and the maps between them as well should be
continuous.

An isomorphism of G-representations is simply a bijective homo-
morphism. On the other hand, it might be better to think of an
isomorphism as a homomorphism ¢ : V' — W which has an inverse
homomorphism, because this way of thinking is valid more broadly
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throughout mathematics.® But for representations, you can check that
if  : V — W is a bijective linear transformation, then the inverse map
¢~1: W — V is also a linear map, and that if ¢ preserves the group
action, so does ¢~t. To wit: g-@(v) = ¢(g-v) for all v € V if and only
if g7t o7 Hw) = ¢ (g7t - w) for all w € W.

The inclusion of any sub-representation W of a representation V'
of a group G provides an example of an injective homomorphism of
representations. Indeed, ¢ : W — V obviously satisfies gp(w) = ¢(gw)
because, by definition of sub-representation, the action of GG is the same
on elements of W whether we think of them in W or V.

The projection 7 : VW — V from a direct sum of G-representations
onto either factor is an example of a surjective homomorphism. Again,
that this map is G-linear is easy to verify directly from the definitions
(do it!).

Although it is far from obvious, these examples—isomorphism, inclu-
sion, and projection—are virtually the only homomorphisms between
representations, at least for finite dimensional representations of finite
groups G. Perhaps this is not surprising: a similar fact is true for vec-
tor spaces. If ¢ : V' — W is a linear map of vector spaces, then because
V 2 im¢ @ ker ¢, every mapping of vector spaces essentially factors
as projection onto the image followed by inclusion of the image into
the target. On the other hand, nothing like this is remotely true for
most sorts of maps between mathematical objects: there are all sorts
of group homomorphisms, such as Z — Z,,, which are not of this sort.

13. HOMOMORPHISMS OF REPRESENTATIONS ARE RARE.

Let us consider two representations of D,: the tautalogical represen-
tation T (which is the vector space R?, with the tautological Dy action)
and the vertex permutation representation V' (namely, the vector space
R* with basis elements indexed by the vertices of a square, with the
action of Dy given by permuting the vertices according to the action of
Dy on the vertices.) Of course, there are many linear mappings from
R? to R*. Do any of these preserve the group action? That is, are any

8Indeed7 this is how the notion of “same-ness” or isomorphism can be defined in
any category. For example, an isomorphism in the category of topological spaces—
or homeomorphism— is a continuous map which has a continuous inverse; it is not
enough to have a bijective continuous map.
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of them homomorphisms of the Dy-representations T'— V. Of course,
stupidly, we could take the zero-map 7" — V mapping every element
of R? to R*. This preserves the group action, but it is not interesting.
Can we find any injective maps?

Let us consider whether the inclusion
i:R* - R*
sending

(z,y) — (z,9,0,0)

is Dy-linear. For example, does this preserve the action of the element
ry in Dy. We have that ry - (z,y) = (—y,x) for the representation
T, which yields (—y,z,0,0) under the inclusion map i, where as r; -
(,y,0,0) = (0,z,y,0) for the representation V. This means that 4
does not respect the group structure— the linear map ¢ is not a map
of representations of Dj.

13.1. Searching for sub-representations. Can there be any injec-
tive map of representations T" — V7 If so, then the image of T" would
be a two-dimensional subspace of the four-dimensional space V' where
the the vertex permutation representation restricts to the tautological
representation. Is this possible? Essentially, we are asking whether
there is any two-dimensional square in four space on which the vertex
permutation action of Dy (given by permuting the coordinates as D,
permutes the vertices of a square) agrees with the usual symmetries
of that square. Clearly, this can happen only if there is a set of four
points in R* spanning a two-dimensional subspace invariant under this
action.

To understand the permutation action of D, on R* it is helpful to
identify D, with the subgroup of Sy generated by the 4-cycle (1234) (the
rotation r1) and the transposition (13) (the reflection A). Formally, we
are embedding D, in S, by sending each symmetry to the corresponding
permutation of the vertices. The 4-cycle acts by cycling the coordinates
(one spot to the right, say), and the transposition acts by switching
the first and third coordinates. Since D, is generated by these two
elements, a subspace is invariant under D, if and only if it is invariant
under these two elements (Prove it!).

