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1 Introduction

When a particular class of mappings (or functions) in a Euclidean space is
studied, the following question often arises: Suppose you are given a domain,
i.e. an open and connected set Ω ⊆ Rn, and some small closed set E ⊆
Ω. Consider mappings f : Ω \ E → Rn belonging to the class you are
studying. Then what kinds of assumptions on f and E guarantee that f
can be extended to a mapping defined in entire Ω and also belonging to
the desired class? In mathematical language this question reads as: Under
which conditions is the set E removable for mappings f belonging to some
particular mapping class? In this work we study the removability question for
the class of mappings of finite distortion. We next introduce these mappings
and some of their basic properties.

Let Ω ⊆ Rn be a domain. We call a mapping f ∈ W 1,1
loc (Ω,Rn) a mapping

of finite distortion if it satisfies

(1.1) ||Df(x)||n ≤ K(x, f)J(x, f) a.e.

where 1 ≤ K(x, f) <∞, and if also J(·, f) ∈ L1
loc(Ω). Here ||Df(x)|| stands

for the operator norm of the differential matrix of f at a point x, while J(x, f)
denotes the determinant of Df(x). We shall also consider mappings with
values in the compactified Euclidean space Rn

, equipped with the chordal
metric defined by  q(x, y) = |x−y|√

(1+|x|2)(1+|y|2)
, x, y 6= ∞

q(x,∞) = 1√
1+|x|2

.

Then, by conformality of Möbius transformations

g : (Rn \ {p}, q) → (Rn, | · |)

(here | · | stands for the Euclidean norm), we can naturally extend the defini-
tion of a mapping of finite distortion to Rn

-valued mappings as follows: Let
f : Ω → Rn

be a mapping, Ω ⊆ Rn. Then f is a mapping of finite distortion,
if each x ∈ Ω has a neighborhood U ⊆ Ω so that g ◦ fU : U → Rn is a
mapping of finite distortion for some Möbius transformation g, where fU is
the restriction of f to U .

Mappings of finite distortion have recently been intensively studied. There
are two main motivations for the development of this theory. The first one
comes from nonlinear elasticity. It has turned out that the mathematical
theory of certain physical actions of materials has close connections with the
theory of mappings of finite distortion. In fact, the study of such actions
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often leads to problems involving properties of some mapping classes that
are similar to those studied in the theory of mappings of finite distortion.
See [29] for this type of research.

Secondly, if we require K ∈ L∞(Ω) in the above definition, we then re-
cover the class of quasiregular mappings, also called mappings of bounded
distortion. For this class of mappings a rich theory has been developed,
starting from Reshetnyak’s work in the late 1960s. This theory generalizes
classical function theory to higher dimensions in a beautiful way. See the
monographs [31], [36] and [38] for the theory of quasiregular mappings. It
has recently been noticed that many basic properties of quasiregular map-
pings also hold for mappings of finite distortion for which some additional
conditions are assumed. Furthermore, these assumptions have turned out to
be very sharp. A motivation for the development of this theory is to see how
well the theory of quasiregular mappings generalizes to this more general
situation. This work deals with the latter of the two motivations.

Although special classes of quasiregular mappings had already appeared
in some works before, it was Reshetnyak who first gave the definition in
its current form, and proved their fundamental properties. In [32], [33] and
[34] he proved that non-constant quasiregular mappings are continuous, open
and discrete, and that they map sets of measure zero to sets of measure zero.
Soon after the works of Reshetnyak, Martio, Rickman and Väisälä came up
with three publications ([26], [27] and [28]) studying quasiregular mappings
from many different viewpoints. Zorich [40] studied quasiregular local home-
omorphisms f : Rn → Rn, and proved that such mappings are in fact global
homeomorphisms when n ≥ 3. This theorem is called the global homeomor-
phism theorem. Notice that this theorem fails to be true in the plane, which
is shown by the exponential mapping z → exp(z). Martio, Rickman and
Väisälä [26], Poletsky [30], and Väisälä [39] established modulus inequalities
that are, together with nonlinear partial differential equations used already
by Reshetnyak, the most important tool in the theory of quasiregular map-
pings. By using these inequalities, Rickman ([36] and the references therein)
developed a beautiful value distribution theory for quasimeromorphic map-
pings, i.e. for quasiregular mappings f : Ω → Rn

.
Already in 1976 Gol’dstein and Vodop’yanov [8] proved that mappings

of finite distortion belonging to the Sobolev class W 1,n
loc are continuous. In

1990s papers showing that Reshetnyak’s other above-mentioned results also
hold under relaxed assumptions started to appear. In the first results it
was shown that the discreteness and openness properties hold true for map-
pings in the Sobolev class W 1,n

loc , whose distortion function has some suitable
integral bounds, see [16], [9], [25]. In these works the Sobolev regularity
assumption was essentially used. It is natural that it is simpler to use In-
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equality (1.1) if it is assumed that the left hand side is locally integrable.
Thus it was a novel question to determine if Reshetnyak’s results remained
valid under weaker Sobolev regularity assumptions.

