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Abstract

The overall aim of this study was to further develop the existing small area
system in estimation of regional variation of disease risk around a putative
source of environmental pollution. The more specific aims were i) to search
advanced statistical methods, suitable for the system; ii) to implement the
methods as a part of the system; iii) to evaluate the use of register data; and
iv) to test and validate epidemiological methods within the system.

The data stored in the system are aggregated into 500 m × 500 m squares.
High spatial resolution is informative when local variation is studied but
brings up methodological challenges due to the autocorrelation and the sparse-
ness of data (low population counts and low number of cases). The develop-
ment of methodology was illustrated with the case studies on relative risk of
cancer in a rural municipality with the problems in drinking water, and in a
vicinity of a former waste site, a former asbestos mine, and a polluted river.

In a simple case, the relative risk of cancer was estimated with the Poisson re-
gression model with the regional effects. As a more sophisticated model, the
hierarchical Markov model was exploited. The hierarchical Markov model as
such turned out to be inconsistent with sparse high resolution data. Three
constraining methods to improve the behaviour of the model were suggested.
Due to the demanding calculation of the hierarchical Markov model, an ex-
tension of the Poisson regression model based on the change-point model was
exploited as another simpler method.

The effect of adjustment for the socioeconomic status and the choice of the
reference area as confounding factors were investigated. Also the different
standardizing methods were compared in the estimation of the relative risk.

The system with high resolution data is useful in rapid estimation of relative
risk around a putative source of pollution. The strength of the system is that
the study area can be defined freely with an accuracy of 500 metres. However,
if data tends to be sparse, the classical methods, like standardized incidence
ratios (SIR) or Poisson regression models, may give uncertain estimates. This
can be overcome by using smoothing methods. Secondly, if data is doubted to
be spatially autocorrelated, the classical methods may give incorrect results,
and some more sophisticated methods are needed. In this thesis some useful
statistical methods were suggested to solve the problems mentioned.

i



Acknowledgements

This study was carried out at the Unit of Environmental Epidemiology, De-
partment of Environmental Health, National Public Health Institute during
the years 1998–2004. The computer facilities of the Laboratory of Data Anal-
ysis, Department of Mathematics and Statistics, University of Jyväskylä,
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1 Introduction

Many environmental exposures originate from point sources like industrial
plants, dumping areas, or oil refineries. Such sites are often recognizable
and may cause concern or even fears [1]. Only a suspicion of an increased
risk of cancer in a region can cause remarkable psychological and economical
consequences [2]. In order to respond to these concerns, rapid methods are
needed to produce an initial estimate of a potentially increased risk of disease
around a known point source. Finnish Cancer Registry and National Public
Health Institute have been developing a small area system called Small Area
Statistics on Health (SMASH). The main use of SMASH is in comparison of
cancer incidence in an arbitrary selected area of interest in Finland with the
incidence in a given reference area. In the present application oriented work,
the statistical methodology of SMASH is considered.

Spatial epidemiology means the investigation (describing and understand-
ing) of the geographical variation in disease risk, especially with respect to
variations in environmental exposures at the small area level. Elliott et al.
[3] distinguishes four types of study in spatial epidemiology: 1) disease map-
ping; 2) geographical correlation studies; 3) assessment of risk in relation
to a point or line source; 4) cluster detection and disease clustering. Same
methods can be applied in many of the types of study listed above, although
the phrasing of a question is quite different. Disease mapping is usually used
for descriptive purposes. Crude or adjusted morbidity or mortality rates are
mapped for summarizing the spatial variation in disease risk [4]. In geograph-
ical correlation studies spatial variation in some external factors is related to
health outcomes. For example, environmental exposure maps or ecological
variation in lifestyle factors can be used in studies focusing on aetiological
questions [5],[6]. In point or line source studies the source is considered to
present a potential environmental hazard, and an increased risk is suspected
in the vicinity of the source. When well-defined hypotheses are set, the in-
terpretation of results may be more straightforward than in the case of no a
priori hypothesis, for example, if the reason for a study is the worries of local
population [7],[8]. Cluster detection is usually used for monitoring purposes.
In this case, no hypotheses are set in advance, so the interpretation of the
results meets difficulties. Cluster detection may be used for the detection of
the raised incidence of disease, or for descriptive purposes, i.e., giving clues
to aetiology [9],[10].

The focus of this work is on type 3 problems, because the aim of SMASH is to
assist in the study of the possible increase or decrease in cancer incidence in
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a pre-specified study area. SMASH is neither a monitoring system producing
disease atlases by methods of disease mapping nor ”fishing hot spots” being
areas with increased cancer incidences. The aim of the system is to transform
register data into epidemiological information for decision-making.

A system similar to SMASH has been developed in the UK. Small Area
Health Statistics Unit [11], Imperial College London, provides a system called
Rapid Inquiry Facility (RIF) as a national facility for small area disease map-
ping and the rapid initial assessment of apparent disease clusters around a
point source [12]. Along the EUROHEIS project [13], RIF has been im-
plemented also in Sweden, in Spain, and in the Netherlands. There are
geographical information systems for public health analyses also in the US,
but they are not nationwide [14],[15].

A recent tendency is to apply the Bayesian framework in the analysis of
spatial health data [3],[4]. Two typical assumptions of spatial analysis of
non-infectious diseases, conditionally independent prevalence and a possibil-
ity of non-perceptible spatial correlation, naturally lead to fully Bayesian
(see, e.g., [16]–[18]) or empirical Bayesian methods (see, e.g., [19],[20]). The
Bayesian framework gives possibilities to solve many problems faced in spa-
tial modelling. For example, the Bayesian methods can take into account
spatial patterns in a disease. Moreover, they allow the calculation of exact
probabilities to be used in the comparison of disease risks between several
areas.

Register data are of high quality in Finland [21]. Through the unique per-
sonal identifiers, the linking of information from several registers is straight-
forward and technically easy. Examples of high quality health data are reg-
isters on cancers, on the cause of death and on birth. Population data in-
cluding, among others, data on residence, on education and on economical
activity are also of high quality. Data on residence is available in metric coor-
dinates in Finland. The centre point of building as the place of residence can
be georeferenced with an accuracy of 1 metre at its best. The high resolution
of residence data is valuable in the exposure assessment but, at the same
time, it brings up such methodological challenges as sparseness and spatial
autocorrelation in the risk estimation.

This study concentrates on improving the usefulness of the small area system
SMASH. The main focus will be on the development of statistical methods for
analyzing high resolution small area data around given sources of pollution.
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2 Statistical and epidemiological issues in point

source studies

Several statistical methods and tests for the analysis of disease incidence in
the vicinity of a point source of possible environmental risk can be found in
the literature, but they are usually designed for individual level data, see,
e.g., [7],[8],[22]–[35]. In the following, the emphasis is on reviewing statistical
issues in the point source studies on cancer based on area level data. Later,
in Section 5, the methodology is reviewed in more detail in connection with
the development of modelling tools for SMASH. In the following subsections,
the case studies during the recent decade and some epidemiological issues on
ecological studies will be discussed.

2.1 Small area studies on cancer in the vicinity of the
source of pollution

The observation of increased incidence of childhood leukaemia in the vicinity
of a British nuclear installation in 1984 [36] triggered several similar and
other point source studies worldwide. In Table 1, a sample of case studies of
cancer incidence or mortality on an ecological level in the recent decade are
listed. Finally, in Section 2.1.4, these case studies are discussed critically.

2.1.1 Childhood leukaemia and lymphoma around nuclear sites

Nuclear power plants in Germany [37], in England and Wales [40], in Scot-
land [45],[49], and in Spain [48] and one nuclear waste reprocessing plant
in France [43] have been objects of investigation during the recent decade.
These studies have mainly been focused on childhood (children under age of
15 years) leukaemia and lymphomas.

Michaelis et al. [37] studied incidence of leukaemia and lymphoma but also
cancer of all sites. The study areas were defined around all the nuclear power
plants in former West-Germany. They were comprised of communities with
at least one third of them within 5 km, 10 km and 15 km from a source. As
an overall relative risk estimator pooled standardized incidence ratios (SIR)
were calculated. SIR is calculated as a ratio of the observed and the expected
number of cases, for more information see Formula (2.3) in Section 2.2.5. Here
the value SIR=1.00 means the standard, values larger than 1.00 indicate an
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Table 1: A sample from small area studies on cancer in the vicinity of the
source of pollution in 1992–2003.

Reference Source of pollution Small areas (ED Cancers studied, Methods used
= enumeration age (if not in all ages),
district with study period
ca 400 people)

Michaelis et 18 nuclear power communities total cancer, pooled SIR, RR in study
al., 1992 [37] plants in former within 15 km leukaemia, lymphoma vs. control area

West-Germany in children, 1980–90

Selvin et al., large microwave all census tracts leukaemia, brain, RR in ≤ 3.5 km
1992 [38] tower in USA in San Francisco lymphomas vs. others

in < age of 21, 1973–88

Bhopal et al., coking works all EDs in lung, others than lung, SMR
1994 [39] in England South Tyneside respiratory, circulatory,

1981–89

Bithell et al., 23 nuclear sites electoral wards leukaemia, lymphoma SIR, Stone’s tests [22],[24]
1994 [40] in England & Wales within 25 km in children, 1966–87 linear risk score test [7]

Lyons et al., petrochemical plant EDs within leukaemia, lymphoma SIR
1995 [41] in Baglan Bay, Wales 3 km in < age of 25, 1974–91

Sans et al., petrochemical plant EDs within total, larynx, SIR, Stone’s tests
1995 [42] in Baglan Bay, Wales 7.5 km leukaemia, 1974–84

Viel et al., nuclear waste cantons within leukaemia SIR, SMR, Stone’s test,
1995 [43] reprocessing plant 35 km in < age of 25, 1978–92 mapping with kernel

in La Hague, France regression smoothing [28]

Elliott et al., 72 municipal solid EDs within total, lung, stomach, SIR, Stone’s tests
1996 [44] waste incinerators 7.5 km colorectal, liver, and 9

in Great Britain other subtypes, 1974–87

Sharp et al., 7 nuclear sites EDs within leukaemia, lymphoma SIR, Stone’s tests,
1996 [45] in Scotland 25 km in children, 1968–93 linear risk score test

Michelozzi et waste disposal site, census tracts total, liver, larynx, SMR, Stone’s test
al., 1998 [46] waste incinerator, within 10 km lung, kidney, lymphatic

and oil refinery and haematopoietic
in Rome, Italy 1987–93

Harrison et main roads and EDs within leukaemia in SIR
al., 1999 [47] petrol stations in 100 m children, 1990–94

UK West Midlands

López-Aberte 7 nuclear power towns within leukaemia, lymphoma, SMR, RR in towns vs.
et al., 1999 [48] plants, 5 nuclear fuel 30 km myeloma, 1975–93 matched control towns

facilities in Spain

Sharp et al., 7 nuclear sites EDs within non-haematopoietic SIR, Stone’s test
1999 [49] in Scotland 25 km in children, 1975–94

Dickinson et railways electoral wards leukaemia, lymphoma RR in 3 groups of
al., 2003 [50] in England & Wales within 20 km in children, 1966–87 exposure

Reynolds et point sources of air all census tracts total, leukaemia RR in 4 groups of
al., 2003 [51] pollutants in USA in California in children, 1988–94 exposure
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increased risk whereas values smaller than 1.00 stand for a decrease in the
relative risk. For total cancer, SIR within 5 km from a source was 0.99, for
leukaemia 1.10, and for lymphoma 0.78. Also a matched control area for
every exposed area was defined, and relative risks (RR) in these pairs were
calculated. For total cancer, the relative risk (with 95% confidence interval)
was 1.13 (0.81–1.60), for leukaemia 1.44 (0.81–2.79), and for lymphoma 1.67
(0.33–18.48).

Bithell et al. [40] studied the incidence of leukaemia and non-Hodgkin’s
lymphoma combined in the vicinity of 23 nuclear sites in England and Wales.
Six possible prospective sites were used as controls. Study areas were defined
to include electoral wards with the population centre within 25 km from
a site. The relative risk estimators varied from 0.77 to 1.30 in the study
areas and from 0.85 to 1.18 in the control areas. In the assessment of the
existence of the decreased risk of cancer they developed a linear score test
and compared it with Stone’s tests, the maximum likelihood ratio test [22]
and the Poisson maximum test [24]. Decreased risk was observed for two
study sites and one control site.

Viel et al. [43] studied the incidence of leukaemia among young people (<
age of 25) around a nuclear waste reprocessing plant in France. The study
area was divided into three parts by the distance from the source (<10 km,
10–19 km, 20–35 km). All the ”cantons” with at least 50% of area inside
the boundaries were included. The average population count in cantons was
6 000. As an estimate of the relative risk, SIRs were calculated. Within 10
km SIR was 2.8 (0.8–7.2). The possible increase in risk was tested by means
of the Poisson maximum test [24], resulting in minor increase in risk. The
relative risk was mapped with kernel regression smoothing [28].

In two separate investigations, Sharp et al. studied the combined inci-
dence of childhood leukaemia and non-Hodgkin’s lymphoma [45], and non-
haematopoietic cancers [49] near the nuclear sites in Scotland. All the enu-
meration districts (ED) within 25 km from a site were included in the investi-
gation. The number of enumeration districts around the sources varied from
54 to 3 064, while corresponding population counts were from 3 000 to 180
000. The study area around each source was divided into 25 bands and the
sites were studied separately. In the first study [45], six tests were evaluated:
the maximum likelihood ratio test [22], the linear risk score test based on
rank and distance [7],[40], the Poisson maximum test [24], a variance of the
Poisson maximum test based on the minimum p-value [26], and SIR. SIR for
leukaemia and non-Hodgkin’s lymphoma combined varied from 0.84 (0.61–
1.14) to 1.99 (0.91–3.77) around the sources. In the second study [49], the
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maximum likelihood test [22] and SIR were applied. Age, sex, deprivation
categories, the 5-level urban-rural residence indicator were considered in the
calculation of expected numbers. Stone’s test for central nervous system tu-
mours around one site found an increased relative risk estimate. For central
nervous system tumours SIR varied from 0.47 (0.09–1.38) to 1.22 (1.02–1.44)
around the sources. For other malignant neoplasms SIR varied from 0.32
(0.04–1.17) to 1.51 (0.83–2.54).

