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Abstract

Two methods for estimating the orientation distribution of �bres from grey-

scale or binary images have been developed. The approach is based on both

stereological reasoning in the feature extraction from the image and on the

interpretation of the results in terms of the underlying �brous structure. As

a stereological tool, we use line sampling in several directions. In each di-

rection, the intersection between the image and the sampling line forms a

grey-valued function whose variation is measured by the scaled variogram.

The connections between the observed scaled variograms and the �bre orien-

tation distribution have been approximated under several parametric image

models. The methods are based on these connections. The �rst method

is theoretically addressed to digital greyscale (or binary) images originating

from dead leaves models, and the second method, being a re�nement of the

�rst one, is planned for binary images. Assuming a parametric model for the

orientation distribution, the model parameters can be obtained by the nu-

merical optimization of the weighted sum of squares for both methods. The

new orientation analysis techniques have been compared with each other and

with a commercially available gradient-based method widely applied in paper

technology.
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Chapter 1

Introduction

This thesis deals with statistical orientation analysis for stochastic �bre sys-

tems. The problem originates from industrial needs for determining the ori-

entation distribution of paper �bres through digital images. The new analysis

methods are essentially based on stochastic geometric modelling, stereology

and image analysis. The performance of the methods has been investigated

with extensive simulation experiments and with real-world industrial data

originating from paper technology.

Fibrous structures appear commonly both in natural objects such as

nerves, muscle �bres, wood �bres, and in human-made products such as

building materials, textiles, and paper products. The �brous structure is one

object of the quality analysis in the production since it determines a great

deal of the properties of the material. As a consequence, much e�ort has

been directed to theoretical and experimental research of �brous structures

in material physics and paper technology.

In contrast to the seemingly regular �brous structures of woven products,

many materials are made up of random �brous structures. In our approach,

randomness consists of three hierarchical levels. The �rst level is the prop-

erties of �bres, such as length and shape. The second level is the spatial (2D

and 3D) distribution of �bres: how the �bres are distributed and oriented in

the material and with respect to each other. The third level is the observa-

tional mechanism which, however, depends on the application and objectives.

Fibres are observed as a digital greyscale (or binary) image. In such cases,

thickness, overlapping, high density of �bres, grey levels, and digitization

degrade the observation of individual �bres, cf. Figures 1.1 and 1.2.

In the modelling of the �rst two levels, it is natural to consider �brous

structures as stochastic �bre processes. Those random models have been

developed in stochastic geometry, which is a science of random structures of
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Figure 1.1: A greyscale image of 256× 256 pixels with real size of 8.13 mm

× 8.13 mm from a paper layer stripped by a tape technique (Article D).

Figure 1.2: On the left: An image of the surface of a paper sample in which

0.1 percent of �bres are dyed. The image is of size 500× 500 with real size

25.4 mm × 25.4 mm. In the middle: The left image after contrasting. On

the right: The middle image after 20 % thresholding (Article D).
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geometrical objects, see Stoyan et al. (1995). A convenient model for the

orientation distribution is the rose of directions of the �bre process, which is

the distribution of the tangent angle in a typical �bre point with respect to

a �xed direction. On the third level, instead of stochastic geometric models,

random �elds induced by the underlying �bre system together with a possibly

complex observational mechanism are more relevant. Therefore, tools from

statistical image analysis are needed, cf. e.g. Serra (1982), and Glasbey and

Horgan (1995). Three types of grey level models for �bre systems, Boolean

models, dead leaves models and shot-noise models, have been applied, see

Matheron (1975), Jeulin (1989, 1993) and Rice (1977), respectively. See the

illustration of the orientation distribution and image models in Figure 4.2. An

elliptic �bre orientation model is convenient for paper industry applications.

In the statistical inference on �bre orientation, the direct observation

of �bre orientation from a �bre system is usually not possible. Instead,

stereological methods have been introduced. Stereology studies the problems

of recovering information on 3D or 2D structures when only information

in lower dimension is available, cf. Weibel (1979). An integral part of our

�bre orientation approach is that �bres are intersected by sampling lines

in several directions. It is well-known from earlier studies, for example, by

Mecke and Stoyan (1980) that the orientation distribution and the point

intensity, the mean number of intersections per length unit, are related when

those intersections can be observed. If the available data is a greyscale (or

binary) image, the individual �bres and, consequently, the intersection points

along sampling lines are not necessarily detectable, see Figures 1.3 and 1.4.

Information on the �bre orientation is, however, preserved in the directional

variation of grey levels.

Our objective is to develop a method for orientation analysis through

digital images according to the following principles: (i) the method should be

based on solid theory of probability and statistics, (ii) the method should be

computationally fast, (iii) the results should be interpretable in terms of the

underlying �bre system, that is, in terms of �bre orientation distribution, (iv)

one should be able to control statistical uncertainty, (v) the method should be

applicable in a range of real industrial problems, and (vi) the new approach

should be competitive compared with the gradient-based orientation analysis

method commonly applied in industry, see Erkkilä (1995); Erkkilä et al.

(1998).

Two methods for estimating the �bre orientation distribution from digital

images are implemented. We assume that the observed �bres are described

as long and narrow sets around �central� �bres. The central �bres are typi-

cally regarded as line segments and their thickened versions, for example, as
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Figure 1.3: Illustration of thickness of �bres and digitization. On the left: A

simulated realization of �at ellipses in the binary image with pixels 250×200
is intersected by a horizontal sampling line. On the right: A binary-valued

function is generated by the intersections along the line (the images �rst

published in Article A).
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Figure 1.4: Illustration of grey levels and blurring. On the left: A simulated

realization of �at ellipses in the blurred greyscale image with pixels 250×200
is intersected by a horizontal sampling line. On the right: The number of

intersections is not observable from the grey-valued function induced on the

line (the images �rst published in Article A).
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ellipses (Figure 4.1). The objective is to estimate the orientation distribu-

tion of the central �bres from observations made on a digital image of thick

�bres. In our approach, instead of observing the intersection between the

central �bres and a sampling line, we observe a grey-valued function along

the sampling line. The directional variation of grey levels is measured in

terms of the scaled variogram which is similar to the variogram of order one

by Matheron (1971, 1982). The scaled variogram is de�ned as the mean of

absolute di�erence between grey values at two points scaled by the distance

of the points (5.1). In practice, it is easy and fast to calculate. The basic

idea of our methods is to use an approximative relation between the scaled

variogram and the point intensity of central �bres. The method based on the

proportional relationship is �rst suggested in Article A, cf. also Kärkkäinen

(1999). Under the proportional model, the �bre orientation distribution is

assumed to be in relationship to the ratio of two scaled variograms. This idea

was based on the fact that the ratio is exact if the intersection points can

be observed, cf. Forgacs and Strelis (1963). Empirical reasoning showed that

the model performed quite well even for greyscale images generated by dead

leaves models. Later, Jeulin (2000) considered the slope of the variogram

of order one for these type of images. He found the approximatively pro-

portional relation between the slope and the apparent intercepts along the

sampling line. In Article C, this proportional link is used as an approxima-

tion between the scaled variogram and the point intensity of the intersections

formed by the line and the boundary of the union of �bres. Furthermore, if

�bres are convex and su�ciently thin, the scaled variogram is proportional

to the point intensity of central �bres. For a binary image of Boolean �bres,

an improvement of the relation, the so-called re�ned relation, is suggested in

Article C, and the method based on that is employed in Article B. In both

of the estimation methods, a parametric model for the orientation distribu-

tion is used in order to relate the ratios of the observed scaled variograms to

the orientation parameters. Since the estimation equations are non-linear,

the orientation parameters are obtained numerically from least-squares type

procedures. As a parametric model, the elliptic density of two parameters,

orientation angle and the strength of anisotropy, is used. Other orientation

distribution can be applied as well.

In Article D, the performance of the new methods is compared with each

other and with an industrial standard (Erkkilä et. al., 1998) by simulation

experiments. As simulation models we apply Boolean and shot-noise models

with varied length intensity, that is, the mean length of �bres per area unit

and varied orientation angle and anisotropy of the elliptic model. As a result

of the simulation study, the variogram-based methods seem to perform better

in the anisotropy estimation in the binary case. The re�ned method performs
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in a larger range of the varied parameters than the proportional method,

as was expected according to Article C. In the shot-noise case all methods

perform quite well in the ranges of paper parameters. The industrial standard

is, however, the most stable. Concerning a dead leaves model, we can say that

the re�ned method is, experimentally, more appropriate in strong anisotropic

cases.

The new methods have also been applied to the analysis of empirical data

from paper technology research. The data contain greyscale images of the

layered paper strips. In Article A, the standard errors of estimators have

been calculated using the bootstrap, cf. Efron and Tibshirani (1993). In

practice, it is worth evaluating the magnitude of the standard errors for each

type of images but not for all analyses.

