GROUPS AND THEIR REPRESENTATIONS

KAREN E. SMITH

1. INTRODUCTION

Representation theory is the study of the concrete ways in which abstract groups can be
realized as groups of rigid transformations of R" (or C").

First, let us recall the idea of a group. The quintessential example might be the symmetry
group of a square. A symmetry of the square is any rigid motion of Euclidean space which
preserves the square. For example, we can rotate the square counterclockwise by a quarter
turn (90 degrees); this is one symmetry of the square. Another is flipping the square over
its horizontal axis. Of course, “doing nothing” is the identity symmetry of the square.

Of course, any two symmetries can be composed to produce a third. For example, rotation
though a quarter-turn followed by reflection over the horizontal axis has the same effect on
the square as reflection over one of the diagonals. Also, every symmetry has an “opposite” or
imverse symmetry. For example, rotation counterclockwise by ninety degrees can be undone
by reflection clockwise by ninety degrees so that these two rotations are inverse to eachother.
Each reflection is its own inverse.

The full set of symmetries of the square forms a group: a set with natural notion of
composition of any pair of elements, such that every element has an inverse. Intuitively, the
elements of a group can always be considered transformations of some set with the usual
notion of composition. We will soon give a formal definition for a group, but the idea of a
group is well captured by the fundamental example of symmetries of a square, and we will
return to it throughout these lectures to understand many different features of groups.

Groups arise everywhere in nature, science and mathematics, usually as collections of
transformations of some set which preserve some interesting structure. Simple examples
include the rigid motions of three-space that preserve a particular molecule, the transforma-
tions of space-time which preserve the axioms of gravitation theory, or the linear transfor-
mations of a vector space which preserve a fixed bilinear form.

Only in the late nineteenth century was the abstract definition of a group formulated
by Cayley, freeing the notion of a group from any particular representation as a group of
transformations. An analogous abstractification was happening throughout mathematics:
for example, the notion of an (abstract) manifold was defined, freeing manifolds from the
particular choice of embedding in R". Of course this abstraction is tremendously powerful.
But abstraction can have the effect of making the true spirit of a group (or a manifold,

or whatever mathematical object you chose) obscure to the outsider. Group theory—both
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historically and as practiced by modern mathematicians today—is at its heart a very concrete
subject grounded in actual transformations of a set.

It turns out that, despite the abstract definition, every group can be thought of concretely
a group of symmetries of some set, usually in many different ways. The goal of representa-
tion theory is to understand the different ways in which abstract groups can be realized as
transformation groups. In practice, we are mainly interested in understanding how groups
can be represented as groups of linear transformations of euclidean space.

2. ABSTRACT GROUPS.

Definition 2.1. A group is a set G, together with a binary operation * satisfying:

(1) Associativity: g1 * (g2 * g3) = (g1 * g2) % g3 for all g1, g2, 93 € G.
(2) Existence of identity: there exists e € G such that gxe =e*xg =g for all g € G.
(3) Existence of inverses: for all g € G, there exists g~! € G such that gxg~! = g7 'xg = e.

A group G is abelian if the operation x is commutative, that is if g x h = h % g for all ¢
and h in G.

The order of a group (G, *) is the cardinality of the set G. The order of G is denoted |G].

The quintessential example of a group is the set of symmetries of the square under com-
position, already mentioned in the introduction. This group is called a dihedral group and
denoted D4. What is the order of D,? That is, how many different symmetries has a square?

Well, there are four rotations: counterclockwise through 90, 180, or 270 degrees, plus the
trivial rotation through 0 degrees. We denote these by 71,179,713, and I, respectively. Of
course, we could also rotate clockwise, say by 90 degrees, but the effect on the square is the
same as counterclockwise rotation through 270, so we have already counted and named this
symimetry rs.

In addition to the four rotations, there are four distinct reflections: over the horizontal
axis, the vertical axis, or either of the two diagonals. We denote these by H, V', D and A,
respectively!. Putting together the four rotations and the four reflections, we get all the
symmetries of the square, as you should check. Thus D, has order eight.