In a Spanish study [48], people of all ages were included in the study pop-
ulation, and the mortality of leukaemia, lymphomas and myeloma in the
vicinity of nuclear power plants and nuclear fuel facilities were investigated.
489 towns within 15 km and 30 km from a source were applied as study
areas. Further 477 control towns matched by population size and socioeco-
nomic status were defined. For confidentiality, population smaller than 5 000
had to be estimated. As an estimate of risk the standardized mortality ratios
(SMR) and risk ratios between study towns and control towns were calcu-
lated. The changes in risk were studied by comparing the position before
and after the start-up date of the sites. SMR within 15 km from any nuclear
power plant varied from 0.69 (Hodgkin’s disease) to 1.47 (leukaemia, under
age of 25 years). The risk ratio with 95% confidence interval varied from 0.92
(0.45–1.87) (non-Hodgkin’s lymphoma) to 1.62 (0.73–3.58) (myeloma).

2.1.2 Waste incinerator plants

In Great Britain, all public incinerators for burning waste were studied by
the Small Area Health Statistics Unit [44]. Recent incinerators (operation
started after 1975) were excluded, and overlapping sites were considered as
a multi-site group. At the first stage, 20 randomly selected incinerators
were combined. The incidence of total cancer, and thirteen sub-types in the
vicinity of the incinerators was investigated. At the second stage, 52 other
incinerators were combined and the incidence on cancers having relative risk
significantly higher than the one in the first stage was studied. SIRs were ad-
justed for the socioeconomic status. For estimating the residual confounding
unrelated to the incineration, a pre-incinerator period was analyzed. For the
decline in risk at some distance from the source, unconditional and condi-
tional likelihood tests [24],[40] were performed in 8 bands. To allow multiple
testing, the level of significance was set to 0.0025. SIRs varied from 0.83
(0.63–1.09) (nasal cancer) to 1.29 (1.10–1.51) (liver cancer). Stone’s tests
found significantly increased relative risks for seven out of thirteen cancers.

In Rome, Italy, a waste incinerator plant combined with a waste disposal
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site and an oil refinery was an object of investigation [46]. Mortality of all
causes, total cancer and nine sub-types were analyzed separately for males
and females. Small areas used in studies were census tracts with 480 inhab-
itants on an average. SMRs adjusted for age and socioeconomic status were
calculated in areas with distance 0–3 km, 3–8 km and 8–10 km from the
source. Also Stone’s test in 9 bands with 1 km interval was performed [22].
SMRs for men varied from 0.82 (0.03–40.9) (leukaemia) to 2.76 (0.31–93.4)
(kidney cancer), and for women from 0.55 (0.02–27.1) (lung cancer) to 1.37
(0.05–67.9) (leukaemia). Out of eighteen Stone’s tests, an increased risk was
found only for larynx cancer among males.

2.1.3 Other sources of pollution

A large microwave tower in San Francisco, USA, was considered as a point
source [38]. Incidences of leukaemia, brain cancer and lymphatic cancers
were studied among people less than 21 years of age. The census tracts with
population count 342 on an average were divided into two groups by the
distance of 3.5 km from the source. The risk ratio for leukaemia was 0.73, for
brain cancer 1.16, and for Hodgkin’s disease and non-Hodgkin’s lymphoma
combined 1.17, none of them differing significantly from the expected value.

Bhopal et al. [39] studied excess ill health in people living near a coking
works. The site was built in 1937 and enlarged in 1980. Between 1940 and
1960 housing estates were built near the site. Among many health indica-
tors, mortality from lung cancer and other cancers, the respiratory system
combined and circulatory diseases were analyzed. A total of 349 enumeration
districts, with 456 inhabitants on an average, were categorized to classes of
high and low exposure areas and the control area. Two separate categorizings
were used, one based on perceived exposure and the other based on modelled
exposure. Multiple comparisons were considered in the determination of the
significance level. SMRs varied from 0.88 (other than lung cancer, both sexes)
to 1.23 (lung cancer, females), the first-mentioned differing significantly from
the expected value.

In 1995, a petrochemical plant in Baglan Bay, Wales, was an object of two
separate studies published consecutively in the same journal. Lyons et al. [41]
repeated an earlier investigation produced by a TV company. The SIRs of
leukaemia and lymphomas combined among people less than 25 years of age
within circles with radius of 1.5 km and 3 km from the source were estimated
as 1.37 and 1.22, respectively. In the Small Area Health Statistics Unit, Sans
et al. [42] performed more detailed analyses studying people of all ages.
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The incidence of total cancer, leukaemia and larynx cancer was estimated by
SIRs. The study area within 3 km and 7.5 km from the source was divided
into 8 bands, and 75 separate Stone’s tests were performed. Within 3 km the
SIR for total cancer was 1.07 (1.01–1.14), for leukaemia 0.99 (0.66–1.51), and
for larynx cancer 1.44 (0.91–2.27). Stone’s test produced significant results
only for total cancer.

Harrison et al. [47] studied the incidence of leukaemia in children living near
a main road or a petrol station. The ”main road” was defined by having
23400 vehicles a day on average. SIRs were calculated in all the enumeration
districts within 100 m from the main road (1.48 (0.65–2.93)) and from the
petrol station (1.16 (0.74–1.72)) separately and from both (0.81 (0.16–2.38)).

Dickinson et al. [50] studied the national rail network in England and Wales.
The relative risk of leukaemia and non-Hodgkin’s lymphoma among children
was estimated. The electoral wards with population-weighted centroid within
20 km from the railways were categorized in three groups separately by a
railway proximity function and by a railway density function. The median
size of the wards was 6 km2 with at least 100 children. The rate ratios for
the risk were estimates by the Poisson regression, unadjusted and adjusted
for population mixing, stratified by the Townsend deprivation category. In
the highest category of railway proximity, the rate ratio was 1.04 (0.97–1.01)
compared to the lowest group, and in the category of railway density 1.05
(0.99–1.13).

Reynolds et al. [51] studied all the point sources emitting hazardous air pol-
lutants (mobile sources, area sources and point sources separately and com-
bined) in California, USA. Children under 15 years of age formed a study
population, and the incidence of total cancer and leukaemias was investi-
gated. Hazardous air pollutant exposure scores were defined by combining
cancer potency factors with modelled outdoor hazardous air pollutant con-
centrations. The census tracts were categorized by exposure: low exposure
(below 25 percentile), medium exposure (25–74 percentiles), high exposure
(75–89 percentiles), and very high exposure (above 89 percentile). The risk
ratios adjusted for age, sex and race/ethnicity were estimated applying Pois-
son regression in these four groups. Also a cubic spline curve (see, e.g., [52])
for the rate ratio was fitted. The highest risk ratios were found around point
sources in the ”very high exposure” group compared to the ”low exposure
group” 1.13 (1.03–1.23) for total cancer, and 1.32 (1.11–1.57) for leukaemia.

8



2.1.4 A critique

In most of these case studies a possible increase in risk around a source
of pollution was studied applying Stone’s test or one of its counterparts. A
decrease in the risk of disease with an increase in the distance from the source
of pollution is tested against the null hypothesis of a uniformly distributed
risk. A problem of these tests is that a definition of the study area may affect
the result. For example, the selection of too large a study area may support
the null hypothesis too frequently.

As an estimate of the relative risk, the standardized incidence ratio or the
risk ratio were often calculated over the areas aggregated from the small
areas which stand for the spatial unit. The aggregation is problematic if the
counts of the cases between the small areas are correlated. The aggregation
of the dependent areas may lead to a biased estimation of variance, which is
discussed later in Section 2.3.1 in more detail. This is called the problem of
the ”change of support”.

In most of the case studies the study population contained only children,
while adults may also be exposed. Therefore an investigation of the effect
of the point source on cancers may not use all the possible information.
The rarity of childhood cancer may also cause inferential problems. The
public concern may encourage the media to report about these diseases and
cause a problem of post hoc study (see Section 2.3.4). However, a strength
of studying children is that the place of residence is a better surrogate of
exposure for children than for adults. One reason for studies on children
may be that radiation has been identified to be a main external cause of
childhood cancers [53].

A further problem in exposure assessment is the accuracy in the definition
of exposed study areas. The definition of the exposed areas suffers from the
fact that the small areas used as a spatial unit were based on administrative
boundaries. Large administrative units are likely to swamp the local effect.
When the study area was defined by drawing a circle for computation con-
venience, also the rest of the administrative areas (70% at most) around the
circle was included in the study (e.g., [37],[40],[41],[43],[50]).

One inferential problem is multiple testing (see Section 2.3.5). In many
cases Stone’s tests (usually both unconditional and conditional tests) were
performed and relative risk estimates for several cancers were calculated, but
only in the studies by Bhopal et al. [39] and by Elliott et al. [44] was the
problem taken into account in the determination of the significance level.
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Another inferential problem is that in many case studies a ”significant” in-
crease in risk was observed for total cancer but not for sub-types of cancer,
mainly due to the increased efficiency of the tests. Total cancer is seldom the
interesting disease in point source studies. It is not easy to interpret, and
the given source is usually assumed to have an effect on specific sub-types of
cancer. For the testing of the possible increased risk in sub-types of cancer,
additional information, for example from other cancers or from neighbour-
ing areas, is required to strengthen the inference due to the rarity of these
diseases.

In this work, our goal is to obtain a more informative result than the possible
existence of a trend in risk around a source of pollution. The idea is to develop
models allowing the risk estimation not only in the areas aggregated from
the small areas but also in these small areas. Especially, the methods paying
attention to the possible spatial correlation are of interest. The accuracy
of the determination of exposure areas is not a problem in our approach,
because we are not tied to administrative boundaries. Our spatial units are
based on metric coordinates and a high-resolution grid.

2.2 Epidemiological issues

Small area analyses are valid for descriptive studies such as assessing the (in-
creased or decreased) incidence of cancer in selected areas. Many methods
developed for disease mapping can easily be adapted to descriptive investiga-
tions. If the data are comprehensive enough, the observed numbers of cases
are known accurately enough and the expected numbers can be calculated
reliably. On the other hand, if the objective of a small area analysis is in
the study of causality, many possible problems may cause major difficulties
in the inference. Some of these are considered in the following.

2.2.1 Long latency of cancers

Small area studies are usually performed when rapid answers are needed to
questions on the possible excess in disease risk near a source of exposure. The
most commonly analysed health outcome is cancer, although association with
the exposure may be weak. The time period needed to develop cancer after
the start of exposure, called the latency period, is probably several years or
even decades [54], whereas the exposure may have started only a short while
ago. This problem is smaller in childhood cancers or some other endpoints,
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such as birth outcomes, where the exposure can also be more accurately
timed.

2.2.2 Exposure assessment

A major weakness of the majority of point source studies is the lack of an
adequate exposure measure. Exposure assessment based on geographical
location is doubtful, because total exposure has usually more complicated
pathways, for example, due to occupational exposure or exposure from traf-
fic or any other environment. However, the place of residence is usually
utilized as a measure of an environmental exposure, which is often criticized.
For example, in 60% of the 45 papers reviewed by Huang and Batterman
[55], estimated exposure based on the place of residence was quantified with
monitoring measures.

With some exposures, such as magnetic fields or radiation, the place of res-
idence may be relevant for exposure especially among children who spend
most of the time at home [37],[40],[41],[43],[45],[47],[49],[51],[56]–[59]. When
considering exposures like air pollution, the exposure assessment is more com-
plicated even in studies on children. Studies on children can be improved if
data on the change of the place of residence can be utilized, like in Dickinson
et al. [50].

For a population of working age, data on the workplace may also be needed
for a good exposure assessment. Occupational exposures may be multiple
compared to the exposure at home either due to the nature of work or due
to the location of the workplace, see, e.g., [60] or [61]. For example, if the
workplace is downtown and the dwelling place is located in suburban areas,
the differences may be remarkable (see, e.g., the study on NO2 levels in three
European cities [62]). Also the exposure may be different in the daytime and
in the night-time due to the traffic [63]–[65].

Migration is also a problem in exposure assessment [66]. It is usually very
difficult to model the effect of the change in the place of residence to the
exposure period on the ecological level, because data on individuals are not
available. Good-quality data on residential and occupational history may be
needed for calculating the time spent in various places and hereby estimating
the exposure.

Exposure assessment is one major problem within SMASH. At present, the
assessment is based purely on the distance from a putative source. There are
no exposure data nor any facilities to model exposure in the system. There
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are data neither on the change of the place of residence nor on occupational
history in SMASH.

2.2.3 Ecological bias

Ecological bias (or fallacy) is a major limitation of ecologic analysis for causal
inference, see, for example, [6],[31],[66]–[72]. The ecological bias refers to the
situation where the estimated effect of the exposure on the ecological level
does not correctly reflect the effect of the exposure on the individual level. In
ecological analyses there is no or only limited information on the variability of
exposure and covariates on the individual level in the areas to be compared,
so this heterogeneity can not be taken into account. This heterogeneity
can produce bias in the ecological analyses, as in any other epidemiological
study, if there is confounding, selection bias, or misclassification of disease
or exposure. As an example, in a study on the effect of the socioeconomic
status on the risk of cervical cancer, women with a low standard of living in
a well-to-do environment had a high risk of cervical cancer [73].

The most common reason leading to the ecological bias are differences be-
tween study areas in the prevalence of other risk factors or effect modifiers,
that is confounding or effect modification between areas. This problem is
most clear in the studies which compare two study areas (e.g., [38],[48]),
where the possible difference in disease rates is attributed to the environ-
mental exposure under study. However, the exposure to other environmental
exposures or socioeconomic factors may also be very different between the
areas.

In most extreme situations, the ecological bias may reverse the sign of the
statistic describing dependence, as reported by Lagarde and Pershagen [74].
In their example of residential radon exposure and the lung cancer incidence,
the direction of association in the aggregated data was opposite to the one
given by the individual level data.

In SMASH, the possibility of ecological bias still remains. We do not have
tools or facilities to handle the problem. This should be taken into account
in the interpretation of results.

2.2.4 Confounding factors

Confounding can cause difficulties in the interpretation of all epidemiological
studies. Confounding occurs when covariate is a risk factor for the disease
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and correlated with the exposure in the population at risk, but not affected
by the exposure or the disease [75]. Typical confounders are sex, age and
socioeconomic status. Other potential confounders may be, for example,
occupation or lifestyle factors.

Sex and age are available in registers and therefore easy to take into account.
Instead, covariates such as life style factors are seldom extensively registered.
Variables describing socioeconomic factors are sometimes available. In the
UK, socioeconomic classification is usually based on material deprivation
reflecting wealth and income. For example, the ”Carstairs index” is based on
unemployment, lack of car access, percentage of individuals in low social class,
and overcrowding [76]. In Finland, descriptions of socioeconomic differences
are usually based on education and in some cases on occupation (see, e.g.,
[77]), and they are available in registers.