To see whether the permutation representation has any sub-representation
isomorphic to T, then, we are looking for four points in R* spanning a
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two-dimensional subspace, and invariant under these two transforma-
tions, which can serve as the vertices of a square. Can one of these
points be, say (1,0,0,0)? Note that when 7 acts on this vector in V/,
it moves it to (0,1,0,0). When it acts again—in other words when ry
acts on (1,0,0,0)— we get (0,0,1,0). Again, and we get (0,0,0,1),
and then we cycle back to (1,0,0,0). Thus, any vector subspace of
V' containing (1,0,0,0) and invariant under D, must contain each of
the four standard basis elements—that is, it must be V', since these
span V. Indeed, it is easy to check that this sort of thing happens for
“most vectors:” typically, the orbit of a randomly chosen vector in V'
will consisting of (eight) vectors which span V.

To find interesting sub-representations of V', we can look for non-zero
vectors whose orbits span proper subspaces of V. One way is to find
vectors with small orbits. For example, the vector (1,1,1,1) is fixed
by Dy4. It spans a one dimensional sub-representation of V' where Dy
acts trivially, as we have already noted.

Another vector with a small orbit is w = (—1,1, —1,1). Note that r;
acts on w to produce (1,—1,1, —1), which is —w. Also, the reflection
A acts by permuting the first and third coordinates, which means it
fixes w. Since every element in D, is an iterated composition of the
generators r; and A, we see that the Dy-orbit of w is the two element
set {w, —w}. Thus the one-dimensional subspace spanned by w is a
sub-representation of V. This is not a trivial representation—some
element acts by multiplication by —1.

How does this help us find two dimensional sub-representations of
V' isomorphic to T, or show none exist? Well, clearly if any such two-
dimensional sub-representation exists, it can not contain (1,1,1,1),
since T fixes no subspace. Nor could it contain (1,—1,1, —1) since 7
acts there by multiplication by —1 but ry is never scalar multiplication
on T. Thus, we need to look for a vector in V' whose orbit does not
contain either of these two special vectors (nor anything in their span).

Consider the vector (1,1, —1,—1). Its orbit produces the four points
(1,1,-1,-1), (-1,1,1,—-1), (=1,—-1,1,1), (1,-1,—-1,1),

and so it does generate a two-dimensional sub-representation 7" of V'

(which has basis, for example, (1,1,—1,—1),(—1,1,1,—1).) It is easy

to check that the vertex permutation action of Dy on T" does restrict

to the tautological representation of D4 on this two-plane. Indeed, the
four points described above serve nicely as the vertices of a square on
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which D, acts by the usual symmetry actions. So V' does contain a
sub-representation isomorphic to 7', embedded in a rather special way
as a skew plane.

Finally, since these three sub-representations span V', there is a direct
sum decomposition of representations:

VT PRI LL)EPRA, -1,1,-1),

where the first summand has basis {(1,1,—1,—1),(=1,1,1,—1)} and is
isomorphic to the tautological representation of D4 and the second sum-
mand is a trivial representation of D,, but the third is not isomorphic
to either of these. Furthermore, none of these three sub-representations
can be further decomposed. Although it is not obvious, we will soon
prove that every representation of a finite group on a real or complex
vector space decomposes as a direct sum of irreducible representations.

We isolate for future reference a simple idea used in the previous
example:

Lemma 13.1. Let V be a linear representation of a group G. Let W
be a sub-vector space of V', spanned by the elements wy,...,w;. Then
W is a sub-representation if and only if g-w; € W foralli =1,...,t
and each g in one fixed generating set for G.

Proof. We leave this as an easy exercise. One slightly subtle point
that is needed: If an element g leaves W invariant, then also g~! does.
Indeed, the linear transformation g : V' — V is invertible, which means
that restricted to W, it is also invertible. So g~! defines its inverse,
also on W. U

13.2. The kernel, image and cokernel of a map of representa-
tions. The category” of G-representations and their maps is very nice
from an algebraic point of view: we can form kernel representations,
image representations, quotient representations and cokernel represen-
tations.