Perhaps the first work dealing with mappings of finite distortion with
milder Sobolev regularity assumptions was David’s paper [5], where he proved
existence theorems for Beltrami equations with ||µ||∞ = 1 in the plane. Re-
cently in [13], [18] and [19] it was shown that the definition of mappings
of finite distortion above, together with the requirement that the distortion
function K(·, f) should be locally exponentially integrable to some positive
power, implies the fundamental results of Reshetnyak in all dimensions. Fur-
thermore, in [20] exponential integrability of the distortion function was re-
placed by a more general Orlicz-condition, and theorems and examples were
given to show that this condition is sharp in the Orlicz scale for all of the
above-mentioned fundamental properties of Reshetnyak. Let us introduce
this condition.

Let Φ : [0,∞) → [0,∞) be a strictly increasing, differentiable function.
We call such a function an Orlicz-function. Now assert the following condi-
tions:

(Φ-1)

∫ ∞

1

Φ′(t)

t
dt = ∞,

(Φ-2) tΦ′(t) increases to infinity when t→∞.

Then the assumption is that for a mapping of finite distortion f there should
exist a Φ, satisfying conditions (Φ-1) and (Φ-2), such that

(1.2) exp(Φ(K(·, f))) ∈ L1
loc(Ω).

Very recently Koskela and Onninen [22] proved counterparts of the mod-
ulus inequalities of quasiregular mappings for mappings of finite distortion
satisfying the previous assumption (actually assumptions on the distortion
function can be relaxed if more Sobolev regularity is assumed). These in-
equalities are an important tool in the study of mappings of finite distortion,
and they will most likely lead to many counterparts of theorems of quasiregu-
lar mappings. As an example we mention that in [23] these inequalities were
used to show that Zorich’s global homeomorphism theorem mentioned above
also holds under Assumption (1.2). In fact, in [23] a more general theorem by
Martio, Rickman and Väisälä [28] is generalized. For the analytical theory
of mappings of finite distortion, see the monograph [15].

Let us close this section by pointing out that, although it was presented
above that mappings of finite distortion satisfying Assumption (1.2) have the
same basic properties as quasiregular mappings, they form a larger mapping
class. In particular, Assumption (1.2) does not imply quasiregularity.
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2 Removable singularities for quasiregular map-

pings

In this section we recall some basic removability theorems in the theory of
quasiregular mappings. It should be mentioned that, in the planar case,
the theory of quasiregular mappings, as well as the theory of mappings of
finite distortion, is somewhat different from the higher dimensional theory.
The main reason for this is the availability of the Beltrami equation. For
example, every mapping f of finite distortion in a plane domain, satisfying
Assumption (1.2), admits a factorization as a composition of a homeomorphic
mapping of finite distortion h and an analytic function g. Moreover, the
distortion function of h is majorized by the distortion function of f . Thus,
in the case when f is a K-quasiregular mapping, h is a K-quasiconformal
homeomorphism. See [5], [16], [2] and [15] for results in dimension two.

Let us introduce one application of the above-mentioned factorization
theorem to removable singularities of mappings of finite distortion in the
plane. Painlevé’s classical theorem says the following: Suppose that f :
Ω \ E → C is a bounded analytic function, and that E ⊆ Ω is a closed set
with linear Hausdorff measure zero. Then f can be extended to an analytic
function f : Ω → C. By using the factorization theorem and modulus of
continuity estimates for mappings of finite distortion, a version of Painlevé’s
theorem can be proved. In this version, proved in [2], the linear measure
condition is replaced by a stronger requirement.