The correlation between socioeconomic factors and disease occurrence is
widely recognized, see, e.g., [76] or [77]. Also, the correlation between socioe-
conomic factors and exposures has also been reported, see, e.g., the study
on exposures to NO2 [78]. Confounding by socioeconomic factors is a ma-
jor potential source of bias in spatial epidemiological studies [67]. This is
especially true in point source studies, as sources of pollution tend to be lo-
cated in socioeconomically disadvantaged areas [32]. The lack of adjustment
for socioeconomic factors may lead to artificially high risk-estimates, that is
socioeconomically determined variations in the risk are wrongly attributed
to environmental hazards. While the possibility of the over-adjusting for so-
cioeconomic status should be noted. This may lead to an underestimate of
the relative risk.

A good selection of the reference area is one way to control the confounding.
As mentioned earlier, exposure may differ in urban and rural areas. Cancer
incidence rates are also known to vary with geographical region (see, e.g.,
[79]), reflecting the effects of genetics or various lifestyle factors such as diet,
smoking or alcohol consumption. In Finland, also the differences in rates
between old towns, other towns and rural municipalities have been reported
(see, e.g., [80],[81]).

The best way to control the confounding would be randomization of exposure.
However, it is impossible in small area studies, and hence other solutions have
to be employed [82]. One possibility is to use restriction, in which the study
is aimed at specific classes of possible confounding variables. For example, we
investigated farmers in the study of the effect of river pollutants on health [V].
In stratification, investigations are confounder-class specific. For example, in
Article [V] we analyzed the incidence of total cancer in the classes of several
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possible confounders. The fourth possibility to control the confounding is
to apply modelling. This means that several covariates, if available, can be
controlled easily in the same model. It is also possible to employ several
methods mentioned simultaneously.

Socioeconomic classification is available in data held by SMASH (see Section
4.1.1). The effect of using the socioeconomic class as an adjusting variable is
reported in Article [I] and in Section 6.2. There are also several alternatives
for the selection of the reference area (see Section 4.4). The effect of the
choice of the reference area is also reported in Article [I] and in Section 6.2.

2.2.5 Direct and indirect standardization

In standardization, the effect of the confounding variable on the risk in the
study population is removed by utilizing the known distribution of the con-
founder in a standard population. Standardization of rates is a basic tool in
demography (see, e.g., [83],[84]) as well as in epidemiology (see, e.g., [82],[85]–
[89]). The most frequently used methods in epidemiology are usually called
as direct standardization and indirect standardization, while there is noth-
ing ”direct” or ”indirect” about these standardizations [85]. There are just
different weights as can be seen in the following. A general formula for the
calculation of standardized rates can be written as:

(2.1)

∑
j

osj

nsj
wj

∑
j

orj

nrj
wj

,

where osj and nsj are, respectively, the observed number of cases and popu-
lation count (or person-years) for category j in the study area, orj and nrj

the observed number of cases and population count for category j in the
reference area, and wj is the weight (prevalence or proportion) for covariate
category j, derived from the standard population.

When using direct standardization the question is: What should the inci-
dence rate be in the study population if the distributions of the confounding
variables were the same as in the reference population? The most commonly
used directly standardized measure of the disease risk is the standardized
risk ratio (SRR). If the reference area is taken as the standard, the formula
for calculating of SRR takes the form [82]:

(2.2) SRR =
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,
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where osj, nsj, orj and nrj are as before. Because the standard population
serves as the reference population, the SRRs in several study populations are
comparable. Direct standardization suffers from the problem of instability,
because covariate specific incidence rates have to be calculated in the study
area, where population counts are often small.

When standardizing indirectly the question is: How many cases would there
have been in the study population if its morbidity were the same as in the
reference population? The most commonly used indirectly standardized mea-
sures are the standardized incidence or mortality ratios (SIR or SMR). SMR
has been in service at least since 1786, when mortality was compared in dif-
ferent occupational groups in the UK [86]. In indirect standardization, the
study population is the standard, that is the formula for calculating of SIR
takes the form [82]:

(2.3) SIR =

∑
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nsj
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nsj∑
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=

∑
j osj∑
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,

where osj, nsj, orj and nrj are as in (2.1). SIRs (or SMRs) are not comparable
between different study areas, because in indirect standardization the study
population itself is used as the standard. However, comparisons between
each study area and the reference area are valid. In contrast to SRRs, SIRs
and SMRs can be calculated when the covariate specific number of cases
is not available in the study population. Indirectly standardized ratios are
stable, because covariate specific incidence rates have to be known only in
the reference population, which is usually sufficiently large.

A vast literature exists on comparisons of standardization methods, see, e.g.,
[82],[85]–[96]. In most publications, direct standardization is the recom-
mended method because the SIRs in different study areas are not mutually
standardized [82],[90]–[92],[95]. However, the general similarity of numerical
results provided by direct and indirect standardization has also been observed
[86],[87],[93],[94]. Breslow and Day [86] concluded that SRRs and SMRs give
substantially different results if both (i) covariate specific population propor-
tions and (ii) covariate specific risk ratios differ substantially, and (iii) the
differences in (i) and the ratios in (ii) correlate.

Also other standardizing methods have been suggested. Breslow and Day
[86] reviewed various weighting methods to improve standardization. Lee
[96] suggested a new method: the harmonically weighted ratio, which can be
used for external as well as internal comparisons.
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Despite the theoretical problems with indirect standardization, it usually
gives valid results in empirical applications. For example, Goldman and
Brender compared the methods in ranking mortality in different populations
and concluded that ”SMRs may be used to compare different geographical
areas” [94]. The results of the comparison of direct and indirect standardiza-
tion we achieved in the writing process of Article [V] will be shown in Section
6.2. Due to these considerations and the instability in our system, we use
indirect standardization in the modelling.

2.2.6 Data quality

The formats of register data limit both the design of the study as well as
statistical modelling. There are several problems in data quality, which may
cause limitations in the presentation of ecologic studies, see, e.g., [35],[66] or
[67].

The population counts or the estimation of person-years at risk usually rely
upon certain points in time, most commonly upon the time of census [54].
The interpolation of the population counts or the person-years between cen-
suses may be difficult, due to defective information on births, mortality or
migration. Strong assumptions or modelling are required to obtain reliable
intercensal counts, see, e.g., [97]. For example in the UK, population data
are available in censuses. Instead, in Finland, population data are registered
nowadays for every month.

For health data, there can be either under- or over-ascertainment, depending
on diagnostic accuracy, completeness of registration, and possible duplication
[98]. Also, geocoding of the health data (as well as of population data) may
differ remarkably between areas [98].

The different levels of spatial data may cause problems in modelling. For
example, in the UK, data are available on different levels of aggregation, and
the extrapolation of data from level to another may cause difficulties, as re-
ported by Small Area Health Statistics Unit [99]. In one example of incorrect
linking, 53% of postcodes were put into a wrong enumeration district [98].

Data from different periods may also be disparate [98]. The administrative
spatial units change in time. Boundaries of municipalities have changed
and some municipalities may have been joined. In addition, for example in
the UK, the extraordinary proliferation of different area codes is a practical
problem. The numbers of inhabited postcode areas have been removed and
have been possibly given to some new area. Diagnostic coding has changed
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many times. In addition of the problems due to changes, all the different
versions of International Classification of Diseases, ICD-7 (from the year
1955), ICD-8 (1967), ICD-9 (1977) and ICD-10 (1992) are still in use in
some countries. Also, the coding for the socioeconomic status has changed
in time, at least in Finland.

The quality of the Finnish register data is generally high, see, e.g., [21] or
the discussion in Section 4.1. In SMASH, we use grids based on metric
coordinates as spatial units, which do not change in time. The individual
level cancer data are aggregated in these grids in analyses of SMASH, so
we do not have the extrapolation problem. However, SMASH holds data on
population at risk only for three years, that is we need to extrapolate the
population counts for remaining years (or months). In some cases, the data
on the socioeconomic status may differ for cases and the population at risk,
which will be discussed in Section 4.2.

2.2.7 Weak associations

The major problem in studies on environmental pollution around point sources
is that the expected increases in the risk are usually modest. Typically, the
estimates of relative risks in environmental studies are below 1.50 [100]. For
example, in the case studies reviewed in Section 2.1, only in two cases were
the highest estimates of relative risks over 2.00. Viel et al. [43] observed
four leukaemia cases and reported SIR=2.80 within 10 km from the nuclear
waste reprocessing plant. Michelozzi et al. [46] observed two cases of kidney
cancer among males and reported SIR=2.76 within 3 km from the multiple
sources of air pollution. In all other cases the highest reported relative excess
in the risk at the source was in the range 0.04–0.99, that is, relative risks of
1.04–1.99.

Because there are risk factors (e.g., smoking or other lifestyle factors) that are
more predictive for cancer than environmental factors, the potential for the
confounding is strong. Also, the environment includes usually a very large
number of low-level intercorrelated exposures, which often occur in complex
mixtures [100]. If the association between exposure from a point source and
cancer seems to be weak, inference on causality should be done cautiously.
Reference values for the lower bound of acceptability of the relative risk for
ecological studies have been introduced based on the investigations of the
biases that occur in estimates when confounding variables are incorporated
in the analysis [72]. For example, for lung cancer the relative risk in excess
of 1.40, and for bladder and stomach cancer 1.20, is unlikely to be an artifact
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due to the uncontrolled confounding [72].

2.3 Statistical issues

Typical statistical problems in small area estimation are spatial autocorrela-
tion, overdispersion, and sparseness of data (for example, small size of popu-
lation or few cases per aggregation unit). The point source studies have also
inferential problems such as problems of post hoc studies, multiple testing
and determination of size and shape of a study area.

2.3.1 Spatial autocorrelation

Many routinely used methods assume that the observable outcomes follow
independently and identically some relatively simple probability distribution.
Contrary to this, spatial small area data are usually dependent and hetero-
geneous [101]. Spatial autocorrelation means correlation between counts in
nearby areas. Several approaches have been suggested for measuring spatial
autocorrelation (see, e.g., [102]). If the disease risk is estimated by a tradi-
tional approach in the form of the standardized incidence ratio SIR = o/e,
where o and e are the observed and the expected number of cases, respec-
tively, the spatial autocorrelation can be estimated, for example, by Moran’s
I statistics [103] as

(2.4) I =
n

∑
i

∑
i′ Wii′(SIRi − SIR)(SIRi′ − SIR)

(
∑

i

∑
i′ Wii′)

∑
i(SIRi − SIR)2

, i, i′ = 1, . . . , n, i 6= i′,

where n is the number of areas, Wii′ is a measure of proximity of areas i
and i′. The variance of SIR is usually calculated under the assumption of
independency [86], which may lead to biased estimates of confidence intervals.

The boundaries of small areas are usually administrative, or they are based
on metric coordinates or another information not related to health data.
Changes in disease incidence and relative risk do not follow externally deter-
mined boundaries of the small areas. Therefore small area statistics may not
be assumed to be self-evidently independent between adjacent areas. The
observed counts for rare diseases in small areas are usually assumed to follow
the Poisson distribution [86],[104]. Problems appear when mutually depen-
dent areas are aggregated. The sum of Poisson distributed counts is Poisson
distributed too only if the counts are independent. The calculation of confi-
dence intervals for a SIR assuming the counts to be independent and Poisson
distributed thus does not lead to statistically strictly correct results.
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It should be noted that spatial autocorrelation allows ”borrowing of strength”,
that is, utilizing information from nearby or similar small areas.

The problems due to spatial autocorrelation will be one of the main focuses
in this work. In an example case of Articles [II] and [III], we calculated
Moran’s I and observed the typical problem of small area statistics on disease
incidences being spatially correlated. In Section 5.3 models allowing and
employing spatial autocorrelation will be considered.

2.3.2 Sparseness of data

Sparseness of data will be encountered with rare diseases (low disease counts)
or data of high resolution (low population counts).

The heterogeneity of population density in the study area is a major problem
of point source studies [34]. Many classical tests for point source studies may
produce spurious results for such data [105]. Study areas usually contain
both urban and rural areas. For example, in SMASH almost all small areas
in the cities are inhabited whereas this is not the case in rural areas. In
our case studies of rural study areas (Sulkava [I] and Paakkila [II]–[IV]),
the inhabited small areas covered 20–25% of the area, whereas in the whole
of Finland inhabited areas cover 16% of the total area. The problem of
heterogeneity of population density is especially important in the case of high
resolution data where the boundaries are not administrative. In SMASH, the
number of empty small areas, isolated areas and areas with a few inhabited
neighbouring areas becomes high. Also, area-specific population counts differ
remarkably within both cities and rural areas. For example, in a single small
area in Helsinki the population count was 3 000, whereas at Sulkava the total
population count in all together 599 small areas was 4 400, the area-specific
counts varying from 1 to 298 [I].

The uncertainty in the estimated incidence of disease is increased in areas
with low population counts. For example, when using high spatial precision,
the uncertainty in the estimates usually becomes large. If the increase in
the risk of disease is estimated under the Poisson assumption by calculating
the SIRs, the variances of the SIRs are roughly proportional to the inverse
of the expected numbers of cases and, simultaneously, to the inverse of pop-
ulation counts in the area (see, e.g., [86],[104]). This causes difficulties in
interpretation (see, e.g., [106]).

Low population counts may also affect the precision of the estimated relative
risk of disease. The most extreme risk estimates are usually observed in these
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areas [32]. In areas with low population counts one more case can increase
the relative risk estimate remarkably, while in areas with high population
counts a change of disease count by one does not affect so much. If there are
no cases in an area, the raw risk estimate refers to a false zero risk.

High spatial resolution reduces the exposure misclassification and the re-
sulting bias in the estimated measures of the effect but increases the above
effects due to lower population counts. The objective of small area analyses
is to find a compromise between these effects. This is especially true when
dealing with point source data. If, as usual, the areas with highest exposure
near the point source are small, the uncertainty of the risk estimates in these
most interesting areas is the largest. If the density of the population at risk
is high, then high spatial resolution may be used, but when the density is
low, the use of high resolution is often not possible, which leads to exposure
misclassification and may lead to the underestimation of the effects of the
exposure.

Smoothing methods (see, e.g., [52],[107]) are usually suggested to solve the
problems of sparseness (see, e.g., [106]). Analyses of data with small amount
of information get more feasible, if the information either from the neigh-
bouring areas, other similar areas or from the whole data are utilized. The
problem which remains is the level of smoothing. In particular, if the smooth-
ing level will be estimated from the data, difficulties will be met.