By definition, a group (G, *) is closed under . For the dihedral group this means that
composing any two of these eight symmetries, we obtain another symmetry on this list of
eight. For example, if we rotate 90°, then rotate 180° (both counterclockwise), we have in
effect rotated 270°. In other words ry o r; = r3. [Note our convention! We write ry o ry
for the transformation “ry followed by 75”.]

1Fixing the square so it is centered at the origin of the cartesian plane, these are reflections over the
r-axis, y-axis, the diagonal y = = and the antidiagonal y = —x, respectively.
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The group structure of Dy can be expressed in a Cayley table, showing how to compose
any two elements of the group. The 64 compositions of the 8 symmetry transformations are
displayed as follows:

o I r Te T3 H A V D
1 1 T Te T3 H AV D
rH | Ty Tro T3 I D H AV
To | T9 T3 I 1 Vi D H A
s | Ts 1 T Te AV D H
H| H A VD 1 r To T3
Al A VD H T3 I M T9
ViV D H A ro r3 I 1
D\D H AV r I ry nr

Another convention: We write a o b in column a and row b, not vice versa. So we can
read from the table: AoV = ry.

From the Cayley table, much of the group structure is clearly visible. We see that Dy is not
abelian; the Cayley table of an abelian group would be symmetric over the main diagonal.
We easily find the inverse of any element by looking for I in each column. Try picking out
those g which are inverses of themselves.

Higher order dihedral groups. The collection of symmetries of a regular n-gon forms
the dihedral group D,, under composition. It is easy to check that this group has exactly 2n
elements: n rotations and n reflections. Like Dy, D,, is non-abelian.

The quintessential example of an infinite group could be the group GL,(R) of
invertible n x n matrices with real coefficients, under ordinary matrix multiplication. There
is nothing sacred about the real numbers here: GL,(Q) and GL,(C) are also groups under
multiplication, as is GL,(F'), where the entries are taken from any field F. The notation
GL,(R) implies the group structure to be given by ordinary matrix multiplication.

Additive groups. The integers form a group under addition, denoted (Z,+). Zero
is identity element, and the inverse of 17, for example, is —17. Because this group (and
many others) already come with standard notation, we of course won’t write such foolery as
2% 3 =5 or (17)7! when we mean the inverse of 17 in the group (Z, +).

Similarly, the real numbers and the rational numbers form the additive groups (R, +) and
(Q,+), respectively.

None of the groups (Z,+), (R,+) or (Q,+) are very good examples of groups. Most
mathematicians are not interested in these objects as groups. They each carry a great
deal more structure which obscures their “group-ness”. The integers are more naturally
considered as a ring—there are two operations, addition and multiplication. The rational
numbers are a good example of a field— we can also divide by non-zero elements. The

real numbers have many analytic and topological features, in addition to their algebraic
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properties— they are a complete ordered field, for example. Mover, the topological and
algebraic properties of R can even be combined giving us the simplest example of a Lie
Group—that is a manifold which admits a compatible group structure. The group GL,(R)
is another example of a more interesting manifold. We will discuss Lie groups in depth later.

The Multiplicative group of a field or ring. The integers do not form a group under
multiplication, since most elements do not have multiplicative inverses. However, both (Q*, -)
and (R*,-), the non-zero rational and the non-zero real numbers, respectively, do form groups
under multiplication. Indeed, the non-zero elements F* of any field F' form a group under
multiplication. Even more generally, the set of (multiplicatively) invertible elements R* in
any ring R, forms a group under multiplication. For example Z* is the two-element group
{1, —1} under multiplication.

Some groups obtained from the complex numbers. The complex numbers give rise
to groups (C,+) and (C*,-). The collection of complex numbers of absolute value 1 also
forms a group under multiplication, denoted U(1). The group U(1) is sometimes called the
circle group. It is the simplest example of a compact Lie group—a compact manifold which
carries a compatible group structure.

Definition 2.2. A subset H C G of a group (G, *) is a subgroup if H also forms a group
under *.