The most classical removability theorem for quasiregular mappings in all
dimensions is a theorem by Martio, Rickman and Väisälä [27]: Suppose that
f : Ω \ E → Rn \ F is a K-quasimeromorphic mapping (a K-quasiregular
mapping into Rn

), E ⊆ Ω a closed set of zero conformal modulus, and
F ⊆ Rn

a closed set of positive conformal modulus. Then f can be extended
to a K-quasimeromorphic mapping f̃ : Ω → Rn

. Recall that the conformal
modulus of a path family Γ is defined by

M(Γ) = inf
{∫

Rn

ρn(x) dx : ρ : Rn → [0,∞) is a Borel function such that∫
γ

ρ ≥ 1 for each locally rectifiable γ ∈ Γ
}
.

A closed set E is said to be a set of zero conformal modulus if M(Γ) = 0,
where Γ is the family of all non-constant paths whose images intersect E.
A closed set E is said to be a set of positive conformal modulus if it is not
of zero conformal modulus. This theorem can be seen as a generalization
of Painlevé’s theorem, although it is not a direct analog. An extension of
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this theorem was proven by Koskela and Martio [21]. They showed that a
removable set E can be allowed to be slightly larger than of zero conformal
modulus, as long as it satisfies a certain geometric condition.

Also in the early stages of the theory, Zorich [41] and Agard and Marden
[1] were able to use the methods of Zorich’s global homeomorphism theorem
in order to show the following: Suppose f : Ω \ {x} → Rn

is a locally home-
omorphic K-quasimeromorphic mapping, n ≥ 3. Then f can be extended to
a locally homeomorphic K-quasimeromorphic mapping f̃ : Ω → Rn

. Later,
Dairbekov [4] extended this result by showing that the removable set {x}
can again be replaced by any closed set E of zero conformal modulus. Notice
that this theorem fails in the plane, which is shown, for instance, by the
analytic function f : D(0, 1) \ {0} → C; f(z) = z2. One essential feature of
this theorem is the fact that nothing has to be assumed from the image set
f(Ω \ E).

It was an open problem for a long time whether an analog of Painlevé’s
theorem holds for quasiregular mappings in higher dimensions, in the strong
sense that the removable set is allowed to have positive Hausdorff dimension.
This turned out to be true, and was shown first by Iwaniec and Martin [14]
in even dimensions, and Iwaniec [11] in all dimensions. For a new proof
see [7]. The theorem reads as follows. Let f : Ω \ E → Rn be a bounded
K-quasiregular mapping and E ⊆ Ω a closed set. Then, if the Hausdorff
dimension of E is smaller than a constant depending only on n and K, f can
be extended to a K-quasiregular mapping f̃ : Ω → Rn.

One of the main difficulties in developing the theory of quasiregular map-
pings has turned out to be the construction of examples proving negative re-
sults in higher dimensions. The main contribution for these examples comes
from Rickman. One of his constructions, given in [37], is a nonremovability
result showing the qualitative sharpness of the previous theorem in dimension
three: For each λ > 0 there exists a compact, totally disconnected set E in R3

with Hausdorff dimension smaller than λ and a bounded K(λ)-quasiregular
mapping f : R3 \E → R3 that does not extend continuously to any point of
E. Furthermore, the set E can be constructed as a self-similar Cantor set.
It is an open question if Rickman’s construction can be modified in order to
obtain similar examples also in dimensions higher than three. However, such
examples are believed to exist.

In the previous removability theorems, one of the essential assumptions
was that the image of the mapping should not cover too much of the target
space, unless the mapping is a local homeomorphism in dimension at least
three. On the other hand, Carleson [3] has proved that there exists a Cantor-
type set E of the real line, of positive conformal modulus, so that E is
removable for meromorphic functions f : C \ E → C \ {a1, a2, a3, a4}. This
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theorem can be seen as kind of a generalization of Picard’s theorem on entire
meromorphic functions, and it shows that geometrically regular sets can be
shown to be removable under assumptions that are essentially milder than
in the case of general sets. Järvi and Vuorinen [17] gave an extension of
Carleson’s result by proving the following: Let f : B(0, 1) \ E → Rn

be a
K-quasimeromorphic mapping omitting a finite set A = {a1, . . . , ap}, where
p depends only on K and the dimension n, and where E ⊆ B(0, 1) is a
self-similar Cantor set constructed in a certain way. Then there exists a
constant t > 0 depending only on K, n, p and infai 6=aj∈A q(ai, aj), so that if
the Hausdorff dimension of E is smaller than t, then f can be extended to a
K-quasimeromorphic mapping of the unit ball. This theorem strongly relies
on the Picard-Schottky -type theorem proved for quasiregular mappings by
Rickman [35].