Our work combines stereology and image analysis, which traditionally

have been quite separate and almost non-communicating approaches. From

the point of view of stochastic geometry, stereology and spatial statistics, the

new results consist of �nding stereological connections between scaled vari-

ograms and the orientation density, solving the estimation equations based

on that connection, and estimating the sampling uncertainty. This prob-

lem is solved in this thesis for various underlying �bre models. It turns out

that the distributional theory of stochastic geometric as well as random �eld

models is complex. This leads to the use of stochastic simulation both in

controlling statistical uncertainty and in evaluating the methods.

The content of the introduction part of this thesis is the following: Chap-

ter 2 reviews the �brous structure in paper and outline the methods used

in paper technology. Chapter 3 introduces stochastic geometric models for

�brous structures and the basic stereological formulas. In Chapter 4, the

random �elds of �bres (with non-zero area) are considered, whereas the

new stereological connections for random �elds are introduced in Chapter

5. Chapter 6 shows statistical orientation analysis for various �bre models,

consideration of estimation of standard errors and evaluation of methods by

simulation. Chapter 7 is the discussion. In Chapter 8 the summaries of the

included original publications are presented.
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Chapter 2

Fibre Systems and Paper

Structure

Many innovations concerning statistics of �bre systems have been published

in paper technology journals. For this reason, we give a brief overview upon

those industrial results which are close to our objectives.

Paper is a mixture of pulp �bres, �nes and �lling materials. The interests

of paper makers are in the production of paper quality with spatially homo-

geneous �bre mass distribution, which is related to the mass distribution and

the geometrical structure of �bres. In a machine-made paper sheet, the �-

brous structure is typically anisotropic, non-homogeneous and layered due to

the paper making process. Anisotropy of �bres can be decreased by changes

in the �ow of suspension, such as turbulence, which may, however, increase

�occulation of �bres. The �brous structure usually varies considerably in the

vertical direction since �bres being �rst �ltered are in greater number in the

machine direction than those in the middle of a paper sheet.

In this work, our focus is on the orientation analysis of �bres. Fibre ori-

entation is an important factor to be controlled in the paper production line.

Together with internal strength, it causes anisotropy to the strength and

the elasticity of paper. This is important for an end-user of paper, because

anisotropy may cause curling of paper in copying and printing. Therefore,

in papers for copying machines and printers isotropic orientation is the ob-

jective. On the contrary, in printing press of newspapers, anisotropic �bre

orientation in the production direction is preferable. The in�uence of �bre

orientation on paper properties is considered in Loewen (1997).

Early 3D models for paper �bres are considered, for example, in Corte

and Kallmes (1962). In a network of horizontal �bres, the centres of �bres are

assumed to be randomly distributed throughout the volume of paper. The

�bres lie in parallel planes in which they have a random orientation density.
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In Kallmes and Corte (1960), the ideal planar random structure has been

considered, whereas the planar system either with anisotropy or �occulation

of �bres is examined in Corte and Kallmes (1962) and Dodson (1971). As

an example, such a mechanical property of paper as strength depends on the

number of �bre crossings per area unit, cf. Kallmes and Corte (1960). It is

related to anisotropy and �occulation of �bres. A wide review of stochastic

structure in paper is given by Deng and Dodson (1994).

In laboratory environments, �bre orientation distribution has convention-

ally been estimated indirectly by a ultrasound tester, cf. e.g. Hutten (1994).

The tester measures the velocity of ultrasound through paper along lines at

various polar angles with respect to the machine direction. The velocity is

assumed to be related to �bre orientation density but it is also related to the

internal strength of paper. This method is based on a set of one-dimensional

observations. Heuristically, it can be regarded as a stereological method.

The availability of an on-line sensor for �bre orientation has been promoted,

cf. Chapman et al. (2001). It is based on the combination of the re�ection of

laser light, and the polarization between the laser source and detectors. The

sensors measure the orientation characteristics on both sides of the sheet in

such a way that the e�ect of the �lling material is minimized. This is an

advantage in comparison with the ultrasound tester.

Recently, the layered �bre orientation analysis has been based on the

combination of sheet splitting and dyeing techniques in connection with im-

age analysis. A mechanical tape stripping technique is used in Erkkilä et al.

(1998). Paper is split until the squared mass of a layer is 5-15 g/m2. The

number of layers in a paper sheet will usually be ten or more. Each layer

is scanned using an optical scanner, cf. Figure 1.1. The estimate of the ori-

entation distribution is based on an approximation of the gradient direction

in each pixel. Stripping and dyeing techniques are used in Thorpe (1999),

whereas in Xu et al. (1999) a series of images is obtained by confocal laser

scanning microscopy. In these two latter methods the �bre orientation anal-

ysis is based on the Hough transform.

Staining of paper �bres is an old method. In Danielsen and Steenberg

(1947), stained �bres are approximated by line segments. Their angles to

the machine direction are counted and used for an approximation of �bre

orientation distribution. In Forgacs and Strelis (1963), stained �bres are

intersected by two straight lines, in the machine and cross directions, and

the numbers of intersections are counted. The colouring of the �bres during

the sheet forming process makes it possible to extract stained �bres better

from the background and from each other, cf. Figure 1.2. This design can,

however, be applied in experimental situations only.
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Chapter 3

Stochastic Fibre Systems

Any stochastic model for a planar �brous system is always an approximation,

but it is fundamental to choose a model which is able to capture the essential

features from the data. Let us think at the moment that the �bres can be

detected with a reasonable precision. This is the case in paper technology

experimenting where a part of �bres are stained during the paper making

process. Hence, the image of the paper sample consisting of stained �bres

might be thresholded in such a way that the �bres can be distinguished from

the background, cf. the right image in Figure 1.2.

3.1 Boolean Line Segment Model

In the simplest form, �bres can be approximated by a line segment or by

a chain of consecutive line segments. This approach was originally used for

paper �bres in the estimation of orientation distribution, to our knowledge,

by Danielsen and Steenberg (1947).

For simplicity, let us consider the planar Boolean model of line segments,

cf. Matheron (1972, 1975). Line segments Γn have �xed length l, an orienta-

tion direction αn with x1-axis from the common segment orientation density

fA(α) on [0, π), and the centre point at the origin. Location points xn are

from a stationary planar Poisson point process of intensity λ. Here, λ stands

for the mean number of points per area unit. Further, the line segments

are independent of each other and independent of {xn}. Then, the typical

grain Γ0 represents line segments. The Boolean line segment model Γ is

constructed as a union of transformed line segments

Γ = ∪∞
n=1(xn + Γn) = (x1 + Γ1) ∪ (x2 + Γ2) ∪ . . . . (3.1)

Two main characteristics of Γ are the length intensity, LA = λl, the total

mean length of segment pieces in a unit area, and the segment orientation
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density fA(α). Note that if fA(α) is uniform, Γ is isotropic. See a simulation

of isotropic and anisotropic line segments in Figures 3.1 and 4.2, respectively.

Inference on the segment orientation density fA(α) can be based on stere-
ological observation, cf. e.g. Weibel (1979). Here, a Boolean model Γ is cutted

by a line Lβ forming an angle β ∈ [0, π) with respect to the x1-axis. Inter-

section points generate a stationary Poisson point process on the line Lβ,

cf. Matheron (1975). The intensity PL(β) of the point process is de�ned as

the mean number of points per length unit. It is related to the projection

length of a typical segment, l| sin(α− β)|, through the well-known formula

PL(β) = λ

∫ π

0

l| sin(α− β)|fA(α)dα (3.2)

= LA

∫ π

0

| sin(α− β)|fA(α)dα.

Note that the relation (3.2) is essentially a generalization of Bu�on's needle

problem. Bu�on (1777) solved the problem for a segment with �xed length

and uniform orientation density, fA(α) = 1/π. In this case, PL(β) = 2LA/π.
In a simple extension of the Boolean model Γ, the length of a segment

Γn, denoted by ln, is distributed by the length density fL(l) with mean l̄, and
the segment orientation αn by fA(α) on [0, π). The length ln is assumed to

be independent of αn and the centre location xn. Then, the length intensity

and the point intensity are, respectively, LA = λl̄ and

PL(β) = λ

∫ ∞

0

∫ π

0

l| sin(α− β)|fA,L(α, l)dαdl

(∗)
= λ

(∫ ∞

0

lfL(l)dl
) ∫ π

0

| sin(α− β)|fA(α)dα

= LA

∫ π

0

| sin(α− β)|fA(α)dα, (3.3)

cf. Mecke and Stoyan (1980) and also Hilliard (1962); Corte and Kallmes

(1962); Forgacs and Strelis (1963). The note (∗) emphasizes that we have

used the independence of α and l. The orientational characteristic PL(·) :
[0, π) → [0,∞) is the so-called rose of intersections, cf. Mecke and Stoyan

