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Abstract

This dissertation consists of �ve original publications. The papers consider the sta-

tistical properties (consistency, limiting distribution, limiting eÆciencies, robustness,

computation, estimation of accuracy) of the aÆne equivariant sign and rank covariance

matrix introduced by Visuri, Koivunen and Oja (2000) and their use in multivariate

analysis. In particular, new estimates for principal component analysis and for the mul-

tivariate linear regression are proposed and their statistical properties are derived. The

concepts of multivariate sign and rank are based on Oja's criterion function.

Key words: aÆne equivariance; asymptotic eÆciency; multivariate sign and rank; mul-

tivariate analysis; robustness;
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Chapter 1

Introduction

In the univariate case, signs and ranks are used to obtain procedures which are valid

under wide nonparametric models. The estimates and tests based on signs and ranks

are then typically also robust, that is, they are not sensitive to outlying observations.

For multivariate observations, it is not so obvious anymore how the sign and the rank of

an observation should be de�ned. In this dissertation the aÆne equivariant multivariate

extensions of the concepts of sign and rank proposed by Brown and Hettmansperger

(1987, 1989) are considered. The concepts of sign and rank are based on the Oja (1983)

median and have been used in the construction of estimates and tests in a series of

papers. Oja (1999) reviewed multivariate one-sample and two-sample location cases and

Hettmansperger and Oja (1994) and Hettmansperger, M�ott�onen and Oja (1998) discuss

multi-sample designs. Later, Visuri, Koivunen and Oja (2000) introduced the associated

concepts of aÆne equivariant sign and rank covariance matrices and proposed their use

in covariance matrix estimation. More recently, Visuri, Ollila, Koivunen, M�ott�onen and

Oja (2001) illustrated the use of the rank covariance matrix in classical multivariate

analysis problems.

In this dissertation, the statistical properties (consistency, limiting distribution, limit-

ing eÆciencies, robustness, computation, estimation of accuracy) of the aÆne equivariant

sign and rank covariance matrix are considered and their use in classical multivariate

analysis is examined. In particular, new estimates of the eigenvectors and eigenvalues of

the covariance matrix and the parameters of the multiresponse linear regression model

are proposed and their statistical properties are derived. It turns out that the proposed

estimates of eigenvectors and eigenvalues and of regression parameters are highly eÆcient

in the normal case and have a superior performance for heavy tailed distributions as com-

pared to the classical estimates based on the sample covariance matrix. The proposed

estimates are not robust in the strict sense as they do not have a positive breakdown

point or a bounded inuence function. However, they are not as sensitive to outliers as
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the classical estimates.

The outline of this paper is as follows. In Chapter 2 we discuss the estimation of

multivariate location and scatter. Di�erent tools to compare estimators, such as the

breakdown point, the inuence function and asymptotic eÆciency, are discussed and

some classes of robust estimators of location and scatter, namely the M -estimators and

S-estimators, are presented and discussed. In Chapter 3, we review the notion of sign

and rank in the univariate setting and then introduce di�erent extensions to multivariate

case. Among the extensions considered are the marginal, spatial and aÆne equivariant

multivariate sign and rank. Also, the related sign and rank covariance matrices are

introduced. The emphasis is then put on the aÆne equivariant signs and ranks and

covariance matrices based on them. Their performance in estimation of the elements of

the covariance matrix, and the eigenvalues and eigenvectors of the covariance matrix,

are then compared with the classical estimators and their robust alternatives.
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Chapter 2

Estimation of Multivariate Location

and Scatter

2.1 Motivation and Notations

Let PDS(k) denote the set of all positive de�nite symmetric k � k matrices and let

Ik denote the k � k identity matrix. Furthermore, let x be a k-dimensional random

vector with �nite second-order moments, mean vector � = E(x) and covariance matrix

� = Cov(x) 2 PDS(k). The spectral decomposition of the covariance matrix is given by

� = P �P T where P is the matrix with the eigenvectors p1; : : : ;pk of � in its columns

and � is a diagonal matrix with the descending eigenvalues �1 � : : : � �k as diagonal

elements. We may also state the eigenvalue decomposition in the form

� = � P �� P T = � ��; (2.1)

where � = (�1 � � ��k)1=k is the geometrical mean of the eigenvalues and � = ���. The

matrix �� is then a diagonal matrix of standardized eigenvalues

��j =
�j

(�1 � � ��k)1=k
: (2.2)

We will often refer to elliptically symmetric distributions. A k-dimensional random

vector x has cdf F�;
 if its density is of the form

f(x;�;
) = fdet(
)g�1=2gf(x� �)T
�1(x� �)g (2.3)

for some 
 2 PDS(k) and nonnegative function g, which is independent of � and 
.

The parameter � is the symmetry centre of the distribution of x (or the expected value

E(x) when it exists) whereas the parameter 
 is proportional to the covariance matrix
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� of x when it exists. Often the parameter 
 is called the scatter matrix or the pseudo-

covariance matrix. If 
 = cIk for some c > 0 then x is said to be spherically symmetric

around �. For notational convenience, we simply denote F = F�;
 and F0 = F0;Ik. Note

that if x � F then z = 
�1=2(x � �) � F0 and r = kzk and u = z=r are independent

with u being uniformly distributed on the unit sphere and with r2 having the density

function

fr2(t) = f�k=2=�(k=2)gtk=2�1g(t): (2.4)

If the covariance matrix of x exist then � = k�1E(r2)
.

The elliptical distributions are often used for studying the robustness of multivariate

statistics. For this purpose the k-variate t-distribution with � degrees of freedom, t�;k,

is particularly interesting as it yields distributions with varying heaviness of tails. To be

more speci�c, if x � t�;k, then g in equation (2.3) and (2.4) is of the form

g(t) = c�;k(1 + t=�)�(k+�)=2; (2.5)

where c�;k = (��)�k=2�f(k + �)=2g=�(�=2). The value � = 1 gives the k-variate Cauchy

distribution whereas the multivariate standard normal density

g(t) = (2�)�k=2exp(�t=2) (2.6)

is obtained as � !1. For � > 2 the covariance matrix of the k-variate t-distribution is

� = f�=(� � 2)g
. In the normal distribution case, � = 
. The information about the

scale of � is confounded in g. However, for a speci�c distribution, the functional form g

can be replaced by g0(t) = c�k=2g(t=c) with c = E(r2)=k. We call this the standardized

spherical distribution. This results in a change in the scatter matrix parameter 
 to

c
 = �. If the second moments of x exists, we use the standardized spherical distribution

and consequently 
 = �.