3 Removable singularities for mappings of fi-

nite distortion

In the next three subsections we discuss removability theorems for mappings
of finite distortion. These theorems generalize the previously presented the-
orems of quasiregular mappings. There are three basic methods that arise in
removability questions of quasiregular mappings: Analytical methods that
rely on partial differential equations and Sobolev-space techniques, topologi-
cal methods first used by Zorich, and the use of modulus inequalities. These
methods share some common techniques but the role of different methods can
be recognized. The main purpose of this work is to show that each of these
methods can be applied also in the more general framework of mappings of
finite distortion.

3.1 Analytical methods

In the theory of mappings of finite distortion, one of the most crucial ob-
servations has been the fact that suitable exponential integrability of the
distortion function of a mapping of finite distortion f is sufficient for inte-
gration by parts against the Jacobian determinant of f , see [15]. This means
that the formula∫

Ω

φJ(x, f) dx = −
∫

Ω

fi J(x, f1, . . . , fi−1, φ, fi+1, . . . , fn) dx

holds for each i = 1, . . . , n and all φ ∈ C∞
0 (Ω). It turns out that the method

of integration by parts, combined with Sobolev-space techniques and suitable
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sharp inequalities, leads to strong theorems for mappings of finite distortion.
Again, Assumption (1.2) has turned out to be a sharp condition for integra-
tion by parts. In [12] such method was used in order to show that closed sets
with vanishing Ln logn−1 L-capacity are removable for bounded mappings of
finite distortion f , for which the function exp(λK(·, f)) is locally integrable
for some λ > 0. In [A], Theorem 1.1 we show, by using methods similar to
those used in [12], that an analogous theorem holds also if the assumption
on the distortion function is changed to Assumption (1.2). Let us state this
theorem explicitly.

First define

(3.1) ψ(t) = t exp(Φ(t)),

where Φ is as in Assumption (1.2). Because ψ is strictly increasing, we may
define an increasing function h : [0,∞) → [0,∞) by setting

(3.2) h(t) = tn
(
ψ−1(t2n)

)n−1
.

Now, a compact subset E ⊆ Ω has zero h-capacity, caph(E) = 0, if

inf

{∫
Ω

h(|∇u|) : u ∈ C∞
0 (Ω), u(x) = 1∀x ∈ G for some open G ⊃ E

}
= 0.

Theorem 3.1. Let Φ and h be as above, such that the Assumptions (Φ-1)
and (Φ-2) hold. Let E ⊆ Ω be a compact set whose h-capacity is zero. If
f : Ω\E → Rn is a bounded mapping of finite distortion such that Assumption
(1.2) holds, then f extends to a mapping of finite distortion in Ω.

Since sets of zero conformal modulus are of zero Hausdorff dimension, it is
clear that the removable sets provided by Theorem 3.1 are also of dimension
zero. On the other hand, we show in [A] that any singleton is of zero h-
capacity in the setting of Theorem 3.1. By general principles it then follows
that one can construct small Cantor sets with caph(E) = 0.

Assumption (1.2) turns out to be sharp also for Theorem 3.1, which is
shown by our second theorem, Theorem 1.2 in [A].

Theorem 3.2. Let Φ be an Orlicz-function so that

(3.3)

∫ ∞

1

Φ′(s)

s
ds <∞.

Let Q be a closed cube in Rn, centered at the origin. Then there exists a
bounded, continuous mapping f : Q \ {0} → Rn of finite distortion such that∫

Q\{0}
exp

(
Φ(K(x))

)
dx <∞,

but so that f does not extend to a mapping of finite distortion in Q.
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To construct the mapping in Theorem 3.2, we use suitably modified copies
of one of the constructions in [20], see also [18] and [14]. Although Theo-
rem 3.1 can be seen as a generalization of the theorems by Martio, Rickman
and Väisälä [27] or Iwaniec and Martin [14] and Iwaniec [11], it is still not
strong enough to be thought of as an analog of either of the two. In the
former of the two theorems the mappings need not be bounded; only omit-
tance of a set of positive conformal modulus is assumed. After [A] was
finished, the modulus inequalities of mappings of finite distortion were es-
tablished in [22]. These inequalities can be used to prove the right analog
of the Martio-Rickman-Väisälä theorem. This will be discussed in Section
3.3 below. Also, very recently Faraco, Koskela and Zhong [6] gave, assum-
ing exp(λK(·, f)) to be locally integrable for some λ > 0, an improvement
that can be seen as an analog of the latter theorem; they showed that closed
sets of zero Ln logn−1−ε-capacity are removable for bounded mappings. As
demonstrated in [2], Rickman’s nonremovability result mentioned above can
be used to prove nonremovability results also for bounded mappings of finite
distortion. This is done by composing Rickman’s mapping with a suitable
homeomorphism of finite distortion.