(1980). The connection between the elliptic segment orientation density and

the point intensities PL(β) is illustrated in the top left images in Figures 4.2

and 4.3, respectively. The point intensities are calculated in eight directions

βi, i = 1, . . . , 8, according to Tables 6.1 and 6.2; in the directions βi + π
periodicity is used.
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In practice, however, the length l and orientation α of a segment Γ0 may

be dependent. For example, long paper �bres are mainly in the machine

direction, whereas short �bres tend to be more isotropically distributed. In

such cases, the stereological formula (3.3) is not valid anymore. Instead, one

can write

PL(β) = λ

∫ ∞

0

∫ π

0

l| sin(α− β)|fA(α)fL|A(l|α)dαdl

= λl̄

∫ π

0

| sin(α− β)|fA(α)
∫ ∞
0

lfL|A(l|α)dl
l̄

dα

= LA

∫ π

0

| sin(α− β)|fA(α)EL|A(l|α)/l̄ dα

= LA

∫ π

0

| sin(α− β)|fR0(α)dα, (3.4)

where

fR0(α) = fA(α) EL|A(l|α)/l̄ (3.5)

is the length-weighted segment orientation density of Γ0. In the independent

case, the formula (3.4) equals to (3.3) since EL|A(l|α)/l̄ = 1. Observing the

intersection points, one can estimate the length-weighted orientation density

fR0(α) but not the marginal orientation density fA(α). In our case, it is an

advantage since the �rst one is more relevant for paper �bres. The properties

of paper are more related to �bre length fractions in di�erent directions than

to angles. Note that if fR0(α) is, in this case, uniform, Γ is isotropic, and

vice versa.

In a more general case, the paper �bres may depend on each other and

on their positions. There may further exist an anisotropic arrangement,

attraction or repulsion of positions. One generalization of the Boolean model

of segments is presented by a germ-grain model, cf. Hanisch (1981). Formally,

we can consider a stationary marked point process Ψ = {[xn; Γn]}, cf. Stoyan
et al. (1995). Then, the germ-grain model with the positions xn (germs) and

the segments Γn (grains) is de�ned as

Γ = ∪[xn,Γn]∈Ψ(xn + Γn) = (x1 + Γ1) ∪ (x2 + Γ2) ∪ . . . .

The Boolean model is a special case. It should be mentioned that rotations

of germ-grain models change the marks, the segment orientations, in contrast

to the assumption made in the general de�nition of marked point processes

(Penttinen and Stoyan, 1989; Stoyan et al., 1995, p. 216). Another general-

ization is to replace line segments Γn by �bres, that is, smooth, simple curves

of �nite length either in Boolean models or germ-grain models. The general

�bre process is needed for modelling the �bre orientation density.
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Figure 3.1: A simulation of a Boolean model of line segments. On the left:

Centre points are from a Poisson stationary point process with intensity

λ = 50. (The side length of the window is one). On the right: Segments

with constant length l = 0.2 and uniform orientation are added on the points.

Length intensity LA = λl = 10.

3.2 Fibre Process

The full generality of stochastic �bre systems is achieved in the construction

of a planar �bre process introduced by Mecke and Stoyan (1980), see also

Stoyan et al. (1995). The �bre process operates in terms of �bre length in

planar sets. Properties such as length of a single �bre are unessential. This is

not a restriction in our application since the �bre length distribution of paper

can be measured economically from the �bre suspension at an early stage of

manufacturing. The �rst role of the �bre process is to a�ord the orientation

characteristic for modelling the �bre orientation distribution. The second

role is to give a stereological formula for its estimation.

Let us assume that �bres are su�ciently smooth simple curves of �nite

length in the plane. Then, the �bre system forms a union of at most count-

ably many �bres such that in any compact set, the number of �bres is �nite

and the �bres have only the end points in common. Then, the total �bre

length in any compact set is �nite. If B is a (Borel) set of R
2 and Φ(B)

stands for the total random �bre length in B, then the �bre process Φ can

be characterized by means of the joint distributions of Φ(B1), . . . ,Φ(Bn) for
any collection of Borel sets B1, . . . , Bn and for all non-negative integers n.
Note that the line segment and more complex germ-grain models can be in-

terpreted as a �bre process, if the length of Γ ∩ B is �nite for all compact

subsets B of R
2.
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For a stationary �bre process Φ, that is, Φ(B) has the same distribution

as Φ(B + x) for all x ∈ R
2, the orientation distribution is de�ned by a

length-weighted distribution on [0, π) called the rose of directions R. Let

α(x) ∈ [0, π) be the angle of the tangent of Φ at x. Then, if ν1 stands for the

length measure, we have for an angle interval (α1, α2), 0 ≤ αi ≤ π,

Eν1{x ∈ Φ ∩ [0, 1]2 : α(x) ∈ (α1, α2)} = R((α1, α2))LA,

where the length intensity LA = EΦ([0, 1]2) is the mean total length of �bres

per area unit. The left-hand side stands for the mean length of such �bre

pieces that have tangent angles in (α1, α2) per area unit. R can be considered

as the distribution of the tangent angle at a typical point of the �bre process.

The density for R is denoted by fR(α). Note that the segment orientation

densities fA(α) and fR0(α) of Boolean models are special cases of the density

fR(α).
Another type of anisotropy of a �bre process can be introduced as well.

The density of the rose of directions is, for example, uniform but the arrange-

ment of locations of �bres is anisotropic. The di�erent aspects of anisotropy

have been considered by Stoyan and Bene² (1991). In this work, we consider

the anisotropy in the rose of directions.

The second role of the �bre process is to give a stereological connection

between the point intensities along lines and the �bre orientation distribution.

If any stationary �bre process is sampled by a line Lβ at angle β ∈ [0, π) to
the x1-axis, there exists an equation

PL(β) = LA

∫ π

0

| sin(α− β)|fR(α)dα, (3.6)

when using
∫ R(dα) =

∫
fR(α)dα. The equation (3.6) is an integral part

of many statistical methods for estimating the �bre orientation distribution.

Among others, a second derivatives approach of (3.6) is considered in Hilliard

(1962); Corte and Kallmes (1962); Mecke and Stoyan (1980); Mecke (1981);

Serra (1982); Bene² (1989). A parametric model for the intersection counts,

together with the second derivatives approach, is employed in Corte and

Kallmes (1962); Bene² (1989). The �bre orientation density is expanded in

a Fourier series in Hilliard (1962). The Steiner compact approach is used in

Rataj and Saxl (1988, 1989), and Bene² and Gokhale (2000). Rataj and Saxl

(1992) give a detailed summary and compare parametric estimators suggested

by several authors, such as Marriott (1971), Kanatani (1984), Rataj and Saxl

(1988, 1989). Parametric �bre orientation density combined with the ratios

of counts is discussed in Forgacs and Strelis (1963). The ratio idea, applied
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in this thesis, is also considered in Corte and Kallmes (1962). Parametric

methods based on intersection counts are constructed either by modelling

the orientation density, or modelling the counts and deducing the model for

the orientation density. Note that both design- and model-based approaches

exist in these references.

The construction of a �bre process does not allow direct simulation.

Hence, in applications where simulation is the means of controlling the un-

certainty of the estimates, one typically utilizes such simple special cases as

Boolean (or germ-grain) models of line segments or �bres.

3.3 Parametric Models for Fibre Orientation

Distribution

Our main objective is to study the estimation of �bre orientation distribu-

tion de�ned by the rose of directions R of the �bre process, cf. Mecke and

Stoyan (1980). It turns out that parametric modelling is relevant in extract-

ing information on �bre orientation. A familiar parametric model in paper

technology is an elliptic distribution. In this study, we use the elliptic density

on [0, π), cf. Article A,

fR(α; τ, κ) =
c√

1− κ2 cos2(α− τ)
, (3.7)

where the orientation angle τ ∈ [0, π) is the preferred direction of the �bres,

often the machine direction in paper technology, κ2 = 1− b2/a2 ∈ (0, 1) with
the lengths of the major and minor axes, a and b, respectively, describes
deviation from the circular model (κ = 0), and c is the normalizing factor,

cf. Figure 4.2. In paper technology terminology, the anisotropy parameter

is 1 − e = 1 − b/a, and, thus, κ2 = 1 − (1 − (1 − e))2. The elliptic density

(3.7) can be deduced when an ellipse in Cartesian coordinates is presented

in polar coordinates.

