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ii



Acknowledgements

I wish to express my sincere gratitude to my advisor, Professor Pertti Mattila, for
the excellent and inspiring guidance I received throughout the work. I am also grateful
to the Department of Mathematics and Statistics at the University of Jyväskylä for the
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Iteroidun funktiosysteemin rajajoukon rakenteesta ja luonnollisesta mitasta

Tässä väitöskirjatyössä, joka siis koostuu artikkeleista [C] ja [E], on tutkittu ite-
roidun funktiosysteemin (IFS) rajajoukkoa. Erityisen kiinnostuksen kohteena on ollut
rajajoukon rakenne ja rajajoukolle luonnollisen mitan olemassaolo.

Iteroitujen funktiosysteemien historia juontaa juurensa 80–luvun alkuun, jolloin Hut-
chinson antoi IFS:lle muodollisen määritelmän. Tästä lähtien itse–similaarit joukot,
jotka ovat ehkä tunnetuinpia esimerkkejä IFS:ien rajajoukoista, ovat olleet mielenkiin-
non kohteena. Itse–similaarisuudella tarkoitetaan siis sitä, että joukko sisältää kopioita
itsestään useissa eri mittakaavoissa. Ilmiönä itse–similaarisuus esiintyy luonnossa hyvin
usein ja tyypillisiä esimerkkejä ovat rantaviiva, keuhkot ja saniaisen lehti. Sovelluksia
tälle teorialle on löytynyt esimerkiksi kuvankäsittelystä — rasterikuvan koon suuren-
taminen onnistuu paremmin, jos pystytään sanomaan jotain kuvan rakenteesta. Mate-
maatikoille itse–similaarit joukot ovat tarjonneet suhteellisen helpon tavan muodostaa
hyvin epäsäännöllisiä joukkoja. Sen lisäksi, että tämän kaltaisten ns. fraktaalijoukkojen
ominaisuudet ovat jo sellaisenaankin mielenkiintoisia, ovat ne hyödyllisiä myös muilla
matematiikan osa–alueilla.

Iteroitu funktiosysteemi on itse asiassa vain kokoelma vaadittavat oletukset täyt-
täviä kuvauksia ja rajajoukko ns. symboliavaruuden projektio. Tämä projektio muo-
dostetaan käyttämällä hyväksi IFS:n kuvauksia. Usein onkin helpompaa tutkia symbo-
liavaruutta pyrkien projisoimaan vastaava tilanne rajajoukolle kuin tarkastella suoraan
rajajoukkoa. Itse–similaari joukko on rajajoukko iteroidusta funktiosysteemistä, jonka
kuvauksiksi on valittu yksinkertaisimmat mahdolliset kuvaukset, similariteetit. Onkin
mielenkiintoista tarkastella yleisempien kuvausten tuottamia rajajoukkoja. Tässä väi-
töskirjassa on yleistetty joitain itse–similaareille joukoille tunnettuja tuloksia itse–kon-
formisille ja itse–affiineille joukkoille. Artikkelissa [C] osoitetaan, että itse–konforminen
joukko joko sisältyy l–ulotteiseen sileään pintaan tai leikkaa jokaista tällaista pintaa
pienessä joukossa. Artikkelilla [E] on ollut useita tavoitteita. Ensinnäkin siellä esitellään
IFS–tyylinen merkintätapa, jota voidaan käyttää hyvin yleisten IFS:ien rajajoukkojen
tutkimiseen. Käyttäen tätä merkintätapaa osoitetaan ergodisen ja invariantin tasapai-
nomitan olemassa olo. Tämä yleistää itse–similaareille ja itse–konformisille joukoille
jo tunnetun tuloksen hyvinkin yleisille rajajoukoille. Erityisesti itse–affiineille joukoille
tämä on hyödyllinen tulos. Artikkelissa osoitetaankin sovelluksena, että tyypillisille
itse–affiineille joukoille on olemassa ergodinen ja invariantti mitta, jolla on täysi dimen-
sio. Tämä antaa myös osittaisen positiivisen vastauksen Kenyonin ja Peresin 90–luvun
puolivälissä esittämään avoimeen ongelmaan.