A starting point for most multivariate analysis procedures such as the Principal Com-

ponent Analysis (PCA), Canonical Correlation Analysis (CCA), multiresponse regression

analysis and discriminant analysis, is indeed the mean vector � and the covariance ma-

trix �. In the PCA, for example, the statistics of interest are the eigenvectors pi and

standardized eigenvalues ��i of �. These are often used to reduce the dimensionality of

the data set by considering the �rst m (< k) principal components only (obtained by

projecting the data on to the direction of the �rst m eigenvectors). The standardized

eigenvalues then measure the relative amount of information explained by the principal

components. In the CCA, one considers the partitioned mean vector and covariance

matrix

� =

�
�x

�y

�
and � =

�
�xx �xy

�yx �yy

�
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of a random variable (xT ;yT )T and the statistics of interest are the eigenvalues and

eigenvectors of matrices

��1xx�xy�
�1
yy �yx and ��1yy �yx�

�1
xx�xy

which are used to describe the dependence between the two sets of variables. Speci�cally,

if x gives the explanatory variables and y the response variables in the multivariate

multiple regression model, then the regression coeÆcient matrix is given by

B =

�
�
T
y � �

T
x�

�1
xx�xy

��1xx�xy

�
:

Furthermore, in the linear discriminant analysis, the classi�cation rules are de�ned using

the mean vectors and the common covariance matrix of the populations from which the

data come. Note that these applications require the covariance matrix up to a constant

scalar factor, and hence a shape matrix (a function of the covariance matrix which is

invariant under multiplication of the covariance statistic, such as �� in (2.1)) could be

used as well. Properties of the shape matrices and the multivariate procedures based on

them are discussed in Paper III.

The true location parameter � and the covariance matrix � are unknown and need

to be estimated from the data. In classical multivariate analysis one assumes that the

observations x1; : : : ;xn come from a multivariate normal distribution (so the density g

is as in equation (2.6)). Then the maximum likelihood estimators of � and � are the

sample mean mean vector and the sample covariance matrix

�x = avefxig and S = avef(xi � �x)(xi � �x)Tg;

respectively, where \ave" stands for arithmetic average over cases i = 1; : : : ; n. These

estimators are easy to calculate and work with and their limiting distributions are rea-

sonably simple. This is mostly true also for the procedures based on them. It is well

known however that the sample mean and covariance matrix and the related procedures

are highly sensitive to outliers or gross errors (atypical observations that deviate from

the bulk of the data) or slight deviations from assumptions (e.g. if the true underlying

distribution has tails slightly heavier that that of the normal distribution). Therefore, a

fundamental problem in multivariate statistics is to develop robust estimators of � and

� as alternatives to sample mean and covariance matrix. The robust estimators of the

mean vector and the covariance matrix can then be used to construct robust multivari-

ate analysis procedures such as robust estimators of eigenvectors and eigenvalues of �

or robust estimators of the regression coeÆcient matrix B.
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2.2 Tools to Compare Estimators

In this section we introduce some tools to compare di�erent location and scatter matrix

estimators. (The words scatter matrix and covariance matrix will be abusively used as

synonyms throughout this paper.) The tools introduced here are the breakdown point,

inuence function and asymptotic eÆciency.

2.2.1 Estimators and Statistical Functionals

We de�ne here what we mean by estimators and statistical functionals of the multivariate

location and scatter. Let �̂ and Ĉ denote the estimates of � and � based on the data

set Xn = fx1; : : : ;xng in Rk which is a random sample from unknown F . Assume that

F 2 F where F denotes a set of all distributions on R
k (or a large subset of it). By

\large" we mean one that contains plausible models F for the unknown population as

well as the empirical distribution Fn associated with the data set Xn. Then, a map

M : F ! R
k is a statistical functional corresponding to �̂ if �̂ =M(Fn). Furthermore, a

map C : F ! PDS(k) is a statistical functional corresponding to Ĉ whenever Ĉ = C(Fn).

For example, let F be a member in F containing all distributions on R
k with �nite

second-order moments. Then the population mean vector and covariance matrix

M(F ) = EF (x) and C(F ) = EF [fx� EF (x)gfx� EF (x)gT ]

are statistical functionals corresponding to the sample mean and sample covariance ma-

trix as M(Fn) = �x and C(Fn) = S. The estimates and the corresponding statistical

functionals are supposed to satisfy the following two conditions.

Condition A. AÆne equivariance. The estimates �̂ and Ĉ are aÆne equivariant

in the sense that if (�̂; Ĉ) are estimates calculated from the observations x1; : : : ;xn,

then (A�̂ + b; AĈAT ) are estimates from the transformed data Ax1 + b; : : : ; Axn +

b, for any non-singular k � k-matrix A and b 2 R
k . The corresponding statistical

functionals (M(F ); C(F )) are aÆne equivariant in an analogous fashion, that is, if Fy

and Fx represents the distributions of the k-dimensional random vectors y = Ax + b

and x respectively, then

(M(Fy); C(Fy) ) = (AM(Fx) + b; AC(Fx)A
T ):

The sample mean and covariance matrix and their statistical functionals are natu-

rally aÆne equivariant. The well-known estimator of the multivariate location, the

co-ordinatewise sample median, for example, is not aÆne equivariant.

Condition B. Concistency. The functionals M(F ) and C(F ) are supposed to be

Fisher-consistent to the true parameter values � and � at F respectively, i.e. M(F ) = �
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and C(F ) = �. Moreover, the estimates are supposed to be consistent in the regular

sense that �̂ and Ĉ converge in probability to M(F ) and C(F ), respectively.

The spectral decomposition of Ĉ will be denoted by Ĉ = P̂ �̂P̂ T , so P̂ = [p̂1 � � � p̂k] is
an orthogonal matrix containing the eigenvectors as columns and �̂ = diag(�̂1; : : : ; �̂k)

contains the descending eigenvalues as diagonal elements. The statistical functionals of

P̂ and �̂ are naturally obtained from the spectral decomposition of the scatter func-

tional: C(F ) = PC(F )�C(F )PC(F )
T ; where again PC(F ) is an orthogonal matrix with

eigenvector functionals pC;j(F ), j = 1; : : : ; k as columns and �C(F ) is a diagonal ma-

trix with eigenvalue functionals �C;j(F ), j = 1; : : : ; k as diagonal elements. Condition

B immediately implies that the functionals PC(F ) and �C(F ) are Fisher-consistent for

P and � at F , so PC(F ) = P and �C(F ) = �, and P̂ and �̂ converge to P and � in

probability. Naturally, at the empirical distribution, PC(Fn) = P̂ and �C(Fn) = �̂.

We will use T (F ) to denote an statistical functional corresponding to an arbitrary

estimator say �̂ = T (Fn) obtaining values on some set �.

2.2.2 The Breakdown Point

The breakdown point (BP) of an estimator measures quantitative robustness of an es-

timator. Loosely speaking it is the percentage of contamination that the estimator (or

statistic) can tolerate before it \breaks down" and becomes totally unreliable. We now

de�ne the notion of breakdown point for estimates (�nite sample case) and for functionals

(asymptotic, or, the population case).

The Finite Sample Breakdown Point

We consider two slightly di�erent de�nitions of breakdown point for �nite samples,

namely the replacement breakdown point (RBP) and addition breakdown point (ABP),

introduced by Donoho (1982) and Donoho and Huber (1983). The breakdown point of

an estimate or statistic �̂ 2 � can be de�ned in several ways but these two ways are

the most popular in the literature. Let us �rst consider the RBP, which is, the smallest

fraction " = m=n of observations in the data set Xn that need to be replaced to take

the estimate over all bounds. To be more speci�c, let "-replacement neighborhood of the

data set Xn be de�ned as

B"(Xn) = fY � R
k : #fY g = n and #fXn \ Y g = n�m g:

That is, the corrupted sample Y is obtained by replacing the fraction " = m=n 2
f1=n; : : : ; (n� 1)=n; 1g of observations of Xn with arbitrary values. Let Æ be a measure
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of dissimilarity between two elements of �. Then the maximum bias of the estimate �̂

over "-replacement neighborhood is de�ned by

bias(";Xn; �̂) = supf Æ( �̂(Xn); �̂(Y ) ) : Y 2 B"(Xn) g:

The RBP of �̂ is then given by

"�n = inff " : bias(";Xn; �̂) =1g:

Note that the RBP is dependent on the number of observations n and also on the

particular data at hand. Usually some conditions are imposed on the data set Xn such

as that n � k+1 and the data is in general position, that is, no k+1 points are contained

in any hyperplane of dimension smaller than k; see Lopuha�a and Rousseeuw (1991) and

Davies (1987).