Alternative models for the paper orientation distribution can be applied

as well. For example, in Forgacs and Strelis (1963), the elliptic density is

f(α; a, b) =
1

πab

(
cos2 α

a2
+

sin2 α

b2

)−1

. (3.8)

Table 3.1 gives a summary of further alternatives, cf. Cresson (1988) and the

references therein for the means of parameters. A typical statistical model is
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Table 3.1: Examples of models for �bre orientation density.

f(α)
1 + a1 cos(2α)

1 + a1 cos(2α) + a2 cos(4α)
1 +

∑
n an cos(2nα)

1 + 2
∑

n ρ
2n cos(2nα)

(1− ρ2)/(1 + ρ2 − 2ρ cos(2α))
λ/(cos2(α) + λ2 sin2(α))

the von Mises distribution with the density function

f(α;µ,K) =
1

2πI0(K)
exp(K cos(α− µ)), 0 < α ≤ 2π,

where the mean direction is µ, 0 ≤ µ < 2π, the concentration parameter K,

K > 0, and the modi�ed Bessel function of the �rst kind and order zero

I0(K) =
∞∑

k=0

(1/k!)2(K/2)2k,

cf. e.g. Mardia (1972). Other parametric approaches are presented, for ex-

ample, in Marriott (1971); Mardia (1972); Kanatani (1984); Rataj and Saxl

(1988).
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Chapter 4

Boolean Random Fields for

Fibrous Structures

If real �bres have considerable physical thickness as paper �bres, the mod-

elling with the (mathematical) �bres may not capture all the essential fea-

tures. We assume from now on that the real �bres have a physical dimension

and are further observed in the form of images. In this section, we introduce

useful image models and outline stereological connections related to inter-

section points. A stereological approach concerning grey levels is, however,

discussed in Section 5.

4.1 Binary Model

In this section, we introduce binary models for thick �bres. For simplicity,

let us consider planar line segments Γn having the centre at the origin, the

joined density fA,L(α, l) of orientation αn ∈ [0, π) and length ln ∈ (0,∞). In
this set-up, the line segments Γn are called central �bres. The thick �bres Ξn

are assumed to be thickened versions of central �bres Γn such that Γn ⊆ Ξn.

A simple model for Ξn is a circle-dilated segment

Ξn = Γn ⊕ B(o, r),

where B(o, r) is a circular disk with centre at the origin o and radius r
determining the thickness. This model is considered by Molchanov et al.

(1993); Molchanov and Stoyan (1994) and Article C. The second example

of Ξn is an elliptical segment, a long �attened ellipse with half Γn as the

major axis, cf. Figure 4.1. This model is employed in Article A, B, C and in

Johansson (2002). In a third rectangle model for Ξn, Γn can be thought of

as a longer side of the rectangle with width wn. The last model is applied
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for paper �bres in, for example, Dodson (1971); Molchanov et al. (1993);

Molchanov and Stoyan (1994); Deng and Dodson (1994); Kellomäki et al.

(2001); Johansson (2002) and Article D.

If the thick �bres Ξn are independent and identically distributed and

independent of stationary Poisson points {xn} in R
2 with the intensity λ,

then we obtain the Boolean model

Ξ = ∪∞
n=1(xn + Ξn) = (x1 + Ξ1) ∪ (x2 + Ξ2) ∪ . . . , (4.1)

see the illustration with elliptical segments in Figure 4.2. The sets Ξn have

the same distribution as a certain random set Ξ0 called a typical grain.

In the Boolean model Ξ, the boundaries of apparent grains Ξn are not

typically observable, but ∂Ξ, the boundary of Ξ, is. The intersection by a

sampling Lβ forms a Poisson point process ∂Ξ ∩ Lβ with the point intensity

P 1
L(β), cf. Matheron (1975). The central �bres Γ, whose �bre orientation

density we are interested in, are not observable and neither is the point

intensity PL(β) of central �bres. The point intensity P 1
L(β) has, however,

been shown to be related to the point intensity PL(β), cf. Molchanov et al.

(1993); Molchanov and Stoyan (1994). The general form of the relation,

according to Article C, is

P 1
L(β) = ξ

Ehβ(Ξ0)

Ehβ(Γ0)
PL(β), (4.2)

where

ξ = 2 exp(−λEν2(Ξ0)), (4.3)

and Eν2(Ξ0) stands for the mean area of the typical grain Ξ0. In (4.2),

Ehβ(Γ0) and Ehβ(Ξ0) are the mean length of the projection of Γ0 and Ξ0,

respectively, in the direction perpendicular to β. For the Boolean model of

line segments

Ehβ(Γ0) = l̄

∫ π

0

| sin(α− β)fR0(α)dα,

cf. (3.5). The form of Ehβ(Ξ0) depends on the thickening model of a line

segment. For example, Ehβ(Ξ0) = Ehβ(Γ0)+2r if Ξ0 is a segment dilated by

a circle with radius r. The circle-dilated and rectangular models have been

considered in Molchanov et al. (1993); Molchanov and Stoyan (1994), and in

Article C. In the last one, Ehβ(Ξ0) is calculated for an elliptical segment. In

general, if the extent of the thick �bre Ξn is large compared to its thickness,

then the relation (4.2) can be approximated by

P 1
L(β) ≈ ξPL(β) (4.4)
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Figure 4.1: Illustration of thickening of line segments (�rst published in

Article C). Line segments (xn + Γn)'s are centred at points xn's on the left.

Flat ellipses (xn + Ξn)'s are centred at xn's on the right.

with 0 < ξ < 2. The relation to the �bre orientation density fR(α) can be

achieved through (3.6).

If the union of the thick �bres Ξ has been observed in the form of a

binary image, the image can be modelled by a binary random �eld Z(x) =
1Ξ(x), x ⊆ R

2. In the greyscale case instead, re�nements of the random �eld

are needed.

4.2 Dead Leaves Model

In this section, we consider a model for grey level variation motivated by

two examples. In the greyscale images of thin paper layers, the uppermost

�bres are assumed to re�ect light in a di�erent way from those at the bottom,

cf. Figure 1.1. A further example is the greyscale image of stained �bres on

the paper surface. We can assume that stained �bres are distributed uni-

formly through the vertical and horizontal direction (Fig. 1.2, left). In both

cases, we can detect the uppermost �bres. This means that in the detailed

modelling of the system of �bres one must take the order of construction into

account. An obvious candidate is a dead leaves model.

Our description of the dead leaves model is based on random functions of

grey levels on R
2 with homogeneous time, cf. Jeulin (1989, 1993). This

process class is based on a marked point process {[(xn, tn); Θn]}, where

{(xn, tn)} is a stationary Poisson point process on R
2 × [0, t] of intensity

θ, θ < ∞, t < ∞, {Θn} are independent and identically distributed non-
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negative random functions on R
2, independent of {(xn, tn)}, and have the

centre point at the origin. An example of Θn is a random set Ξn with a

random grey level. It is supposed that the support of Θn,

Ξn = {x ∈ R
2 : Θn(x) > 0},

is compact. We let Θ0 and Ξ0 be a typical grey-valued grain and its support,

respectively. Ξ0 can be interpreted as a typical thick �bre. The dead leaves

random function model

Zt(x), x ∈ R
2, (4.5)

equals the grey value at x of the most recently arrived grain. To be more

precise, let

I(x) = {n : Θn(x− xn) > 0}
be the set of grains hitting x. If I(x) is empty, let Zt(x) = 0. Otherwise,

Zt(x) = ΘI(x− xI) where I is the unique element in I(x) such that tI > tn
for all n ∈ I(x)\{I}. In a special case, the grey-valued random functions Θn

depend on time. In all of these cases, at the time t, the union of supports Ξn

forms the Boolean model Ξ with the intensity λ = θt. See the illustration in

Figure 4.2.

In the dead leaves model with �nite time, the boundary ∂Ξ and, further,

the intensity P 1
L(β) of the intersection Lβ ∩ ∂Ξ can be observed. In the dead

leaves model of self-coloured �bres, we can also count the apparent intercepts

formed by �bres identical with colours along the line. The question is how

the number of intercepts is related to the point intensity PL(β) and to the

�bre orientation density.

4.3 Shot-noise Model

Another non-binary situation appears, especially, when one is interested in

the surface properties of a �brous material. Such observations are due to the

stylus instrument which measures the total local �height� of �bres at each

point. The height cumulates when �bres intersect. The role of the grey level

is to describe the height. The construction model should, therefore, have the

additivity property in order to be a su�cient description for the surface. For

situations such as these, shot-noise models have been recently suggested for

paper �bres, cf. e.g. Johansson (2002). The images from paper layers have

been modelled by shot-noise models in Kellomäki et al. (2001).

A simple planar shot-noise model can be de�ned as a random �eld

Zs(x) =
∑
Ξn∈Ξ

δ1Ξn(x− xn), x ∈ R
2, (4.6)
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where Ξ is the Boolean model of thick �bres Ξn deposited on the plane. The

germs xn are the points of a stationary Poisson point process in R
2, Ξn i.i.d.

thick �bres, and independent of {xn}. Further, 1Ξn(x − xn) indicates if Ξn

hits the point x, and δ stands for the height of a thick �bre. Hence, Zs(x)
in (4.6) is proportional to the number of �bre crossings at x, see Figure 4.2.
The general form of the shot-noise model is

Zs(x) =
∑
Ξn∈Ξ

h(x− xn,Ξn), x ∈ R
2,

where h(x−xn,Ξn) is a blur of Ξn at x, cf. e.g. in Rice (1977). The moments of

the process can be described directly using Campbells' theorem, see Schmidt

(1985); Stoyan et al. (1995).