The problems induced by the sparseness of data will be another main focus
in this work. Later, in Section 5, smoothing methods are reviewed in more
detail.

2.3.3 Overdispersion

Overdispersion or extra-variation in the data with respect to a given model
exists when the observed variance of the number of cases is larger than the one
derived from the model. One obvious source of overdispersion in area-level
data is the violation of the assumption that covariates are constant within
each area. A potentially more complex source of overdispersion arises through
the failure to recognize residual spatial variation in the relative risk after
adjustment for all known risk factors. If both the cases and the population at
risk were measured without error, overdispersion might have either spatial or
non-spatial components or both. In the literature, it is recommended to take
into account the possibility of overdispersion. Several tests of heterogeneity
(e.g., [102],[108]) and the methods for considering the overdispersion (e.g.,
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[104],[109]) are introduced.

Due to the sparse high resolution data the population counts are usually
very low in spatial units of SMASH. This implies that overdispersion is not
such a major problem in SMASH. Despite that, a method accommodating
overdispersion with spatial and non-spatial component will be introduced in
Section 5.3.

2.3.4 Post hoc or a priori investigation?

Statistical inference on the results of point source studies becomes difficult if
no hypothesis on an exposure source is set. It is a question of post hoc study
if the excess number of cases is recognized before any possible environmental
source of exposure and this observed excess leads to a search of a putative
point source. This means a clustering illusion. For example, individual cases
of disease may be noted and then the boundaries of the study areas are
drawn. Prior knowledge of the disease incidence near a putative source leads
an epidemiologist to carry out analyses to confirm the evidence. This problem
may produce bias in data collection or in the definition of the study area.
Also the hypothesis testing can be biased by this problem. For example,
in testing the trend with distance from the source, controlling the size of
the study area can lead to a desired result [23]. Data on more than one
source, over different time periods, at different ages, and separately for men
and women are usually recommended [32]. This may present a problem of
multiple testing, which will be discussed in Section 2.3.5.

If the study area is thought a priori to be of interest because it includes
a possible source of pollution, there is no post hoc problem if the internal
spatial distribution of health data does not influence the choice of the area
[28]. After all, the interpretation of studies based on the reported disease
incidence or on the concern of several cases of disease around a putative
source should be cautious.

To try to avoid the problems of post hoc studies, we have developed a protocol
which should be read before any analysis done by SMASH. In the protocol,
the basics (possibilities and restrictions) of small area studies are told. Due
to the protocol a proposer of an investigation should pay attention to the
reasons and the justification of a possible case of environmental emergency.
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2.3.5 Multiple comparisons

The other inferential problem of point source studies is multiple compar-
isons. Often several cancer types in several areas around the point source
are analysed (see, e.g., [39],[40],[44]–[46],[49]), but the problem of multiple
comparisons is passed by. Only in two out of six previously mentioned case
studies ([39],[44]) was the multiple testing considered. The assumption of
the independence of the tests is usually doubtful. If statistical significance
is set at 0.05, by the rules of probability one out of twenty tests produces
a significant result by chance. The methods addressing this problem have
been discussed by Greenland and Rothman [110]. By modelling techniques
the problem of multiple comparisons may also be avoided [34].

Multiple comparisons are also a problem of studies analysed with SMASH
(see Article [V] or Tables 2 and 3 in Section 4.5). There is no systematic prac-
tice to handle this problem. Instead, it should be noted in the interpretation
of the results.

2.3.6 Determination of a study area

The determination of a study area may have a major influence on the re-
sults [111]. Without high-quality exposure measurements the boundaries are
usually drawn arbitrarily. It is quite difficult to know how large an area
to consider. For example, in routine cases in Small Area Health Statistics
Unit, the area within 7.5 km from the source (see, e.g., [12] or case studies
[42],[44]) is used for investigation. Often the boundaries are drawn based on
the availability of population data. The immediate problem is to determine
the population size in the exposed areas. Who are exposed? Those who live
in the area, or those who have lived (say 10 years) in the area, or those whose
workplace or school is in the area? The determination of a study area based
on health data leads to problems of post hoc studies described earlier. The
selection of too large a study area may lose the real effect. While with too
small an area the null hypothesis may be rejected too infrequently for rare
events.

In the case studies analysed by SMASH, the proposer of an investigation
is required to define the exposed area which is used as the study area (see
Section 4.4). In the determination of the population at risk, we are limited
by the availability of data. As a geocoded data SMASH holds only the place
of residence. Alternative choices of selecting the time of the place of residence
will be presented in Section 4.2.
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3 Aims of the study

The overall objective of this thesis is to further develop the small area system
SMASH. The data stored in the system are aggregated into squares of size
500 m × 500 m. High spatial resolution is informative but brings up new
methodological challenges in the risk estimation. High resolution is valuable
in the risk estimation, but at the same time creates sparse data especially
in rural areas. SMASH, including a database and modelling tools, concur-
rently requires and sets restrictions on the methodological development. This
system forms the frame of this development.

The more specific goals of the present work are:

(i) To search suitable and reliable advanced statistical methods for ana-
lyzing the regional variation of cancer risk around a putative source of
pollution within SMASH. Advanced statistical methods are searched
to solve the problems of spatially autocorrelated data, sparseness of
data, and other possible restrictions due to the high resolution of data.
[II–IV]

(ii) To implement the methods as a part of SMASH. In the implementa-
tion computation algorithms of the methods are coded with suitable
programming language. [II–V]

(iii) To evaluate the use of register data. In the evaluation the aim is to
find out what can be achieved with the register data and when more
laborious and costly individual level data should be introduced. [I–V]

(iv) To test and validate epidemiological methods within SMASH. Small
area epidemiological methods are tested by means of case studies. The
standardization methods are compared. The effect of different con-
founders is also studied. [I,V]
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4 Small Area Statistics on Health (SMASH)

The Finnish Cancer Registry and the Unit of Environmental Epidemiology
in the National Public Health Institute have been developing a system called
SMASH for small area epidemiology purposes. The objective of SMASH is
to provide the user with an easy, quick, accurate and reliable method for
a preliminary analysis of the area-level cancer incidence. The main aim of
SMASH is to give an answer to a question like whether there are more cancer
cases in a prefixed area than what would be obtained by the knowledge on
the reference population.

The need for the existence of a system like SMASH is mainly in getting a pre-
liminary answer in administratively problematic situations. Usually, health
authorities and communal decision-makers require an initial answer quickly.
For example, in 1998, the knowledge on the building of the housing estate
on a former waste site raised concern in the local population at Myllypuro, a
suburb of Helsinki. The Environment Centre of the City of Helsinki required
an investigation about the possibilities of connections between the high con-
centrations of toxic substances and diseases. An individual level case-control
study was built up and the results were available after some months [112].
Meanwhile, SMASH-based results were produced within a few days [I]. Ini-
tial answers for informing the local population were available considerably
quickly. Before the existence of SMASH that kind of rapid analysis was
not possible: The Finnish Cancer Registry was able to produce geographical
analyses at the municipality level only [113].

At an early stage of the development of SMASH, cancer incidence was mod-
elled by the classical Poisson regression. In the model applied by Pekkanen
et al. [114], the distance from the point source, age and sex were the inde-
pendent variables. The lack of control of spatial correlation was recognized,
and the development of SMASH continued.

4.1 Register data bases as sources of information

Minimal data requirements for producing rapid initial risk estimates are
health data, denominator (or control) data, and data on putative sources of
pollution (point sources, roads, railways, power lines, etc.). All data should
be georeferenced in a way which allows spatial linking. Key requirements for
health data sets are some form of diagnostic code, date of diagnosis, date
of birth, and sex of person. Because diagnostic coding (e.g., (ICD)) varies
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through time (see Section 2.2.6), it is essential that codes should be matched.
Denominator data sets are required for calculating rates of diseases within
geographical areas. In many cases the denominator data will be popula-
tion data. In some cases the denominator may be data on births or data
on hospital admissions depending on health data examined. Denominator
data must include date and must be broken down by sex and age to enable
the estimation of age-sex specific rates. Other environmental data (geogra-
phy, land use, forests, rivers, lakes, etc.), meteorological data (e.g., prevailing
wind direction and wind speed) and data on confounding variables (e.g., data
on socioeconomic class or data on life style factors) would further improve
geographical information systems as a risk assessment tool.

Easy linkage of register data is possible in Finland. All Finnish residents
since 1 January 1967 have a unique personal identification number. Those
personal identifiers enable the linking of data bases straightforwardly and
fast.

As a geographical system SMASH applies the National Grid Coordinate Sys-
tem [115]. In this system Finland is divided into four projection zones based
on the central meridian of these zones. The projection zones have the central
meridian at 3 degree-intervals starting from the 21-degree longitude. The
respective numerical values of these central meridians are given at 1 000-
kilometre-intervals starting from 1 500 kilometres, where the first number is
the ordinal number of the particular zone. The longitude in each zone is the
distance from the central meridian. The latitude is the distance from the
equator.

4.1.1 Population data

(i) Population data and geographical residential data

Statistics Finland has been collecting population census data since 1950 ev-
ery ten years. Since 1975 also intermediate population censuses have been
collected. Date of birth, sex, marital status, mother tongue, citizenship, reli-
gion, and regular place of residence are registered as demographic variables.
Since 1970, the personal identifiers have been registered.

The Population Information System of the Population Register Centre holds
data on Finnish residents and on buildings and apartments in Finland. Data
are supplied by the administrators of the building inspections of the munic-
ipalities. The centre points of all buildings in Finland are coded to provide
the coordinates in latitude and longitude. This data base is available from

25



the year 1970 onwards. The quality and accuracy of coordinate data vary
by municipality. In 1970, the accuracy was principally 10 metres, in some
municipalities in East-Finland and in North-Finland up to 500 metres. The
administrators of municipalities have been responsible for the continuous up-
dating of the data base. Since 1980, the coordinates could be provided with
an accuracy of one metre. An extensive cross-checking was performed in the
turns of the decades 1980 and 1990. In the cross-checking in 1999 the Pop-
ulation Register Centre observed that more than 99% of the residences were
recorded in The Population Information System.

These register data bases can be linked using unique identification numbers
to obtain co-ordinates of the home address of each Finnish resident. In a
validation study in the year 1990, 97% of the 96 000 Finns surveyed lived
in the same building as was recorded in the register [116]. Accordingly, the
quality of georeferenced population data obtains high ranking.

(ii) Data on social class

The population census data collected by Statistics Finland hold data on
education and economical activity. Based on these data, socioeconomic clas-
sification can be easily obtained.

Data on the educational level and the educational status were asked by ques-
tionnaires up to 1970. From 1975 to 2000 data were collected from registers
of the Population Register Centre.

Up to 1985, variables describing economical activity (principal activity, oc-
cupational status, livelihood, occupation, site of work place, socioeconomic
status) were asked by questionnaires. From 1990 to 2000 the variables were
collected from the registers of Statistics Finland and Population Register
Centre. Data on income were collected from registers from 1970 to 2000.

(iii) Population data in SMASH

Based on the data described above, numbers of inhabitants by sex, age and
socioeconomic class in squares of size 500 m × 500 m are calculated for
the whole of Finland, and these data form an input to SMASH. Currently,
SMASH holds population data for the years 1980, 1990 and 1997. The pop-
ulation counts in intermediate years are estimated as the weighted average
of the existing data. The inhabited squares cover around 16% of the land
area of the country. Age is categorized into eighteen 5-year age-groups (0–4,
5–9,...,80–84 and 85–). The socioeconomic classification used in SMASH is
based on the socioeconomic status and the education level. As discussed
above, there are also other variables in population censuses describing eco-
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nomic activity, but the socioeconomic status and the education level have
been chosen to describe the socioeconomic class of each Finnish resident.
The classification of socioeconomic activity follows broadly the one applied
by Pukkala [77] based on the socioeconomic status code of Statistics Finland.
The difference is that the farmers, foresters and fishermen are separated in a
group of their own and the manual workers are divided into separate groups of
”skilled” and ”unskilled” manual workers. The socioeconomic classification
used in SMASH comprises six categories:

1) farmers (employers, self-employed persons, employees), foresters and
fishermen;

2) other employers and self-employed persons, and upper clerical workers;

3) lower clerical workers;

4) skilled manual workers;

5) unskilled manual workers;

6) others.

The temporarily unemployed persons have been classified according to their
latest occupation. Those not in labour force (e.g., housewives and stu-
dents) are categorized by the reference persons of the household-dwelling
unit. Skilled manual workers are those workers having at least lower interme-
diate education grade, that is, upper secondary school, vocational (technical,
economical, etc.) school, vocational high school or university. The group
”others” includes pensioners, students, pupils, employees with unknown vo-
cation, and the unemployed without a reference person in the family.

The classification of socioeconomic status for the population in 1980, 1990
and 1997 is derived from the most recent census, that is from years 1980, 1990
and 1995, respectively. For pensioners, the last non-pensioner socioeconomic
status is used, derived by searching the previous census data up to the 1970
Population Census.

4.1.2 Cancer data

(i) Registration of cancer cases

The Finnish Cancer Registry has been collecting data on all incident cancer
cases and all cancer deaths in Finland since 1953. Since 1961, reporting is

27



been compulsory. All hospitals, medical practitioners and institutions with
hospital beds are obliged to notify the Finnish Cancer Registry of all cancer
cases that come to their attention. Pathological and cytological laboratories
send information on all tissue and cytological specimens with a diagnosis of
cancer. Statistics Finland sends a report whenever cancer is mentioned on
the death certificate. The quality of cancer data is very high. More than
99% of the cancers are registered by the Finnish Cancer Registry [117].

(ii) Cancer data in SMASH

Health data held in SMASH currently consist of all cancer cases diagnosed
in Finland between 1981 and 2000. A person can have more than one cancer,
that is, same person may be more than once in the data. The total number
of cases is 460 565 (373 660 malignant tumors). The place of residence for
cancer patients on 31 December in 1980, 1990, and on 31 December the
year before the cancer diagnosis is defined through the coordinate system
described above. Sex, age and socioeconomic status of all cases are are
classified in the same way as in population data. The classification of the
socioeconomic status is derived from the most recent census (1980, 1985,
1990, 1995 or 2000).

Through the personal identifiers, data on population, cancer, residence and
socioeconomic class have been linked by Statistics Finland.

4.1.3 Environmental data

At present, SMASH holds neither data on putative sources of pollution nor
other register data describing exposure levels. In routine applications of
SMASH, the existence and the location of a source is usually given by the
proposer of an investigation (see Section 4.4).

