JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Undergraduate Representation Theory 2010 author Karen Smith

Exercise Set 7

space-time coordinates

Wednesday Mar. 3 at 8.20-10.00 MaD 380 !!!

Problem 1: Let V be a finite dimensional real representation of a finite group G.

- (1) Show that there is a naturally associated complex representation of G, $V_{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}$.
- (2) Show that V is irreducible if $V_{\mathbb{C}}$ is irreducible.
- (3) Give an example to show that V can be irreducible when $V_{\mathbb{C}}$ is not.

Problem 2: Representation of S_4 .

- (1) Show that there are exactly five conjugacy classes in S_4 .
- (2) Compute the characters of the trivial E, alternating A and standard W representations of S_4 .
- (3) Prove that E, A and W are irreducible over \mathbb{C} (hence over \mathbb{R} by Exercise 2).
- (4) Prove that there are precisely five irreducible complex representations of S_4 of dimensions 3, 3, 2, 1, 1.
- (5) Prove that $A \otimes W$ is an irreducible representation of S_4 , not isomorphic to any of the three in (3).
- (6) Complete the character table for S_4 .

Problem 3: Another use of the word "character" in mathematics. Unfortunately, the word "character" of a group has a competing meaning used by some authors:

Definition: A (complex) character* of a group G is any group homomorphism $G \to \mathbb{C}^*$

- (1) Show that a character* of G is precisely what we have called a one dimensional representation of G.
- (2) Give an example to show that characters (over \mathbb{C}), as we have defined in class, need not be character*s.
- (3) Show that if G is abelian, then the two definitions of character are equivalent.

Problem 4: Group maps in terms of generators and relations Let G be a group, generated by $\{g_1, \ldots, g_t\}$.

- (1) Show that a group homomorphism $\phi: G \to H$ is completely determined by the images of the generators.
- (2) Show that there is a well-defined group homomorphism $\phi: G \to H$ satisfying $\phi(g_i) = h_i$ if and only if for every relation on the g_i in G, the corresponding relation holds for the h_i . That is, more precisely, $\phi(g_i) = h_i$ gives a group homomorphism if and only if whenever $g_{i_1}g_{i_2}\cdots g_{i_t} = e_G$ in G, then the corresponding word $h_{i_1}g_{i_2}\cdots h_{i_t} = e_H$ in H.

KÄÄNNÄ

Problem 5: Representations of D_4 Consider the complex representations of D_4 .

- (1) Using character theory, show that the tautological representation is irreducible over \mathbb{C} . Why doesn't the argument we gave over \mathbb{R} hold here?
- (2) Show that there are exactly five irreducible representations of D_4 , of dimensions 2, 1, 1, 1, 1.
- (3) Explicitly describe the four one dimensional representations of D_4 .
- (4) Write out the character table of D_4 .
- (5) Can you make any conclusions about the irreducible real representations of D_4 based on this?

Problem 6: Fix a finite group G. Consider the vector space \mathcal{F}_G of all \mathbb{C} -valued functions on G, and the subspace \mathcal{C} of those that are constant on conjugacy classes. We wish to show that the characters of irreducible representations of G span \mathcal{C} .

(1) Show that $\alpha \in \mathcal{F}_G$ is constant of conjugacy classes if and only if the map

$$\phi_{\alpha,V}: V \to V; \ v \mapsto \sum_{g \in G} \alpha(g)g \cdot v$$

is G-linear for all complex representations V.

- (2) Show that the trace of $\phi_{\alpha,V}$ is (α,χ_{V^*}) for all $\alpha \in \mathcal{F}$.
- (3) Show if $(\alpha, \chi_{V^*}) = 0$ for some irreducible representation V and $\alpha \in \mathcal{C}$, then $\phi_{\alpha,V}$ is the zero map.
- (4) Show that if $\alpha \in \mathcal{C}$ is non-zero, then $\phi_{\alpha,R}$ is not zero, where R is the regular representation.
- (5) Conclude that the characters of irreducible representations span \mathcal{C} .