In the stereological observation, the number of the intersections Lβ ∩ ∂Ξ
can be observed and the point intensity P 1

L(β) can be estimated as in the

binary case if the image is not totally covered.
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Figure 4.2: Illustration of orientation density and �ve �bre image models

in the images of size 256 × 256. From top left to right: On the left, an

elliptic orientation density fA(α; τ, κ) with orientation angle τ = 0.60 and

the ratio b/a = 0.28 of the minor and the major axes of the ellipse, b and

a, respectively, cf. (3.7). Strength κ = 0.92. In the middle, a simulation

of a Boolean model Γ of line segments with mean length l̄ = 55 and the

elliptic orientation density. Length intensity, the mean length per unit area,

is LA = 0.24. On the right, a Boolean model Ξ of the same line segments

thickened by ellipses with minor axis b = 2 in a digital two-valued image

such that ellipses have grey value 255 and background 0. From down left

to right: On the left, the same �bres coloured by a dead leaves model with

homogeneous time such that �bres have either grey value 255 or 150 with half

probability. In the middle, the grey value is time-dependent: the uppermost

half of �bres has grey value 150 and other ones 255. On the right, the image

of a shot-noise model where the grey level at each point is proportional to

the number of crossed �bres.
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Figure 4.3: Illustration of roses of intersections and scaled variograms.

Curves correspond the images in Figure 4.2. From top left to right: On

the left, theoretical point intensities PL(β) calculated using (3.3) when the

segment orientation density is fA(α; τ, κ) with (τ, κ) = (0.60, 0.92), cf. (3.7),
and LA = 0.244. In the middle, the intensities P̂L(β) estimated from the

image with line segments. On the left, the scaled variograms V̂L(β) in (6.8)

estimated from the two-valued image. From down left to right: On the

left and in the middle the scaled variograms estimated from the dead leaves

images, and on the right from the shot-noise image.
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Chapter 5

Stereological Connections in

Random Fields

The aim has been to develop an automatic and fast system for calculating the

number of points along the scan lines in both binary and greyscale images.

Further, the intersection points as such are not necessarily observable due

to thickness, overlapping, grey levels of �bres and digitization, cf. Figure 1.3

and 1.4. One solution is to observe the directional variation of grey levels in

the form of a scaled variogram along the sampling line. The main objective

is to investigate the relation between the scaled variogram and the �bre

orientation distribution fR(α). If the grid of the image is small enough, it is

su�cient to approximate the relation between the scaled variogram and the

unobservable point intensity PL(β). Otherwise, the exact relation is needed.

5.1 Binary Images

Let us begin by thinking of a binary image (without digitization at the mo-

ment) as a random �eld Z(x) = 1Ξ(x), x ∈ R
2, where Ξ is a Boolean model.

Intersecting the image by a sampling line Lβ , we observe a binary-valued

function Z(x), x ∈ Lβ ∩R
2. We can consider two grey values Z(x) and Z(y)

observed at points x, y ∈ R
2, respectively, at the distance d = ||x− y||. The

scaled variogram is de�ned as

VL(d, β) =
E|Z(x)− Z(y)|

d
. (5.1)

Due to the stationarity of Ξ, the locations of x, y ∈ R
2 with d = ||x − y||

have no in�uence. Note that VL(d, β) is equal to 2γ1(d, β)/d, where γ1(d, β)
is the variogram of order one, cf. Matheron (1971, 1982).
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For Boolean �bres Ξ, the scaled variogram is

VL(d, β) =
2[P(Ξ ∩ {y} = ∅)− P(Ξ ∩ {x, y} = ∅)]

d
, (5.2)

where

P(Ξ ∩ {y} = ∅) = exp(−λEν2(Ξ0),

P(Ξ ∩ {x, y} = ∅) = exp(−λEν2(Ξ0 ∪ [Ξ0 + {y − x}])). (5.3)

In a case of small d, for convex �bres in (5.3)

ν2(Ξ0 ∪ [Ξ0 + {y − x}]) ≈ ν2(Ξ0) + dhβ(Ξ0), (5.4)

cf. e.g. Matheron (1975, p. 141). Using further Taylor's approximation, we

obtain

VL(d, β) ≈ P 1
L(β) (5.5)

according to Article C, cf. also Jeulin (2000). Recall that P 1
L(β) is the inten-

sity of the point process Lβ ∩ ∂Ξ with the boundary ∂Ξ. Combining (5.5)

and (4.4), the proportional model

VL(d, β) ≈ ξPL(β) ∝ PL(β) (5.6)

is obtained. The relation (5.6) depends only on ξ, see (4.3). The connection
to the �bre orientation density of R can be found through the formula (3.6).

In Article C, a re�ned approximation for VL(d, β),

VL(d, β) ≈
(
1− λdEhβ(Ξ0)

2

)
P 1

L(β), (5.7)

is suggested where Ehβ(Ξ0) is the mean projection length of thick �bres in

the perpendicular direction to β. If we can assume that the length of �bres

is large compared to their thickness, then we obtain the re�ned proportional

model as an approximation of (5.7)

VL(d, β) ≈ ξ

(
1− dPL(β)

2

)
PL(β)

∝
(
1− dPL(β)

2

)
PL(β), (5.8)

which is one of the main contributions of this thesis.

Remark If the distance d is not small enough, the approximation (5.4)

is not valid. In that case, under the Boolean model, we can obtain from (5.3)

P(Ξ ∩ {x, y} = ∅)
= exp(−λ(2Eν2(Ξ0)− Eν2(Ξ0 ∩ [Ξ0 + {y − x}]))). (5.9)
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Let us �x Ξ0 to be a rectangle with �xed length l, width w and random ori-

entation from a parametric model fR(α; θ). Then, for x− y = d(cosβ, sin β)
the last term of (5.9) can be written as

Eν2(Ξ0 ∩ [Ξ0 + {y − x}]) = Eν2(Ξ0 ∩ [Ξ0 − d(cosβ, sinβ)])

=

∫ π

0

ν2(Ξ0 ∩ [Ξ0 − d(cosβ, sinβ)]|α)fR(α; θ)dα

=

∫ π

0

(w − d| sin(α− β)|)+(l − d| cos(α− β)|)+fR(α; θ)dα
= fd,β(θ, l, w),

where (w − d| sin(α − β)|)+ and (l − d| cos(α − β)|)+ are the sides of the

rectangle in the case of an intersection, cf. also Dodson (1971); Johansson

(2002). Furthermore,

P(Ξ ∩ {y} = ∅) = exp(−λwl).

From (5.2), the exact relation

VL(d, β) = 2 exp(−λwl)[1− exp(−λ(wl − fd,β(w, l, θ)))]/d

= fd,β(θ, l, w, λ) (5.10)

is obtained, where the direction β and the distance d are �xed and the pa-

rameters θ, l, w and λ unknown.

5.2 Images of Dead Leaves Models

In the case of grey-valued �bres, we assume that the image is partially cov-

ered by the dead leaves random function model Zt(x), cf. (4.5). The primary

compact grain, the support Ξ0, is grey-valued by the primary random func-

tion Θ0 with slow variation of grey levels (or constant grey value). Then, for

small d

VL(d, β) =
E|Zt(x)− Zt(y)|

d
≈ ξ′P 1

L(β), (5.11)

where ξ′ depends on grey levels; in a binary {0, 1}-valued image, ξ′ = 1,
cf. Jeulin (2000) and Article C. Recall that at the time t the union of the

supports {Ξn} forms the Boolean model Ξ with the intensity λ = θt, cf. (4.1),
and P 1

L(β) is the intensity of Lβ∩∂Ξ. Assuming that the length of the convex

�bres is large compared to thickness, we are back in the proportional model

VL(d, β) ≈ ξ′ξPL(β) ∝ PL(β), (5.12)
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cf. (4.4).

Remark. If the image is completely covered (t is in�nite), the variation
on grey level arises only from the intercepts of the apparent sets having a

non-identical grey level. However, the proportionality (5.11) holds but the

constant ξ′ is not anymore the same, cf. Jeulin (2000).
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Chapter 6

Statistical Orientation Analysis

Methods

Several authors have considered the image-based orientation analysis. Using

a stereological approach, Molchanov and Stoyan (1994) consider the estima-

tion of the rose of intersections by empirical capacity functionals for binary

images of Boolean thick �bres. In a further approach, the orientation distri-

bution is obtained from a greyscale image using sequential thresholding of

grey levels and counting the intercepts along sampling lines in Serra (1982,

p. 467). In Erkkilä et al. (1998), the �bre orientation analysis is based on

the gradient measurements, whereas Thorpe (1999) and Xu et al. (1999) use

the Hough transform. In Redon et al. (1998), the Fourier image transform

is suggested for orientation analysis, concluding that the Fourier approach

is less sensitive for digitization than the methods originating from the rose

of directions. In Johansson (2002), the method for the parameters of a �bre

system including orientation is based on a covariance function for shot-noise

models.