Proposition 13.2. Let ¢ : V. — W be a homomorphism of linear
representations of a group G. Then the kernel is a sub-representation
of V and the image is a sub-representation of W.

9The reader can take the word category in an informal sense, or in its full math-
ematically technical sense here.
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Proof. Since the kernel and image of ¢ are subvector spaces, we only
have to check that each is invariant under the G-action. Suppose that
v € V is in the kernel of V|, and ¢ € G. We need to check that g - v
is in the kernel of ¢. But ¢(g - v) = gé(v) because ¢ is G-linear, and
go(v) = g -0 = 0 since v is in the kernel of ¢ and ¢ acts by linear
transformations (so preserves the zero).

The proof for the image is also straightforward: g - ¢(v) = ¢(g-v) is
in the image of ¢. 0

Whenever there an inclusion of linear G-representations W C V,
the quotient representation V/W can be defined. Indeed, we define
V/W as the quotient vector space with the G-action defined by

g-v=g-v
where v is any representative of the class. This does not depend on the
choice of representative, since if v = 7/, then v — v € W, and whence

g-v—g-v € g-W C W, which of course means ¢g-v and ¢-v’ represent
the same class of V/WW.

In particular, the cokernel V/im¢ of any homomorphism ¢ : V' —
W of representations of GG is also a representation of G.

14. IRREDUCIBLE REPRESENTATIONS

Definition 14.1. A representation of a group on a vector space is
1rreducible if it has no proper non-trivial sub-representations.

For example, the tautological representation T' of D, is irreducible:
if there were some proper non-zero sub-representation, it would have
to be one dimensional, but clearly no line in the plane is left invariant
under the symmetry group of the square. Indeed, the plane R? is
irreducible even under the action of the subgroup R4 of rotations.

On the other hand, the vertex permutation representation is not
irreducible. For example, the line spanned by the vector (1,1,1,1) or
either of the two other subspaces described above in Example 13.1 are
non-zero proper sub-representations.

Another example of an irreducible representation is the tautological
representation of GL(V) on a vector space V. Indeed, given any non-
zero vector v € V, we can always find a linear transformation taking v
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to any other non-zero vector. In other words, GL(V') acts transitively
on the set of non-zero vectors, so there can be no proper subset of V'
left invariant under this action, other than the single element set {0}.

On the other hand, the action of GL,(R) on the space of n x m real
matrices by left multiplication (in other words, by row operations) is
not irreducible. For example, the subspace of n x m matrices whose
last column is zero certainly invariant under row operations.

To check whether or not a representation is irreducible, it is helpful
to think about sub-representations generated by certain elements:

Definition 14.2. Let V be any representation of a group G, and S
be any subset!? of V. The sub-representation generated by S is the
smallest sub-representation of V' containing the set S, that is

N w.

W sub-rep of Vcontaining S

Put differently, the sub-representation of a GG-representation V' gen-
erated by a subset S is the vector space spanned by the vectors in the
G-orbits of all the elements in .S. For example, the sub-representation of
the vertex permutation representation V' of D4 generated by (1,0,0,0)
is the whole of V, since r; takes (0,1,0,0), ro takes (1,0,0,0) to
(0,0,1,0) and r3 takes (1,0,0,0) to (0,0,0,1).

The following easy fact is more or less obvious:

Proposition 14.3. A representation is irreducible if and only if it is
generated (as a representation) by any one non-zero vector.

Example 14.4. Consider the additive group G = (R, +). This has a
representation on R? given by the group homomorphism
(R, +) — GLy(R)

1 A
)\»—>(0 1).

Explicitly, the element A\ in G acts by sending a column vector [ :; }

T+ Ay

to . Clearly, the z-axis is a G-invariant subspace—indeed

G acts trivially on the one-dimensional subspace of vectors of the form

Demphasis: S need be a subset only, not necessarily a sub-representation or even

a subspace
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8 . In particular, this two dimensional representation of (R, +) is
not irreducible.