1. Introduction

In 1981, Hutchinson [5] introduced the formal definition of iterated function systems
(IFS). Some ideas in this direction have been presented also earlier, especially in early
works of Cantor and also by Moran [13] and Mandelbrot [7]. Since then self–similar
sets, the limit sets of the so called similitude IFS’s, have aroused great interest. By
self–similarity we mean that the set contains copies of itself on many different scales.
As a phenomenon, self–similarity often occurs in nature; a shoreline, lungs and a fern
are common examples of these kind of objects. For mathematicians, the setting of a
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similitude IFS has provided a sufficiently easy environment to produce highly irregular
sets. Besides that these sets and their properties are interesting on their own, they
are used extensively in many other areas of analysis. Since self–similar sets are widely
studied and with suitable extensions to this setting we can achieve, for example, so
called Julia sets, it is interesting to study limit sets of more general systems.

This thesis consists of the following two articles, [C] and [E]. The first describes the
local geometric structure of the limit set of conformal IFS’s, the so called self–conformal
set. This continues the works of Mattila [8], Springer [17] and Mauldin, Mayer and
Urbański [9] and [12]. The second article has three main goals. Besides that, an IFS–
style notation is introduced for studying measures on the limit set of very general IFS’s,
including affine and conformal systems, among others, the existence of a natural Borel
probability measure is proved in this setting. “Naturality” here means that the measure
is ergodic, invariant and satisfies the so called equilibrium state. As an application, it is
shown that for typical self–affine sets there exists an ergodic invariant measure having
the same Hausdorff dimension as the set itself. These results continue the works of
Falconer [4], Barreira [1] and Kenyon and Peres [6].

2. Setting

Let I be a finite set with at least two elements. Put I∗ =
⋃∞
n=1 I

n and I∞ = IN =
{(i1, i2, . . .) : ij ∈ I for j ∈ N}. Thus, if i ∈ I∗, there is k ∈ N such that i = (i1, . . . , ik),
where ij ∈ I for all j = 1, . . . , k. We call this k the length of i and we denote |i| = k. If
j ∈ I∗ ∪ I∞, then with the notation i, j we mean the element obtained by juxtaposing
the terms of i and j. If i ∈ I∞, we denote |i| = ∞, and for i ∈ I∗ ∪ I∞ we put
i|k = (i1, . . . , ik) whenever 1 ≤ k < |i|. We define [i;A] = {i, j : j ∈ A} as i ∈ I∗ and
A ⊂ I∞ and we call the set [i] = [i, I∞] the cylinder set of level |i|. We say that two
elements i, j ∈ I∗ are incomparable if [i] ∩ [j] = Ø. Furthermore, we call a set A ⊂ I∗

incomparable if all its elements are mutually incomparable.
Define

|i− j| =

{

2−min{k−1 : i|k 6=j|k}, i 6= j

0, i = j
(2.1)

whenever i, j ∈ I∞. Then the couple (I∞, | · |) is a compact metric space. Let us call
(I∞, | · |) a symbol space and an element i ∈ I∞ a symbol. If there is no danger of
misunderstanding, let us also call an element i ∈ I∗ a symbol. Define the left shift
σ : I∞ → I∞ by setting

σ(i1, i2, . . .) = (i2, i3, . . .). (2.2)

Clearly, σ is continuous and surjective. If i ∈ In for some n ∈ N, then with the notation
σ(i) we mean the symbol (i2, . . . , in) ∈ In−1.

The symbol space will provide us with a simple structured environment for finding
measures with desired properties. It is, however, more interesting to study geometric
projections of these measures and the symbol space. Let X ⊂ R

d be a compact set with
nonempty interior. Choose then a collection {Xi : i ∈ I∗} of closed subsets of X with
nonempty interior satisfying

(1) Xi,i ⊂ Xi for every i ∈ I∗ and i ∈ I,
(2) d(Xi) → 0, as |i| → ∞.
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Here d means the diameter of a given set. Define now a projection mapping π : I∞ → X
such that

{π(i)} =
∞
⋂

n=1

Xi|n (2.3)

as i ∈ I∞. It is clear that π is continuous. We call the compact set E = π(I∞) the
limit set of this collection, and if there is no danger of misunderstanding, we also call
the projected cylinder set a cylinder set.