As environmental data, SMASH holds digitized maps such as the General
Map at 1:400 000 scale and the PerusCD including a basic map at 1:20
000 scale. Those maps are both in the raster form. SMASH also holds
digitized data on all the rivers and lakes in Finland. These digitized data are
produced by the National Land Survey of Finland. The inclusion of further
environmental data is case sensitive.
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4.2 Different types of cohorts

In SMASH, there are two alternative cohort definitions. In the cross-sectional
cohort, the study population is based on the place of residence either in 1980
or 1990. In the dynamic cohort the place of residence the year before the
diagnosis is used for the study population.

In studies based on the cross-sectional cohort, both the observed number of
cases and the population counts come from the cross-sectional population
in 1980 (or 1990). The cross-sectional population is followed irrespective of
whether or not they later move out of the area.

The strength of the dynamic cohort is that it gives an accurate answer to the
main administrative question asked from SMASH in an environmental emer-
gency, namely: Does cancer occur more frequently near a suspected source
of pollution than could be expected? Also, if the assumption of dynamic
populations is true, that is, the population moving in and out of the area is
similar, the approach gives a good estimate of the incidence of cancer in the
area.

There may be strong temporal changes in the amount of exposure due to the
point source. Large changes, for example, may be introduced to the point
source to reduce emissions, especially if there is a concern about an increased
risk of disease in the area. In this situation, the place of residence at the start
of the follow-up in 1980 (or 1990) is probably a better marker of exposure
than the place of residence the year before diagnoses for diseases with long
latency like cancer. On the other hand, for diseases with short latency such
as childhood cancers, using the dynamic cohort provides a flexible tool to
link changes in exposure to changes in the risk of these outcomes.

When using the dynamic cohort, population counts for each year are not
available but are subject to interpolation of using the population counts in
1980, 1990 and 1997. On the other hand, the observed cancer cases are clas-
sified according to the place of residence the year before cancer is diagnosed.
A similar weakness is met with the socioeconomic status; it is not necessarily
defined at the same time. For persons with cancer, the socioeconomic status
is derived from the previous population census (in 1980, 1985, 1990 or 1995),
while for the population at risk, the socioeconomic status is interpolated from
the data in 1980, 1990 or 1995. In the cross-sectional cohort, the data on the
numerator (cancer cases) and on the denominator (population at risk) are
strictly comparable.
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4.3 Estimation of risk in routine analyses

In routine applications of SMASH, the standardized incidence ratio (SIR)
with the 95% confidence interval is calculated as an estimate of cancer risk.
SIR is computed by dividing the observed number of cases (o) by the expected
number of cases (e) over the study period, namely:

(4.1) SIR =
o

e
,

where the observed number of cases is the sum of the cases in the study area.
The expected number of cases is calculated according to [82]:

(4.2) e =
∑

j

ns(j)or(j)/nr(j),

where ns(j) is a population count in the study area, and or(j) is the number
of observed cases and nr(j) the population count in the reference area in sex,
age and socioeconomic status specific covariate group j. Due to the lack of
data on mortality, the formulation based on person years is not possible.

In Breslow and Day [86], there is a table of coefficients for the accurate
calculation of confidence intervals of SIRs for the selected number of cases
under the assumption of independency and under the Poisson model. There
are also approximation formulas for this of which Byar’s formula seems to be
the most accurate and accurate enough for the calculation of 95%-confidence
interval when the number of observed cases is at least 20. In SMASH, the
confidence interval is calculated by Byar’s formulas when the number of cases
is at least 20. If the number is 20 or less, the coefficients tabulated by Breslow
and Day [86] are used. Byar’s approximation formula, giving the lowest limit
of the 95%-confidence interval, is

(4.3) SIRL =
o

e

(
1− 1

9o
− 1.96

3o1/2

)3

.

Respectively, the upper limit is

(4.4) SIRU =
o + 1

e

(
1− 1

9(o + 1)
+

1.96

3(o + 1)1/2

)3

.

4.4 Routine analyses

In routine analyses the possible selections are made on study area, cancer,
years of diagnosis, cohort type, age-groups, socioeconomic status and refer-
ence population. The socioeconomic status can be ignored.
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A study area can be defined freely with an accuracy of 500 metres within
Finland. Health outcome can be the total cancer, some group of cancers or
specific cancer type from the following list. To overcome the problems of
different versions of ICD codes over time the Finnish Cancer Registry has
developed the coding of their own, which does not directly follow any ICD
coding (see, e.g., [77]).

Mouth or pharynx: lip, tongue, salivary glands, other mouth, pharynx;

Digestive organs: oesophagus, stomach, small intestine, colon, rectum or
rectosigmoid, liver, gallbladder or bile ducts, pancreas, other digestive
organs;

Respiratory organs: nose or sinuses, larynx or epiglottis, lung or trachea,
pleura, mediastinum;

Breast

Female genital organs: cervix uteri, corpus uteri, other uterus, ovary, other
female genital;

Male genital organs: prostate, testis, other male genital;

Urinary organs: kidney, bladder or ureter or urethra;

Circulatory organs: non-Hodgkin’s lymphoma, Hodgkin’s disease, multiple
myeloma, leukaemia;

Other organs: melanoma of the skin, skin (non-melanoma), eye, nervous
system, thyroid gland, other endocrine glands, bone, soft tissues, other
or unspecified.

A reference population represents routinely the same sex, age-groups and
socioeconomic status strata. For example, farmers cannot be compared to
other groups in a routine analysis. Instead, there is a range of choices for an
area defining the reference population. The reference area can be the whole of
Finland or one of the five large geographical areas based on the districts of the
university hospitals: Helsinki (South), Turku (South-West), Tampere (West),
Kuopio (East), and Oulu (North). The reference can also be a population
of old towns (founded before 1906), other towns, rural municipalities, or any
combination of individual municipalities.
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The software used in routine analyses is an ArcView GIS 3.2 application
running under the Windows NT 4.0 Workstation.

To try to avoid the problems of post hoc studies, we have developed a protocol
with a form which should be read and filled in before any analysis. In the
protocol, the basics (possibilities and restrictions) of small area studies are
told. Due to the protocol a proposer of an investigation should pay attention
to reasons and justification of a possible case of environmental emergency.
In the form, the description of the problem, the hypothesis including the
assumed exposure and the putative source of pollution in addition to the
choices mentioned in the previous section are asked.

The high resolution of data brings up the questions of confidentiality. The
personal identifiers have been deleted from data after linkages and before
loading in SMASH. In the data loaded in SMASH, the date of birth is avail-
able by year. In a case of sparsely inhabited areas the results are shown in
such a way that a person cannot be identified. The data are stored in the
password protected folders on the hard disk of a desktop computer. The
backup disks of the data are also under lock and key.

4.5 Case studies in 1995–2003

In this subsection case studies analysed with SMASH between the years
1995–2003 are described. In Tables 2 and 3, a short description of all case
studies are presented. A more detailed description of the cases of Sulkava,
Myllypuro, Paakkila and Kymijoki can be found in the articles this thesis is
based on [I],[II],[V].

The first case study was a pilot on coordinate-based data [114]. This study
was carried out before the SMASH software was available. Total cancer and
leukaemia in 1983–86 were investigated around the oil refinery in Porvoo,
South-Finland, because an excess of risk in Porvoo was reported [118]. The
ratio of the observed and the expected number of cases was modelled us-
ing the classical Poisson regression. No association was found between the
distance from an oil refinery and the risk of total cancer or leukaemia.

The next case studies were carried out with SMASH software. In a small
village of Pahkala, concern was raised about several cancers. This case was a
typical post hoc study, because it was a disease driven and not an exposure
driven case study like the other case studies. In a municipality of Hattula,
a local physician was concerned about the possible increased cancer risk in
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Table 2: Case studies carried out with SMASH in 1995–1999.

Study area, Short description of the study Main results (risk in total
year of the study, (reason, cancers, years of cancer, unless else stated)
source of pollution, diagnosis)
reference
Porvoo, Empirical example for research No increased risk with
1995, purposes. Total cancer, distance from source.
oil refinery, leukaemia, 1983–86.
[114]

Pahkala, Concern about several cancer 16% increase.
1997, cases in a small village.
no specified source Total cancer, 1981–92.

Hattula, Local physician concerned 6% increase.
1998, about cancers in area with high
no specified source concentrations of arsenic.

Total cancer, 1981–92.

Säkylä, Municipality administrators 3% increase.
1998, concerned about cancers
problems in in citizens using drinking
drinking water water with high concentration

of chloro ethene. Total cancer,
liver, non-Hodgkin’s lymphoma
Hodgkin’s disease, multiple
myeloma, leukaemia, 1981–92.

Myllypuro, Concern about health effects in 9% increase in total cancer
1999, a housing estate. Total cancer, and 102% increase in lung
former waste site, digestive organs, lung, leukaemia cancer when compared to
[I] urinary organs, total cancer all old towns. 1% and 6%

among children, 1981–92. increase when compared to
the another similar area.
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Table 3: The case studies carried out with SMASH in 2000–2003.

Study area, Short description of the study Main results (risk in total
year of the study, (reason, cancers, years of cancer, unless else stated)
source of pollution, diagnosis)
reference
Parkano & Kihniö, Municipality administrators 2% increase.
2000, concerned about cancers in
problems in citizens. High concentrations
drinking water of radon, iron and manganese

in drinking water. Total
cancer, lung, kidney, skin,
1981–97.

Sulkava, Citizens of municipality 80% increase in kidney
2000, concerned about cancers. High cancer in 1990s.
problems in concentrations of chloro phenols
drinking water, in drinking water. Total cancer,
[I] colon, kidney, sarcoma, non-

Hodgkin’s lymphoma, Hodgkin’s
disease, leukaemia, 1981–97.

Olkiluoto & Loviisa, Empirical example for research No increased risk
2000, purposes. Leukaemia, 1981–97. around either of the
nuclear power plants nuclear power plants.

Paakkila, Empirical example for a 280% increase in a
2001, methodological articles. vicinity of the mine.
former asbestos mine, Lung cancer, 1981–97.
[II]

Kurikka, Local physician concerned 15% increase.
2003, about cancers in area with high
fur dressing concentrations of chloro ethene
chemical factory in soil. Total cancer, liver,

pancreas, bladder, kidney,
oesophagus, non-Hodgkin’s
lymphoma, 1981–2000.

Kymijoki, First part of a sophisticated 13% increase near the
2003, multi-approach study. Total river.
dioxin polluted river, cancer and selected subtypes
[V] among farmers, 1981–2000.
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areas with high concentrations of arsenic. In a municipality of Säkylä, munic-
ipal administrators paid attention to the health effects of high concentration
of chloro ethenes, measured in local drinking water. In a federation of mu-
nicipalities of Parkano and Kihniö, administrators were worried about high
concentration of radon, iron and manganese in drinking water. In a town
of Kurikka, a local physician was anxious about the the possible increased
cancer risk in areas with high concentrations of chloro ethenes, measured in
soil around a local fur dressing chemical factory. In all these cases the can-
cer incidence did not differ from the normal level, and the proposers of the
analyses were calmed.

A case study on leukaemia around the nuclear power plants in Olkiluoto and
Loviisa was performed by the request of researchers from the Radiation and
Nuclear Safety Authority of Finland (STUK). The incidence of leukaemia
was investigated in the circles around the nuclear power plants. As a result,
no increased risk was detected and no association was found between distance
from the plant and risk of leukaemia.

4.6 Problem of using cumulative incidences

SMASH does not hold data on an individual level but on the ecological
level. Therefore we are not able to use methods applying person-years but
population counts in the calculation of incidences, see Formula (4.2). In
the other words, we do not have incidence rates but cumulative incidence
[82] or incidence proportion [119]. The applying of the cumulative risk is
not a problem if the assumption of similarity of competing risks of death in
the exposed and in the reference group is valid. However, the cumulative
incidence may be biased for a lengthy period, because the probability of
dying increases and the observed number of cases simultaneously decreases.
For example, the decrease of RRs with time periods in farmers (see Table 4
in Article [V]) may be caused by this phenomenon.

4.7 Hybrid adjustment - a problem of indirect stan-
dardization

Relative risks in indirect standardization cannot be estimated reliably for
covariates used in the calculation of the denominator. This is called a hybrid
adjustment [89]. This problem was met during the writing process of Article
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[V]. In this particular case, the expected number of cancer cases was calcu-
lated in classes of covariates such as sex, age, socioeconomic status and the
time period. With the log-linear model we estimated the risk ratios for the
covariates and also for spatial covariates describing the effect of distance from
the river and the sea. In doing this, the model with the expected number of
cases as the denominator (indirect standardization) gave incorrect estimates
of the risk ratio for those used in the calculation of the denominator. For
example, women had a higher relative risk of cancer than men, while reality
is commonly assumed to be the opposite. In spite of that, for the covariates
describing the effect of distance from the river and from the sea, the esti-
mates of risk ratios were the same as given by the model with population
count as the denominator.

4.8 A call for methodological tools

The methodology used in routine applications of SMASH assumes that the
observed number of cancer cases is independently Poisson distributed, which
in many cases turns out to be a simplification. Because the methods do not
consider the possible spatial autocorrelation, this may cause errors in the
estimation of confidence intervals. In addition, the routinely used methods,
like SIRs, cannot satisfactorily deal with the problem of the sparseness of
data.

One convenient approach to overcome the problem of spatial autocorrelation
is to employ models with fixed effects or spatial covariates. Also the mod-
els with random effects or spatial random effects are possible to use. The
latter requires applying the Bayesian framework. The problem of sparseness
requires some smoothing methods, that is methods which can utilize infor-
mation either from the neighbourhood or from other similar areas or from
the whole data.
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5 Borrowing strength in small area analysis

5.1 A need for smoothing methods

For a non-infectious disease, with a known closed population and fixed follow-
up time without censoring and disease risk, the counts of disease may be
considered as independent binomial random variables. For rare diseases such
as cancers, the binomial distribution may be approximated by the Poisson
distribution [86],[104]. The counts oij in an area i and a covariate strata
j may be considered as independent Poisson distributed random variables,
that is,

(5.1) oij ∼ Poisson(θij),

where θij = eijλij. Here eij stands for the expected number of cases derived
from a reference population and assumed to be observed without error and
λij stands for the relative risk. An advantage of the Poisson assumption
under the independence is that we can sum over strata j and obtain

(5.2) oi ∼ Poisson(θi), θi =
∑

j

θij

for oi =
∑

j oij. Now the maximum likelihood estimator of the relative risk

λ̂i = oi/ei is equal to SIRi. This model can be presented in terms of a simple
generalized linear model

(5.3) log θi = log ei + log λi,

where the first term is considered as an offset variable.