3.2 Topological methods

One of the celebrated theorems in the theory of quasiregular mappings has
been Zorich’s global homeomorphism theorem [40], stating that for n ≥ 3,
every locally homeomorphic quasiregular mapping f : Rn → Rn is in fact
a global homeomorphism, i.e. a quasiconformal mapping. Martio, Rickman
and Väisälä [28] gave a strong generalization of Zorich’s theorem by proving
that for n ≥ 3 there exists a constant r < 1 depending only on K and the
dimension so that every locally homeomorphic K-quasiregular mapping f :
B(0, 1) → Rn is homeomorphic in the ball B(0, r). In [23] this theorem was
generalized to the class of mappings of finite distortion satisfying Assumption
(1.2).

By using the ideas of Zorich’s proof, Zorich himself [41] and Agard and
Marden [42] were able to prove that a single point is removable for locally
homeomorphic quasiregular mappings when n ≥ 3 (actually, in these pa-
pers the assumptions are slightly weaker). Twenty years later Dairbekov [4]
proved that a stronger assertion holds; not only a point is removable, but
one can take any closed set of zero conformal modulus. In [B] Dairbekov’s
result is generalized to the class of mappings of finite distortion satisfying
Assumption (1.2). In this generalization a weighted modulus is used instead
of conformal modulus, the reason being that this weighted modulus is used
to express the modulus inequalities of mappings of finite distortion.
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For a mapping f of finite distortion, let us define the Kn−1-modulus
MKn−1(·,f)(Γ) of a path family Γ in Rn by setting

MKn−1(·,f)(Γ) = inf
{∫

Rn

ρn(x)Kn−1(x, f) dx : ρ : Rn → [0,∞) is a Borel

function such that

∫
γ

ρ ≥ 1 for each locally rectifiable γ ∈ Γ
}
.

Sets of zero or positive Kn−1-modulus are defined as in the case of conformal
modulus. Our removability theorem, Theorem 1.1 in [B], reads as follows.

Theorem 3.3. Assume n ≥ 3. Let f : Ω \ E → Rn
be a locally homeomor-

phic mapping of finite distortion, and assume that E is a compact set of zero
Kn−1-modulus. Moreover, assume that (1.2) holds with Φ satisfying condi-
tions (Φ-1) and (Φ-2). Then f extends to a locally homeomorphic mapping
of finite distortion f̃ : Ω → Rn

satisfying (1.2).

Again, Assumption (1.2) turns out to be sharp. In [20] it is shown that
whenever an Orlicz-function Φ not satisfying Assumption (Φ-1) is given, there
exists a mapping of finite distortion satisfying Assumption (1.2) with Φ, and
mapping the punctured unit ball B(0, 1) \ {0} homeomorphically onto an
annulus. This mapping certainly does not extend to a local homeomorphism
of the unit ball.

Although the modulus inequalities are used in Theorem 3.3, they are
only used once in the proof, and that use is of qualitative nature. Also, the
modulus inequalities are the only property of quasiregular mappings needed
in the proof. Thus most of the proof consists of topological considerations.
As mentioned above, these Zorich-type theorems only hold in dimensions
higher than of equal to three. The main philosophical reason for this is that,
when working in the unit sphere S1, one does not have the same topological
freedom as in the case of Sn, n ≥ 2. Zorich’s global homeomorphism theorem
has also had impact in fields other than function theory, see the survey article
[42]. Very recently Holopainen and Pankka [10] gave a version of the global
homeomorphism theorem for mappings of finite distortion in the setting of
Riemannian manifolds.

3.3 Geometric methods: Modulus inequalities

As mentioned above, the modulus inequalities of mappings of finite distortion
can be used to prove the following analog of the classical theorem of Martio,
Rickman and Väisälä.
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Theorem 3.4. If f : Ω \ E → Rn \ F is a mapping of finite distortion
satisfying Assumption (1.2), E ⊆ Ω a closed set of zero Kn−1-modulus (see
the previous section for the definition), and F ⊆ Rn

a closed set of positive
conformal modulus, then f extends to a mapping of finite distortion f̃ : Ω →
Rn

satisfying Assumption (1.2).