To be able to say something about the geometric properties of the limit set, we first
have to avoid in having too much overlapping among the sets Xi. In other words, we
need a decent separation condition. We say that a strong separation condition (SSC)
is satisfied if Xi ∩ Xj = Ø whenever i and j are incomparable. Assuming the SSC
would be enough in many cases, but it is a rather restrictive assumption, and usually
we do not need that much. We say that an open set condition (OSC) is satisfied if
int(Xi)∩ int(Xj) = Ø whenever i and j are incomparable. With the notation int(A) we
mean the interior of a given set A. Furthermore, we say that a weak bounded overlapping
is satisfied if the cardinality of incomparable subsets of {i ∈ I∗ : x ∈ Xi} is bounded as
x ∈ X. Trivially, the SSC implies the weak bounded overlapping.

We denote the collection of all Borel regular probability measures on I∞ with
M(I∞). Denote

Mσ(I
∞) = {µ ∈ M(I∞) : µ is invariant}, (2.4)

where the invariance of µ means that µ([i]) = µ
(

σ−1([i])
)

for every i ∈ I∗. Now
Mσ(I

∞) is a nonempty closed subset of the compact set M(I∞) in the weak topology.
We will show that under the assumption of the weak bounded overlapping, we can have
the same structure in the limit set as in the symbol space with respect to any projected
invariant measure.

Theorem A ([E, Theorem 3.7]). Suppose the weak bounded overlapping is satisfied.
Then for m = µ ◦ π−1, where µ ∈ Mσ(I

∞), we have

m(Xi ∩Xj) = 0 (2.5)

whenever i and j are incomparable.

3. Thermodynamical formalism

Take t ≥ 0 and i ∈ I∗. We call a function ψti : I∞ → (0,∞) a cylinder function if it
satisfies the following three conditions:

(1) There exists Kt ≥ 1 not depending on i such that

ψti(h) ≤ Ktψ
t
i(j) (3.1)

for any h, j ∈ I∞.
(2) For every h ∈ I∞ and integer 1 ≤ j < |i| we have

ψti(h) ≤ ψti|j
(

σj(i), h
)

ψtσj (i)(h). (3.2)
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(3) There exist constants 0 < s, s < 1 such that

ψti(h)s
δ|i| ≤ ψt+δi (h) ≤ ψti(h)s

δ|i| (3.3)

for every h ∈ I∞.

Note that when we speak about one cylinder function, we always assume there is a
collection of them defined as i ∈ I∗ and t > 0. Let us comment on these conditions.
The first one is called the bounded variation principle (BVP), and it says that the value
of ψti(h) cannot vary too much; roughly speaking, ψti is essentially constant. The second
condition is called the subchain rule. If the subchain rule is satisfied with equality, we
call it a chain rule. The third condition is there just to guarantee the nice behaviour of
the cylinder function with respect to the parameter t.

For fixed h ∈ I∞, we call the following limit

P (t) = lim
n→∞

1
n

log
∑

i∈In

ψti(h) (3.4)

a topological pressure. From the definition of the cylinder function it follows that the
topological pressure is continuous, strictly decreasing and independent of h. Define now
for each n ∈ N a Perron–Frobenius operator Ft,n by setting

(

Ft,n(f)
)

(h) =
∑

i∈In

ψti(h)f(i, h) (3.5)

for every continuous function f : I∞ → R. Let us then denote with F ∗
t,n the dual

operator of Ft,n. Due to the Riesz representation theorem it acts on M(I∞). Relying
now on the definition of this operator, we find a special measure using a suitable fixed
point theorem. If the chain rule is satisfied, this is a known result. For example, see
Bowen [2], Sullivan [18] and Mauldin and Urbański [10].

Theorem B ([E, Theorem 2.5]). For each n ∈ N and t ≥ 0 there exists a measure
νn ∈ M(I∞) such that

νn([i;A]) = Π−1
n

∫

A

ψti(h)dνn(h), (3.6)

where i ∈ In, A ⊂ I∞ is a Borel set and limn→∞
1
n

log Πn = P (t). Furthermore, if the
cylinder function satisfies the chain rule, then νn = ν for every n ∈ N, where

ν([i;A]) = e−|i|P (t)

∫

A

ψti(h)dν(h) (3.7)

as i ∈ I∗ and A ⊂ I∞ is a Borel set.