Are there any other interesting sub-representations? Let us take any

vector not on the z-axis, say { Z } where b # 0. When some non-
trivial element A in G acts on R2, it sends this element to [ ¢ —2)‘19 } ,

a
b
these two vectors span the whole of R?. This shows that no vector
off the z-axis can generate a proper sub-representation— the x-axis
is the only proper non-zero sub-representation of V. Thus, this two-
dimensional representation of the additive group (R, 4) has exactly one
irreducible non-zero proper sub-representation. In particular, it can not
be decomposed into a direct sum of irreducible representations!

which is obviously not a scalar multiple of } since A # 0. Thus,

Example 14.5. Caution! Whether or not a representation is irre-
ducible may depend on the field over which it is defined. For example,
we have already observed that the tautological representation of the
rotation group R, on R? is irreducible. Explicitly, this is the represen-
tation

R4 — GL2 (R)

A T W A B O AR U DR A
" 1 0 )" 0 -1 /)" 10 ) € 0

Of course, we can also think of this as a representation of the group
Zy4, in which case, we will call it the rotation representation of Z,.
Of course, the elements 1, —1 and 0 make sense in any field F, so we
can consider the “same” action of R4 on F?, for any field! For example,
the group map above can be taken to have target say, GLo(C), instead

Let us consider whether the complex rotation representation has any
interesting sub-representations. If so, there must be some complex

a . : . .
vector [ which generates a one-dimensional sub-representation of

b
C2. In particular, we must have

[3] [
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for each r, € R4 and some complex scalar \;, depending on r;. Since
R, is generated by rq, we see that it is enough to check this condition
just for r1: the condition for r, will follow with \; taken to be A} (of
course, the condition for the identity element e holds in any case, with
the corresponding A taken to be 1).

That is, the one-dimensional subspace of C? spanned by [ Z } is

invariant under R, if and only if Z is an eigenvector of the linear

transformation r;. In this case, A\; is the corresponding eigenvalue.

Over C, of course, every linear transformation has eigenvectors! In-
deed, we can find them by computing the zeros of the characteristic
polynomial. For the transformation given by r;, which is represented

by the matrix ( 0 -1

1 0 > , the characteristic polynomial is

X(T) = det (_Tl %):TQ—i—l.

Its roots are the complex numbers ¢ and —i, and we easily compute the
corresponding eigenvectors to be

HE N

Thus, the two dimensional complex rotation representation of R4 de-
composes into the two one-dimensional representations

C[H@C[_j].

The idea of a irreducible object comes up in other algebraic categories
as well.!* For example, we can ask what groups have the property that
they contain no (normal, say) proper non-trivial subgroups: these are
called the simple groups. Mathematicians have spend the better part
of the last century classifying all the finite simple groups. In other
settings, this task is much easier: for example, a vector space has
proper non-trivial subspaces if and only if it has dimension one.

HThe language of category theory is so ubiquitous in algebra that, even though
we do not need it, it is probably a good idea for the student to start hearing it, at
least informally.
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Of course, once one understands all the simple groups (or the “sim-
plest objects” in any category), the next step is to understand how
every group can be built up from these simple ones. Again, for vec-
tor spaces, this is quite easy to understand: every (finite dimensional)
vector space is a direct sum of “simple”—meaning one-dimensional—
vector spaces. For groups, the story is more complicated. For example,
the group Z, is not simple, as the element {0,2} forms a proper sub-
group. However, nor can Z,4 be isomorphic to the direct sum of two
smaller groups in a non-trivial way (prove it!). There is a whole the-
ory of extensions for groups which treats the question of how arbitrary
groups can be build up from simple ones. This is a beautiful story, but
not one we digress to discuss here.

Returning to our main interest: what happens for representations?
Can every representation of a group be built up out of irreducible ones
in some easy to understand way? The answer is as nice as possible, at
least for finite groups over familiar fields:

15. COMPLETE REDUCIBILITY

Theorem 15.1. Fvery finite dimensional representation of a finite
group over the real or complex numbers decomposes into a direct sum
of irreducible sub-representations.