A typical problem in the estimation of the relative risk of a rare disease for
small areas is the precision of the estimate. The most extreme risk estimates
are usually observed in areas with low population counts. In those areas an
additional case can increase the relative risk estimate remarkably. Secondly,
if there are no cases, which occurs with a non-negligible probability, a zero
risk estimate is obtained. This is in any case wrong, because the risk is
always over zero.

In addition, for small areas the variance of SIR easily becomes large, because
the variance is approximately proportional to the inverse of the expected
number of cases. The high variance of the SIRs has the effect that the
analysis is inefficient and the interpretation difficult.
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The problem of the Poisson model (5.1) is that the assumption of inde-
pendence usually does not hold, that is, the observed number of cases are
spatially correlated. One reason for this claim is that the observed counts
oij are affected by one or several spatially correlated factors which have not
been observed.

In order to overcome the problems of spatial aurocorrelation and low preci-
sion of the estimate, smoothing or ”borrowing strength” methods are usually
employed. The idea in smoothing is to borrow the information from other
small areas for the estimation of the relative risk. The information can be
borrowed either from similar areas, from nearest areas (local smoothing) or
from all areas in the study area (global smoothing). Smoothed estimates
of the relative risk can be received by smoothing either the estimator itself
or the numerator and the denominator of the estimator separately. Sev-
eral methods for smoothing are available, see, e.g., [27],[52],[107],[120],[121].
Those methods are not specific for point source studies, but many of them
can be applied in this specific context. When smoothing methods are uti-
lized, the possibility of over-smoothing must be noted. With over-smoothing
possibly remarkable findings may be faded out.

5.2 Distance-based models

5.2.1 Parametric distance-based models

A vast literature exists on parametric models based on the distance from
a point source, see, e.g., [8],[33],[34] or [109]. When parametric models are
used in the calculation of predictions (or fits), these predicted values can be
considered as smoothed values. In these models the relative risk is usually
considered as a function of distance (di) from the source, that is,

(5.4) λi = f(di),

with f(di) → 1 as di →∞. In the case of aggregated count data, the distance
from a source di is measured from the centroid of the area i. These models
make the estimates smooth by treating all the areas with the same distance
from a source identically and by taking advantage of the information from
all those areas. We utilized a popular distance-based function introduced by
Diggle [25]:

(5.5) f(di) = 1 + α exp{−(di/β)2},
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where di is the distance between area i and the point source, α is the pro-
portional increase in risk, and β measures the rate of decay with increasing
distance from the source [III]. Other functions can be also utilized, see, e.g.,
[8],[30],[33]–[35],[109],[122].

5.2.2 Regional effect model

A simple non-parametric simplification of the distance-based model (5.4) is
to exploit spatial fixed effects. The idea of this method is to divide the whole
study area into (say) k sub-areas, which are compounded of underlying small
areas. Then we aggregate counts in small areas into these sub-areas, in other
words we fix the relative risk at the sub-area level k. So we obtain the
log-linear presentation

(5.6) log θi = log ei + βxk,

where an area i is within a sub-area k and xk is an regional effect related
to the sub-area k. If the observed numbers of cases are assumed to be in-
dependently Poisson distributed random variables, this is an instance of the
Poisson regression model. We applied a full Bayesian version of this method
[II]. We aggregated small areas and calculated the relative risk at the level
of sub-areas.

If the relative risk is presumed to vary also according to some regional effect
(xk) and a set of J ecological covariates (zij), then we obtain a generalization
of (5.6)

(5.7) log θi = log ei + βxk +
J∑

j=1

γjzij,

where β = 0 if i /∈ k. We applied the model (5.7) with fixed effects to a line
source problem [V].

In these simple cases (5.6–5.7) smoothing arises from the consideration of
the marginal distribution of the relative risk and taking advantage of infor-
mation from the whole data at the sub-area level (a group of small areas).
These estimators reduce the problem of uncertainty of estimates in small ar-
eas. The possible spatial autocorrelation is somehow considered through the
fixed regional effects and through adjustment for the covariates. If strong
spatial correlation exists, the regional effect model (5.7) suffers from invalid
summing. Because, the summing is not correct, representing the SIR as a
raw estimate of relative risk is usually irrelevant.
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5.3 ”Borrowing strength” models

The models described in the previous subsection are not able to handle the
problem of spatial correlation, because these models assume that observations
are independently and identically distributed. A direct consequence is that
the inference based on results may not be correct. Two main approaches to
deal with correlated counts are Markov type modelling developed for image
analysis (see, e.g., [123]) and, especially, hierarchical (or mixed) models (see,
e.g., [16] or [124]).

5.3.1 Auto-Poisson model

An extension of the Poisson regression allowing the dependence of the obser-
vations is the so called auto-Poisson model introduced by Besag [125]. The
idea of this method is to utilize the neighbouring information on cases. Here,
a neighbourhood is defined through a symmetric relation ”∼”. For example,
all small areas i′ which share a common boundary with a small area i can
form the neighbourhood, i′ ∼ i, for area i. The observations are assumed to
be conditionally Poisson distributed, such that

(5.8) oi|oi′,i′∼i ∼ Poisson(θi).

Now the regression model can be written as

(5.9) log θi = log ei + βxk +
∑

i′∼i

βi′oi′ +
J∑

j=1

γjzij,

where
∑

i′∼i means the summing over the neighbourhood of area i, βi′ is
an autoregressive coefficient representing the spatial autocorrelation. The
problem when using this model is that the joint distribution for o may be
defined only when the autoregressive coefficients are below zero [126].

5.3.2 Truncated auto-Poisson model

To overcome this problem, Ferrándiz et al. [126] have proposed a choice which
they called a truncated auto-Poisson model. They truncated the Poisson
distributions to a limited range. In fact, they restricted Poisson counts to be
smaller than the living populations in the small areas. This requires the use
of direct standardization.
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A major weakness of the (truncated) auto-Poisson model is that it is not
strong in modelling global patterns of risk although it may treat local depen-
dence adequately.

5.3.3 Empirical Bayesian model

Clayton and Kaldor [19] introduced an empirical Bayesian modelling ap-
proach for disease mapping. In their model, the observations are assumed to
be conditionally independent given the relative risks, that is,

(5.10) oi|ei, λi ∼ Poisson(eiλi).

From this model, the posterior expectations {λi} given {oi} may be esti-
mated. The prior distribution for the relative risk is commonly assumed to
be Gamma(α, β). The hyperparameter estimates α̂ and β̂ are derived from
the marginal likelihood. The empirical Bayes point estimates of the relative
risk can be written as

(5.11) λ̂i =
oi + α̂

ei + β̂
.

The estimator of the relative risk (5.11) is a compromise between data and a
prior mean of the distribution of relative risks. If the number of the observed
cases is large, the estimate is close to the SIR, while with small numbers
the estimate is close to the prior mean of the relative risks. We applied the
empirical Bayesian method for data aggregated at the sub-area level [II].

5.3.4 Hierarchical hidden Markov models

One advanced way to overcome the problem of possible spatial correlation
is to add a spatially structured random effect into the model. The idea
of adding this effect is to allow similarity of neighbouring estimates. The
observed numbers of cases are again assumed to be conditionally independent
given the relative risks. Now the regression model takes the form

(5.12) log θi = log ei + βxk +
J∑

j=1

γjzij + ui,

where ui, i = 1, ..., I, denote the spatially structured random effect. This may
be referred to as a local smoothing. The dependence of the I-dimensional
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random variable u = (u1, ..., uI) can be defined either by a joint model of
u or by a conditional model with the univariate conditional distribution for
ui|ui′ , where i′ 6= i and i, i′ = 1, ..., I.

In joint modelling when using a Gaussian Markov random field, dependence
is introduced by the correlation (or covariance) matrix of the multivariate
distribution of the random variable. Wakefield et al. [104] review definitions
for dependence, in which the correlations of areas i and i′ depend on the
distance between the areas.

In the conditional specification, an explicit definition of the whole covariance
matrix is not required. The matrix of weights describing the association
between the neighbouring estimates and the diagonal of the covariance matrix
is required. This model is called a conditional autoregressive (CAR) model.

The hierarchical autoregressive model was introduced by Besag et al. [127] as
an extension of the Poisson regression model with two random components,
ui, vi,

(5.13) log θi = log ei + βxk +
J∑

j=1

γjzij + ui + vi,

where ui is as in the previous model (5.12) and vi is an unstructured (or
heterogeneity) random effect. Now, in addition of the modelling of the spatial
dependence, the overdispersion is modelled through the unstructured random
effect.

The hierarchical Markov model has become very popular and widely accepted
in spatial modelling. For the spatially unstructured effect vi, Besag et al.
[127] set a conventional prior with zero mean with variance δ2

v . Instead, for
the structured effect ui they introduced a ”borrowing strength” prior, an
intrinsic Gaussian autoregression prior, given by

(5.14) p(u1, ..., uI |κ) ∼ κI/2 exp

{
−κ

2

∑

i∼i′
wii′(ui − u′i)

2

}
,

where κ has a role of a smoothing parameter and wii′ is a weight relating
the neighbouring areas i and i′. The idea of the prior (5.14) is to penalize
large deviations of relative risk estimates between neighbouring areas. In the
paper by Besag et al. [127], another joint improper distribution defining the
random fields is presented, too.

Compared to the auto-Poisson model (5.9), one of the strengths of the hier-
archical Markov model (5.12) in the Bayesian approach is that conditioning
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by the relative risk the data are controlling for scale patterns and the random
field serves a local smoother.

A difficulty with the hierarchical Markov model is that it is usually unclear
how to choose the weights wii′ , the neighbourhood i ∼ i′ and the smoothing
parameter, κ, in the prior (5.14). This is especially true in the case of sparse
data with empty areas. The most general solution to define the neighbour-
hood is to take the areas sharing a common boundary (e.g., [19],[127]). This
is reasonable if the areas are of similar size (as the squares based on metric
coordinates of SMASH). An alternative solution is to use the distance be-
tween either area or population centroids in the definition. The definition
of weights is usually dependent on the definition of the neighbourhood. If
the distance-based neighbourhood definition is exploited, the weights may
naturally be based on the distance between the neighbouring areas. The
definition of smoothing is instead quite difficult, because spatial data often
have a small amount of information concerning the level of smoothing [128].

We applied a version (5.12) of the hierarchical Markov model [II],[III]. We
also exploited the prior (5.14) with the weights equal to one [II],[III]. In
Article [II], we set a hyperprior for the smoothing parameter κ. Instead, in
Article [III], we treated κ as fixed, as did Besag et al. [127].

5.3.5 Constrained hierarchical Markov model

According to an empirical evaluation [120], the hierarchical Markov model
is rather robust and performs well in comparison with its competitors. In
addition, the hierarchical Markov model (5.13) and its extensions are widely
applied in disease mapping (see, e.g., the books by Elliott et al. [3] or Law-
son et al. [4] or [5],[129]–[137]). Its exploitation with spatial small area
data, especially with high resolution data, may be labourious. The posterior
computing by means of the Markov chain Monte Carlo (MCMC) simulation
method (e.g., [138],[139]) may be instable [II]. This feature, lack of conver-
gence, has been noticed also elsewhere [128].

Several possibilities are available to overcome the problem of instability in
the computing of the posterior. One possibility is to increase the information.
One way to increase the information is to enlarge the neighbourhood used in
the autoregressive prior (i ∼ i′ in 5.14). We first defined the neighbourhood
as in the most common cases in the literature, the adjacent areas defined
the neighbourhood of an area [II]. In our case we had squares, so eight
neighbouring squares were selected. With high resolution data there were
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several isolated squares, so the enlargement of the neighbourhood consisting
of twenty squares was needed. Ranta and Penttinen [137] applied an adap-
tive enlargement of the neighbourhood. The neighbourhood was enlarged to
cover at least three inhabited areas. This adaptive method may be appro-
priate in disease mapping but not in point source studies, because in these
studies the distance from the source is the main objective of inference and
the nearest neighbourhood should be equal sized. Another way to increase
the information is to apply the joint modelling of two or more outcomes if
available. Knorr-Held and Best [140] exploited the shared-component model
in studying relative risks of oral cavity and oesophageal cancer for males in
Germany.

Another possibility to overcome the problem of instable simulation is to im-
prove the computing algorithm. The algorithm applied in Articles [II] and
[III] was tailored in language C (see, e.g., [141]), because our version of the
hierarchical Markov model model was too complex to be calculated with the
popular Bayesian software WinBUGS [142]. Because the writer of the algo-
rithm was not a professional C programmer, the algorithm may not be as
sophisticated as possible. Our algorithm was a modification of single site
Metropolis updating, which may also suffer from low mixing. More clever
and better mixing algorithms may be possible. For example, Knorr-Held and
Rue [143] introduced an algorithm based on block updates. They studied the
low mixing of MCMC in connection of the hierarchical Markov model advo-
cating simultaneous block updating of the parameters and hyperparameters.
Breslow et al. [144] have proposed to use approximation methods instead of
MCMC simulation.

The improvement of the convergence of the MCMC algorithm may be possi-
ble through controlling the posterior expectations of estimates by the priors.
The auto-regression prior has been defined in an improper way, which may be
problematic with high resolution data. The computational problem in con-
nection with the hierarchical Markov model (5.12) has usually been linked
with the problem of the smoothing level. A solution proposed is to choose
the prior in a proper way, (see, e.g., [130]). We had to set a quite informative
prior for the smoothing parameter [II].

One possibility to overcome the problem of instability is to restrict the model.
In the Bayesian framework this can be formulated by constraining the priors.
We suggested three constraining methods in the estimation of the relative
risk in three sub-areas [III]. The idea of the first method was to fix the relative
risk estimate in the farthest sub-area. An interpretation of this constraining
method is similar to the typical regression model where the sub-area with
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a fixed effect is a control and the other areal risks are compared with this
control. The idea of the second method was to order the sub-area specific risk
estimates a priori. The idea of the third method was to relax the previous
ordering. We implemented Markov chain priors for the relative risks on the
sub-area level.