The measure ν above is called a t–conformal measure. For a given µ ∈ Mσ(I
∞) we

define an energy Eµ(t), by setting

Eµ(t) = lim
n→∞

1
n

∑

i∈In

µ([i]) logψti(h) (3.8)

and an entropy hµ by setting

hµ = − lim
n→∞

1
n

∑

i∈In

µ([i]) logµ([i]). (3.9)
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It follows that P (t) ≥ hµ + Eµ(t) whenever µ ∈ Mσ(I
∞). An invariant measure which

satisfies this inequality with equality is called a t–equilibrium measure. Furthermore, a
measure µ ∈ M(I∞) is ergodic if µ(A) = 0 or µ(A) = 1 for every Borel set A ⊂ I∞ for
which A = σ−1(A). The main result of [E] is the following theorem.

Theorem C ([E, Theorems 2.6 and 4.1]). For each t ≥ 0 there exists an ergodic
t–equilibrium measure.

From now on, we will always assume that an equilibrium measure is chosen to be
ergodic. The relationship between the equilibrium measure and the conformal measure
is, of course, an interesting question. The following theorem gives a partial answer to
that. See also Mauldin and Urbański [10].

Theorem D ([E, Theorem 2.8]). Suppose that the cylinder function satisfies the
chain rule and t ≥ 0. Then

K−1
t ν(A) ≤ µ(A) ≤ Ktν(A) (3.10)

for every Borel set A ⊂ I∞, where ν is a t–conformal measure and µ is a t–equilibrium
measure.

Observe that the conformal measure satisfies ν([i;A]) =
∫

A
ψti(h)dν(h) as P (t) = 0

and the projected conformal measure m = ν ◦ π−1 has also m(Xi ∩ Xj) = 0 whenever
i and j are incomparable and the weak bounded overlapping is satisfied.

4. Iterated function system

Take Ω ⊃ X to be an open subset of R
d. Let {ϕi : i ∈ I∗} be a collection of

contractive injections from Ω to Ω such that the collection {ϕi(X) : i ∈ I∗} satisfies

(1) ϕi,i(X) ⊂ ϕi(X) for every i ∈ I∗ and i ∈ I,
(2) d

(

ϕi(X)
)

→ 0, as |i| → ∞.

By contractivity we mean that for every i ∈ I∗ there exists a constant 0 < si < 1 such
that |ϕi(x) − ϕi(y)| ≤ si|x − y| whenever x, y ∈ Ω. This kind of collection is called a
general iterated function system. Furthermore, we call the collection {ϕi : i ∈ I} of the
same kind of mappings an iterated function system (IFS). Defining ϕi = ϕi1 ◦ · · · ◦ϕi|i| ,
as i ∈ I∗, we have clearly fulfilled the assumptions of the general IFS. In fact, we have
d
(

ϕi(X)
)

≤ (maxi∈I si)
|i|d(X).

It seems that by assuming only the mappings of a general IFS to be Lipschitz it
is very difficult to get information about the geometry of the limit set. Assuming the
mappings ϕi to be bi–Lipschitz, we denote the “maximal derivative” with

Li(x) = lim sup
y→x

|ϕi(x) − ϕi(y)|

|x− y|
(4.1)

and the “minimal derivative” with

li(x) = lim inf
y→x

|ϕi(x) − ϕi(y)|

|x− y|
. (4.2)

We say that a general IFS is bi–Lipschitz if the mappings ϕi are bi–Lipschitz and there

exist cylinder functions ψt
i

and ψ
t

i satisfying the chain rule such that ψt
i
(h) ≤ li

(

π(h)
)t
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and ψ
t

i(h) ≥ Li

(

π(h)
)t

for all h ∈ I∞, and in both functions the parameter t is an

exponent, that is, ψt
i
(h) =

(

ψ1

i
(h)

)t
and ψ

t

i(h) =
(

ψ
1

i(h)
)t

. We also assume that the bi–

Lipschitz constants for the mappings ϕi are si = infh∈I∞ ψ1

i
(h) and si = suph∈I∞ ψ

1

i(h).