In this work, we are looking for alternative fast stereological-based so-

lutions, where the extraction of �bres will be bypassed. The methods for

estimating the �bre orientation density are based on the ratios of the stereo-

logical formulas (3.6) in several directions. The methods are shown for binary

as well as greyscale images of a dead leaves model.

6.1 From Point Intensities to Orientation Pa-

rameters

This work can be considered to be an extension of the idea of Forgacs and

Strelis (1963) developed in paper technology. In their approach, the observed
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�bres constitute a realization generated by the Boolean model Γ of line seg-

ments with independent random length and random orientation, cf. (3.1).

The segments are intersected by two lines Lβi
with the same length in vertical

(β1 = 0) and horizontal (β2 = π/2) directions. The intensity of intersection

points PL(βi) along each line is related to the �bre orientation density fA(α)
through (3.3). Assuming a parametric model for fA(α; θ1), the ratio

PL(β2)

PL(β1)
=

∫ π

0
| sin(α− β2)|fA(α; θ1)dα∫ π

0
| sin(α− β1)|fA(α; θ1)dα

= f(θ1) (6.1)

will be obtained, where the orientation parameter θ1 is the only unknown.

Note that the intensity LA vanishes. Considering a set W ⊂ R
2 with �bres,

an unbiased estimator for the point intensity is

P̂L(βi) =
#{Lβi

∩ Γ ∩W}
ν1(Lβi

∩W )

for each direction βi, cf. e.g. Stoyan et al. (1995). In Forgacs and Strelis

(1963), they assume the elliptic density (3.8), where a and b are, respectively,
lengths of major and minor semiaxes of the ellipse, and the orientation angle

is �xed to the machine direction. From f(θ1), cf. (6.1), the estimate for

θ1 = a/b can be solved numerically when P̂L(β2)/P̂L(β1) is observed.

This approach can be generalized. We consider the Boolean line segments

whose orientation density is a parametric rose of directions fR(α; θ) with

several orientation parameters θ = (θ1, · · · , θt), cf. also (3.5). Therefore, we

may need more than two sampling directions βi with i = 1, . . . , p such that

p ≥ (t+ 1). Using the abbreviation

Fi(θ) =

∫ π

0

| sin(α− βi)|fR(α; θ)dα, (6.2)

we obtain from (3.6) the estimation equation

PL(βi)

PL(β1)
=

Fi(θ)

F1(θ)

for each direction βi. The least-squares estimation procedure leads to the

(numerical) minimization of the weighted square form

χ̂(θ) =

p∑
i=2

wi

(
P̂L(βi)− Fi(θ)

F1(θ)
P̂L(β1)

)2

(6.3)

with respect to θ, cf. Article A. The optimal choice for the points from the

Poisson point process gives wi = LiL1/(Li + L1) with Li, which is the total
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length of the transect in direction βi. Note that in cases where LA is in focus,

a simple estimate is L̂A = Fi(θ̂)/P̂L(β1), where the estimates θ̂ and P̂L(β1)
are used. Another possibility is to consider the system of equations which

leads to the minimization of the weighted square form

χ̂(θ, LA) =

p∑
i=1

wi

(
P̂L(βi)− LAFi(θ)

)2

(6.4)

with respect to θ and LA at the same time. Alternative methods for the esti-

mation of LA are shown in Hilliard (1962); Forgacs and Strelis (1963); Mar-

riott (1971); Mecke and Stoyan (1980); Mecke (1981); Stoyan et al. (1995).

If �bres have some thickness and are observed in a binary or greyscale

image, we can detect the boundary of the union of thick �bres. Let us model

these �bres by convex Boolean �bres Ξ, cf. (4.1). If the length of �bres is

large compared with thickness, the point intensity P 1
L(β) of the intersection

Lβ ∩∂Ξ is approximately proportional to PL(β) of line segments Γ, cf. (4.4).

The rose of directions R of Γ can be estimated, using the ratio of point

intensities of Lβi
∩ ∂Ξ, from

P 1
L(βi)

P 1
L(β1)

≈ Fi(θ)

F1(θ)
(6.5)

for each direction βi. Here, the product ξLA, where LA is the intensity of Γ
and ξ constant (4.3), is eliminated. Observing

P̂ 1
L(βi) =

#{Lβi
∩ ∂Ξ ∩W}

ν1(Lβi
∩W )

in the direction βi, one minimizes the least-squares estimation procedure,

analogous to (6.3),

χ̂(θ) =

p∑
i=2

wi

(
P̂ 1

L(βi)− Fi(θ)

F1(θ)
P̂ 1

L(β1)

)2

(6.6)

with respect to θ. Note that if the length of �bres is not large enough

compared with thickness, (6.6) gives the estimates for the rose of directions

of the boundary ∂Ξ. Then, in (6.5) the intensity LA of ∂Ξ is eliminated.

Further, (6.4) can be used for the estimation of the boundary intensity.

Since the methods are based on optimization, it should be mentioned that

optimization works better with few parameters. Hence, parsimonious mod-

elling of orientation is preferable. The methods �nd the minimum better in

stronger anisotropy due to �atness and identi�cation problems near isotropic

cases.
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6.2 From Scaled Variograms to Orientation Pa-

rameters

It has been worth developing a faster stereological method for the estima-

tion of �bre orientation from the digital images. We utilize the directional

variation of grey levels along sampling lines in the form of scaled variograms,

and eliminate the nuisance parameters using the ratios. The proportional

method suggested in Article A is addressed to a binary or a greyscale image

generated by a dead leaves model. The re�ned method shown in Article B

and the exact method are directed to a binary image.

6.2.1 Proportional Method

Let us model the �bre orientation density by a parametric density fR(α; θ)
with parameters θ. It can be elliptic or any of the models shown in Table 3.1.

Let us consider a greyscale image generated by a dead leaves model. Using

the proportional model (5.12), the relation (3.6) and (6.2), we obtain

VL(d, βi)

VL(d, β1)
≈ Fi(θ)

F1(θ)
(6.7)

for any direction βi. The product ξ
′ξLA is eliminated since it is assumed to

be the same constant in each direction. In a binary image, the proportional

model (5.6) also gives the equation (6.7). In that case, ξLA is eliminated.

In practice, we observe a digital image. It can be regarded as a discrete

random �eld {Z(l,m) : l,m ∈ W∩Z+} where Z(l,m) denotes a random grey

value at a centre point (l,m) of a pixel in W . Due to digitization, we use a

digital line L̄βi
as a sampling line. Four natural directions for digital lines are

horizontal, vertical and the two diagonal directions, see Table 6.1. Further,

we have selected to use four intermediate directions shown in Table 6.2. In

the intermediate directions β2 = 0.464, β4 = 1.107, β6 = 2.034, β8 = 2.678,
every second pair of adjacent pixels is located in the main direction βi−1 at

the distance di−1, whereas every second pair is situated in the main direction

βi+1 at the distance di+1, cf. Table 6.2. For the direction β8 = 2.678, however,
the latter direction is β9 = β0 and the distance is d9 = d0. In each direction

βi, we observe a discrete grey-valued function {Z(l,m) : (l,m) ∈ L̄βi
∩W}.

An estimator for the scaled variogram along L̄βi
is

V̂L(βi) =

∑
(l,m),(l′,m′)∈L̄βi

|Z(l,m)− Z(l′, m′)|
Li

, (6.8)

38



Table 6.1: Main directions βi={1,3,5,7} and corresponding distances di={1,3,5,7}
between pixel centres along digital lines.

β1 = 0 d1 = 1

β3 = π/4 = 0.785 d3 =
√
2

β5 = π/2 = 1.571 d5 = 1

β7 = 3π/4 = 2.356 d7 =
√
2

Table 6.2: Intermediate directions βi={2,4,6,8} of digital lines are discretized

to the pairs of pixel centres in the adjoining main directions.

βi−1 di−1 βi+1 di+1

β2 = 0.464 0 1 π
4

√
2

β4 = 1.107 π
4

√
2 π

2
1

β6 = 2.034 π
2

1 3π
4

√
2

β8 = 2.678 3π
4

√
2 0 1

where (l,m) and (l′, m′) are adjacent pixel centres and

Li =
∑

(l,m),(l′,m′)∈L̄βi

||(l,m)− (l′, m′)|| (6.9)

is the total length of the distances between the observed centres. In each

sampling direction, the whole image is scanned using a bundle of parallel

digital lines. Edge correction is not employed. For the four image models

in Figure 4.2, the estimate of (6.8) is calculated in eight directions βi, i =
1, . . . , 8,. Due to periodicity, they also correspond the estimates in βi + π
directions, cf. Figure 4.3.