In the case of location estimates �̂, � = R
k , and one could de�ne Æ(x;y) = kx�yk,

where k�k is the Euclidean norm. In the case of scatter matrix estimates Ĉ, � = PDS(k),

and one may de�ne

Æ(A;B) = maxf j�1(A)� �1(B)j; j��1k (A)� ��1k (B)j g;

with �1(A) � : : : � �k(A) being the ordered eigenvalues of the matrix A 2 PDS(k).

Hence, for this choice of Æ, the RBP of the scatter estimate is the smallest replacement

fraction of outliers that can either take the largest eigenvalue over all bounds or the

smallest eigenvalue arbitrarily close to zero. These two particular functions Æ are used

by Lopuha�a and Rousseeuw (1991). There are naturally several other possibilities in

de�ning Æ function for the location and scatter estimates. In the case of shape matrices,

Æ is often de�ned so that it involves ratios of eigenvalues. See Maronna and Yohai (1995).

Instead of considering the breakdown of location and scatter estimates separately, one

could construct de�nitions of simultaneous RBP of location and scatter by combining

the de�nitions appropriately as is done in Davies (1987) and Tyler (1994) and Kent and

Tyler (1996). In other words, the simultaneous RBP is then just the smallest fraction

" = m=n of replacement outliers which causes the breakdown of at least one of the

estimates. The �nite sample simultaneous RBP of any aÆne equivariant location and

scatter estimate �̂ and Ĉ will always be at most bn�k+1
2

c=n if Xn is in general position

and n � k + 1 (Davies, 1987). Naturally aÆne equivariant location estimators can be

de�ned without any reference to a companion scatter estimate (and vice versa), and the

RBP may then exceed the above upper bound. For a detailed discussion, see Lopuha�a

and Rousseeuw (1991).

Let us now consider the �nite sample addition breakdown point, which is, the smallest

fraction " = m=(n+m) of arbitrary observations that need to be added to the data set Xn
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to take the estimate over all bounds. In this case we consider "-addition neighborhoods

B�

" (Xn) = fY = Xn [ Z : Z � R
k and #fZg = m g:

Thus the corrupted sample Y has size n +m and contains a fraction " = m=(n +m) of

bad observations with m 2 N
+ . The de�nition of ABP is then as that of RBP but with

B"(Xn) replaced by B�

" (Xn). Thus the two de�nitions, ABP and RBP, result in slightly

di�erent values of �nite sample breakdown point. For example, the RBP and ABP of

the sample mean vector is 1=n and 1=(n+1) respectively. Huber (1984) and Donoho and

Gasko (1992) used the ABP concept whereas Davies (1987), Lopuha�a and Rousseeuw

(1991), Tyler (1994), Kent and Tyler (1996) preferred the RBP. The relationship between

the two versions of the �nite sample breakdown point is established in a recent paper by

Zuo (2001), thereby allowing one to obtain ABP directly from the RBP and vice versa.

The Asymptotic Breakdown Point

The asymptotic breakdown point considers the breakdown of statistical functionals.

There are several ways to de�ne the concept of the asymptotic breakdown point of

the functional T (F ) corresponding to estimate �̂ = T (Fn). Here we consider the "-

contamination breakdown point, which is analogous to the �nite sample BP introduced

above. Let the "-contamination neighborhood of the distribution F be de�ned as

B"(F ) = fF" : F" = (1� ")F + "G with " 2 [0; 1) and G 2 F g: (2.7)

The maximum asymptotic bias of the functional T (F ) over the "-contamination neigh-

borhood is then

bias("; F ;T ) = supf Æ(T (F ); T (F") ) : F" 2 B"(F ) g:

Then the asymptotic contamination BP of T is

"� = inff " : bias("; F ;T ) =1g:

Often F = f�x : x 2 R
kg where �x puts all the probability mass at x. Then "� is often

called the asymptotic point-mass contamination BP. In the case of location and scatter

matrix functionals M(F ) and C(F ) one can de�ne Æ as earlier in the �nite sample case.

Sometimes, asymptotic breakdown point is de�ned using the �nite sample breakdown

point as "� = limn!1 "�n (if the limit exist).
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2.2.3 The Inuence Function

The inuence function (IF) measures qualitative robustness of an estimator. The inu-

ence function of a functional T is given by

IF(x;T; F ) = lim
"#0

T (F")� T (F )

"
=

@

@"
T (F")

��
"=0

; (2.8)

where F" = (1 � ")F + "�x and �x is the cdf of a distribution putting all its mass at

x. The above function, considered as a function of x, has been introduced by Hampel

(1968, 1974) under the name inuence curve or inuence function and it is essentially

the �rst derivative of the statistical functional T . One may interpret the IF as describing

the e�ect of an in�nitesimal contamination at point x on the estimate, standardized by

the mass of the contamination.

A robust estimator should have a bounded and continuous IF. Loosely speaking, the

boundedness implies that a small amount of contamination at any point does not have

an arbitrarily large inuence on the estimate whereas the continuity implies that the

small changes in the data set cause only small changes in the estimate. The IF is an

asymptotic concept and therefore one should be careful in relating the form of the IF to

the �nite sample behavior of the estimate. Still the heuristic interpretation of describing

the e�ect of additional observation x on the estimate is appealing. In this spirit, the

�nite sample version of the inuence function at empirical Fn is obtained by suppressing

the limit in (2.8) and choosing " = 1=(n+1). This yields the empirical inuence function

(EIF), or the sensitivity curve

EIF(x; �̂; Xn) = (n+ 1)[ �̂(Xn [ fxg)� �̂(Xn) ]:

The EIF thus calculates the standardized e�ect of an additional observation at x on the

estimate.

If the functional T is suÆciently regular and x1; : : : ;xn is a random sample from F ,

one has that (cfr. Huber, 1981; Hampel, 1986)

p
nf�̂ � T (F )g =

p
n avefIF(xi;T; F )g+ op(1): (2.9)

It turns out that E[IF(x;T; F )] = 0 and, by the central limit theorem,
p
nf�̂�T (F )g is

asymptotically normal with mean vector zero and asymptotic variance-covariance matrix

ASV(�̂;F ) = EF [IF(x;T; F )IF(x;T; F )
T ]: (2.10)

Although equation (2.9) is often true, a rigorous proof may be diÆcult. However, given

the form of the inuence function, the equation (2.10) is often used to calculate an
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expression for the asymptotic variance-covariance matrix of the estimate in a heuristic

way (as an educated guess). The inuence function is also used to derive other measures

of robustness. One such measure of particular importance is the gross error sensitivity

de�ned as � = sup
x2Rk

jIF(x;T; F )j for some norm j � j. Loosely speaking, it describes

the maximal inuence of an individual observation.