Put differently, a subgroup is a non-empty subset closed under the operation * and under
taking inverses. For example, (Q,+) is a subgroup of (R, +), since the sum of two rational
numbers is rational and the additive inverse of any rational number is rational. However R*
is NOT a subgroup of (R, +), even though it is a group in its own right, because the group
operations are not the same.

On the other hand, the set of positive real numbers R, forms a subgroup of the group R*
of non-zero real numbers under multiplication. Similarly, Q. is a subgroup of Q*.

Special Linear Groups. The set SL,,(R) consisting of real matrices of determinant one
forms a subgroup of the matrix group GL,(R). Likewise, the matrices of determinant one
form the subgroups SL,(Q) and SL,(C) of GL,(Q) and GL,(C), respectively.

The rotation subgroup R, of D, is made up of the four rotations of the square (including
the trivial rotation). Likewise, the rotations of an n-gon form an order n subgroup R, of
D,,. The reflections of the square do not form a subgroup of D4: the composition of two
reflections is not a reflection. Looking back at the Cayley table for D, on page two, we can
see the Cayley table fr R, embedded as the upper left 4 x 4 section.

The even-odd group is the set consisting of the two words “even” and “odd,” under the
usual “rules for addition:” even plus even is even, even plus odd is odd, etc. This is not a
subgroup of Z: its elements are sets of integers, not integers in some subset of Z. However,

it is a quotient group of Z. We will discuss quotient groups in detail in the next lecture.
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Modular Groups. The modular group (Z,,+) consists of the n congruence classes
modulo n, under addition. We will write 7 for the congruence class of the integer i. So —1
and n — 1 are just two different ways to represent the same element of Z,, just as % and % are
two different ways to represent the same rational number. Of course, in the group (Z,,+),
the class 0 is the identity element, and the class —i is the inverse of 1.

Isomorphism. The even-odd group is the “same as” the modular group Z, in a cer-
tain sense—essentially we've only named the elements differently. Likewise, the group R, of
rotations of the square seems to have the same structure as Z,. This “sameness” can be
formalized as follows.

Definition 2.3. Two groups are isomorphic if there is a bijection between them that respects
the group operations of each. Equivalently, an isomorphism is a bijection ¢ : G — H

satisfying ¢(g192) = ¢(91)9(g2).

Put more informally, two groups are isomorphic if we can rename the elements of one to
be the elements of the other while preserving the Cayley table.

The rotation subgroup Ry is isomorphic to (Zy, +). Indeed, the map r; — i respects the
group operation and thus an isomorphism.

Because they are isomorphic groups, all properties of Ry and Z4 having to do with the
group structure must be the same in each. For example, the rotations can all be obtained
from the quarter rotations r; by successive compositions, just as the elements of Z, can be
obtained by successive additions of 1. In both groups, we cycle back at the identity after
four iterates. We say that R, is generated by the quarter turn, and that Z, is generated by
1. Formally,

Definition 2.4. A subset S of a group (G,*) generates G if each element g in G can be
written as a word sy * Sg -+ - S;_1 * S;, where each s; or its inverse is in S.

The groups (Z4,+) and R, of rotations of the square are examples of cyclic groups—
groups that can be generated by one element. An example of a non-cyclic group is the Dy
of all symmetries of the square. It is generated by r; and H, but not by any single element.
Indeed, every cyclic group is abelian, but Dy is not.

Groups can (and usually do) have many different subsets which generate it. For example
Dy is also generated r3 and A. Likewise, (Z,+) is a cyclic generated by 1, or by —1. Also
the two-element set {17,4} generates Z as an additive group, as does, say the subset of all
positive integers.

More generally, we can consider the subgroup of G generated by some subset S. This is
the smallest subgroup of G containing S. For example, R, is the sugroup of D, generated
by the rotation ;.

The subgroup of the group (Z,+), generated by some fixed integer N is the sugroup of
multiples of N. We denote this group NZ. It is not hard to show that every subgroup of

(Z,+) is of this form.
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The Klein four-group. Consider the subgroup G of D4 generated by D and A. It is
easy to check that G consists of the four elements e, D and A, and 7.2 One could write
longer “words” in A and D, but after canceling unnecessary factors (such as Ao A, which is
e), all words in D and A reduce to one of the four elements {e, A, D, ry}.