We explictly found such a decomposition for the vertex permuta-
tion representation V for D,. (Example 13.1). The key to proving
Theorem 15.1 is the following fact, valid even for infinite dimensional
representations:

Theorem 15.2. FEvery sub-representation of a real or complex rep-
resentation of a finite group has a representation complement. That
1s, if W 1s a sub-representation of V', then there exists another sub-
representation W' of V' such that V=W & W' as representations of
G.

Remark 15.3. The restriction to R or C is not really necessary. Indeed,
our proof is valid for any field of characteristic zero—for example, the
rational numbers Q or the field of Laurent polynomials C((¢))—or more
generally over any field in which |G| is non-zero. However, if for ex-
ample, G is a group of order p (prime), our proof fails (as does the
theorem). Representation theory over fields of prime characteristic is
tremendously interesting and important, especially in number theory,
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but in this course our ground field will be usually assumed to be R or
C, the cases of primary interest in geometry and physics.

The proof we given is not valid for infinite groups. However, we
will later show that for many of the most interesting infinite groups, a
similar statement holds.

Proof. Fix any vector space complement U for W inside V', and decom-
pose V' as a direct sum of vector spaces V = W @& U. Of course, if U
happens to be G-invariant, we are done. But most likely it is not, so
there is work to be done.

This vector space decomposition allows us to define a projection
m:V — W onto the first factor. The map 7 is a surjective linear map
which restricts to the identity map on W. Although 7 is not necessarily
a homomorphism of G-representations, we will “average it over G” to
construct a G-linear projection. To this end, define

o V=W
1 _
UH@ZQ (g™t v)
geG

Although it looks complicated, this is really just a simple projection of
V onto W. Indeed, we are simply summing a finite collection of linear
maps V — W, since the composition gomog~! breaks down as a linear
map of V', followed by the projection onto W, followed again by the
linear map g of W. Also, since 7 is the identity map on W it is easy
to check that gomog™! is the identity map of W for each g: summing
over all the elements of G and then dividing by the order, of course, it
follows that ¢ is the identity map on the subspace W.

The projection ¢ is much better than the arbitrary = we began with:
it is a homomorphism of G-representations! To check this, we just
compute, for any h € G,

h-o(v Zh g-m(g7tv))

gGG
whereas
o(h Z g-m(g - (h-v)).
gEG
Unravelling the meaning of these expressions, we see that they are the
same: we are simply summing up the expressions of the form g-(m (g~ '
h)-v) over the elements g of G in two different orders. In other words,
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for any h € G, we have h - ¢(v) = ¢(h - v), so that the linear map ¢ is
a homomorphism of representations of G.

Now, the advantage of a G-representation map is that its kernel is a
G-representation. Let W’ be the kernel of ¢. Then G acts on W’ and
the vector space decomposition

Vewaew

is a decomposition of G-representations. Indeed, g € G acts on v =
w+w by g-v=g-w+g-w'. Since both ¢g-w and g - w’ belong to
the respective subspaces W and W’ the G-action is “coordinatewise”
as needed. O

Let us try to understand this proof in some examples we have already
studied. Let V' be the vertex permutation representation of D, and
consider the sub-representation L spanned by (—1,1,—1,1). How can
we construct a Dy-representation complement?

First, take any vector space complement U—say U consists of the
vectors in R whose last coordinate is zero. The induced projection
m:V — L maps

T —xTy
X i
T 2 N 4
T3 — Ty
Ty Ty

Now averaging over the eight elements of D, we have

T T
| T2 1 . -1 | T2
2 I - DY R I
g€Dy
Ty Xy

Thinking about the action of D, on the sub-representation L of V', we
see that the element r1,r3, H and V all act by multiplication by —1,
where as the others act by the identity. On the other hand, on the four-
dimensional representation V', the rotations act by cyclicly permuting
the coordinates and the reflections by interchanging the respective co-
ordinates, as discussed in Subsection 13.1. Thus this expression (with
the elements ordered as in the table on page 3) simplifies as % of

T i) I3 T4 i) XT3 Ty

i) T T4 T T i) T
m —T A EE: —T —T +7 —T 3

Z3 Ty T T2 Ty s} T2

Ty il T T3 xT3 Ty X1

I
Ty
T3
T
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Now applying the map 7 and simplifying further, we see that