5.3.6 Change-point model

One simple modification of the Poisson model is a hierarchical one with a
change-point prior (see, e.g., [145]–[147]) for the relative risk. The change-
point model is a special case of partition models (e.g., [148],[149]). The
observed number of cases is modelled by

(5.15) oi|λ, e, s, k ∼ Poisson(eiλsk
),

where k is the number of change-points and s is the positions of the changes.
In this model, unknown parameters are the number of change-points, their
locations, and the relative risk between them. The relative risk is assumed to
be a piecewise constant function of the distance from the source. We treated
the number of change points and their locations as nuisance parameters (see,
e.g., [16]), because they were not of main importance [III]. When MCMC
simulation is applied in the estimation of the posterior for the unknowns, the
result the estimate of the relative risk is a smooth curve (see, e.g., [150],[151]).
This is a result from a sample of marginal posterior distribution with varying
estimate for the location of change-points.
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6 Empirical findings

6.1 Statistical prelude

The methodological suggestions to solve the main statistical problems, spa-
tial autocorrelation and sparseness of data, were considered in the previous
section. In addition to these, the change-point model offers also a solution
to the problem of the determination of the study area.

To determine a small enough study area is not a problem, because the change-
point model estimates the high risk areas. Due to the random number of
change-points, the high risk areas can be found even if the trend is fading
away with increasing distance.

In addition, the investigator cannot interfere in the sub-area selection within
the study area. The determination of the sub-area small enough to confirm
a priori presumptions is not possible because the model defines the high
risk areas. To determinate the sub-area large enough is neither a problem,
because the model smooths the estimate of the relative risk in the areas with
low expected counts.

6.2 Epidemiological findings

In what follows, the findings of the development of epidemiological meth-
ods are briefly discussed. In the next section the empirical results will be
compared.

During the writing process of Article [V], we compared the results provided by
direct and indirect standardization. The unpublished result was that direct
and indirect standardization gave very similar results in this particular case.

In Article [I], we compared the effect of reference areas on estimates of relative
risks. In the case study concerning Sulkava, SIR was closer to one when the
reference area was the district of Kuopio University Hospital (East-Finland)
or all the rural municipalities than when the reference area consisted of the
whole of Finland. Also for the Myllypuro data, the known urban-rural differ-
ences and the differences between different parts of Finland in cancer rates
appeared. SIR was highest when compared with the whole of Finland, but
it became closer to one when the reference was chosen to be the district of
Helsinki University Hospital (South-Finland) or the old towns. Finally, SIR
was almost one when the reference was the town of Helsinki.
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In Article [I], we explored the effect due to adjusting for the socioeconomic
status. In a rural municipality of Sulkava, adjusting for the socioeconomic
status had no important effect on SIRs. During the writing process of Ar-
ticle [V], we also explored this effect. The unpublished results showed no
important differences whether the adjusting was applied or not. Instead, at
Myllypuro with the dynamic cohort adjusting for the socioeconomic status
gave higher SIR, 1.20 (1.03–1.39), than without adjustment, 1.06 (0.92–1.23).

At the moment, no evidence is available concerning the comparison of the
use of area level data in SMASH and individual data. In Article [I], we com-
pared the results given by SMASH with the results of individual level study
by Pukkala and Pönkä [112]. The results of comparison are only suggestive,
because the population at risk was defined in a different way and the study
periods were not the same. For total cancer, SIR unadjusted for the socioe-
conomic status in the individual study was higher, 1.20 (0.97–1.48), than by
SMASH, 1.06 (0.92–1.23). By chance, with adjustment for the socioeconomic
status in SMASH, the SIRs were equal, 1.20 (1.03–1.39), as in the individual
level study without adjusting.

If the use of register data is evaluated for modelling, our experience is that
with the currently available data in SMASH not much more can be achieved.
The hierarchical Markov model is complex enough, possibly too complex,
for analysing the health data in SMASH [II],[III]. Instead, additional data
(available in Finnish registers) may be valuable for more advanced modelling
of register data.

6.3 Empirical findings from the comparison of meth-
ods

As an application, a classical point source example was used [II]–[IV]. The
relative risk of lung cancer around the former asbestos mine at Paakkila in
the eastern part of Finland was estimated. The exposure to asbestos results
in an increased risk of lung cancer [152]. Asbestos mining continued between
the years 1918–75 at Paakkila. Therefore, a high incidence of lung cancer
cases was expected, which would be good for our purposes in the development
of methodology.

(i) Fixed sub-areas

When the relative risk was estimated by the Bayesian modelling of SIRs [II],
the empirical Bayesian modelling of SIRs [II], and the constrained hierarchical
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Markov model [III], the whole study area (square of size 50 km × 50 km)
was divided into three fixed sub-areas based on the assumed exposure levels
without a prior knowledge of the spatial distribution of lung cancer cases.
The first area beside the mine was a 4 km × 4 km square. It was not centered
at the mine, because the prevailing wind direction was from the south or
from the south-west. The bandwidth beside the main roads from the mine
excluding the first area formed the second area. The exposure in this area
was supposed to be higher than in the rest of the study area, because of the
transportation of asbestos away from the mine. The rest of the study area
was supposed to be the least exposed area.

The number of inhabited 500 m × 500 m squares was 2 051 (21% of the
total). The number of inhabitants varied from 1 to 782 in those squares,
whereas the total population count was 19 825 (194 beside the mine, 2 124
in the second area, and 17 507 in the rest of the area) in the whole area in
1980. The number of squares with cancer cases was 138 (1%), with 1–5 cases
in each. The total number of lung cancer cases diagnosed between 1981–97
was 184 (6 in the first, 24 in the second, and 154 in the third area).

Table 4: The estimated areal relative risks with 95% intervals given by the
maximum likelihood method (SIR), the full Bayesian model (FB), the empir-
ical Bayesian model (EB), the model constrained with fixed area effect in A3

(FE), the model constrained with the strict order condition (SOC) and the
model with relaxed order condition (ROC). The interval of SIR is an equal
tail 95% confidence interval, and the Bayesian intervals are equal tail 95%
credible intervals.

Model Area nearest to mine Second area Farthest area
Risk 95% interval Risk 95% interval Risk 95% interval

SIR 3.80 1.39 to 8.28 1.44 0.92 to 2.13 1.20 1.02 to 1.41
FB 3.80 1.40 to 7.39 1.44 0.92 to 2.07 1.20 1.02 to 1.40
EB 3.13 1.38 to 5.62 1.48 0.97 to 2.11 1.21 1.03 to 1.41
FE 3.47 0.85 to 9.77 1.55 1.03 to 2.42 1.20 †
SOC 4.13 2.00 to 8.24 1.50 1.17 to 1.97 1.13 1.01 to 1.27
ROC 3.72 1.89 to 9.01 1.47 1.11 to 2.32 1.22 1.06 to 1.42
† The area effect was fixed to 1.20, hence no confidence interval was calculated.

The estimates of the parameters based on the three exposure areas are shown
in Table 4. Maximum likelihood estimates (SIRs) were calculated as refer-
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ence point estimates. The uncertainty of the SIRs is expressed in terms of
the equal-tail 95% confidence interval. The results concerning Bayesian esti-
mators are expressed in terms of posterior medians instead of means due to
the skewness of the distributions. The uncertainty is described by equal-tail
95% credible intervals. These Bayesian intervals are strictly comparable with
each other but not with the confidence interval of the SIRs. The Bayesian
interval can be regarded as a probability interval, while the (frequentistic)
confidence interval can be interpreted only in relation to repeated sequence
of similar inferences.

The SIR corresponding to the area nearest to the mine was the highest,
SIR=3.80, with a wide confidence interval, (1.39–8.28), due to lowest risk
population counts and consequently lowest number of cases. The estimates
given by the fully Bayesian model and the relaxed order restricted constrain-
ing method showed similar high risks for this area, above 3.70, with quite wide
95% intervals. In the empirical Bayesian model, the estimate was smaller but
had also a narrower interval (1.38–5.62) than the estimate given by the fully
Bayesian model. This is typical for the empirical Bayesian method due to
the shrinkage effect [20]. Also the constraining method with one fixed area
effect gave a slightly smaller estimate, 3.47, with the widest 95% interval
(0.85–9.77). On the contrary, the strict order restricted constraining method
produced a slightly higher relative risk estimate, 4.13. The 95% intervals were
smaller using the strict order restriction on the risk estimates (1.89–8.03).

For the second area, SIR was 1.44 (0.92–2.13). The fully Bayesian model, the
empirical Bayesian model and the model with relaxed order condition pro-
duced risk estimates of the same size. The 95% interval of the last mentioned
model was widest (1.11–2.32) among these. Other constrained methods gave
higher estimates, above 1.50. Again the intervals were smallest using the
strict order restriction, (1.17–1.97).

For the rest of the area, SIR was 1.20 (1.02–1.41). Now, the fully Bayesian
model, the empirical Bayesian model and the model with relaxed order condi-
tion produced the same risk estimates. Instead, the model with strict order
condition produced a smaller risk estimate, 1.13. The 95% intervals were
quite similar among all of the Bayesian methods, around 1.00 to 1.40.

(ii) Random sub-areas

When the relative risk around the mine was estimated with the change-point
model, the study area was divided into 47 nested zones by circles with radius
of 1.5, 2.0,. . . ,24.0 and 24.5 km [IV]. All the zones in the study area were
inhabited. The range of inhabitants was from 15 to 1 911 in the zones, while
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Figure 1: Estimated relative risk of lung cancer with the increasing distance from
the former asbestos mine. The solid line describes the posterior median of relative
risk, and the dotted lines the 95% credible interval. The straight line describes the
reference, relative risk = 1.00.

the total number of inhabitants was 17 194 in the whole study area. The
number of zones with cancer cases was 41, with 1 to 19 cancer cases in each
(153 cancer cases in the whole area).

The results concerning Bayesian estimators are expressed in terms of pos-
terior medians. The uncertainty is described by an equal-tail 95% credible
interval. Because the idea of the change-point method is to let the model
show the number and the location(s) of the change-points, we let the number
vary according to the design starting from 0. We concluded that the reason-
able number of change-points was two. The smooth curve of the Bayesian
estimate of the risk is shown in Figure 1.

The estimate near the asbestos mine was 2.44 (1.17–6.07). At the farthest
zone the risk estimate was 0.77 (0.41–1.52).
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7 Computational issues and software

During the process of this thesis the following softwares were used. SMASH
software was used in the routine analyses. It runs under ArcView GIS 3.2 for
Windows running under Microsoft Windows NT 4.0 Workstation on desktop
computer [I],[V]. The avenue code for SMASH software on ArcView GIS was
written in Geological Survey of Finland in Kuopio. The software and data
are stored in the password protected directories on Windows NT, and on
OpenVMS 7.3 server of the National Public Health Institute, Helsinki. Data
management (checking and cleaning) was carried out mainly using SAS (ver-
sions 6.0–8.2) for VMS and SAS 8.02 for Windows. Further data management
(integrating) was carried out with ArcView GIS. In the modelling we used
WinBUGS 1.3 running under Windows NT [II],[IV], SAS for Windows [V],
and Sun WorkShop 6 update 2 C 5.3 C-compiler running under Solaris 8 4/01
on Sun Enterprise 250 server of the University of Jyväskylä for self-written
C code [II],[III]. In the visualization we used ArcView GIS, and S-PLUS
(versions 3.3–2000) for Windows. This text is produced with WinEdt 5 and
MiKTeX 2.3 running under Windows NT.

51



8 Discussion

8.1 Methodological choices

Models for analysing the regional variation of cancer risk around a puta-
tive source of pollution were suggested. In the following the findings in the
development of methodology are discussed.

8.1.1 Models for estimation of disease risk around a source of
pollution

Let us consider first modelling of cancer risk in fixed sub-areas obtained as a
result of aggregation from small areas, which were the smallest spatial units
available. In the simplest case, if the spatial autocorrelation can be assumed
to be weak within sub-areas, a Poisson regression model with regional effect
(5.7) can be exploited. In the case of the river Kymijoki, we estimated the
sub-area specific relative risks with this model [V].

As a more sophisticated model, we applied the hierarchical Markov model
(5.12). The effect of the point source was considered again through the
fixed regional components (xk in (5.12)). However, the hierarchical Markov
model turned out to be inconsistent with sparse high resolution data to some
degree. The posterior computation was unstable [II]. The MCMC samples
in the simulation of the posterior distribution did not converge in a proper
way, and we could not reach identifiable estimates for the relative risks.
We suggested three constraining methods, which all stabilized the posterior
simulation and resulted in identifiable estimates of the relative risk [III].

Finally, we suggested a simple extension of the Poisson regression model
based on a change-point prior (5.15) [IV]. In the case of the change-point
model the effect of the point source was estimated in the random areas around
the source.

A general advantage of the use of Bayesian models is that the Poisson assump-
tion is usually valid conditionally. Another general advantage of Bayesian
models is that prior knowledge about the subject can be used through prior
distributions, if available. Also, the MCMC simulation of the Bayesian model
is a convenient tool for inference on the behaviour of the relative risk, be-
cause the Bayesian interval is an actual probability interval. This simplifies
the testing of the hypothesis like ”the relative risk in area A is higher than
in area B”.
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The hierarchical Markov model with constraining seemed to be superb if
the comparison of the methods is based on the capability to solve the main
problems, spatial autocorrelation and sparseness of data (discussed in the
next two subsections). The cost in the use of the model is the demanding
and time-consuming calculation. The hierarchical Markov model and its
extensions are extremely developed. Because the high resolution data set
restrictions, the development of the complex models may be useless if the
models are more complex than data.

The change-point model is an alternative to the utilization of tests for the
linear trend in the risk [7],[22],[24],[40] and the calculation of SIRs. The
change-point model assess simultaneously the estimate and the trend of the
relative risk. In addition, the change-point model detects the possible non-
linearity in risk and increase or decrease in risk with increasing distance from
the source.

8.1.2 Consideration of spatial autocorrelation

In the case of the Poisson regression model with fixed regional effects, the
possible spatial autocorrelation is somehow considered through the fixed re-
gional effects and through the adjustment for the covariates.

The possible spatial autocorrelation was estimated by calculating Moran’s I
statistics (2.4) in the example case of Articles [II],[III] and [IV]. There were
high correlations even between squares quite far away (20 km) from each
other. The incidence of lung cancer in rural area around the former asbestos
mine proved to be spatially autocorrelated.

In order to allow for the possible existence of spatial autocorrelation, we first
exploited our version of the hierarchical Markov model. We had to set some
restrictions to reach identifiable results. The main strength of the hierarchical
Markov model was the ability to consider spatial autocorrelation. Another
strength of the model was that it could simultaneously estimate the relative
risk in the small areas and in the fixed sub-areas.

In a change-point model the spatial autocorrelation is not taken into ac-
count at the level of aggregation to concentric sub-areas. However, spatial
autocorrelation between these sub-areas is considered through the model.
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8.1.3 Smoothing sparse data

The Poisson regression model with fixed regional effects compensates the
sparseness of data by smoothing. The covariates describe the spatial effect.
In the estimation of these covariates the whole data in the study area are
applied.