The inuence functions of the location and scatter matrix functionals M(F ) and

C(F ) at elliptical F = F�;� have simple expressions. Their inuence functions are of the

forms

IF(x;M;F ) = M(r;F0)�
1=2
u; (2.11)

IF(x;C; F ) = �C(r;F0)�
1=2
uu

T�1=2 � �C(r;F0)�; (2.12)

respectively, where r2 = (x � �)T��1(x � �) is the Mahalanobis-distance of x, u =

��1=2(x��)=r is the Mahalanobis-angle of x and M , �C and �C are real valued functions

determined by the functionals M and C and the underlying spherical distribution F0 =

F0;Ik. See Hampel et al. (1986) and Croux and Haesbroeck (2000). We may interpret

M , �C and �C as weight functions and for robust estimates the weight functions should

be continuous and bounded. In conclusion, for inuence function comparisons between

di�erent estimators of location and scatter, we only need to compare the functions M ,

�C and �C . When the IF of the scatter matrix functional C is known, the IF of the

eigenvalue and eigenvector functionals �C;j and pC;j of C at elliptical F are easily derived

from

IF(x;�C;j; F ) = �jf�C(r;F0)u
2
j � �C(r;F0)g; (2.13)

IF(x;pC;j; F ) = �C(r;F0)

kX
i 6=j

(�i�j)
1=2uiuj

�i � �j
pi; (2.14)

for distinct eigenvalues. See Croux and Haesbroeck (2000).

2.2.4 Asymptotic EÆciency

To calculate the asymptotic relative eÆciency (ARE) of the location and scatter estimates

�̂ and Ĉ, we need the following additional restriction. Here we use \vec" as an operator

working on matrices: vec(A) represents k2-dimensional vector formed by stacking the

columns of k � k-matrix A on top of each other.

Condition C: Asymptotic normality. Assume that Xn is a random sample from F

and that n1=2(�̂��)! n and n1=2(Ĉ��)! N in distribution, where n is a multivariate

normal vector with mean vector 0 and variance-covariance matrix ASV(�̂;F ) and N is a
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multivariate normal matrix such that vec(N) has mean vector 0 and variance-covariance

matrix ASV(Ĉ;F ).

Asymptotic eÆciency of the location and scatter estimates are easily calculated in

the elliptical models (Tyler, 1982). For that purpose, we need some notations. A com-

mutation matrix Ik;k, is a k
2 � k2 block matrix with (i; j)-block being equal to a k � k

matrix that has 1 at entry (j; i) and zero elsewhere. The Kronecker product of k � k

matrices A and B, denoted by A 
 B, is a k2 � k2-block matrix with k � k-blocks, the

(i; j)-block equal to aijB. For relations of Kronecker products, commutation matrices

and vec-operator, see Magnus and Neudecker (1988).

Let Xn be a random sample from an elliptical distribution F = F�;�. The asymptotic

variance-covariance matrices of �̂ and vec(Ĉ) are then given by

ASV(�̂;F ) = �1� (2.15)

and

ASV(Ĉ;F ) = �2(Ik2 + Ik;k)(�
 �) + �3vec(�)vec(�)
T (2.16)

respectively. Here �1 = ASV(�̂1;F0) is the asymptotic variance of an element of �̂,

�2 = ASV(Ĉ12;F0) is the asymptotic variance of an o�-diagonal element of Ĉ and �3 =

ASC(Ĉ11; Ĉ22;F0) is the asymptotic covariance between two distinct on-diagonal elements

of Ĉ for the corresponding spherical distribution F0 = F0;Ik . Tyler (1982) derived the

expression (2.16) and the expression (2.15) follows at once using similar invariance in

distribution arguments.

The practical implication of equations (2.15) and (2.16) then is that the limiting

distribution of the location estimate is completely described by a single scalar �1 and the

limiting distribution of the scatter estimate is completely described by the two scalars �2

and �3. The ARE's of the aÆne equivariant location estimates can then be calculated by

simply comparing the scalars �1 given in (2.15). In case of scatter matrix estimates, the

asymptotic variances of the on-diagonal and o�-diagonal elements of the scatter matrices

need to be compared separately. For results on shape matrix estimates, see Tyler (1983)

and Paper III.

Consider again the PCA problem and calculate the asymptotic variance ASV(�̂j;F )

of the eigenvalue estimate �̂j and the asymptotic variance-covariance matrix ASV(p̂j;F )

of the eigenvector estimate p̂j based on Ĉ using the expression (2.13) and (2.14) of

their IF respectively and equation (2.10). Then, for elliptical F = F�;� with distinct
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eigenvalues

ASV(�̂j;F ) = �4�
2
j ; (2.17)

ASV(p̂j;F ) = �2
X
i6=j

�i�j

(�i � �j)
pip

T
i ; (2.18)

(Croux and Haesbroeck, 2000). Here �4 = ASV(Ĉ11;F0) is the asymptotic variance of

the on-diagonal element of Ĉ at spherical distribution F0 = F0;Ik. Note that �4 can be

obtained from �2 and �3 from the identity

�4 = �3 + 2�2:

See Paper I and IV. For the asymptotic distribution of the estimates of standardized

eigenvalues based on Ĉ, see Paper I. Equations (2.17) and (2.18) imply that the asymp-

totic eÆciencies of the eigenvalue and eigenvector estimators can be obtained by com-

paring the corresponding values of �4 and �2 respectively.

2.3 Classes of Estimators

Several aÆne equivariant estimators of location and scatter have been introduced in the

literature. Besides the sample mean and covariance matrix, examples include the M -

estimators (Maronna, 1976; Huber, 1981), the Stahel-Donoho (Stahel, 1981; Donoho,

1982) estimator, the Minimum Volume Ellipsoid (MVE)-estimator and the Minimum

Covariance Determinant (MCD)-estimator (Rousseeuw, 1985), the S-estimators (Rous-

seeuw and Leroy, 1987; Davies, 1987), the � -estimators (Lopuha�a, 1991), CM-estimators

(Kent and Tyler, 1996) and MM-estimators (Tatsuoka and Tyler, 2001) among others.

We now briey review two well-known location and covariance matrix estimator classes,

namely the M -estimators and S-estimators. Their properties have been extensively

studied in the literature. Later we compare the properties of M - and S-estimators to

those based on multivariate aÆne equivariant signs and ranks.

2.3.1 M-estimators

M -estimators for multivariate location and covariance were �rst introduced by Maronna

(1976). Later, Huber (1981, Chapter 8) extended Maronna's de�nition. In his de�nition,

simultaneous M -estimators of location and scatter �̂ 2 R
k and Ĉ 2 PDS(k), solve

avef	(xi;�; C)g = 0; (2.19)
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where the average is over i = 1; : : : ; n and 	 = (	1;	2) is the function

	1(xi;�; C) = v1(di)(xi � �);

	2(xi;�; C) = v2(di)(xi � �)(xi � �)T � v3(di)C;

with

di = d(xi;�; C) = f(xi � �)TC�1(xi � �)g1=2; (2.20)

and v1, v2 and v3 are real-valued functions on [0;1). The functionals M(F ) and C(F )

corresponding to estimates �̂ and Ĉ, respectively, are then de�ned as the solution of

EF [	(x;M;C)] = 0. Note that if Fn is the empirical distribution then �̂ = M(Fn) and

Ĉ = C(Fn). Under the speci�ed underlying elliptical distribution F = F�;�, i.e. under

the speci�ed density g, the weight functions v2 and v3 should be scaled so that they

satisfy

E[r2v2(r)] = kE[v3(r)];

where r2 has the density (2.4). This choice of weight functions yields the required Fisher-

consistency of C(F ) to � at F , that is, C(F ) = �.

