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SUPERPOSITION OPERATORS ON DIRICHLET TYPE SPACES

Stephen M. Buckley, Jos�e L. Fern�andez, and Dragan Vukoti�c

Abstract. We characterize the entire functions ' for which the induced nonlinear

superposition operator f 7! ' Æ f maps one Besov space Bp into another Bq, where

B
1 can be taken to be any of the following natural spaces: VMOA, BMOA, B0, and

B. We do the same for the superpositions from one unweighted Dirichlet-type space

D
p into another, and from B

p into the weighted space D
q

�. The admissible functions

are typically polynomials whose degree depends on p and q, or entire functions whose

order and type are determined by those exponents. We prove some new Trudinger-

type inequalities for analytic functions along the way.

0. Introduction

Let X;Y be spaces of analytic functions on the unit disk D � C which contain

the polynomials. The nonlinear superposition operator S' on X (with symbol ')

is de�ned by

S'(f) = ' Æ f; f 2 X:

It is immediate that if S'(X) � Y then the symbol ' must be an entire function.

The graph of S' is usually closed but, since the operator is nonlinear, this is not

enough to assure its boundedness. Nonetheless, for a number of important spaces

X, Y , such as Hardy, Bergman, Dirichlet, Bloch, etc., the mere action S' : X ! Y

implies that ' must belong to a very special class of entire functions, which in turn

implies boundedness. Our goal is to study the following questions:

(a) Which entire functions can transform one space into another?

(b) Are there spaces (of the type considered) which are transformed one into an-

other by speci�ed classes of entire functions (polynomials of certain degree,

entire functions of given type and order, etc.)?
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Such questions have been extensively studied for real valued functions (cf. [AZ],

for example). In the context of analytic functions, the question was investigated for

the Hardy and Bergman spaces and the Nevanlinna class by C�amera and Gim�enez

[C], [CG]. Our work is motivated by [CG] where, among other results, the authors

characterize the superposition operators between Bergman spaces. The Bergman

space Ap is the space of all Lp functions (with respect to Lebesgue area measure)

which are analytic in the unit disk. C�amera and Gim�enez prove that S'(A
p) � Aq

if and only if ' is a polynomial of degree at most p=q; note that our notation is dif-

ferent from theirs. Next, they show that such operators are necessarily continuous,

bounded and locally Lipschitz. They also consider similar problems for superpo-

sition operators acting from Bergman spaces into the Nevanlinna area class, etc.

Their method is based on choosing certain Ap \test functions" with the largest

possible range and applying suitable Cauchy estimates. Naturally, we employ the

same idea where possible, but the technical diÆculties with the \derivative spaces"

studied here are greater, and various additional tools are needed.

The material is organized as follows. In Section 1 we review the preliminary

material, including the basic de�nitions and facts about function spaces and con-

formal geometry. In Section 2, by means of test functions which are Riemann maps

onto special domains, we characterize the symbols of superposition operators act-

ing between di�erent Besov-type spaces, including the \endpoint spaces" VMOA,

BMOA, little Bloch B0, and Bloch B. The operator S' acts from any one of these

spaces into another of them if and only if ' is either a linear function or a constant,

depending on the speci�c case in question.

The Dirichlet-type spaces Dp consist of functions whose derivatives are in Ap.

With the exception of one delicate case, we �nd the operators between such spaces in

Section 3. The admissible functions ' are either polynomials, or all entire functions,

depending on the relationship between the exponents of the spaces.

The most interesting and delicate case, that of the superposition operators acting

from the Dirichlet space into Dq, q < 2, requires a more sophisticated embedding

theorem, namely a Trudinger-Moser type inequality for Dirichlet functions. This

analysis is carried out in Section 4. Here the answer assumes the form of a sharp

dichotomy: all functions of order less than two, or of order two and �nite type, are

\good" for every q < 2, while all the remaining entire functions are \bad". The

proof of suÆciency follows essentially from the Trudinger-Moser type inequality,

while necessity requires certain estimates for conformal mappings and the Poincar�e

metric.

The results of Section 4 raise the question of characterizing the entire functions of

up to arbitrary order by their transformation properties as symbols of superposition

operators. For this, one needs a di�erent scale of spaces. To this end, we consider

(Section 6) maps from the Besov spaces Bp, p > 2, into weighted spaces D
q

�
, for

certain range of indices. This analysis requires a preliminary detour in Section 5

to prove some new (non-standard exponent) Trudinger inequalities for analytic

functions, similar to inequalities for Sobolev functions found by the �rst author

and O'Shea in [BO].

