JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Undergraduate Representation Theory 2010 author Karen Smith

Exercise Set 2

time monday Jan. 25 at 12-14 in MaA 203 (!!!)

Reading: Dummit and Foote pp 23–27, 29–32.

Problem 1: A study of S_n . Let S_n denote the permutation group on n objects.

- a. Show that S_n has exactly n! elements.
- b. Show that every permutation $\sigma \in S_n$ can be written as a composition of disjoint cycles $\sigma_1 \circ \cdots \circ \sigma_t$ where the σ_i are cyclic permutations of some subset of the n objects. Show that this representation is unique, up to reordering the cycles.
- c. Show that every permutation is a composition of transpositions (that is, 2-cycles). Are the transpositions unique?
- d. Show that there is a way to interpret D_n in a natural way as a subgroup of S_n .
- e. Find (all) subgroups of S_n isomorphic to S_k for all $k \leq n$.
- f. Show that if $k + m \le n$, then $S_k \times S_m$ is isomorphic to a subgroup of S_n . Can you count the number of subgroups of S_n isomorphic to $S_k \times S_m$?

Problem 2: Cyclic Groups. A group is cyclic if it can be generated by a single element.

- a. Prove that every cyclic group is abelian.
- b. Prove that every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.
- c. Prove that every finite cyclic group is isomorphic to $(\mathbb{Z}_n, +)$, for some n.
- d. List all cyclic subgroups of D_4 .
- e. How many cyclic subgroups does D_p have, when p is prime?
- f. Find a formula for the number of cyclic subgroups of D_n , in terms of (the prime factorization of) n.

Problem 3: Products of Cyclic Groups.

- a. Show that \mathbb{Z}_4 is *not* isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- b. Show that \mathbb{Z}_6 is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3$.
- c. Can you conjecture a precise condition for when $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.
- d. Can you prove it?

Problem 4: Generators and Relations for D_n . Consider the group D_n of symmetries of the regular n-gon. Let r be the counterclockwise rotation though the angle $\frac{2\pi}{n}$ and let s be reflection over a line through the center of the n-gon and any one fixed vertex.

- a. Show that r and s generate D_n .
- b. Show that $srs = r^{n-1}$.
- c. Show that every element of D_n can be written uniquely in the form $s^k r^i$ where k = 0 or 1 and i = 0, ..., n 1.

d. Is any group generated by two elements x and y, satisfying $x^2 = e, y^n = e$ and $xy = y^{-1}x$ is isomorphic to D_n ?

Problem 5: The order of subgroups.

- a. Describe all subgroups of D_{12} . Note their orders, in relation to the order of D_{12} .
- b. Make a conjecture about the orders of subgroups of a fixed group. If you already know the theorem, try to prove it. (We will state and prove such a theorem in class eventually).

Problem 6: Classification of Small Order Groups.

- a. Show that every group of order three or less is isomorphic to \mathbb{Z}_n .
- b. Show that every group of order four is abelian.
- c. Show that there are, up to isomorphism, exactly two groups of order four.
- d. Show that there is, up to isomorphism, exactly one group of order five.