Existence and uniqueness, robustness properties, limiting normality and asymptotic

variance and covariances have been derived by Maronna (1976) and Huber (1981) under

general assumptions. For results on the existence and uniqueness for an important sub-

class of M -estimates, see also Kent and Tyler (1991). In Maronna (1976) it is argued

that the asymptotic point-mass contamination BP "� of M -functionals of location and

scatter is at most 1=(k + 1), when the solution is unique. If the solution is not unique

there will always exist a solution with an asymptotic breakdown point of at most 1=k

(Huber, 1981). The inuence functions of the location and scatter M -functionals M(F )

and C(F ) at elliptical F are derived in Huber (1981; Section 8.7) which by rewriting

gives the inuence function expressions (2.11) and (2.12) with the weight functions

M(r;F0) =
v1(r)r

�1
; �C(r;F0) =

v2(r)r
2

�2
; �C(r;F0) =

�C(r;F0)

k
� �C(r;F0); (2.21)

where

�C(r;F0) =
2fv2(r)r2 � kv3(r)g

�3
:

Here

�1 = k�1E[kv1(r) + rv01(r)];

�2 = fk(k + 2)g�1E[(k + 2)v2(r)r
2 + v02(r)r

3];

�3 = E[v02(r)r
3 + 2v2(r)r

2 � kv03(r)r];

21



where r2 has the density (2.4). Thus the inuence function of the location functional

M(F ) is continuous and bounded if v1(r)r is continuous and bounded. Furthermore,

the inuence function of the scatter functional C(F ) is continuous and bounded if both

v2(r)r
2 and v3(r) are continuous and bounded. The asymptotic variance-covariance

matrices of the M -estimates of location and scatter can be derived from the inuence

functions using (2.10) (Huber 1981, Section 8.8). The scalars �1, �2 and �3 de�ning the

asymptotic variance-covariance matrices (2.15) and (2.16) of the estimates �̂ and vec(Ĉ)

at elliptical F are then given by

�1 =
E[v21(r)r

2]

k�21
; �2 =

E[v22(r)r
4]

�22k(k + 2)
and �3 = E[�2C(r;F0)]�

2

k
�2; (2.22)

where r2 has the density (2.4). In conclusion: given the weight functions v1, v2 and v3,

the inuence functions and asymptotic variance-covariance matrices of the M -estimators

at the model distribution are easily calculated by (2.21) and (2.22) respectively.

An Example: Huber's M-estimator. Huber's M -estimator, denoted by M(q; k) or

M(q), has weight functions

v1(d) =

(
1 d � c

c=d d > c
; �2v2(d) =

(
1 d2 � c2

c2=d2 d2 > c2
; v3(d) = 1;

where c is a tuning constant de�ned so that q = Pr(�2k � c2) and the scaling factor

�2 is de�ned so that E[tv2(t)] = k, where t is a random variable from �2k-distribution.

Then C(F ) = � whenever the elliptical population is multivariate normal. Note also

that Huber's weights are decreasing to zero which means that the outlying observations

receive smaller weights. According to Tyler (1986) and Lopuha�a (1989) the asymptotic

breakdown point of M(q; k) is "� = minf1=c2; 1� k=c2g for c2 > k. As an example, the

choice q = 0:9 yields the breakdown points " = 0:217; 0:160; 0:129; 0:108 for dimensions

k = 2; 3; 4; 5.

2.3.2 S-estimators

The multivariate S-estimators were introduced by Rousseeuw and Leroy (1987) and

Davies (1987). Let �(d) be a bounded, nondecreasing, non-negative function on R
+

obtaining its maximum at c0 and satisfying �(d) = �(c0) for d � c0. The S-estimators of

multivariate location and scatter is the pair �̂ 2 R
k and Ĉ 2 PDS(k) which minimizes

det(C) subject to the constraint

avef�(di)g = b0 (2.23)
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where di = d(xi;�; C) is given in equation (2.20) and 0 < b0 < �(c0). The S-functionals

of multivariate location and scatter is the pair T (F ) 2 R
k and C(F ) 2 PDS(k) which

minimizes det(C) subject to the constraint EF [�(d)] = b0, where d = d(x;�; C) and x

is a k-dimensional random vector having distribution F .

For elliptical distributions, the existence and uniqueness, robustness properties, lim-

iting normality and asymptotic variance and covariances of the estimators have been

solved by Davies (1987) and Lopuha�a (1989) under general assumptions. The constant

b0 is chosen in agreement with an assumed underlying distribution as EF0 [�(kxk)] to
guarantee consistency of the scatter matrix estimate to �. In that case the constant c0

can be chosen such that

b0 = "�(c0) (2.24)

to attain 100"% asymptotic breakdown point. The highest �nite sample RBP of S-

estimators of location and scatter is reached with the choice of " = (n�k)=(2n) yielding

"�n = bn�k+1
2

c=n (See Lopuha�a and Rousseeuw 1991, Theorem 3.2). The equation (2.24)

explicit's the relation with " and the constant c0. Given the value of "; the value for c0

is determined and vice versa, given the value of c0; the value of " is determined.

S-estimators and M -estimators are closely related. Lopuha�a (1989) showed that the

S-estimates of the location and scatter satisfy the M -estimation equation (2.19) with

weight functions

v1(d) = �0(d)=d; v2(d) = k�0(d)=d and v3(d) = �0(d)d� �(d) + b0: (2.25)

This implies that the inuence functions and the limiting distribution of the S-estimators

will be the same as those of theM -estimators. Hence the functions C , �C and �C identi-

fying the inuence functions ofM(F ) and C(F ) in (2.11) and (2.12) are given by equation

(2.21) and the scalars �1, �2 and �3 for the asymptotic variance-covariance matrices are

given by equation (2.22). The weight functions in (2.25) do not satisfy the requirements

for the uniqueness of the solutions of M -estimation equations, so there may be mul-

tiple solutions and therefore one cannot just solve the M -estimation equation to �nd

the S-estimates. Nevertheless, S-estimates are a solution with a high breakdown point

but there will always be a solution to the M -estimation equation with an asymptotic

breakdown point at most 1=k. See Lopuha�a (1989) for a detailed discussion.

An Example: The Biweight S-estimator. A popular S-estimator, denoted by S("; k)

or S("), uses Tukey's biweight �-function,

�(d) =

(
d
2

2 � d4

2c2
+ d6

6c4
; jdj � c0

d2

6
jdj � c0:

(2.26)

Lopuha�a (1989) showed that, in the multinormal case, the asymptotic relative eÆciency

of the S("; k)-estimators with respect to the sample mean and covariance matrix goes to
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1 as c0 ! 1. However, the breakdown point also depends on the value of c0 and high

breakdown point corresponds to low values of c0. Therefore one has to make a tradeo�

between high breakdown point and good asymptotic eÆciency.
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Chapter 3

Sign and Rank Covariance Matrices

3.1 Univariate Sign and Rank

The estimation and testing theory based on univariate signs and ranks is well studied and

the estimates/tests are widely used in applied sciences. Typically, no strict assumptions

about the underlying distributional form is needed, the estimates and test often have

good robustness properties (high breakdown point and a bounded inuence function)

and they are highly eÆcient.