Acknowledgments. The authors would like to thank the referee for carefully

reading the manuscript.
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1. Background

We shall write dA(z) to denote the Lebesgue area measure: dA(z) = r dr dt =

dx dy. Given a positive �nite p and a real number � > �1, the weighted Bergman

space Ap
�
is de�ned as the space of analytic functions f in D such that

kfkAp� =

�Z
D

jf(z)jp (1� jzj2)� dA
�1=p

<1 :

From now on, all upper indices denoted by p, q will be assumed positive. A lot of

information on weighted Bergman spaces can be found in [DS], [HKZ], or [Z]. We

denote the �-average of a function g on a set S asZ
S

g d� � 1

�(S)

Z
S

g d�:

If d� = dA, we also write this average as gS, and we write jSj for the area of S.

We denote by D(a; r) the disk with center a and radius r, and by Q(z; r) the open

square of center z and side-length 2r. We sometimes write A <� B if A � CB for

some constant C dependent only on allowed parameters, and we write A � B if

A <� B <� A.

We shall frequently use the following elementary estimate.

Lemma 1.

(a) If h 2 Ap
�
, then jh(z)j = o

�
(1� jzj)�(2+�)=p

�
when jzj ! 1.

(b) For 1 < p < q <1, the inclusion A
p

p�2 � A
q

q�2 holds.

Proof. We �rst prove (a). For z suÆciently close to the unit circle, integrate the

subharmonic function jhjp over the annulus fw : 3jzj � 1 � 2jwj � jzj + 1g, use
the area version of the submean value property for the disk D(z; (1� jzj)=2), and
apply Lebesgue's Dominated Convergence Theorem.

As for (b), the assumption f 2 Ap
p�2 and part (a) imply that (1�jzj2) jf(z)j �M

for some M > 0 and for all z 2 D. Therefore,Z
D

jf(z)jq (1� jzj2)q�2 dA(z) �Mq�p

Z
D

jf(z)jp (1� jzj2)p�2 dA(z) <1 : �

We also study the weighted Dirichlet-type spaces Dp

�
, 0 < p <1, �1 < � <1,

of analytic functions f in the disk such that f 0 2 Ap
�
, equipped with the \norm"

kfkDp

�
= jf(0)j+

�Z
D

jf 0jp (1� jzj2)� dA
�1=p

= jf(0)j+ kf 0kAp� :

For p < 1 this is not a true norm, but it satis�es kf + gkp
D
p

�

� Cp (kfkpDp

�

+ kgkp
D
p

�

),

where the constant Cp depends only on p. We write Dp = D
p

0 . The space D = D2

is the classical Dirichlet space of analytic functions whose image Riemann surface

has �nite area. Clearly, the inclusion Dp � Dq holds for q < p <1.
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The spaces Dp

�
include as special cases the analytic Besov spaces Bp = D

p

p�2,

1 < p < 1; we also de�ne kfkBp = kfkDp

p�2
. These spaces are conformally

invariant : if f 2 Bp, then f Æ ' 2 Bp, for every disk automorphism ' : D ! D.

Lemma 1(b) shows that Bp � Bq whenever 1 < p < q < 1. The space B1 is

separately de�ned as the space of analytic functions for whichZ
D

jf 00(z)j dA(z) <1 :

Although this semi-norm is not conformally invariant, the space B1 is. Equivalently,

B1 is the set of all functions

f = a0 +

1X
n=1

an'�n ;

for some absolutely summable sequence (an)
1

n=0 and a sequence of points �n 2 D.

Here

'�(z) =
�� z

1� �z
; z 2 D;

is an involutive disk automorphism for every � 2 D. The norm of f can then be

de�ned as the in�mum of the l1 norms of (an) taken over all such representations.

Thus it is clear that B1 � H1. It was shown in [AFP] that the two de�nitions of

B1 are equivalent. Lemma 2(b) below shows that B1 � Bp for all 1 < p <1.

The other extreme among spaces of Besov type is the Bloch space B of all analytic

functions f in D for which

sup
z2D

(1� jzj) jf 0(z)j <1 ;

while the little Bloch space B0 � B consists of all functions analytic in D for which

lim
jzj!1

(1� jzj) jf 0(z)j = 0 :

A classical source for Bloch spaces is [ACP]. More about analytic Besov spaces can

be found in [AFP] and [Z]; see also [W] and [DGV].

We denote by BMOA the space of analytic functions of bounded mean oscil-

lation, which consists of all functions f in the Hardy space H2 whose boundary

values lie in BMO of the unit circle T. Equivalently, f belongs to BMOA if and

only if

kfkBMOA = jf(0)j+ sup
�2D

kf Æ '� � f(�)kH2 <1 :

The space VMOA of analytic functions of vanishing mean oscillation is the set of

all f 2 BMOA such that

lim
j�j!1

kf Æ '� � f(�)kH2 = 0 :
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The reader is invited to consult [G] or [Ba] for more on these spaces. As a conse-

quence of Lemma 1, we have Bp � B0 for all 1 < p <1 (hence also for p = 1). In

fact, more is true:

Bp � VMOA �
� B0
BMOA

�
� B:

All of the above inclusions are strict, while neither of the spaces B0, BMOA is

contained in the other. Thus, in a sense, the four rightmost spaces above play the

role of B1. The inclusion Bp � VMOA is more delicate, but is known among the

experts; see [DGV] for an indication of a proof.