The estimator (6.8) is an unbiased estimator for the scaled variogram

in the main directions since d is a constant. On the contrary, the mean of

the estimator in the intermediate directions is a weighted average of scaled

variograms in the adjacent main directions, cf. Article C, Section 8. The

corrections in the intermediate directions are needed. Then, the ratio of the

means is

EV̂L(βi)

EV̂L(β1)
≈ Gi(θ)

G1(θ)
, (6.10)
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where

Gi(θ) =

{
Fi(θ), i=1,3,5,7

di−1

di−1+di+1
Fi−1(θ) +

di+1

di−1+di+1
Fi+1(θ), i=2,4,6,8,

cf. Article C. Hence, (6.10) leads to the weighted sum of squares

χ̂(θ) =

8∑
i=2

wi

(
V̂L(βi)− Gi(θ)

G1(θ)
V̂L(β1)

)2

, (6.11)

with the weights wi = LiL1/(Li +L1) for i = 2, . . . , 8, cf. (6.9), cf. Article A.
This is minimized with respect to the orientation parameters θ.

This method is a further extension of the idea shown in Forgacs and Strelis

(1963). Using the ratios, a simple system of estimation equations is obtained.

This method is convenient for a greyscale or binary image generated by a dead

leaves model.

6.2.2 Re�ned Method

We employ the re�ned connection (5.8) shown for a continuous binary image

of Boolean convex, long and narrow �bres. In that case, the ratio of the

scaled variograms has a presentation

VL(d, βi)

VL(d, β1)
≈ [1− dLAFi(θ)/2]Fi(θ)

[1− dLAF1(θ)/2]F1(θ)
,

cf. (3.6) and (6.2). The product ξLA is eliminated. Due to digitization, the

means of the estimators (6.8) give the ratio

EV̂L(βi)

EV̂L(β1)
≈ Gi(θ, LA)

G1(θ, LA)
,

where

Gi(θ, LA) = [1− diLAFi(θ)/2]Fi(θ)

holds for the main directions i = 1, 3, 5, 7, while

Gi(θ, LA) =
di−1

di−1 + di+1

Gi−1(θ, LA) +
di+1

di−1 + di+1

Gi+1(θ, LA),

holds for the intermediate directions with i = 2, 4, 6, 8, cf. Article C. This

leads to the numerical minimization of the sum of weighted squares

χ̂(θ, LA) =

8∑
i=2

wi

(
V̂L(βi)− Gi(θ, LA)

G1(θ, LA)
V̂L(β1)

)2

,
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where wi = LiL1/(Li +L1) for i = 2, . . . , 8. Li (6.9) is the total length of the

digital line in the direction βi, cf. Article B. Both θ and LA are estimated in

contrast to the proportional method.

In this method, proportionality has also been used. The estimation equa-

tions are, however, more complex. Advantages of the method arise in cases

where the factor dPL(β), cf. (5.8), depends remarkably on β and d. A case

like this is a binary image with strong anisotropy, high intensity LA and low

resolution in a grid. The re�ned method has been proved for a binary image

of Boolean �bres.

6.2.3 Exact Method

The following approach is founded on the exact relation (5.10) between the

scaled variogram VL(d, β) and the parametric orientation density fR(α; θ)
with θ = (θ1, · · · , θt). Since we use a digital image {Z(l,m) : l,m ∈ W∩Z+},
we have to �x pairs (d, β) according to the grid such that the adjacent pixel

centres are along the continuous line Lβ. Therefore, the earlier estimator of

the scaled variogram is not valid here.

We construct the estimator for the scaled variogram based on the constant

distance as follows. For �xed βi, the smallest possible distance between pixel

centres (l,m) and (l1, m1) along the line Lβi
is denoted by di1. Multiples of

di1 can also be used denoted by diη , where η ∈ {2, . . . , ni}, and ni depends on

the size of the grid. At the distance diη , we obtain a discrete binary-valued

function {Z(l,m) : (l,m), (lη, mη) ∈ Lβi
∩W}. The estimator for the scaled

variogram is

V̂L(diη , βi) =

∑
(l,m),(lη ,mη)∈Lβi

|Z(l,m)− Z(lη, mη)|∑
(l,m),(lη ,mη)∈Lβi

(l,m)− (lη, mη)
,

where the sum goes over the �adjacent� pixel centres at the distance diη =
(l,m)− (lη , mη). In the horizontal and vertical directions, di1 = 1, and in the

diagonal directions, di1 =
√
2. In the intermediate directions, 0.464, 1.107,

2.034, 2.678, for example, the smallest distance is di1 =
√
5. Any other

intermediate directions can be utilized as well.

The estimation of the orientation parameters θ can be performed by a

least-squares type procedure, as in Article A and in Johansson (2002). We

obtain the system of estimation equations from (5.10), which leads to the

minimization of the weighted square form

χ̂(θ, λ, l, w) =

p∑
i=1

ni∑
η=1

(V̂L(diη , βi)− fdiη ,βi
(θ, λ, l, w))2
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with respect to the parameters θ, λ, l, w. Note that the number of estimated

VL(diη , βi) should be at least t+ 3.

An advantage of the exact model is the fact that it gives more possibilities

in choosing the sampling directions and the distances between pixels in each

direction. A disadvantage, however, is the larger number of parameters to

be estimated at once. We cannot eliminate the parameters λ, l and w in a

case of no interest. This method is not implemented in this thesis.

6.3 Estimation of Standard Errors

We have shown the parametric methods for estimating the parameters θ
of the �bre orientation density fR(α; θ). The estimates for the parameters

are obtained as results of minimization procedures. The variances of the

estimators can be achieved by bootstrap or parametric bootstrap methods,

cf. Efron and Tibshirani (1993).

In Article A, the orientation angle τ and the strength of anisotropy κ
of the elliptic model (3.7) are estimated by the proportional method. Fur-

thermore, the standard errors of the estimators τ̂ and κ̂ in a paper image

are studied using the bootstrap. Instead of scanning the entire image, the

digital lines in the direction βi are sampled sparsely using systematic sam-

pling in order to obtain almost independent grey-valued functions for the

bootstrap. Let us denote the lines along which the functions are observed

by {Lβi1
, Lβi2

, . . . , Lβin
}. The estimate V̂L(βi) is calculated according to (6.8)

along the lines. This is performed in each direction βi, i = 1, . . . , p. We ob-

tain the estimates {V̂L(β1), V̂L(β2), . . . , V̂L(βp)}, which are used in the mini-

mization procedure (6.11) in order to achieve the estimates τ̂ and κ̂.
In the bootstrap, we have a resampled set of lines {L∗

βi1
, L∗

βi2
, . . . , L∗

βin
}

in the direction βi drawn from the original set of lines with replacement.

Sampling lines in each direction, the estimates {V̂ ∗
L (β1), V̂

∗
L (β2), . . . , V̂

∗
L (βp)}

form a random, bootstrap sample from which the new estimates τ̂ ∗ and κ̂∗ are
obtained. These are called bootstrap replications. Drawing a large number

of independent bootstrap samples (e.g. 1000), calculating the corresponding

bootstrap replications, the standard error of τ̂ and κ̂ can be estimated by

the standard deviations of empirical distributions of τ̂ ∗ and κ̂∗.
In the parametric bootstrap, one �rst estimates τ̂ and κ̂ from the image

data. Using these estimates in fR(α; θ), N new independent images are

simulated, τ̂ ∗ and κ̂∗ are estimated from each of them, and the standard

deviations of empirical distributions of τ̂ ∗ and κ̂∗ are calculated. They are

estimates of standard errors of τ̂ and κ̂. In this case, the image model has
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an important role.

In practice, when considering, for example, the images of paper �bres,

it is worth evaluating the magnitude of the standard errors for each type of

images but not for all analyses.

6.4 Evaluation of Methods by Simulation

We have implemented the proportional and re�ned methods for orientation

analysis through images. Both methods are approximative. Their evaluation

is based on the computer-based simulation of digital binary and greyscale

images. They are also compared with a gradient-based method used in paper

industry.

Let us consider the performances of methods in binary images. In Article

D, we simulate �bres modelled by a Boolean model of rectangles (4.1). Fibres

have �xed length, �xed width, and orientation distributed by an elliptic

model (3.7) with orientation angle τ and anisotropy 1− e. In the estimation

according to Article C, the critical parameters may be the length intensity

LA and the orientation density fR(α; θ) if the resolution of the grid is low.

In our simulation, we vary the intensity LA, direction of τ and anisotropy

1− e, cf. Article D, Section 3.2. Each realization is presented in the form of

a digital binary image such that if any �bre hits a pixel, it has a grey value

one.