When applying the hierarchical Markov model, the smoothing effect comes
from two sources. First, the spatially structured effect smooths locally from
the neighbouring small areas, even over the boundaries of the sub-areas.
Secondly, the modelling in the Bayesian framework smooths globally the
observed and the expected number of cases. The local smoothing is suitable
for point source studies.

The change-point model can also be considered as a smoother. The smooth-
ing effect comes from the assumption that the risk between change-points is
constant, that is, equal in adjacent annuli not separated by a change-point.
The model with such an assumption is of course an extreme simplification,
but model averaging results in a smooth curve.

Altogether, the possible problems of over-smoothing should be recognized.
With over-smoothing possibly remarkable findings may be diluted or erased.

8.1.4 Validation of epidemiological methods

Along with the case studies analysed with SMASH, the knowledge on limi-
tations and possibilities has increased notably. The comparison of standard-
izing methods has encouraged to continue applying indirect standardization,
although a typical problem, hybrid adjustment, was realized and should be
noted. The importance of the selection of the appropriate reference area,
being a major confounding factor, was also realized. Although in the case
studies the adjusting for the socioeconomic status had no important effect,
the adjustment should be decided case by case, as in some situations it may
be very important.

8.2 SMASH compared to RIF

The Small Area Health Statistics Unit (SAHSU) [11], Imperial College Lon-
don, has been developing a system quite similar to SMASH called Rapid In-
quiry Facility (RIF) [12]. SAHSU has powerful facilities for the development

54



of tools and methodology for small area analyses. SAHSU was established by
the Government in 1983 and has currently a staff of 10 members (1 professor
and 6 doctors).

8.2.1 Comparison of data

RIF holds national cause-specific data on deaths, births, cancers, hospital
admissions and congenital anomalies at a postcode level. Instead, population
data and socioeconomic data are available at the enumeration districts level.
Among these, RIF also holds a range of geographical and environmental data.
The amount of data is much more massive than in SMASH.

Although occupation and education explain quite well the social differences
in Finland, the division of socioeconomic classes based on these may not be
good enough, because the adjustment showed no important effect in case
studies [I],[V]. The British practice, considering effects such as size of house-
hold or flat owning, may improve the socioeconomic classification. Accord-
ingly, it is recommended to estimate the relative risks both with and without
adjustment for the socioeconomic status.

Data management within RIF is not without problems. Because data are
available at different levels of aggregation, the extrapolation of data from
one level to another is required. This may cause difficulties as reported by
Briggs et al. [99]. Instead, aggregation is not a problem within SMASH,
because all data are based on metric coordinates and small area units.

Another problem of British data is that administrative units are subject to
change in the course of time. Instead, in SMASH using of grid based on
metric coordinates as the spatial unit ensures the study area being always
up-to-date. The boundaries of small areas do not change in time.

A further problem in RIF is that the accuracy of the determination of study
areas suffers from the fact that the small areas used as a spatial unit are
based on administrative boundaries. Large administrative units are likely to
swamp the local effect. When the study area is defined by drawing a circle,
also the rest of the administrative areas around the circle is included in the
study area. In SMASH, the study area may be defined freely and reliably,
where administrative boundaries do not restrict the area selection.

The nature of spatial high resolution of Finnish data sets some restrictions.
The using of high resolution data may be problematic in sparsely populated
areas, because the population counts get low. SMASH has empty and isolated
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small areas, which causes problems in applications. This is a contrast to
the British postcode level data where all spatial units have inhabitants, 17
households on average.

In conclusion, SMASH has some strengths of its own. While learning the best
characteristics of RIF, SMASH can be improved, for example, by including
further health or environmental data or further data describing socioeco-
nomic activity.

8.2.2 Comparison of software and methods

Due to the huge amount of data, RIF has been running under a network of
three Sun Sparc servers [12]. At the present, SAHSU is developing a laptop
version of RIF, which can utilize a part of the data loaded into the laptop.
Instead, the data held by SMASH is stored on a desktop computer, under
which the software is also running. If necessary, the data and software can
be used also on a laptop.

The possibilities in the interpretation of results are more sophisticated within
RIF. Due to the more versatile reporting characteristics, the background in-
formation can be applied more efficiently in the interpretation. For example,
the distributions of sex, age and socioeconomic status can be easily pro-
duced. RIF can also produce statistically smoothed maps on disease and on
socioeconomic status, which are not currently possible in SMASH.

RIF has the facility to utilize the methods using person-years, because of
holding data on mortality. This is not possible in SMASH. The choice of
the denominator of the risk ratios is more versatile in RIF, in addition to
the population data, for example, the counts of births can be applied as a
denominator.

Instead, RIF does not offer such a wide possibility to choose the reference
area as SMASH does. The possibilities to choose the reference area based on
the type of municipalities or on individual municipalities are not possible in
RIF.

To avoid the problem of post hoc studies RIF uses the a priori standard
”near” and ”far” bands of 0–2 km and 2–7.5 km around the point source.
These were selected arbitrarily and a useful compromise was achieved [12].
After all, it may be questionable to use that division into regions in every
situation of environmental emergency. In SMASH, there is no standard def-
inition of ”near” or ”far” areas. Instead, the change-point model offers one
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clever alternative solution to this problem through the modelling of location
of risk areas.

Again, it can be concluded that by learning the best characteristics from
methodology used in RIF, the SMASH can be improved further. For example,
reporting the background information or producing the directly standardized
estimates can be easily implemented also in SMASH.

8.3 Back to the future

SMASH can be applied as a rapid system for the analysis of the relative risk
of any registered health outcome. It would be interesting to add, for example,
data on birth outcomes or data on mortality into the system. The usefulness
of SMASH may appear on its best in ecological investigations of congenital
or childhood diseases where the place of residence is a better surrogate of
exposure than with cancers.

Due to the lack of high quality exposure assessment the results given by
SMASH are only preliminary. This means that no strong causal associa-
tions can be concluded. The adding of data on environmental exposures or
modelling tools may further improve SMASH. The knowledge of all possible
sources of pollution may help in the interpretation, for example, in a case of
multiple sources. The tools for modelling dispersion or plumes can improve
the exposure assessment, for example, in the case studies of air pollution.

Although the occupational and educational factors explain the most of the
socioeconomic differences in Finland, the improvement of socioeconomic clas-
sification should be considered. For example, considering covariates such as
data on income, living conditions (e.g., flat owning, size of household) or fam-
ily conditions (e.g., marital status), may improve the use of socioeconomic
classification as a confounding factor.

The reporting characteristics of SMASH are limited. The report in routine
analyses produces only the selections made and the result. No background
information, for example on covariates, for helping the interpretation of the
result is produced. The implementation of RIF [12] along the EUROHEIS-
project [13] will improve currently quite modest reporting in SMASH.

It is possible to create a link between the ArcView software, under which
SMASH runs, and some other softwares, for example, statistical software S-
PLUS. So, implementing the methods suggested in the present work within
the SMASH software is not unthinkable. Another developmental possibility
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of applying the suggested methods is to sweeten the ArcView software such
that the output data can be easily exploited in the statistical softwares for
further analyses.

The validation of small area level analysis by comparing to individual level
analyses is also on the list of future works. Reporting about the case studies
may be on more solid ground if we have any idea how reliable the ecological
studies are, although the level of reliability is case sensitive.

In the development of statistical methods there are several interesting alter-
natives to improve the methodology related to SMASH. For example, point
processes (see, e.g., Diggle [153] or Møller and Waagepetersen [154]) or the
shared-component model (see, e.g., Knorr-Held and Best [140]) may be plau-
sible methods to estimate the relative risk at the small area level around a
point source.

8.4 Concluding remarks

SMASH with high resolution data is useful in the rapid estimation of the
relative risk around a putative source of pollution. The strength is the possi-
bility to define the study area freely with an accuracy of 500 metres. If data
tend to be sparse, the classical methods like SIRs or Poisson (regression)
models, may give incorrect and uncertain estimates. This can be overcome
by using smoothing methods. If strong spatial autocorrelation is in doubt,
the classical methods may give incorrect results, and some more sophisti-
cated methods are needed in further investigations. In this work some useful
statistical methods were suggested. After all, it should be in mind that the
small area level estimates are only preliminary. If small area studies imply
the possible excess risk, further more detailed individual level studies are
always needed.

58



References

[1] Bender AP, Williams AN, Johnson RA, Jagger HG. Appropriate public
health responses to cluster: the art of being responsibly responsive.
American Journal of Epidemiology, 1990; 132: S48–S52.

[2] Guidotti TL, Jacobs P. The implications of an epidemiological mistake:
A community’s response to a perceived excess cancer risk. American
Journal of Public Health, 1993; 83: 233–239.

[3] Elliott P, Wakefield JC, Best NG, Briggs DJ (Eds.). Spatial Epidemiol-
ogy - methods and applications. Oxford University Press, Oxford, 2000.
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[87] Estève J, Benhamou E, Raymond L. Statistical methods in cancer re-
search. Vol. 4. Descriptive epidemiology. IARC: Lyon, 1994.

[88] Rothman KJ, Greenland S. (Eds.). Modern epidemiology - 2nd edition.
Lippincott-Raven: Philadelphia, 1998

[89] Woodward M. Epidemiology. Study design and data analysis. Chapman
& Hall: New York, 1999.

66



[90] Wolfenden HH. On the methods of comparing the mortalities of two or
more communities, and standardization of death rates. Journal of the
Royal Statistical Society, 1923; 86: 399–411.

[91] Yule GU. On some points relating to vital statistics, more especially
statistics of occupational mortality. Journal of the Royal Statistical So-
ciety, 1934; 97: 1–84.

[92] Miettinen OS. Standardization of risk ratios. American Journal of Epi-
demiology, 1972; 96: 383–388.

[93] Pickle LW, White AA. Effect of the choice of age-adjustment method
on maps of death rates. Statistics in Medicine, 2001; 23: 40-46.

[94] Goldman DA, Brender JD. Are standardized mortality ratios valid for
public health data analysis? Statistics in Medicine, 2000; 19: 1081–
1088.

[95] Julious SA, Nicholl J, George S. Why do we continue to use standard-
ized mortality ratios for small area comparisons? Journal of Public
Health Medicine, 2001; 23: 40-46.

[96] Lee WC. Standardization using the harmonically weighted ratios: in-
ternal and external comparisons. Statistics in Medicine, 2002; 21: 247–
261.

[97] Arnold RA, Diamond ID, Wakefield JC. The use of population data in
spatial epidemiology. In [3]; pp. 30–50.

[98] Staines A, Järup L. Health event data. In [3]; pp. 15–29.

[99] Briggs DJ, de Hoogh C, Hurt C, Maitland I. Geographical variations in
populations living around landfill sites. SAHSU Report 2002.1, Small
Area Health Statistics Unit, Imperial College of Science, Technology
and Medicine, London, 2001.

[100] Pekkanen J, Pearce N. Environmental epidemiology: Challenges and
opportunities. Environmental Health Perspectives, 2001; 109: 1–5.
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Yhteenveto - Summary in Finnish

Tämän työn yleisenä tavoitteena oli kehittää olemassaolevaa pienaluejärjes-
telmää, kun arvioidaan sairauden suhteellisen riskin alueellista vaihtelua mah-
dollisen päästölähteen ympäristössä. Yksityiskohtaisempina tavoitteina oli
i) etsiä järjestelmään sopivia kehittyneitä tilastollisia menetelmiä; ii) ohjel-
moida menetelmät osaksi järjestelmää; iii) arvioida rekisteriaineiston käyttö-
mahdollisuuksia; ja iv) vahvistaa järjestelmän epidemiologisia menetelmiä.

Pienaluejärjestelmässä aineisto on jaettu 500 m × 500 m -ruutuihin. Aineis-
ton alueellinen hienojakoisuus on informatiivinen, kun tarkastellaan paikalli-
sia eroja, mutta aiheuttaa samaan aikaan alueellisesta riippuvuudesta ja
aineiston harvuudesta (vähän väestöä ja tapauksia) aiheutuvia menetelmäl-
lisiä haasteita. Menetelmien kehittelyssä on tarkasteltu syövän suhteellista
riskiä mm. entisen kaatopaikan, entisen asbestikaivoksen ja saastuneen joen
ympäristössä sekä talousvesiongelmaisessa maaseutukunnassa.

Yksinkertaisimpana syövän suhteellisen riskin arviointimenetelmänä käytet-
tiin aluevaikutustermillä varustettua Poisson-regressiomallia. Monimutkai-
sempana mallina sovitettiin hierarkkista Markovin mallia, joka sellaisenaan
osoittautui kelpaamattomaksi harvalle hienojakoiselle aineistolle. Kolmea
rajoitusmenetelmää ehdotettiin parantamaan hierarkkisen Markovin mallin
käyttäytymistä. Koska hierarkkisen Markovin mallin laskenta osoittautui
työlääksi, yksinkertaisempana arviointimenetelmänä sovitettiin vielä muu-
tospistemalliin perustuvaa kehitelmää Poisson-regressiomallista.

Sekoittavien tekijöiden vaikutusta tuloksiin tarkasteltiin tutkimalla sekä eri
vertailualueiden vaikutusta että sosioekonomisen aseman vaikutusta vakioi-
vana tekijänä. Lisäksi tarkasteltiin eri vakiointimenetelmien vaikutusta syö-
vän suhteellisen riskin arvioinnissa.

Hienojakoiseen aineistoon perustuva pienaluejärjestelmä on hyödyllinen, kun
halutaan saada nopea alustava arvio syövän suhteellisesta riskistä mahdolli-
sen päästölähteen ympäristössä. Järjestelmän vahvuus on, että tutkimusalue
voidaan valita vapaasti 500 metrin tarkkuudella. Tosin harvalla aineistolla
perinteiset menetelmät, kuten vakioitu esiintyvyyssuhde tai Poisson-regressio-
malli, voivat tuottaa epävarman arvion syövän suhteellisesta riskistä. On-
gelman ratkaisemiseksi voidaan käyttää tasoitusmenetelmiä. Toisaalta pe-
rinteiset menetelmät saattavat antaa virheellisiä tuloksia, jos tutkittavassa
aineistossa on alueellista riippuvuutta. Tässä tapauksessa voidaan käyttää mo-
nimutkaisempia malleja. Tässä väitöskirjassa on ehdotettu joitain sopivia
tilastollisia menetelmiä edellämainittujen ongelmien ratkaisemiseksi.
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