To prove this theorem it is essentially sufficient to combine the modulus
inequalities and the proof of Martio, Rickman and Väisälä, see [27]. We give
the proof in the appendix below, where we also show that actually Theorem
3.4 implies Theorem 3.1.

In this section we also show that the theorem by Järvi and Vuorinen [17],
stated in Section 2, admits a generalization for mappings of finite distortion.
The proof of the theorem by Järvi and Vuorinen uses the modulus inequal-
ities in a rather quantitative way. There are two main tasks in proving this
theorem. First, Rickman’s work on the generalization of the Picard-Schottky
theorem [35] allows one to prove continuity estimates for quasiregular map-
pings by only assuming that the mappings in question should omit a large
number of points. Secondly, the self-similarity of the removable set, combined
with the modulus inequalities, allows one to prove continuity estimates for
quasiregular mappings in certain annuli. These annuli converge to each of
the exceptional points so that, at the end, one obtains a continuous exten-
sion of the mapping to the entire domain, so that the removable set gets
mapped to a set of measure zero. Then one is able to use some standard
arguments (absolute continuity on almost all lines, topological degree and
the area formula) to show that the extension is quasiregular.

In the case of mappings of finite distortion, no results like the Picard-
Schottky theorem are known. Thus, when generalizing the theorem of Järvi
and Vuorinen to the class of mappings of finite distortion, one has to replace
the assumption on the omitted set by an essentially stronger one. In [C]
a generalization is given, where the stronger assumption is the omittance
of a set of positive conformal modulus, as in the Martio-Rickman-Väisälä
theorem. Since the statement of the theorem is quite technical, we only give
a simplified version here. This is a special case of Theorem 3.7 in [C].

Theorem 3.5. Suppose Φ satisfies Conditions (Φ-1) and (Φ-2). Let F ⊆
Rn

be the image of the one-third Cantor set under the stereographic projection.
Then there exists a Cantor set E ⊆ B(0, 1) so that any mapping of finite
distortion f : B(0, 1) \ E → Rn \ F satisfying

If =

∫
B(0,1)

exp(Φ(K(x, f))) dx <∞

12



can be extended to a mapping of finite distortion f : B(0, 1) → Rn
. The

size of the Cantor set in terms of Hausdorff measures with general gauge
functions has a lower bound depending only on Φ, If and n. In the case
Φ(t) = λt, λ > 0, the set E can be chosen so that the Hausdorff measure of
E with respect to the gauge function Λ is positive, where

Λ(t) = | log t|−n logb 2, b = exp(Cn/λ).

In [C], Theorem 3.7, the omitted set F is only assumed to be of positive
conformal modulus. Then the size of the removable set E also depends on
the conformal moduli of certain path families related to the set F . Since
it is assumed in Theorem 3.5 that the omitted set is of positive conformal
modulus, this theorem does not give anything new towards a generalization
of the Martio-Rickman-Väisälä theorem unless the removable Cantor sets E
are of positive Kn−1-modulus. The last assertion of the theorem implies that
there is new insight in this theorem, at least for mappings f whose distortion
function K(·, f) has the property exp(λK(·, f)) ∈ L1

loc for some λ > 0. For
these mappings the removable Cantor sets are actually of positive conformal
modulus in the case where λ is small enough. It would be interesting to
know if one can combine the techniques that are used in proving Theorems
3.3 and 3.5 in order to show that there are sets E, of positive conformal
modulus (or even larger), so that locally homemorphic mappings of finite
distortion f : Ω \ E → Rn

, n ≥ 3, with integral bounds on the distortion
function can be extended to the set E (without assuming anything of the
set f(Ω \ E)). As far as we know, no theorems of this type exist even for
quasiregular mappings.
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Appendix: Proof of Theorem 3.4

We first recall Lemma III 2.6 from [36].

Lemma 3.6. Let F be a compact proper subset of Rn
and suppose F is of

positive conformal modulus. Then for every a > 0 there exists δ > 0 such
that M(Γ) ≥ δ, whenever C is a continuum in Rn \F with chordal diameter
greater than a, where Γ is the family of all paths joining F and C.