We shall need the following results on integration of Dp functions.

Lemma 2.

(a) Dp � A2p=(2�p) for all p < 2. Moreover, kfkA2p=(2�p) � Cp kfkDp :

(b) If f 0 2 A1, then f 2 Ap
p�2 for every p > 1.

Proof. First (a) follows from a variant of the Sobolev Imbedding Theorem [GT, The-

orem 7.26] applied to analytic functions. A proof of the inclusion Dp � A2p=(2�p)

involving only holomorphic functions was given by Flett [F, Theorem 5]. The associ-

ated norm dependence follows from versions of the classical Closed Graph Theorem.

The Banach space version suÆces when p � 1, while for p < 1 we use the version

given by [DS, Theorem II.2.4].

As for (b), we assume that f 0 2 A1. Since f(z)�f(0) =
R z
0
f 0(�) d�, we see that

Z 2�

0

jf(reit)j dt � 2�jf(0)j+
Z 2�

0

Z
r

0

jf 0(�eit)j d� dt; 0 < r < 1;

and so f 2 H1. Thus f satis�es the estimate jf(z)j � C (1�jzj)�1 (see [D, p. 36]),
where C depends on f(0) but not on z. It follows that for p > 1,

Z
D

jf(z)jp (1� jzj)p�2 dA(z) �
Z 1

0

�Z 2�

0

jf(reit)j(1� jzj)2p�3dt
�
r dr

� C

Z 1

0

(1� r)2p�3 dr <1: �

The one-parameter family of functions ff�(z) = (1 � z)�� : � > 0g provides

a collection of typical examples of unbounded functions in Hp, Ap, Dp, etc. We

record as a lemma the easily veri�ed conditions concerning the membership of these

functions in Bergman and Dirichlet spaces.

Lemma 3. Let f� be as above, � > 0. Then

(a) f� 2 Ap, p <1, if and only if � < 2=p.

(b) f� 2 Dp, p < 2, if and only if � < (2� p)=p.
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We now review some basic facts about conformal mappings and the Poincar�e

metric; for more details, we refer the reader to [Ah] and [P]. A mapping of one

complex domain onto another is said to be univalent or conformal if it is one-to-

one. By a Riemann map associated with a simply connected domain 
 6= C in the

plane we shall always mean a conformal mapping F from D onto 
 (traditionally,

the mapping goes the other way around).

Given a domain 
 in the plane and a point w 2 
, we write d
(w) to denote

the (Euclidean) distance from w to the boundary @
. The following useful result

is well-known [P, Corollary 1.4].

Lemma 4. If f is a univalent map of D onto a simply connected domain 
 then

d
(f(z)) � jf 0(z)j (1� jzj2) � 4 d
(f(z)) :

The Poincar�e metric on the unit disk D is de�ned by

�D(z1; z2) = min



Z



2jdzj
1� jzj2 = log

1 + jz1 � z2j=j1� z1z2j
1� jz1 � z2j=j1� z1z2j

;

the minimum being taken over all recti�able curves 
 from z1 to z2 in D. On a

simply connected domain 
 � C (
 6= C), the Poincar�e metric is de�ned in terms

of a Riemann map F : D! 
 via the pull-back:

�
(w1; w2) = �D(F
�1(w1); F

�1(w2)) :

The minimum is actually attained, and the metric is independent of the Riemann

map chosen [P]. Observe that for w = F (z), F (0) = 0 we have the following useful

estimate (with universal constants of comparison):

�
(0; F (z)) � log
1

1� jzj ; jzj ! 1:

2. Operators acting between Besov, Bloch, and related spaces

In this section, we use B1 (which has not yet been de�ned) to denote any one

of the four spaces B, B0, BMOA, and VMOA. Statements about B1 should be

interpreted as a statements that apply to all of these spaces.

We start o� with an easy result based on our earlier observations.

Proposition 5. For any entire function ', we have S'(B
1) � B1, whence

S'(B
1) � Bp for all 1 � p � 1.