¢o:V —1L
sending
T -1
T 1
xz |—>1<1’2+Q?4—$1—$3) 1
Ty 1

is a Dy linear map. [Of course, we have proven this in general in our
proof of Theorem 15.1, but you should verify explicitly for yourself that
¢ respects the action of Dy.|

Now, the kernel of ¢, like any homomorphisms of G-representations,
will be a G-representation. Indeed, it is the three-dimensional rep-
resentation W = {(x1, 29,23, 24) |21 + 23 = 2o + 24} C RY Thus
V= L®W as representations of G. Now, since W has an invariant
subspace, namely the space L spanned by (1,1, 1, 1), we can repeat this
process to construct a G-representation complement to L in W. You
should do it, and verify that this produces the sub-representation 7"
we found above, spanned by (1,1, —1,—1) and (1,—1,—1,1).

Again, we have decomposed the four-dimensional G-representation
V' as the direct sum 7" @ L@®R(1,1,1,1). The procedure we used is es-
sentially an algorithm for decomposing any representation finite dimen-
sional representation: we keep choosing invariant subspaces and con-
structing their G-invariant complements until none of the sub-representations
we construct this way has any invariant subspaces. Thus we have
proved:

Theorem 15.4. Any finite dimensional real or complex representation
of a finite group can be decomposed into a direct sum of irreducible
sub-representations.

Such a representation is said to be completely reducible or semi-
stmple.

The theorem does not say anything about what irreducible represen-
tations appear in the decomposition of a given one, or whether there
might be more than one such decomposition. Indeed, we made several
choices along the way: a choice of an original invariant subspace, then
the choice of a vector space complement. Might these result in differ-
ent decompositions? Or, might all choices lead ultimately to the same
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decomposition—might there be a unique way to decompose into irre-
ducibles? At least the vertex permutation representation of D, appears
to decompose in only one way into irreducibles.

Unfortunately, it is too optimistic to hope for a unique decomposi-
tion. Indeed, consider the trivial representation of any group G on a
two-dimensional vector space V. Now any decomposition of V' as a vec-
tor space will also be a decomposition of V' as a G-representation, and
clearly, there are many ways to decompose V' into two one-dimensional
subspaces. On the other hand, these one-dimensional sub-representations
are all isomorphic to eachother, so it is true that the isomorphism-types
of G-representations and the number of times each appears is the same
for any decomposition. As we will soon prove, this degree of “unique-
ness of the decomposition” does hold quite generally.

16. UNIQUENESS OF DECOMPOSITION INTO IRREDUCIBLES.

Every finite dimensional real or complex representation of a finite
group can be decomposed into irreducible representations (Theorem
15.1). Is this decomposition unique? In Example 13.1, we saw ex-
plicitly that there is only one way to decompose the vertex permuta-
tion representation into its three non-zero proper sub-representations.
Might it be true in general that the decomposition of a representation
into irreducible sub-representations is unique?

Naively posed, the answer is “NO.” For example, every decomposi-
tion of a two-dimensional vector space into two one-dimensional sub-
spaces will be a decomposition of the trivial representation of a group
G. Of course, there are many different choices of vector-space decom-
positions! On the other hand, in this example, the isomorphism types
of the indecomposable sub-representations, and the number of them
appearing, is the same in every decomposition. A similar fact holds in
general:

Theorem 16.1. Let V be a finite dimensional real or complex repre-
sentation of a finite group G. Then V' has a unique decomposition into
sub-representations

V e ‘/1 @ e @ ‘/t
where each V; is isomorphic to a direct sum of some number of copies of

some fized irreducible representations Wi, with W; 22 W; unless 1 = j.
That s, given two different decompositions of V' into non-isomorphic
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wrreducible sub-representations
Whe-- oW :Ufl@...@[]fr’

where the W; (respectively U;) are all irreducible and non-isomorphic,
then after relabling, t = r, a; = b;, the sub-representations W equal

the Uibi for all i, and corresponding W; are isomorphic to U; for all i.