Now suppose Ω, f , E and F are as in Theorem 3.4. Since E is clearly
of zero Hausdorff dimension, the set Ω \ E is a domain. We first show that
the mapping f extends continuously to every point b ∈ E. Without loss
of generality we may assume that b = 0. Fix an open ball B(0, R) ⊂⊂ Ω.
Now suppose that f does not have a continuous extension to 0. Then there
exist a constant a > 0 and sequences (xj) and (yj) in Ω \ E such that
rj = |xj − yj| → 0 and q(f(xj), f(yj)) ≥ a for all j. Now, for each j, one
can find a path γj joining xj and yj in B(0, rj). Consider the family Γj of
all paths joining the image |γj| of γj and Sn−1(0, R). By [22], Theorem 5.3
and the comment thereafter, MKn−1(·,f)(Γj) → 0 when j tends to infinity.
On the other hand, Theorem 4.1 of [22] implies that also M(fΓj) → 0. This
contradicts Lemma 3.6. Thus f has a continuous extension f̃ : Ω → Rn

.
To verify that f̃ is a mapping of finite distortion satisfying Assumption

(1.2) it suffices to show that f̃ has locally integrable weak derivatives and
that the Jacobian of f̃ is locally integrable. Since the mapping f is absolutely
continuous on almost all lines parallel to the coordinate axis (ACL) and the
set E is of zero Hausdorff dimension, f̃ is also ACL. Also, since the set E
gets mapped to a set of zero Hausdorff dimension and f maps sets of measure
zero to sets of measure zero, |f̃(A)| = 0 whenever |A| = 0. We shall prove
the local integrability of the Jacobian of f̃ by using the topological index.

Let x0 ∈ E. Then E ∪ f̃−1(f̃(x0)) is totally disconnected, since E is
of Hausdorff dimension zero and f is discrete. Thus there exists a sphere
Sn−1(x0, ε) so that Sn−1(x0, ε) ∩ f̃−1(f̃(x0)) = ∅. Let V be the f̃(x0)-
component of Rn \ f̃Sn−1(x0, ε) and let U be the x0-component of f̃−1V .
Then U is an open neighborhood of x0, since U ⊆ B(x0, ε). The topological
degree µ(f̃(x0), f̃ , U) is now well-defined, and we have

N(y, f̃ , U) ≤ µ(f̃(x0), f̃ , U) = m <∞,

see [26]. Here N(y, f̃ , U) = card{x ∈ U : f̃(x) = y}. On the other hand
by [24], Theorem 9.2, the area formula holds for f̃ in U \ E, since f̃ ∈
W 1,1

loc (U \ E,Rn) and the Lusin condition holds for f̃ . Thus∫
U

J(x, f̃) =

∫
U\E

J(x, f̃) =

∫
Rn

N(y, f̃ , U \ E) ≤ |V |µ(f̃(x0), f̃ , U) <∞.
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We conclude that J(x, f̃) is locally integrable. Since f̃ is ACL and has locally
integrable Jacobian, the distortion inequality (1.1), exponential integrability
of the distortion function and Hölder’s inequality together imply that f̃ ∈
W 1,1

loc (Ω,Rn). The proof is complete.
Let us close by showing that Theorem 3.4 implies Theorem 3.1. For this

we need to show that the Kn−1-modulus of a compact set E is zero whenever
the h-capacity of E is zero. We first prove that the vanishing of the h-
capacity of a compact set E does not depend on the open set U in which the
supports of the test functions are assumed to lie, as long as E ⊆ U . Recall
the definitions of the functions ψ and h from (3.1) and (3.2), respectively.

Lemma 3.7. Let E be a compact subset of a bounded open set U . Suppose
that E is of zero h-capacity with respect to U . Let V be another bounded open
set containing E. Then E is also of zero h-capacity with respect to V .

Proof. Let ui and v be test functions for the h-capacity, so that ui ∈ C∞
0 (U),

v ∈ C∞
0 (V ) and

∫
h(|∇ui|) < 1/i. We may assume that 0 ≤ v, ui ≤ 1 and

that ui ∈ C∞
0 (Rn). Now the function uiv ∈ C∞

0 (V ) is a test function for the
h-capacity. Note that |∇(uiv)| ≤ ui|∇v|+ v|∇ui|, and thus∫

V

h(|∇(uiv)|) dx ≤
∫

V

h(ui|∇v|+ v|∇ui|) dx ≤
∫

V

h(Mui + |∇ui|) dx,

where M = max |∇v(x)|. From the proof of [A], Lemma 2.5 we have the
estimate h′(t) ≤ tn + C, where C depends only on n and Φ. Hence we can
further estimate the last term in order to have∫

V

h(Mui + |∇ui|) dx =

∫
V

h(|∇ui|) dx+

∫
V

∫ |∇ui|+Mui

|∇ui|
h′(t) dt dx

≤
∫

V

h(|∇ui|) dx+

∫
V

∫ |∇ui|+Mui

|∇ui|
tn + C dt dx.

