JYVÄSKYLÄN YLIOPISTO ## MATEMATIIKAN JA TILASTOTIETEEN LAITOS Undergraduate Representation Theory 2010 author Karen Smith Exercise Set 1 D380??? tiistai 19.1.2010 16-18?. **Reading:** Dummit and Foote Abstract Algebra (2004) pp 1–6, 8–11, and 16–21. ## Problem 1. A study of D_4 . • Complete the multiplication table for the group D_4 of symmetries of the square. | 0 | e | $ r_1 $ | $ r_2 $ | r_3 | A | H | D | V | |----------------|---|---------|---------|-------|---|---|---|---| | e | | | | | | | | | | r_1 | | | | | | | | | | r_2 | | | | | | | | | | r_3 | | | | | | | | | | \overline{A} | | | | | | | | | | H | | | | | | | | | | \overline{D} | | | | | | | | | | \overline{V} | | | | | | | | | - Find a natural set of generators for D_4 . That is, find a set of symmetries of the square such that every symmetry in D_4 can be obtained by iterating these given ones (as many times as we like, and in any order). What is the smallest possible number of generators D_4 can have? - Note that some symmetries of the square preserve orientation and some do not. How many of each type are there? Does the set of all orientation preserving symmetries form a subgroup of D_4 ? Does the set of all orientation reversing symmetries form a subgroup of D_4 ? - Suppose that sides of the square are colored either red or blue, so that opposite sides have the same color. Describe the symmetry group of the colored square as a subgroup of D_4 . - Describe all subgroups of D_4 . How many are there? **Problem 2** Describe the symmetry groups of the following figures: **Problem 3** Without tediously writing out the multiplication tables, how much of Problem 1 can you generalize to the group D_n of symmetries of the regular n-gon? For example, what is the order of D_n ? Is it abelian? Can you find a natural set of generators? What is the smallest possible set of generators? What natural subgroups can you identify? **Problem 4** In any group G, show that the identity element is unique. Show also that each element $g \in G$ has a unique inverse g^{-1} .