The group G can not be isomorphic to (Zg4, +), even though they both have four elements.
Indeed, GG has the interesting property that every element is its own inverse! If we could
rename the elements of G to be congruence classes in Z, while preserving the group structure,
it would follow that every element of (Z4,+) would be its own inverse as well. But this is
not the case! The class 1 has 3 as its additive inverse in Zj4, but 1 # 3 in Z,.

Remark 2.5. Tt is common to use multiplicative language and notation for groups, when this
isn’t likely to lead to confusion or when there isn’t another already standard notation, as
in (Z,+). For example, we rarely bother writing » for the operation, instead writing gh for
g * h. This justifies also the use of g~! for the inverse of g under x. HOWEVER, it is
important to realize that the composition language and notation is closer to the
spirit of groups. This is because, philosophically and literally speaking, all groups are
transformation groups, with composition as the operation. We will see why next week.

2.1. Generators of GL,(R). The group GL,(R) is huge: not only is it uncountable, but
it easy to see that it can’t even be generated by countably many elements. None-the-less, it
does admit a reasonable set of generators.

Recall that every (invertible) linear transformation is a composition of elementary trans-
formations. After fixing a basis, we can describe the elementary transformations as one of
three types:

(1) interchanging two basis elements;
(2) sending e; to some e; + Ae;j, where A is some scalar.
(3) scaling e; by some non-zero scalar A.

If we identity R™ as column vectors, thereby identifying linear transformations on R"™
with left multiplication by some n x n matrix, these linear transformations are represented
by the corresponding elementary matrices obtained from the identity matrix by the same
transformations on columns:

(1) C;; = the identity matrix with columns ¢ and j switched;
(2) E;; = the identity matrix with A put into the ij-th spot;
(3) S; = the identity matrix with i-th column scaled by A.

Thus these three types of matrices together generate the group of all invertible n x n matrices
under multiplication.

Exercise 2.6 (The Center of a group). The center of a group G is the set Z of elements
which commute with all elements of G: Z ={z € G | gz = zg for all g € G}.

2Note AD = DA = ry in Dy.



) Prove that the center is a subgroup.
) Find the center of Z,.
) Find the center of Dy.
) Find the center of S,,.

(1
(2
(3
(4

3. TRANSFORMATION GROUPS

Let X be any set, finite or infinite. A transformation of X is a bijective self-map f : X —
X. A bijective self-map of a set X is sometimes also called a permutation (especially when
X is finite) or automorphism of X. Indeed, to use fancy language, a bijective self-map is an
automorphism in the category of sets, so this is reasonable terminology.

Two transformations can be composed to produce a third, and every transformation has
an inverse transformation (this is essentially the meaning of “bijection”). In other words,
the collection of all transformations of X forms a group under composition®, whose identity
element is the identity transformation e fixing every element. We denote this group by

Aut X ={f: X — X | f is bijective}
with the group operation understood to be composition.

Definition 3.1. A transformation group is any subgroup of Aut X for some set X.

The dihedral group Dy is a transformation group: its elements can be interpreted as trans-
formations of R? which preserve the square. Indeed, these are not arbitrary transformations
of R?, but transformations which respect the vector space structure structure of R*>—that is,
they are all linear transformations of R2.

This brings up an important point. Often X carries some extra structure, and we are
mainly interested in automorphisms that respect this structure. Put differently, if X belongs
to some interesting category of mathematical objects, we often look at automorphisms of
X in that category? instead of merely the automorphisms of X as a set.The main case of
interest is when X is a vector space,” where we are interested in the bijection self maps
X — preserving the vector space structure (that is, linear transformations). Because the
composition of two linear maps is linear, the set of all (invertible) linear transformations of X
forms a subgroup of Aut X, which we denote by GL(X). Of course, a linear transformation
is a very special kind of bjiective self-map, so GL(X) is a proper (and relatively quite small)
subgroup of Aut(X) in general. Imagine all the crazy bijections we could cook up of R*—-there
are all sorts of non-linear homomorphisms and even more arbitrary bijections that may not
even be continuous at any point! In the category of vector spaces, an automorphism is simply
an invertible linear map. We could say GL(R") =  Autyect.sp(R"™).