The first term is bounded by 1/i, while the second term is smaller than

(3.4) C

∫
V

ui + |∇ui|n + |∇ui|n−1 + . . .+ |∇ui|+ un+1
i dx,

where C depends only on n, Φ and M . By the Sobolev-Poincaré inequality
we have an exponent p < n so that∫

V

un+1
i dx ≤ C(n)

(∫
V

|∇ui|p dx
)(n+1)/p

.
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Moreover, by Hölder’s inequality we have∫
V

ui dx ≤ C(n, |V |)
(∫

V

|∇ui|p dx
)1/p

.

By Hölder’s inequality we can further estimate all terms in (3.4) by corre-
sponding terms that are of the form

C(n,Φ,M, |V |)
(∫

V

|∇ui|n dx
)r

.

Note that neither the number of these terms nor the values of the constants
depend on i. We now choose

A = (ψ(i
1

2(1−n) ))
1
2n ,

and estimate (recall that h(t) = tn(ψ−1(t2n))n−1)∫
V

|∇ui|n dx =

∫
{|∇ui|≤A}

|∇ui|n dx+

∫
{|∇ui|>A}

|∇ui|n dx ≤ |V |An

+

∫
{|∇ui|>A}

h(|∇ui|)(ψ−1(|∇u|2n))1−n dx ≤ |V |An + i−1/2.

Combining all the estimates, we have that∫
V

h(|∇(uiv)|) dx ≤ T (i),

where T (i) → 0 as i→∞. The proof is complete.

Now let E be a compact set of h-capacity zero, contained in an open set
U . Moreover, let u ∈ C∞

0 (U) with u = 1 in some neighborhood of E. Clearly

(3.5)

∫
γ

|∇u| ds ≥ 1

for all locally rectifiable curves γ joining E and the complement of U . We
want to estimate the integral

∫
U
|∇u(x)|nKn−1(x) dx. We consider two cases.

First, in the set

U1 = {x ∈ U : K(x) ≤ ψ−1(|∇u(x)|2n)}

we have ∫
U1

|∇u(x)|nKn−1(x) dx ≤
∫

U1

h(|∇u(x)|) dx

16



by the definition of h. On the other hand, for x ∈ U2 = U \U1, the inequality

|∇u(x)|n ≤ K1/2(x) exp(Φ(K(x)))1/2

holds by the definition of ψ, and so∫
U2

|∇u(x)|nKn−1(x) dx ≤
∫

U2

Kn−1/2(x) exp(Φ(K(x)))1/2 dx

≤ C(Φ)

∫
U2

exp(Φ(K(x))) dx.

Here we need the assumption that Φ′(t)t→∞ as t→∞. By combining the
estimates on integrals over U1 and U2, we arrive at

(3.6)

∫
U

|∇u(x)|nKn−1(x) dx ≤ C

∫
U

exp(Φ(K(x))) + h(|∇u(x)|) dx.

Recall that the function x → exp(Φ(K(x))) is assumed to be locally inte-
grable. Hence we can, for arbitrary ε > 0, choose open sets Vi, i ∈ N so that
E ⊆ Vi and

(3.7)

∫
Vi

exp(Φ(K(x))) dx ≤ ε2−i

for all i ∈ N. Furthermore, since the h-capacity of E is zero we find, by
Lemma 3.7, smooth functions ui, supported in Vi, so that ui = 1 on a neigh-
borhood of E and

(3.8)

∫
Vi

h(|∇ui(x)|) dx ≤ ε2−i.

Applying (3.6), (3.7) and (3.8), we conclude that

(3.9)

∫
Vi

|∇ui(x)|nKn−1(x) dx ≤ 2−i+1ε.

Set
ρ(x) = max

i∈N
|∇ui(x)|.

Then ρ is a Borel function and (3.5), with |∇u| replaced by ρ, holds for all
locally rectifiable curves intersecting E. By (3.9),∫

Rn

ρn(x)Kn−1(x) dx ≤
∞∑
i=1

∫
Vi

|∇ui(x)|nKn−1(x) dx ≤ 2ε.

Hence E is of zero Kn−1-modulus.
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