Observe that for IFS it suffices to require ϕi(X) ∩ ϕj(X) = Ø for i 6= j to satisfy
the SSC, and, similarly, ϕi

(

int(X)
)

∩ ϕj
(

int(X)
)

= Ø for i 6= j to satisfy the OSC.
We also say that a general IFS has bounded overlapping if the cardinality of the set
Z(x, r) = {i ∈ Z(r) : ϕi(X) ∩ B(x, r) 6= Ø} is uniformly bounded as x ∈ X and
0 < r < r0 = r0(x). Here Z(r) = {i ∈ I∗ : si < r ≤ si||i|−1

}. The bounded overlapping

is useful in studying the geometric properties of the limit set. In some cases, we have
to use also the following boundary condition: there exists %0 > 0 such that

inf
x∈∂X

inf
0<r<%0

Hd
(

B(x, r) ∩ int(X)
)

Hd
(

B(x, r)
) > 0, (4.3)

where ∂X denotes the boundary of the set X.

Theorem E (E, Lemmas 3.3 and 3.4 and Propositions 3.5 and 3.6). The following
relationships hold:

(1) Suppose a general IFS has bounded overlapping. Then it has also weak bounded
overlapping.

(2) A bi–Lipschitz IFS satisfying the SSC has bounded overlapping.
(3) A bi–Lipschitz general IFS satisfying the OSC and the boundary condition has

weak bounded overlapping provided that si/si is bounded as i ∈ I∗.
(4) Suppose a bi–Lipschitz general IFS has weak bounded overlapping such that

si/si is bounded as i ∈ I∗. Then it has also bounded overlapping.

Although we develop our theory in a very general setting, we are mainly interested
in the self–affine case described below. Our theory applies also on familiar self–similar
and self–conformal cases. More general situations are discussed in [E, Examples 3.13
and 3.14].

Definition. Let the mappings of IFS be similitudes, that is, for each i ∈ I there
exists 0 < si < 1 such that |ϕi(x) − ϕi(y)| = si|x− y| whenever x, y ∈ Ω. We call this
kind of setting a similitude IFS and the corresponding limit set a self–similar set.

If for each i ∈ I∗ we choose ψti ≡ sti, where si = si1 · · · si|i| , then ψti is a constant
cylinder function satisfying the chain rule. We call this choice of cylinder function in
this setting a natural cylinder function. Observe that if P (t) = 0, then the projected
equilibrium measure m = µ◦π−1 has m

(

ϕi(X)
)

= sti for every i ∈ I∗. A similitude IFS
is bi–Lipschitz since mappings ϕi are clearly bi–Lipschitz. We also have si = si = si.
Hence also m

(

ϕi(X) ∩ ϕj(X)
)

= 0 whenever i and j are incomparable and the weak
bounded overlapping is satisfied. This setting has been studied by many authors. For
example, see Hutchinson [5] and Schief [16].

Definition. Suppose d ≥ 2. Let the mappings of IFS be C1 and conformal on an
open set Ω0 ⊃ Ω. Hence |ϕ′

i|
d = |Jϕi

| for every i ∈ I, where J stands for the usual
Jacobian and the norm on the left–hand side is just a standard “sup–norm” for linear
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mappings. We call this kind of setting a conformal IFS and the corresponding limit set
a self–conformal set.

Observe that the conformal mapping is complex analytic in the plane and, by Liou-
ville’s theorem, a Möbius transformation in higher dimensions. So, in fact, conformal
mappings are C∞ and infinitesimally similitudes. Notice also that it is essential to use
the bounded set Ω here since conformal mappings contractive in the whole R

d are simil-

itudes. If for each i ∈ I∗ we choose ψti(h) =
∣

∣ϕ′
i

(

π(h)
)
∣

∣

t
, then ψti is a cylinder function

satisfying the chain rule. The BVP for ψti is guaranteed by the smoothness of mappings
ϕi, [E, Proposition 2.1] and the chain rule. Again, we call this choice of cylinder function
in this setting a natural cylinder function. A conformal IFS is bi–Lipschitz since map-

pings ϕi are bi–Lipschitz. We can also choose ψt
i

= ψ
t

i = ψti. Observe that if P (t) = 0,

then the projected conformal measure m = ν ◦ π−1 has m
(

ϕi(X)
)