3composition is obviously associative

4The term category can be taken here in its precise technical meaning or in a more informal decription
way, depending on the reader’s background and inclination.
Sover some as-yet unnamed field— in this course usually R or C
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Historically, all groups were transformation groups: Galois’s groups were permutation
groups of roots of polynomials, Klein’s Erlangen program involved groups of linear trans-
formations preserving some geometry. Still today, transformation groups of all kinds arise
naturally in nature and mathematics. The idea of an abstract group, due to Cayley, came
much later.

Most of the groups we have already discussed are transformation groups by definition: D,
R,, SL,, GL,. Most of more abstract examples, such as the quotient groups Z,, are easily
seen to be isomorphic to transformation groups (as Z,, is isomorphic to the group of rotations
of the regular n-gon). It turns out that every group is (isomorphic to) a transformation group
of some kind. We will prove this fundamental fact, due to Cayley, in the next lecture.

3.1. Groups of linear transformation and matrices. The group GL(R") and its close
cousin GL(C") is one of the most important group in mathematics and physics. We fix some
notation and conventions for dealing with it. If we think of R™ as being the R-vector space
of column vectors, then the standard basis will be

1 0 0

0 1 0
er=1-1, e=|01], ....,e, =

0 0

0 0 1

A linear transformation 7' : R" — R" is determined by where it sends each of these basis
elements, say
Qi1
T(e,) — ;2
iy,
It is then straightforward to check that the linear map 7' is given by ordinary matrix multi-
plication of column vectors by the n X n matrix

11 an1
Q12 Ap2

. b
Aip ... Qpp

whose © — th column is the column vector which is the image of e;. This identification gives
us an isomorphism

GL(R") — GL,(R)

with the group of invertible real n X n matrices.

Convention: In dealing with R", we will often identify GL(R™) with GL,(R). However,
if is important to realize that this isomorphism depends on the choice of a basis for R";
in this case, our choice was the standard basis of unit column vectors described above. Vector
spaces—even finite dimensional real ones— usually do not come with a god-given choice

of basis. Yes, every every n-dimensional real vector space is isomorphic to R™, but there is
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no canonical way to define this isomorphism—there is no “standard basis” for example for a
skew plane in R3. The notation R” denotes an abstract vector space together with a choice of
basis. Once a basis is chosen for a vector space V', we essentially have fixed an isomorphism
with R", and we therefore also we fix an isomorphism of the group GL(V') with the group
of invertible n x n matrices.

3.2. The Symmetric Groups. Probably the most basic example of a transformation group
is the group Aut X where X is a finite set of cardinality n. Of course, the different ways
in which a set of n objects can be permuted is the same regardless of whether those objects
are fruits, students in a class, points in some space, or the numerals {1,2,3,...,n}. For
convenience, therefore, we will usually label the objects {1,2,3,...,n}.

Definition 3.2. The group Aut {1,2,3,...,n} is called the symmetric or permutation group
on n letters, and is denoted S,,.

For example, there are six elements of S3, which we list out as follows:

e: the identity permutation, fixing each element,
three transpositions: namely

71: fixing 1 and switching 2 and 3,

Ty: fixing 2 and switching 1 and 3,

73: fixing 3 and switching 1 and 2,
and two 3-cycles: specifically

o: sending 1 +— 2, 2+— 3 and 3+ 1

o~1: sending 1+ 3, 2+— 1 and 3+ 2.

Note that each element of S, is a bijection, so can be described by giving a list of pairs
essentially describing the image of each of the n object. However, a more compact and
convenient notation is cycle notation. In cycle notation, the transposition 7; is denoted by
(23), meaning it sends 2 to 3 and 3 to 2. Likewise, 75 is written (13) and 73 (12). Similarly, o
is denoted (123) since it sends 1 to 2, 2 to 3, and 3 to 1. That is, the image of each numeral
is the numeral immediately following it, unless a parenthesis follows it in which case we cycle
back to the first numeral in that parentheses. So o1 is (132).