In other words, the irreducible sub-representations that appear as
summands are uniquely determined up to isomorphism, as is their mul-
tiplicity (or number of them appearing) in V. Furthermore, the sum-
mands V; consisting of the span of all the vectors in the subrepresenta-
tions W; are uniquely determined sub-representations of V', although
the decomposition of V; into the components isomorphic W; may not
be.

The vertex permutation representation of D, discussed in Example
13.1 admits a completely unique decomposition because the three ir-
reducible sub-representations we identified are all non-isomorphic and
the multiplicity of each is one. According to Theorem 16.1, this is
therefore the only decomposition.

To prove Theorem 16.1, we first need the following, quite general,
lemma.

Lemma 16.2. A homomorphism of irreducible representations is ei-
ther zero or an isomorphism.

Proof. Consider a homomorphism V' — W of irreducible representa-
tions. Since the kernel is a sub-representation of V', we see that the
kernel is either 0 or all of V. Likewise, since the image is a subrepre-
sentation of W, it is either zero or all of W. Thus, a non-zero homo-
morphism between irreducible representations must be both injective
and surjective. The lemma follows. U

Proof of Theorem. Suppose that V =W & - - W™ = Ufl @ Ul
are two different decompositions of V' into irreducible representations of
G. The composition of the inclusion of W; in V' followed by projection
onto U;
W1 —V — Uz

is a G-linear map of irreducible representations, so must be either zero
or an isomorphism. It can not be the zero map for all ¢, so some U;—
after relabling say U;— is isomorphic to W;. Repeating this argument
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for W5 we see that Wy = U, and so on until each W is paired with some
Ui. Reversing the roles of the U; and W; we see that the isomorphism
types appearing in both decompositions are precisely the same.

Now it remains only to show that W/ and Uz-bi are precisely the same
sub-representations of V' (not just isomorphic—but literally the same
subspaces). For this, we again consider the composition of inclusion
with projection:

WiV -sUlo...oUr,

where the second map is projection onto all the summands complemen-
tary to Ufl. It is easy to see that this must be the zero map. (If not,
then by restricting and projecting onto selected factors, we’d have a
non-zero map Wy — U;, for i # 1.) This means that W is contained
in the kernel of the projection, in other words,

b
wit c U

Reversing the roles of U and W, we get the reverse inclusion. It follows
that W = U}, and since U; and W, have the same dimension, also
a; = by. Clearly, we can apply this argument for each index i =
2,...,n, and so the theorem is proved. O

17. IRREDUCIBLE REPRESENTATIONS OVER THE COMPLEX
NUMBERS.

We have seen that irreducible representations are quite rigid. This
is even more true for representations over the complex numbers.

Lemma 17.1 (Schur’s Lemma). The only self-isomomorphisms of a
finite dimensional irreducible representation of a group G over the com-
plex numbers are given by scalar multiplication.

Proof. Fix an isomorphism ¢ : V' — V of complex representations of
G. The linear map ¢ must have an eigenvalue A over C, and so also
some non-zero eigenvector v. But then the G-linear map

V-V
z = [p(x) — Az]
has the vector v in its kernel, which is again a representation of G.
Since V is irreducible, the kernel must be all of V. In other words, we

have ¢(z) = A(z) for all = € V| which is to say, ¢ is multiplication by
A U
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Schur’s Lemma, is false over R. For example, rotation through 90°
(or indeed any angle) is obviously an automorphism of the irreducible
representation of the rotation subgroup R4 acting tautologically on the
real plane. The eigenvalues of this rotation map are non-real complex
numbers, so we can not argue as above over the reals. Indeed, consider
the “same” representation over C, that is, by composing

R, C GLQ(R) — GLQ((C)

to get a representation of R, on C2. Over C, this representation is not
irreducible. Indeed, it decomposes into the two representations spanned
by [ i } and [ _21 } where the generator r; acts by multiplication by
1 and —17 respectively. See also Example 77.

Schur’s Lemma has some striking consequences for the classification
of representations of finite groups over the complex numbers.