Let us recall the de�nition of the univariate sign and rank. Let Xn = fx1; : : : ; xng be
a univariate data set. The univariate sign Si = S(xi) and centered rank Ri = R(xi) of

an observation xi 2 R can be de�ned implicitly through the following L1-type objective

functions

avefjxijg = avefSi xig; (3.1)

avefjxi � xjjg = avefRi xig: (3.2)

In the univariate case, signs and ranks have been extensively used to construct esti-

mates and tests in the one sample, two-sample and several sample cases and also in

univariate regression problems. For a review of the univariate sign and rank methods,

see Hettmansperger (1984) and Lehmann (1998), for example.

3.2 Multivariate Signs and Ranks

The concepts of sign and rank can be extended to the multivariate case by considering

extensions of the L1-type objective functions in (3.1) and (3.2). Three possibilities found

in the literature are described next. We let Xn = fx1; : : : ;xng be a k-variate data set

in Rk .
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3.2.1 The Marginal Sign and Rank

For extensions of L1-type objective equations (3.1) and (3.2) to the multivariate case

one needs a distance or norm j � j in R
k . If one uses the Manhattan-distance, jxj =

jx1j+ : : :+ jxkj, then the multivariate sign Si = S(xi) 2 R
k and rank Ri = R(xi) 2 R

k

of an observation xi, de�ned through

avefjxijg = avefST
i xig;

avefjxi � xjjg = avefRT
i xig

are just the vectors of marginal (componentwise) signs and ranks. The marginal signs

and ranks have been used to construct multivariate analogues of the univariate sign and

rank tests and estimates in the one sample, two-sample and multi-sample cases and also

in the multivariate regression problems. See the text by Puri and Sen (1971). These test

and estimates are scale invariant/equivariant but unfortunately not rotation equivari-

ant/invariant. The lack of aÆne equivariance is undesirable as such procedures usually

su�er a serious loss in eÆciency when the marginal variables are substantially correlated.

For a discussion on the relation of aÆne equivariance and eÆciency, see e.g. Chakraborty

and Chaudhuri (1998). Recently, aÆne equivariant extensions of the marginal sign and

rank methods have been constructed by Chakraborty and Chaudhuri (1996, 1997, 1998)

and Chakraborty (1998) using the so called transformation-retransformation technique.

3.2.2 The Spatial Sign and Rank

If the Euclidean distance, kxk = (x21 + : : : + x2k)
1=2, is chosen as a norm in R

k then the

associated spatial signs Si = S(xi) 2 R
k and ranks Ri = R(xi) 2 R

k verify, analogous

to (3.1) and (3.2),

avefkxikg = avefST
i xig;

avefkxi � xjkg = avefRT
i xig:

The spatial signs and ranks have been used to construct multivariate analogues of the

univariate sign and rank tests and estimates in the one-sample and multi-sample cases

and also in the multivariate regression problems. See Brown (1983), Rao (1988), Bai,

Chen, Miao and Rao (1990), Chaudhuri (1992), M�ott�onen and Oja (1995), M�ott�onen, Oja

and Tienari (1997), Choi and Marden (1997) and M�ott�onen, H�usler and Oja (2002). A

drawback is that these testing/estimation procedures are not aÆne invariant/equivariant,

but only rotation invariant/equivariant. AÆne equivariant extensions of these methods

have been constructed by H�ossjer and Croux (1995), Chakraborty, Chaudhuri and Oja

(1998) and Randles (2000).
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3.2.3 The AÆne Equivariant Sign and Rank

The aÆne equivariant signs Si = S(xi) 2 R
k and ranks Ri = R(xi) 2 R

k are de�ned

by

avefj det
�
xi1 � � � xik�1 xi

�
jg = avefST

i xig;
avefj det

�
xi1 � xi � � � xik � xi

�
jg = avefRT

i xig;

where the �rst average is over i = 1; : : : ; n and all (k�1)-subsets 1 � i1 < : : : < ik�1 � n

whereas the second average is over i = 1; : : : ; n and all k-subsets 1 � i1 < : : : < ik � n.

The aÆne equivariant signs and ranks have been used to construct multivariate analogues

of the univariate sign and rank tests and estimates in the one-sample and multi-sample

cases and also in the multivariate regression problems. See Brown and Hettmansperger

(1987, 1989), Brown, Hettmansperger, Nyblom and Oja (1992), Hettmansperger and Oja

(1994), Hettmansperger, Nyblom and Oja (1994), Hettmansperger, M�ott�onen and Oja

(1998) and Oja (1999). Unlike in the case of marginal and spatial sign and rank, the

test/estimation procedures are now fully aÆne invariant/equivariant.

3.3 The Sign and Rank Covariance Matrices

Visuri, Koivunen and Oja (2000) de�ned the aÆne equivariant sign and rank covari-

ance matrices as follows. For constructing the sign covariance matrix, �rst consider the

centered data set

Yn = fy1; : : : ;yng = fx1 � �̂; : : : ;xn � �̂g:
The location estimator �̂ is chosen so that the sum of sign vectors based on Yn is a zero

vector. When using marginal signs, �̂ becomes the vector of marginal medians. In case

of spatial signs, �̂ is the spatial median or L1-median (see e.g Brown, 1983), and the

aÆne equivariant signs corresponds to the Oja median (Oja, 1983). The Oja median is a

location estimate satisfying the conditions stated in Section 2.2.1. It is aÆne equivariant

(Condition A) and consistent (Condition B) in a class of distributions with �nite �rst

order moments. The spatial median is not scale equivariant and the marginal median

do not satisfy rotation equivariance.

Let Ŝi, i = 1; : : : ; n, be the signs of the centered observations. The sign covariance

matrix (SCM) is now the usual covariance matrix computed from the multivariate signs,

that is,

SCM = avefŜiŜi

Tg: (3.3)

In the same way, the rank covariance matrix (RCM) is de�ned as

RCM = avefRiRi
Tg; (3.4)
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where the rank vectors are computed from the uncentered data.

Depending on which sign and rank concepts are used, covariance matrices with dif-

ferent equivariance, eÆciency and robustness properties will be obtained. Statistical

properties (consistency, limiting distribution and eÆciencies, inuence function, etc.) of

the aÆne equivariant sign and rank covariance are established in Paper I and Paper

IV and in Visuri, Ollila, Koivunen, M�ott�onen and Oja (1998). In Paper II and V, an

estimator of the parameters of the multiresponse regression model based on the aÆne

equivariant sign and rank covariance matrix are introduced and studied respectively.

Properties of the spatial sign and rank covariance matrices have been studied in Marden

(1998), Visuri, Koivunen and Oja (1998), Visuri (2001), Croux, Ollila and Oja (2002).

Their asymptotic behavior (limiting covariance matrices and eÆciencies) has not yet

been fully solved, however. Results concerning the limiting variances and eÆciencies of

the eigenvectors of the spatial sign covariance matrix can be found from Croux, Ollila

and Oja (2002).

In the following, aÆne equivariant sign and ranks and the related sign and rank

covariance matrices will be considered. In Fig. 3.1, a data set generated from bivariate

elliptical distribution is pictured together with the sign and rank vectors. We see that

the sign transformation move the data points towards the periphery of an ellipse. The

sign vector points in the direction of the corresponding observation vector, while its

magnitude depends on the dispersion of the data in the space orthogonal to the vector.