In the comparison of the new methods, we study the e�ects of fac-

tors LA, τ and 1 − e on the estimation of orientation parameters, angle

τ and anisotropy 1 − e. The methods are compared using a matched de-

sign. The increase in intensity and the changes of the orientation angle away

from 90◦ worsen the estimation of both parameters obtained by the propor-

tional method. The decrease in anisotropy has e�ect on the stability of the

variogram-based methods due to the optimization and identi�cation problem

near the isotropic case. (If κ = 0, the orientation angle is not de�ned.) The

re�ned method performs in a larger range than the proportional method, as

was expected according to Article C.

In the comparison of the new methods in greyscale images generated by a

shot-noise model, we have used the same realizations as in the binary case, see

Article D. In the deposition of the �bres, each pixel value is proportional to

the number (grammage) of �bres hitting that pixel. In shot-noise cases, the

decrease in anisotropy worsen the result of the estimation of both parameters

in general. Concerning the estimation of anisotropy, the increase in intensity

and the changes of the orientation angle away from 90◦ worsen the result for
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both methods. In the estimation of the orientation angle, they mostly seem

to a�ect the result of the proportional method. If the orientation angle is near

the direction of the grid, both methods perform quite well. Note that the

variogram-based methods are theoretically addressed to Boolean and dead

leaves models.

To simulate dead leaves models, we have performed a few experiments,

not as systematically as for the binary and shot-noise models. We apply a

Boolean model Ξ of elliptical segments. The length and the orientation of

a line segment are distributed independently by a uniform and an elliptic

model (3.7), respectively. In Article A, B and C, a dead leaves random

functions model where uppermost �bres are lightest is used. According to

our experiments, in strong anisotropic cases the re�ned method seems to work

better than the proportional method although we do not have any rigorous

proof for the present.

The new methods are compared with a gradient method used in paper

industry, cf. Article D. In the comparison, the re�ned method seems to be

best for binary models when the intensity of �bres is large, as was expected.

In shot-noise cases all methods perform quite well in the ranges of paper

parameters. The gradient method is more stable than the variogram-based

methods.

6.5 Programs

The simulation of images (Articles A, B, and C), the calculations of scaled

variograms, theoretical and estimated point intensities are programmed by C

and the estimation of the orientation parameters is based on the function nlm

in Splus. In Article D, the simulation of images is programmed by Matlab

in VTT Processes. The gradient program used in Article D is a commercial

product.
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Chapter 7

Discussion

In this work, methods for estimating the �bre orientation distribution in a

binary or greyscale image have been developed. The methods are based on

observations made on the sampling lines in several directions in the image.

Observation along each line is a scaled variogram of pixel values. The stere-

ological connection between the observed scaled variograms and the �bre

orientation has been considered in a binary image of a Boolean model of

thickened segments and in a greyscale image of a dead leaves model. The

methods are based on these connections. Assuming a parametric orienta-

tion distribution, the orientation parameters can be obtained numerically

from least-squares type procedures. The proportional method is theoreti-

cally addressed to binary or greyscale images generated by a dead leaves

model, whereas the re�ned method is directed to binary images. The meth-

ods are evaluated with each other using both simulation and real data and

compared with a method used in paper industry. From the point of view of

variogram-based methods, the results concerning the shot-noise models are

empirical.

We have studied the e�ects of thickness, overlap, length intensity of �bres,

grey levels and digitization on the estimation of �bre orientation of Boolean

segments. The variogram-based methods rely on the determination of the

boundary length in terms of directions when considering thick �bres. In the

case of digital binary or greyscale images, the detection of the boundary is

degraded due to grey levels and digitization. High length intensity in binary

images worsens the estimation since the image is saturated. In the case of the

dead leaves model, more information on grey levels is available than in the

binary case. The idea of the boundary detection works. In shot-noise images,

the information on the boundary is degraded in the sense of scaled variograms

due to the additive process. Thus the results of simulation are acceptable.

Digitization according to simulation has been noticed to be an important
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variable a�ecting the results of the estimation. There are two possibilities to

improve the methods. In Serra (1982), a honeycomb lattice was used instead

of a square one. In our case, the honeycomb lattice would enable the use of

three similar directions. Another way, also used in Serra (1982), is to rotate

the image of a squared lattice instead of rotating the sampling line. Both

of these improvements should be applied in the laboratory, and they can,

therefore, be time-consuming.

The methods are not speci�c for the model we have used as the orien-

tation distribution. The distribution can be changed. Our methods are,

however, addressed for anisotropic systems: An identi�cation problem exists

near isotropic cases. In Chaix and Grillon (1996), a method for examin-

ing the isotropy from binary images is presented. It can be one choice for

checking the isotropy.

On a large scale of imaged paper �bres, a germ-grain model allowing

�occulation is a relevant model. In this thesis, however, we concentrate on

the development of orientation analysis for paper �bres observed in an image

of a small scale. We assume, in that case, that the paper �bres can be

approximated by Boolean �bres. Therefore, the orientation analysis on a

large scale could be one of the tasks in the future.
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Chapter 8

Summaries of Original

Publications

In Article A, a new statistical method for estimating the orientation distri-

bution of �bres in a �bre process is suggested, where the process is observed

in the form of a degraded digital greyscale image. The method is based on

the line transect sampling of the image in a few �xed directions. A well-

known method based on stereology is available if the intersections between

the transects and �bres can be counted. We extend this to the case where,

instead of the intersection points, only scaled variograms of grey levels along

the transects are observed. Non-linear estimation equations for a paramet-

ric orientation distribution are given as well as a numerical algorithm. The

method is illustrated by a real-world example and simulated examples where

the elliptic orientation distribution is applied. In its simplicity, the new ap-

proach is intended for an industrial on-line estimation of �bre orientation in

disordered �brous materials.

In Article B, the estimation of �bre orientation is studied for �bre sys-

tems observable as a blurred greyscale image. The estimation method is

based on scaled variograms observed along a set of sampling lines in di�er-

ent directions. The parameters of the orientation distribution are obtained

numerically. Simulated data are used to study the statistical properties of

the method.

In Article C, the orientational characteristics of �bres in digital images are

studied. The �bres are modelled by a planar Boolean model whose typical

grain is a thick (coloured) �bre. The aim is to make stereological inference

on the rose of directions of the unobservable central �bres from observations

made on a digital image of the thick �bres. For central �bres, the relation
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between the rose of directions and the point intensity, observed on a sampling

line, is known. We derive, under regularity conditions, the relation between

the unobservable point intensity and the scaled variogram observed on the

line in a binary and a greyscale image. Using such a relation, it is possible to

draw inference about the rose of directions from the scaled variogram, which

is easy and fast to determine in a digital image.

In Article D, we recall two categories of algorithms for estimating �bre

orientation distribution from an image of a spatial �bre system. In the �rst

algorithm, the estimate is a magnitude-weighted distribution from angles

perpendicular to the directions of the gradients in the image. The second

algorithm is based on the scaled variogram of grey values scanned along a

sampling line and on its relation to the �bre orientation distribution. Using

lines in several directions and assuming a parametric model for the orienta-

tion distribution, the orientation parameters are estimated numerically from

a least-squares type procedure. Two versions of variogram-based methods are

used in this work. We compare the potential of these three methods by simu-

lated images of �brous layers and their thresholded versions. All the methods

were found to reproduce the original distribution with a good accuracy in

the case of greyscale images where grammage, anisotropy and orientation

angle are within the typical ranges of paper parameters. On the contrary,

the variogram-based methods seem to handle the estimation of anisotropy in

binary images more e�ciently.
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Yhteenveto � Summary in Finnish

Digitaalisessa kuvassa havaittujen kuitujen suuntajakauman estimoimiseksi

on kehitetty kaksi kuva-analyysiin perustuvaa menetelmää. Lähestymistapa

perustuu sekä kuvassa olevien piirteiden stereologiseen havainnointiin että

näiden havaintojen ja alla olevan kuiduista muodostuvan systeemin yhtey-

teen. Tässä työssä harmaasävykuvasta havaitaan yksiulotteisia harmaasävy-

arvoisia funktioita useisiin suuntiin olevilta suorilta. Harmaasävyjen vaihte-

lua suoralla mitataan skaalatulla variogrammilla. Suorilta havaittujen skaalat-

tujen variogrammien ja suuntajakauman välistä yhteyttä on arvioitu useille

parametrisille kuvamalleille. Kehitetyt estimointimenetelmät perustuvat näi-

hin yhteyksiin. Ensimmäinen näistä menetelmistä on tarkoitettu erityises-

ti harmaasävykuville (tai binäärisille), jotka ovat peräisin ns. kuolleitten

lehtien mallista. Toinen menetelmä, joka on ensimmäisen menetelmän tarken-

nus, on osoitettu binäärisille kuville. Olettamalla parametrinen suuntajakau-

ma mallin parametrit voidaan estimoida numeerisesti optimoimalla painotet-

tua neliösummaa molempien menetelmien yhteydessä. Uusia suuntajakau-

man analysointimenetelmiä on verrattu keskenään sekä kaupallisen paperi-

teollisuudessa laajasti käytetyn gradienttipohjaisen menetelmän kanssa.
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