JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Undergraduate Representation Theory 2010 author Karen Smith

Exercise Set 3

space-time coordinates monday Feb. 1 at 12-14 in MaA 203

Reading: Dummit and Foote pp 36–39, 46-48, 54–59, 61–64, 66-71, 73-85,

Problem 1: Normal Subgroups. A subgroup H of G is normal if $gHg^{-1} \subset H$ for all $g \in G$, or equivalently if gH = Hg for all $g \in G$.

- (1) Show that every subgroup of an abelian group is normal.
- (2) Which subgroups of D_4 are normal?
- (3) A group G is simple if it has no non-trivial proper normal subgroups. Find all simple cyclic groups.
- (4) The index of a subgroup K of G is the number of distinct (right) cosets of K. Prove that a subgroup of index two is always normal.
- (5) Prove or disprove: D_n is simple.

Problem 2: Homomorphisms. Let $\phi: (G, \circ_G) \to (H, \circ_H)$ be a group homomorphism. (By definition, ϕ is a map of sets satisfying $\phi(g_1 \circ_G g_2) = \phi(g_1) \circ_H \phi(g_2)$.) Show that:

- a. Homomorphisms preserve the identity: $\phi(e_G) = e_H$.
- b. Homomorphisms preserve inverses: $\phi(g^{-1}) = [\phi(g)]^{-1}$.
- c. The kernel of a homomorphism is a normal subgroup of G: that is, $\ker \phi = \{g \in G \mid \phi(g) = e_H\}$ is a normal subgroup of G.
- d. Prove that ϕ is injective if and only if ker ϕ is the trivial subgroup $\{e_G\}$ of G.
- e. The image of a homomorphism is a subgroup: that is, im $\phi = \{h \in H \mid \text{ there exists } g \in G \text{ with } \phi(g) = h\}$ is a subgroup of H.
- f. Prove that the quotient group $G/\ker\phi$ is isomorphic to im ϕ .
- g. Prove that a subgroup H of G is normal if and only if it is the kernel of some group homomorphism.

Problem 3. Prove a criterion (in terms of m and n) for the existence of an isomorphism $\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{mn}$.

Problem 4. Consider the vector space \mathbb{R}^2 as an additive group. Let L be a one dimensional subspace.

- (1) Note that L is subgroup, and explicitly (geometrically) describe the cosets of L in \mathbb{R}^2 . Illustrate.
- (2) Note that \mathbb{Z}^2 is also a subgroup, and explicitly (geometrically) describe its cosets.

Problem 5. True or False? For each statement, prove or find a (non-trivial) counterexample. Let $\phi: G \to H$ be a homomorphism of groups.

- (1) If G is abelian, then H is abelian.
- (2) If G is abelian and ϕ is surjective, then H is abelian.
- (3) If G is abelian and ϕ is injective, then H is abelian.

- (4) If H is abelian and ϕ is surjective, then G is abelian.
- (5) If G is cyclic and ϕ is surjective, then H is cyclic.
- (6) If $g \in G$ has order n, then $\phi(g)$ has order n.

Problem 6: The center. The *center* of a group G is the set Z of elements which commute with all elements of $G: Z = \{z \in G \mid gz = zg \text{ for all } g \in G\}.$

- (1) Prove that the center is a normal subgroup.
- (2) Find the center of \mathbb{Z}_n .
- (3) Find the center of D_4 . Of D_n .
- (4) Find the center of S_n .