The form of this ellipse is therefore determined by the inverse of the covariance structure

of the data. As can be seen from Fig. 3.1, this structure has not been inuenced by the

outlier (marked by �) present in the data cloud. Also notice that the rank vectors have

the covariance structure of the inverse of the covariance matrix and the transformed data

cloud, i.e. the ranks of the observations, adapts the shape of the ellipsoid. Again, this

shape has not been inuenced by the outlier.

3.4 The AÆne Equivariant Sign and Rank Covari-

ance Matrix

Contrary to the univariate case, the multivariate aÆne equivariant signs and ranks can

be used to estimate the covariance structure also. See Paper I and Paper IV. We will

now discuss and review the most important properties of the aÆne equivariant sign

and rank covariance matrix and covariance matrix estimates based on them. We will

make comparison in terms of eÆciency and robustness to the sample covariance matrix,

M -estimators and the S-estimators.
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Figure 3.1: A bivariate data cloud (Fig. a) together with the corresponding sign vectors

(Fig. b) and rank vectors (Fig. c)
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The SCM and RCM are aÆne equivariant in the sense that if SCM� and RCM� are

calculated from the transformed observations x�i = Axi+b, i = 1; : : : ; n with nonsingular

A, then

SCM� = det(A)2(A�1)T SCMA�1 (3.5)

and

RCM� = det(A)2(A�1)T RCMA�1: (3.6)

The Oja median �̂ and the associated functional M(F ) are aÆne equivariant. The

sign and rank covariance matrices SCM and RCM are asymptotically equivalent with

U -statistics and the population counterparts, the statistical functionals SCM(F ) and

RCM(F ) are de�ned as the expected values of the related kernels. It also follows that

the SCM and RCM are consistent under general conditions and have limiting multinor-

mal distributions. For details, see Paper I and Paper IV and Visuri, Ollila, Koivunen,

M�ott�onen and Oja (2002).

At elliptical F = F�;�, the functionals SCM(F ) and RCM(F ) satisfy

SCM(F ) = �S(F0) det(�)P�
�1P T (3.7)

and

RCM(F ) = �R(F0) det(�)P�
�1P T ; (3.8)

where �S(F0) and �R(F0) are scalars depending only on the underlying spherical distri-

bution F0;Ik . The equations (3.7) and (3.8) also hold true in a more general location-scale

model, see Paper I and Visuri, Ollila, Koivunen, M�ott�onen and Oja (2001). SCM(F ) and

RCM(F ) are then proportional to the inverse of the covariance matrix (��1 = P��1P T ).

Therefore the eigenvectors pi and the standardized eigenvalues �
�

i of � can be estimated

using the aÆne equivariant SCM and RCM. As many applications require the knowledge

of the covariance matrix only up to constant scalar factor, applications of SCM and RCM

are possible in multivariate multiple regression analysis, discriminant analysis, canonical

correlations analysis (CCA), etc. See Papers I-V, Visuri, Koivunen and Oja (2000), and

Visuri, Ollila, Koivunen, M�ott�onen and Oja (2002).

As constants �S(F0) and �R(F0) in equations (3.7) and (3.8) can be made explicit

under a speci�ed underlying elliptical model F , the covariance structure of F can be

retrieved from the SCM and RCM. For elliptical distribution F , the following scatter

matrix functionals based on the SCM and RCM,

CS(F ) =

�
detfSCM(F )g

�S(F0)

�1=(k�1)
SCM(F )�1 (3.9)

and

CR(F ) =

�
detfRCM(F )g

�R(F0)

�1=(k�1)
RCM(F )�1 (3.10)
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and the corresponding scatter matrix estimates ĈS and ĈR, are aÆne equivariant (Con-

dition A) and consistent (Condition B) under general assumptions. See Paper I and

Paper IV for details.

At elliptical F , the inuence functions of the Oja median M(F ) and the associated

scatter functional CS(F ) based on the SCM are as in (2.11) and (2.12) respectively with

weight functions

M(r;F0) =
k

(k � 1)EF0(kxk�1)
; �CS(r;F0) =

2kr

EF0(kxk)
�k; �CS(r;F0) = 1: (3.11)

The M function of the Oja median is constant in r; its inuence function is thus con-

tinuous and bounded. Unfortunately, the scatter functional CS(F ) is not robust as its

inuence function is unbounded and linear in r. For the scatter functional CR(F ), the

weight functions �CR(r;F0) and �CR(r;F0) are somewhat complicated and can be found

from Paper IV, Corollary 1. The function �CR(r;F0) is approximately linear in r, so

CR(F ) has an unbounded inuence function. Recall that the functions �C and �C also

determine the inuence functions of the corresponding eigenvalue and eigenvector func-

tionals through equations (2.13) and (2.14). It is obvious that the asymptotic breakdown

point of the SCM and RCM scatter estimators is zero. This is also the case for the Oja

median whose �nite sample ABP is k=(n+k) (Niinimaa, Oja and Tableman, 1990). The

scalars �1, �2 and �3 needed for the asymptotic variance-covariance matrices (2.15) and

(2.16) of the Oja median �̂ and the scatter estimate vec(ĈS) at elliptical distribution F

are given by

�1 =
k

(k � 1)2E2(r�1)
; �2 =

k

k + 2

�
4E(r2)

E2(r)
� 3

�
and �3 = �2 � 1; (3.12)

where r2 has the density (2.4). For ĈR, the expressions for �2 and �3 are more complicated

and can be found from Paper IV.

3.4.1 Comparisons to Existing Estimators

Let us �rst compare the inuence functions of di�erent location functionals. In Fig. 3.2,

the function M(r;F0) of di�erent location functionals M(F ) are depicted in the bivari-

ate (k = 2) standard normal distribution (F0 = N(0; I2)). The location functionals

considered are the Oja median, the mean vector M(F ) = EF (x), the M(0:9; 2)- and

S(0:25; 2)-functionals. We see that all considered competitors of the mean vector are

robust to outliers: their inuence function is continuous and bounded. The M -function

of the S-functional is even redescending to zero so observations with large r receive zero

weight.
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Figure 3.2: Function M(r;F0) for the Oja median, the mean vector and the M(0:9; k)-

and S(0:25; k)-functionals at the bivariate (k = 2) standard normal distribution (F0 =

N(0; I2)).

Similarly, in Fig. 3.3, the functions �C(r;F0) and �C(r;F0) for di�erent scatter func-

tionals C(F ) are illustrated again at the bivariate (k = 2) standard normal distribution.

The scatter functionals considered are the scatter functionals CS(F ) and CR(F ) based on

the SCM and RCM respectively, the covariance matrix functional C(F ) = CovF (x), the

M(0:9; 2)- and the S(0:25; 2)-functional of scatter. We see that the �C-function of the

covariance matrix is quadratic, whereas that of CS(F ) and CR(F ) is linear for large r.

Thus the scatter estimators based on the SCM and RCM give more protection to outliers

than the covariance matrix. Their inuence function remains unbounded however so the

SCM and RCM scatter estimators are not robust in the strict sense. Again, we see that

�C-function of the S-functional is even redescending to zero so observations with large

r receive zero weight. All �C-functions are seen to be bounded but the �C-function of

the S-estimator di�ers from that of other estimators giving a large negative weight for

observations with large r.