=
∫

X
|ϕ′

i(x)|
tdm(x)

for every i ∈ I∗ and also m
(

ϕi(X) ∩ ϕj(X)
)

= 0 whenever i and j are incomparable
and the weak bounded overlapping is satisfied. This setting has also been studied by
many authors. For example, see Mauldin and Urbański [10] and Peres, Rams, Simon
and Solomyak [14].

Definition. Let the mappings of IFS be affine, that is, ϕi(x) = Aix+ ai for every
i ∈ I, where Ai is a contractive non–singular linear mapping and ai ∈ R

d. We call this
kind of setting an affine IFS and the corresponding limit set a self–affine set.

Clearly, the products Ai = Ai1 · · ·Ai|i| are also contractive and non–singular. Singu-
lar values of a non–singular matrix are the lengths of the principle semiaxes of the image
of the unit ball. On the other hand, the singular values 1 > α1 ≥ α2 ≥ · · · ≥ αd > 0 of a
contractive, non–singular matrix A are the non–negative square roots of the eigenvalues
of A∗A, where A∗ is the transpose of A. Define a singular value function αt by setting
αt(A) = α1α2 · · ·αl−1α

t−l+1
l , where l is the smallest integer greater than t or equal to

it. For all t > d we put αt(A) = (α1 · · ·αd)
t/d. It is clear that αt(A) is continuous and

strictly decreasing in t. If for each i ∈ I∗ we choose ψti ≡ αt(Ai), then ψti is a constant
cylinder function. The subchain rule for ψti is satisfied by Lemma 2.1 of Falconer [3].
We call this choice of a cylinder function in this setting a natural cylinder function.
An affine IFS is bi–Lipschitz since mappings ϕi are bi–Lipschitz. We can also choose

ψt
i
≡ αtd and ψ

t

i ≡ αt1, where αd (α1) is the smallest (largest) singular value of the
mapping Ai. Since in this case we do not have the chain rule, it is very difficult to say
anything “concrete” about the equilibrium measure. We also show ([E, Example 3.12])
that without assuming the SSC it is difficult to get a sufficient separation.

5. Measures with full dimension

Our aim is to study the Hausdorff dimension of measures on self–similar, self–
conformal and self–affine sets. We say that the Hausdorff dimension of a given Borel
probability measure m is dimH(m) = inf{dimH(A) : A is a Borel set such that m(A) =
1}. Checking whether dimH(m) = dimH(E) is one way to examine how well a given
measure m is spread out on a given set E. The following theorem is a known result.
For example, see Hutchinson [5], Mauldin and Urbański [10] and [11] and Kenyon and
Peres [6].
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Theorem F ([E, Proposition 3.6 and Theorem 3.8]). Suppose a conformal (or a
similitude) IFS is equipped with the natural cylinder function and has weak bounded
overlapping. Assume also that P (t) = 0 and m is the projected equilibrium (or confor-
mal) measure. Then dimH(m) = dimH(E) = t.

For the affine IFS, our main application, we are not able to obtain the desired
information from [E, Theorem 3.8] because, in this case, it will give us only upper and
lower bounds for the Hausdorff dimension of the equilibrium measure. We first have to
study dimensions in our more general setting. For a given cylinder function and fixed
t ≥ 0, we denote with µt the corresponding equilibrium measure. We define for each
n ∈ N

Gtn(A) = inf

{

∞
∑

j=1

∫

I∞
ψtij

(h)dµt(h) : A ⊂

∞
⋃

j=1

[ij], |ij| ≥ n

}

(5.1)

whenever A ⊂ I∞. Assumptions in Carathéodory’s construction are now satisfied, and
we have a Borel regular measure Gt on I∞ with

Gt(A) = lim
n→∞

Gtn(A). (5.2)

Using this measure, we define

dimψ(A) = inf{t ≥ 0 : Gt(A) = 0}

= sup{t ≥ 0 : Gt(A) = ∞}, (5.3)

and we call this “critical value” the equilibrium dimension of the set A ⊂ I∞. We
also define the equilibrium dimension of a measure µ ∈ M(I∞) by setting dimψ(µ) =
inf{dimψ(A) : A is a Borel set such that µ(A) = 1}.