For example, in Sy the permutation
o(1)=2 0(2)=4 0(3)=5 c(4)=1 0(5)=6 o(6)=7 o(7)=9 0(8) =8 ¢(9) =3
is denoted
o = (124)(35679)(8),
which can be simplifying by omitting the fixed objects
o = (124)(35679).

Note that the 3-cycle (124) is the same permutation as (241) and (412); there is no difference
in the permuations these expressions represent. Also the disjoint cycles (124) and (35679)

commute: we can just as well represent the permutation o by (35679)(124).
9



An element of S,, which cyclicly permutes k of the objects is called a k-cycle. For example
(12345) is a 5-cycle but (12)(345) is not any kind of cycle (though it is the composition of
a two-cycle and a three-cycle). It is not always immediately obvious what permutations are
cycles. For example, the composition (12)(23), which according to our convention means the
permutation (23) followed by (12) is the 3-cycle (123). A transposition is another word for
2-cycle.

Some basic facts about S,, that you should prove to familiarize yourself with this important
group include:

(1) There are n! permuations in S,,.

(2) Disjoint cycles in S,, commute.

(3) Every permutation in .S,, can be written as a composition of disjoint cycles— uniquely,
up to reordering the disjoint cycles.

(4) Every permutation in S, is a composition of transpositions. That is, S, is generated
by transpositions.

4. PrRoDUCTS OF GROUPS

Two groups can be put together in a simple way to form a third group, their product.
Formally:

Definition 4.1. Let (G, *) and (H, %) be groups. Their product is the Cartesian product set
G x H with the group operation defined as follows: (g, h) - (¢',h') = (g * g, h x h').

It is straightforward to verify that G x H is a group with identity element (eq, ep).
);

Example 4.2. The group (Z,xZs, +) has six elements: (1,1), (0,2), (1,0), (1,2), (0,2), (0, 0).
The addition is defined “coordinate-wise, ” so for example (1,1) + (1,1) = (0, 2). Note that
this group is isomorphic to Zs. Indeed, if we identify the element (1,1) with the element 1
in Zg, then be repeatedly adding this to itself, we list out the elements of (Zy x Zg, +) given

above in the way they should be renamed to produce the elements 1,2,3,4,5,0 of Zg.

{1,
I

Exercise 4.3. Caution! It is not always true that Z, x Z,, = Z,.,. As an easy exercise,
show that Zs X Zs is not isomorphic to Z,. Find a subgroup of D, to which it is isomorphic.
Find a necessary and sufficient condition on n and m such that Z, X Z,, = Zn.

Exercise 4.4. Prove that for n < 3, there is only one group of order n, up to isomorphism.
Prove that there are exactly two groups of order four, up to isomorphism.

5. HOMOMORPHISM

Let G and H be groups. A group homomorphism is a map ¢ : G — H which preserves
the multiplication: ¢(g192) = #(91)6(g52).

An isomorphism is the simplest example of a homomorphism. Indeed, an isomorphism

can be defined as a bijective homomorphism.
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The inclusion of a subgroup H in a group G is an example of an injective homomorphism.

The projection of a product group G x H onto either factor is an example of a surjective
homomorphism. That is, 7 : G x H — G sending (g, h) to ¢ is a homomorphism.

A homomorphism is any set map which respects the group structure. For example, a
homomorphism must send the identity element to the identity element (check this!). Also,
if g and ¢’ are inverse elements of some group, then their images under any homomorphism
are also inverse to each other.

Example 5.1. (1) The map Z — {Even,Odd} sending an integer n to “even” if n is
even and to “odd” if n is odd defines a group homomorphism from the corresponding
additive groups.

(2) The map x — e* defines a group homomorphism from (Q, +) to (R*,-). It is injective,
but not an isomorphism since not every real number is in the image. However,
exponential map from (R, +) to the positive real numbers (R, -) is an isomorphism
of groups.

(3) The map Z — Z, sending each integer to its equivalence class modulo n is an
surjective homorphism of the corresponding additive groups.

6. QUOTIENT GROUPS

Before discussing quotient groups in general, we first review the construction of Z,,.