Let us now compare the asymptotic performance of the location estimates and the

scatter estimates under the multinormal model. We �rst calculated the asymptotic

variance �1 = ASV(�̂1;F0) for di�erent location estimators �̂ at the k-variate stan-

dard normal distribution F0 = N(0; Ik) with various choices of k. The location esti-

mators considered were the sample mean, the Oja median, the M(0:9; k)-, S(0:25; k)-

and S(0:5; k)-estimators of location. The variances are reported in Table 3.1. First
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Figure 3.3: Functions �C(r;F0) (Fig. a) and �C(r;F0) (Fig. b) for the SCM and

RCM scatter functionals, the covariance matrix functional, and the M(0:9; k)- and

S(0:25; k)-functionals of scatter at the bivariate (k = 2) standard normal distribution

(F0 = N(0; I2)).
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k = 2 k = 3 k = 5 k = 8 k = 10

Mean 1.000 1.000 1.000 1.000 1.000

Oja 1.273 1.178 1.105 1.064 1.051

M(0:9) 1.012 1.008 1.005 1.003 1.002

S(0:25) 1.097 1.051 1.025 1.013 1.010

S(0:50) 1.725 1.384 1.182 1.096 1.072

Table 3.1: The asymptotic variances �1 of the sample mean, the Oja median, the

M(0:9; k)-estimator of location and the S(0:25; k)- and S(0:5; k)-estimators of location

at the k-variate standard normal distribution.

recall that the ARE's of the estimators are obtained as ratios of corresponding values

of �1. We see that the sample mean has the smallest variance as it should since it is

optimal estimator under the multinormal model. The M(0:9; k)-estimator and the 25%

breakdown S-estimator S(0:25; k) are also performing well. Indeed the sample mean is

only marginally better than the Huber's M -estimator especially in high dimension. The

Oja median is also eÆcient except for small dimensions k = 2 and k = 3, the eÆciency

loss being less than 10% for k � 5. We see that there is a serious loss in eÆciency

for choosing 50% breakdown S-estimator S(0:50; k) instead of the 25% breakdown esti-

mator S(0:25; k) for small dimensions. Finally note that for all the robust estimators,

the variances �1 are decreasing in dimension and already for k = 10 the di�erences in

performance are only marginal.

The asymptotic variances �2 = ASV(Ĉ12;F0) and �4 = ASV(Ĉ11;F0) and the asymp-

totic covariances �3 = ASC(Ĉ11; Ĉ22;F0) of di�erent scatter estimators Ĉ at the k-variate

standard normal distribution F0 = N(0; Ik) with various choices of k were also calcu-

lated. The scatter estimators considered were the sample covariance matrix, the SCM

and RCM scatter estimators, theM(0:9; k)-, S(0:25; k)- and S(0:5; k)-estimators of scat-

ter. The numbers are reported in Table 3.2. By comparing the corresponding values

of �2 and �4 of the estimators we attain their asymptotic performance in estimating

the o�-diagonal and on-diagonal elements of the covariance matrix respectively. Also

recall that ARE's of the estimators of eigenvectors are also obtained by comparing the

values of �2 and the ARE's of the estimators of eigenvalues by comparing the values

of �4. From Table 3.2 we see that the sample covariance matrix naturally yields the

smallest variances. The SCM and RCM estimators have the best performance among

the alternatives, the sample covariance matrix being only marginally better. Also the

M(0:9; k)-estimator is performing well. Note again the loss in eÆciency when choosing

S(0:50; k) instead of S(0:25; k) especially in low dimension. For the competitors of the

sample covariance matrix, the variances �2 and �4 are decreasing with dimension and,
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k = 2 k = 3 k = 5 k = 8 k = 10

Cov �2 1.000 1.000 1.000 1.000 1.000

�4 2.000 2.000 2.000 2.000 2.000

�3 0 0 0 0 0

SCM �2 1.047 1.027 1.013 1.006 1.004

�4 2.139 2.082 2.038 2.018 2.012

�3 0.047 0.027 0.013 0.006 0.004

RCM �2 1.010 1.010 1.031 1.010 1.031

�4 2.041 2.041 2.083 2.020 2.062

�3 0.021 0.021 0.022 0 0

M(0:9) �2 1.087 1.056 1.032 1.019 1.014

�4 2.268 2.171 2.095 2.055 2.042

�3 0.093 0.058 0.032 0.018 0.014

S(0:25) �2 1.177 1.082 1.034 1.017 1.012

�4 2.225 2.126 2.060 2.031 2.023

�3 -0.123 -0.038 -0.009 -0.003 -0.001

S(0:50) �2 0.377 0.579 0.778 0.884 0.915

�4 3.980 3.090 2.491 2.241 2.175

�3 -1.332 -0.362 -0.078 -0.021 -0.012

Table 3.2: The limiting variances of the o�-diagonal (�2) and on-diagonal (�4) and the

limiting covariances of the on-diagonal elements (�3) of the sample covariance matrix

(labeled Cov), the SCM and RCM scatter estimators, the M(0:9; k)-, S(0:25; k)- and

S(0:50; k)-estimators of scatter at the k-variate standard normal distribution.

already for k = 10, the di�erences in performance are quite narrow. A curious fact is

that the asymptotic covariances �3 of S-estimators are negative. This may be related to

the behavior of �C(r;F0) function of the S-estimator. For the eÆciencies of the SCM and

RCM scatter estimator at t-distribution t�;k with various choices of degrees of freedom

� and dimension k, see Papers I and IV.
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Chapter 4

Summary of Original Publications

Paper I considers inuence functions and limiting distributions of the aÆne equivariant

sign covariance matrix and its eigenvectors and eigenvalues. An estimate of the covari-

ance and correlation matrix based on the sign covariance matrix is also constructed and

their limiting eÆciencies with respect to the sample covariance and correlation matrix

are calculated in multivariate normal and t distribution cases. Finite sample eÆciencies

are examined by simulations.

In Paper II, a new aÆne equivariant estimator of the parameters of the multivari-

ate multiple regression model is constructed using the aÆne equivariant sign covariance

matrix and the Oja median. The inuence function and limiting distribution of the pro-

posed estimate are examined and asymptotic relative eÆciencies with respect to the least

squares estimate are calculated in the multivariate normal and t distribution cases. Var-

ious properties of the estimate are investigated by simulations. The theory is illustrated

with an example.

Paper III presents a framework for constructing sign based location vector and shape

matrix estimates. The used sign concepts are the spatial sign vector based on the spatial

median and the aÆne equivariant sign vector based on the Oja median. The inuence

functions and limiting distributions of the resulting location vector and shape matrix

estimates are derived in the elliptic case and their use in multivariate analysis problems

are discussed.

In Paper IV, the inuence functions and the limiting variances and covariances of the

aÆne equivariant rank covariance matrix and the associated covariance matrix estimate

based on the rank covariance matrix are derived in the multivariate elliptic case. Limiting

eÆciencies are calculated in multivariate normal and t distribution cases.

In Paper V, a new aÆne equivariant estimator of the parameters of the multivariate

multiple regression model is constructed using the lift rank covariance matrix where the
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lift rank vectors are based on Oja's criterion function. The new estimate as well as

the least squares estimate are shown to be weighted sums of the so called elemental

regression estimates. The limiting distribution and inuence function of the proposed

estimate are examined and the theory is illustrated with an analysis of a real data set.

Various properties of the estimate are investigated by simulations.
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