Theorem G ([E, Theorems 3.2 and 4.3]). Suppose P (t) = 0 and µ is the equilib-
rium measure. Then dimψ(µ) = t.

It is also true that if dimψ(I∞) = t, then P (t) = 0. Now the desired result follows
from this theorem by applying Falconer’s result for the Hausdorff dimension of self–affine
sets; see [3].

Theorem H ([E, Theorem 4.5]). Suppose an affine IFS is equipped with the natural
cylinder function and the mappings are of the form ϕi(x) = Aix + ai, where |Ai| <

1
2
.

We also assume that P (t) = 0 and m is a projected t–equilibrium measure. Then for
Hd#I–almost all a = (a1, . . . , a#I) ∈ R

d#I we have

dimH(m) = dimH(E), (5.4)

where E = E(a).

6. Local geometric structure

We are particularly interested in whether the limit set is contained in an l–dimen-
sional C1–submanifold of R

d for some 0 < l < d. The following theorem shows us that
if a self–conformal set does not satisfy this property, it will be “totally spread out”. For
the theorem to hold, we have to make an extra assumption, namely the convexity of
the set Ω, to guarantee that the diameter of each projected cylinder set is comparable
to the derivative of the corresponding function.
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Theorem I ([C, Theorem 2.1]). Suppose a conformal IFS is equipped with the nat-
ural cylinder function, has weak bounded overlapping, P (t) = 0 and 0 < l < d. Then
either Ht(E ∩M) = 0 for every l–dimensional C1–submanifold M ⊂ R

d or the closure
of E is contained in an l–dimensional affine subspace or an l–dimensional geometric
sphere whenever d exceeds 2 and an analytic curve if d equals 2.

Using this theorem, we are able to find the minimal amount of essential directions in
which the set E is spread out. It also follows that if t is an integer, then the limit set is
always either t–rectifiable or purely t–unrectifiable. Observe that the theorem remains
true if I is a countable set. This generalises the theorem of Mattila [8], which concerns
the case of a finite similitude IFS. We should mention also that Springer has proved in
[17] a similar result in the plane, and Mauldin, Mayer and Urbański have studied the
same behaviour for connected self–conformal sets in [9] and [12].

Notice that under the assumptions of the theorem, dimH(E) = t as P (t) = 0.
Also, the projected conformal measure, which is a crucial tool in the proof, satisfies
m

(

ϕi(X)
)

=
∫

X
|ϕ′

i(x)|
tdm(x) for i ∈ I∗ and m

(

ϕi(X) ∩ ϕj(X)
)

= 0 whenever i and
j are incomparable.

7. Further remarks

Below we discuss some of the questions raised during the preparation of this work.

(1) It would be interesting to know whether the result of Theorem I holds also for
other limit sets. Considering affine functions and the invariance property of the
self–affine set with respect to these mappings, it would be reasonable to think
that a self–affine set is either contained in an l–dimensional affine subspace or
“totally spread out”.

(2) There might be a possibility to develop fine multifractal analysis on self–affine
sets based on the main results of [E]. At least, in the theory, ergodic invariant
equilibrium measures are needed. It also seems that the following questions are
closely related to this problem: Is the topological pressure convex? If µt is a
t–equilibrium measure, is P ′(t) = Eµt

(t)? What is the connection between the
measure Gt constructed in (5.2) and an equilibrium measure?

(3) The properties of an equilibrium measure are, of course, an interesting question,
especially the uniqueness. Also, can we approximate the measure of infinite
small cylinder sets with the cylinder function?

(4) What can we say about equilibrium measures on infinite systems?
(5) There is also a possible application in image processing: For “almost all” self–

affine sets we found an invariant ergodic measure with full dimension. Checking
whether a given measure has full dimension is one way to examine how well
it is spread out on a given set. When we draw a limit set of iterated function
systems using a computer, we actually draw the measure rather than the set.
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