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Problem 1: Induced representations on Lie algebras. Let G be a Lie group,
with lie algebra G, and let G→ GL(V ) be a smooth finite dimensional representation
of G.

(1) Prove that there is an induced lie algebra representation G → gl(V ).
(2) Let G be R∗ and let V = R2. For each pair of integer a, b, show that the action

of λ ∈ G on R2 by λ · (x, y) = (λax, λby) is a smooth representation of G, and
explicitly describe the corresponding lie algebra representation.

(3) For G = GL2(R), explicitly describe the lie algebra representation correspon-
ding to the one dimensional ”determinantal”representation of G (that is, for
the representation

∧2 V where V is the tautological representation for G.)

Problem 2: Special Linear Group and its lie algebra. Let G = SL2(R). Recall
that its lie algebra sl2(R) is naturally identified with the lie algebra of trace zero 2×2
matrices (with the ”usual bracket”).

(1) Show that for any A ∈ sl2(R), we have A2 = − det(A)

(
1 0
0 1

)
.

(2) For each of the three cases detA = 0, detA > 0 and detA < 0, compute
expA explicitly, using the classical definition of the exponential map in terms
of power series of matrices. (Hint: it might help to refresh yourself on the series
for trigonometric and hyperbolic trigonometric functions.)

(3) Verify that exp(A) ∈ SL2 for all A ∈ sl2. That is, verify that the exponential
map takes sl2 to SL2.

(4) Show that diagonal elements in SL2 are not in the image of the exponential
map—so the exponential map need not be surjective.

Problem 3: Tangent vectors as velocity vectors of curves. A curve at x in
manifold M is a smooth map γ : (−ε, ε)→M with γ(0) = x, where (−ε, ε) is an open
interval in the real line. Its velocity vector is the tangent vector d0γ(1) ∈ TxM . Prove
that every vector in TxM is the velocity vector of some curve. (Hint: check it first for
open sets in Rd; now use charts).

Problem 4: Derivations and Vector Fields. Let A be any associative algebra
(over, say R).1 A derivation of A is a linear map ∂ : A → A which satisfies ∂(fg) =
∂(f)g + f∂(g).

(1) If A is the algebra of all (real valued) smooth functions on some open set U
in Rd, show that the differential operators ∂

∂xi
are derivations, and also that

any A-linear combination of ∂
∂xi

is a derivation.

(2) For any algebra A, prove that the set Der(A) of all derivations of A is a
subspace of the space Hom(A,A) of all linear self-maps of A.

1This means simply that A is a ring containing the real numbers as a subring.
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(3) Prove that Der(A) is a lie-subalgebra of Hom(A,A) = gl(A) (where the lie
algebra structure on the latter is the standard one given by the ”commuta-
tor”bracket [X, Y ] = XY − Y X for linear self maps X and Y of A.)

(4) Now for A = C∞(U) where U is an open set in euclidean space, find an explicit
example to show that the composition of two derivations (as linear maps) need
*not* be a derivation (although you just proved above that their commutator
is).

(5) Now let A = C∞(M) where M is any manifold. Show that there is a natural
injective linear map

Vect(M)→ Der(A)

where from the space Vect of all vector fields on M . (Hint: send a vector field
∇ to the directional derivative of f in the direction of ∇— that is, to the
linear map ∇ whose value on f ∈ A is the smooth function assigning a point
p ∈M to the real number dpf(∇(p)) ∈ R.)2

Problem 5: The lie algebra as Invariant Vector Fields. Let G be a Lie group
with lie algebra G, and let Vect(G) denote the space of all smooth vector fields on G.

(1) Verify that the formula a · ∇(b) = dab(ma−1)(∇(ab)) for all a, b ∈ G and
∇ ∈ Vect(G) defines an action of G on Vect(G).

(2) Show that ∇ is fixed by G if and only ∇ is of the form XL where X ∈ G.
(By definition, recall that XL is the vector field assigning to g ∈ G the vector
de(mg)(X) where mg is left multiplication by g.)

(3) Prove that the map G → Vect(G) sending X 7→ XL identifies the lie algebra
of G with the subspace of G-invariant vector fields (that is, with the subspace
of the representation Vect(G) where G acts trivially).

(4) Show that if we compose the linear maps from Exercises 4 and 5

G → Vect(G)→ Der(C∞(G))

we get an embedding of the lie algebra G in the lie algebra Der(C∞(G)).
(That is, this linear map is injective and respects the lie bracket. Here the lie
bracket on G is the one defined in class, [X, Y ] = adXY , and the lie bracket
on derivations is as defined above in exercise 4.)

(5) Use this to show that the lie bracket on G defined as [X, Y ] = adXY is skew
symmetric and satisfies the Jacobi identity.

Problem 6: Eigenvalues. Let A,B and U be n × n invertible matrices with U
invertible (all over R, say, or C if you prefer).

(1) Show that

eUAU
−1

= UeAU−1.

(2) Show that if λ is an eigenvalue for A, then eλ is an eigenvalue for eA.
(3) Show that det eA = etr(A).
(4) Show that if AB = BA, then eA+B = eAeB.

2It is actually true, and not so hard to show, that this map is an isomorphism. It is common in
geometry to identify vector fields with derivations. Try proving it if you have time; start with seeing
what needs to happen for open sets in Euclidean space.