Definition 6.1. Integers a and b are congruent modulo n if their difference is a multiple of
n. We write a = b mod n.

Note that

(1) a = a mod n;
(2) @ = b mod n if and only if b = a mod n;
(3) a=bmodn and b= c mod n implies that b = ¢ mod n.

In other words, the relation “congruence modulo n” is reflexive, symmetric, and transitive on
Z; that is, it defines an equivalence relation on Z. Like any equivalence relation, it partitions
Z up into disjoint equivalence classes. These are called the congruence classes modulo n.

Definition 6.2. The congruence class of a € Z modulo n is the set of integers congruent to

a modulo n. We denote® this class by @. In other words:
a={a+nk|keZ}.

There are exactly n distinct congruence classes modulo n. Usually, we will write them
0,1,...,n — 1. We emphasize that @ is a set of integers, though of course, we can represent

6Some caution is in order when using this notation since the dependence on n is suppressed from the
notation.
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this set in many ways by choosing some representative. For example —1 = n — 1. Both rep-
resentatives are equally valid, and depending on the situation, one may be more convenient
than another. This is exactly analogous to the way in which both % and % are equally valid
representations for the same rational number, and depending on the circumstances, it may
be more convenient to write the fraction one way or the other.

One simple but very important observation is that if a = a’ and b = &’ mod n, then also
a+b=d + bmod n.
In other words, it makes sense to add congruence classes by simply choosing any represen-
tative and adding those:
a+b=a+b;
the resulting sum is independent of the chosen representatives for each class. This means

that there is a well-defined addition on the set of congruence classes: simply add any two
representatives, and take the class of their sum!

Definition 6.3. The group (Zy,,+) is the set of congruence classes of Z modulo n, with the
operation defined asa+b =a + b.

One course, you should verify that (Z,,+) satisfies the axioms of a group. Associativity
follows from the associativity for Z. The identity element is 0 (which, we remind, is the set
of multiples of n). The inverse of @ is —a, which we can also write n — a.

6.1. Cosets. Now let try to carry out a similar procedure for any group. First observe that
a = b mod n can be expressed by a — b € nZ, where nZ is the subgroup of Z consisting of
multiples of n.

Consider any subgroup K of a fixed group G.

Definition 6.4. We say that g is (right) congruent to h modulo K if
gxh™' € K.

Taking K C G to be the inclusion nZ C Z, we recover the notion of congruence of two
integers modulo n. Note g is congruent to h modulo K if and only if there exists some k € K
such that

g = kh,
or equivalently if and only if
g€ Kh:={kh | ke K}.

Using the same notation as in the integers, we could also write ¢ = h mod K.”

This notion of congruence modulo K defines an equivalence relation on G. Indeed, it
is reflexive (¢ = g mod K) because the subgroup K contains the identity element; it is
symmetric (¢ = h mod K if h = g mod K) because K is closed under taking inverses; and

Talthough usually we prefer not to, since when G is not abelian, this may lead to confusion.
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it is transitive (¢ = h mod K and h = s mod K implies that ¢ = s mod K') because of the
associative law in G.

Again, like any equivalence relation, the group G gets partitioned up into equivalence
classes, called the right cosets of G with respect to K. Precisely,

Definition 6.5. The right coset of g € G with respect to the subgroup K is the set
Kg={kg |k € K}

of elements of G congruent to g modulo K.

6.2. Left Cosets. Similarly, we can define g and h to be left congruent if g7! xh € K.
The equivalence classes of this equivalence relation are the left cosets K := {gk | k € K}.
Though which convention we chose to work with (left or right) is not important, we caution
the reader that g K and K g may be different subsets of G. That is, left and right congruence
define different equivalence relations on G, and therefore result in different partitions of G
into equivalence classes. Of course, if G is abelian, this issue does not arise. For example,
the coset of an integer a with respect to the subgroup nZ is always just the congruence class
of @ modulo n, whether we consider left or right cosets.