17.1. Representations of Abelian groups. Let V' be any represen-
tation of a group G. Each element g € GG induces a linear map

V-V

v—g-v.

Is this a homomorphism of representations? Not usually! It is a ho-
momorphism of G-representations if and only if it commutes with the
action of each h € GG, that is, if and only if

h-g-v=g-h-v

for all A in G and all v € V. Of course, this rarely happens: imagine
that G is GL,(R), and ¢ and h are non-commuting matrices.

However, if G is abelian, or more generally if ¢ is in its center, then
the action of g on V' is G-linear. Indeed, then

h-(g-v)=(hxg) -v=_(gxh)-v=g-(h-v)
forall h € G and all v € V.

This observation, together with Schur’s lemma, leads to the following
striking result:

Proposition 17.2. Every finite dimensional irreducible complex rep-
resentation of an abelian group is one-dimensional.
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Proof. Suppose that V' is a finite dimensional irreducible representation
of an abelian group GG. Then the action of G on V is G-linear, so by
Schur’s lemma, the action of g on V' is simply multiplication by some
scalar, A(g), which of course, can depend on the element g. In any
case, every subspace is invariant under scalar multiplication, so every
subspace is a sub-representation. So since V' is irreducible, it must have
dimension one. 0

This does not mean that the representation theory of abelian groups
over C is completely trivial, however. An irreducible representation of
an abelian group is a group homomorphism

G — GL,(C) = (C*,.),

and there can be many different such homomorphisms (or elements
of the “dual group”). Furthermore, it may not be obvious, given a
representation of an abelian group, how to decompose it into one-
dimensional sub-representations. Schur’s Lemma guarantees that there
is a choice of basis for V' so that the action of an abelian group G is
given by multiplication by

Ml 00 -0
0 X(9) O - 0
0 0 - 0 Mg

where the diagonal entries \; : G — C* are group homomorphisms.
But it doesn’t tell us how to find this basis or the functions ;.

17.2. Irreducible representations of S;. Let us now try the first
non-abelian case: can we identify all the irreducible representations of
S3 over C, up to isomorphism?

Suppose V' is complex representation of S3. The group S5 is gener-
ated by ¢ = (123) and 7 = (12), so to find sub-representations, it is
enough to find subspaces of V' invariant under the action of both o and
T.

First consider the action of ¢ on V. Let v be an eigenvector for
this action, with eigenvalue 6. Let 7o = w. Because we know that
70T = 0% in Ss, is easy to check that w is also an eigenvector for o
with eigenvalue #?. Indeed:

c-w=o0r-v=T10°-v="1-0% =0 v=~0w.
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It follows that the subspace generated by v and w is invariant under
both ¢ and 7, hence under all of S3. In particular, an irreducible
representation of S3 over the complex numbers can have dimension no
higher than two.

Can we actually identify all the irreducible representations of S5 over
C? Suppose V is irreducible, and again let v be an eigenvector for the
action of o on V, with eigenvalue 6. Since o3 is the identity element of
S3, this eigenvalue must satisfy #° = 1. There are essentially two cases
to consider: either the eigenvalue is one, or it is a primitive third root
of unity:.

First we consider the case where the eigenvalue 6 # 1. In this case,
6 # 62, so the vectors v and w = 7v have distinct eigenvalues 6 and
62, hence are independent. This means that v and w span V, which
necessarily has dimension two. In this case, the map

V=W ={(z1,22,25)| Y x; =0} CC

vi— (1,0,0%); w— (0,1,60%),
defines an isomorphism from V to the standard representation of
Ss (prove it!).

It remains to consider the case where 8 = 1. Now w = ov = v, so that
the irreducible representation V' is one dimensional. We already know
that o acts trivially, so the only issue is how 7 might act. But since
72 = 1, the only possibilities for the actions of 7 are either trivially,
or by multiplication by —1. If 7 acts trivially, the irreducible repre-
sentation V' is the trivial representation. If 7 acts acts by —1, then V'
is the alternating representation. Thus, up to isomorphism, there
are precisely three irreducible representations of S3 over the complex
numbers: the trivial, the alternating and the standard representations.