Example 6.6. Let us compute the left cosets of the rotation group R, inside D,. Since Ry
is closed under multiplication,

]OR4:T10R4:T20R4:7’30R4

is one coset, consisting of the rotations of the square. There is only one other coset, as you
can check:

HOR4:AOR4:VOR4:DOR4,
consisting of the reflections. Note that in this example, the right cosets yield the same
partition of GG into rotations and reflections.

For any subgroup K of a group G, the subgroup K itself is always a coset—indeed, it
is both the left and right coset of the identity element e. Of course, no other coset is a
subgroup, since none of these non-overlapping sets will contain e.

Can we define a group structure on the set of (say, left) cosets of a group G with respect
to some subgroup K7 After all, this was easy to do for Z,.

The answer is NO in general. Indeed, suppose we have two left cosets a/K and bK. Why
not just define their product to be abK? The reason is that this may depend on the choice
of representative for the cosets! Indeed, if @’ and b’ had been different representatives, which
is to say that a = a'k; and b = b'ky for some elements k; and ko in K, then in order for this
operation to be well defined, we would need

ab(a'b) ' € K
But ab = a'kib'ks, and there is no guarantee that we can swap kib’ to t'k;. All we really

would need is that kb’ = V'k”, for some k£ € K, but this is not guaranteed! In general,

The set of (left) cosets of K in G does not have an induced group structure in
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a natural way. Our calculation shows that in order to induce a well-defined multiplication
on the (left) cosets, the precise condition we need is that for all b € G and all k € K

b kb e K.
In other words, K must be a normal subgroup of G.

Definition 6.7. A subgroup K of G is normal if 7' Kg C K for all g € G.

Equivalently (prove it!) a subgroup K of G is normal if and only if gK = Kg for all
g € G—that is, left and right congruence modulo K partitions G up into equivalence classes
in the same way: the left and right cosets are the same.

If K is a normal subgroup, we will denote by G /K the set of cosets® of G with respect to
G. Our discussion above shows that the set G/K has an naturally induced “multiplication”:

gK xhK = g*hK
which is independent of the choices of g and h here to represent the cosets.

Definition 6.8. For a normal subgroup K of a group (G, ), the quotient group of G with
respect to K, denoted G/K, is the set of cosets of G with respect to K, together with the
induced operation gK x hK = g x hKK.

You should verify that G/K really satisfies the axioms of a group. Again, we emphasize
that the elements of G/K are subsets of G. In particular, the identity element is the coset
eK of the identity element, the subset K. Of course, if K is the subgroup nZ of Z, we
recover the usual modular group Z,. That is, Z/nZ = Z,.

Definition 6.9. If K is a normal subgroup of a group G, then the natural map
G — G/K

sending each element of G to its coset with respect to K is a surjective homormorphism.
This natural map is often called the canonical surjection or the quotient map.

Exercise 6.10. The kernel of a group homomorphism ¢ : G — H is the set of elements in
G which are sent the the identity under ¢. Show that a subgroup K of G is normal if and
only if it is the kernel of some group homomorphism.

6.3. Lagrange’s Theorem. Even when K is not normal, the set of (left, say) cosets can
be an interesting object of study, even though it doesn’t have a natural group structure. For
example, although most cosets are not subgroups of GG, there is certainly a bijection:

K < gK
k < gk.

So we can think of the cosets as partitioning GG up into disjoint sets of “equal size” in some
natural way. Indeed, an immediately corollary is the following fundamental fact:

8left or right, as we mentioned above, they are the same
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Theorem 6.11 (Lagrange’s Theorem). If G is a finite group, the order of any subgroup of
G divides the order of G.

The number of cosets of G in K is called the index of K in G, and denoted [G : K|. By
definition, if K is normal, the index is equivalently described as the order of the quotient

group G/K.

Put differently, the equivalence relation “congruence modulo K partitions a finite set G
up into [G : K] disjoint sets, all of cardinality |K|. Thus, |G| =[G : K]|K| for any subgroup
K of a finite group G.

Of course, infinite groups can have finite index subgroups; for example, nZ has index n in
7.

Exercise 6.12. Let L C R? be a one-dimensional vector subspace. Thinking of this inclusion
as an inclusion of (additive) groups, compute the cosets with respect to L.
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