Proof. Recall that f 2 B1 implies that f is bounded in D, and so is g Æ f for

any entire function g. Now, f 2 B1 means that f 00 2 A1, and also f 0 2 A2 by

Lemma 2(b). Therefore we have

(' Æ f)00 = ('0 Æ f) � f 00 + ('00 Æ f) � (f 0)2 2 A1

for any entire function ', showing that ' Æ f 2 B1. �

The following useful criterion, which follows from a change of variables and

Lemma 4, also appeared in a recent paper by Walsh [W], and was exploited in

[DGV].
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Proposition 6. Let F : D ! 
 be a univalent map onto a simply connected

domain 
. Then, for any 1 < p <1, F 2 Bp if and only ifZ



d
(w)
p�2 dA(w) <1 :

For the Bloch space B, the above conditions become the familiar one:

sup
w2


d
(w) <1 :

The next result, which may have some independent interest, will provide a

method for constructing unbounded univalent functions in Bp for 1 < p < 1
of somewhat di�erent type than the ones constructed in [DGV]. Such functions are

precisely the \test functions" which will be needed for our study in certain cases.

Proposition 7. Let 1 < p < 1, let (wn) be a sequence of complex numbers, and

let (rn) and (hn) be sequences of positive numbers with the following properties:

(a) 0 � argwn � �=4 and jwnj � jwn+1j=2, n 2 N;

(b) rn < jwnj=4 and jhnj < minfrn; rn+1g=3, n 2 N.

Then the domain 
 = [1
n=1 [Dn [ Rn] is simply connected, where Dn = D(wn; rn)

and Rn is the rectangle whose longer symmetry axis is the segment [wn; wn+1] and

whose shorter side has length 2hn. Furthermore if F is a Riemann map of D onto


, then F 2 Bp if and only if

1X
n=1

rp
n
+

1X
n=1

jwn+1 � wnjhp�1n
<1:

Proof. It is easy to see that distance to the origin increases as we travel along

[wn; wn+1] from wn to wn+1, and hence to deduce that 
N =
S
N

n=1 [Dn [ Rn] is
simply connected for each N . This in turn implies that 
 is simply connected.

Let us de�ne I(U; V ) =
R
U
dV (w)

p�2 dA(w), so it follows readily from Proposi-

tion 6 that F 2 Bp if and only if

S �
1X
n=1

[I(Dn;
) + I(Rn;
)] <1:

Notice that there is some duplication of integration here, but by no more than

a factor of two. It is also easy to verify that I(Dn; Dn) � rp
n
and I(Rn; Rn) �

jwn+1 � wnjhp�1n
. Considering separately the cases p � 2 and p > 2, we see that

I(Dn;
) � I(Dn; Dn) (in both cases inequality in one direction is trivial and in the

other direction it requires a straightforward estimate). A similar analysis shows the

comparability of I(Rn;
) and I(Rn; Rn). Putting together the estimates in this

paragraph, the proposition follows. �

Our next result on the action of a superposition operator from a Besov space

into the Bloch space is derived from the conformal properties of Riemann maps

and will also help us resolve the problem in various related cases. Here and later,

a linear function means a polynomial f of degree at most 1; we do not insist that

f(0) = 0.
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Theorem 8. If S' acts from Bp into B for some 1 < p < 1, then ' is a linear

function.

Proof. Suppose '0 is non-constant, and let rn = 2�n. By Liouville's theorem, there

exists a sequence (wn) of complex numbers so that jw1j > 2 and

8 n 2 N : jwn+1j � 2jwnj; j'0(wn)j � r�2n :

At least one of the eight octants arg�1([(k � 1)�=4; k�=4)) contains in�nitely

many of the numbers wn. By a rotation if necessary, we may therefore as-

sume that 0 � argwn < �=4, and so Proposition 7 is applicable. Let hn =

2�n�2jwn+1 � wnj�1=(p�1), let 
 be the domain in Proposition 7 de�ned using

the data (wn; rn; hn)
1

n=1, and let F : D ! 
 be an associated Riemann map. By

Proposition 7, we know that F 2 Bp. Let F (zn) = wn. It is easily seen that

jznj ! 1 as n!1. Applying Lemma 4, we obtain

j'0(wn)j jF 0(zn)j (1� jznj) � j'0(wn)j d
(wn) � C=rn !1 ;

which means that ' Æ F =2 B. Contradiction. �

Taking into account the chain of inclusions mentioned earlier, one easily obtains

the following result.

Corollary 9. Let 1 < p <1. Then S'(B
p) � Bq if and only if

(a) ' is a linear function, if p � q.

(b) ' is constant, if p > q.

Proof. Obviously, S'(B
p) � Bq implies S'(B

p) � B, whence ' must be linear by

Theorem 8. Since the spaces Bp strictly increase with the exponent, the result is

now clear. �

Taking into account the inclusions between the Bloch spaces and the four B1

type spaces, we obtain another easy consequence of Theorem 8.

Corollary 10. Let X, Y be spaces of the form Bp, 1 < p � 1. Then S'(X) � Y

if and only if

(a) ' is a linear function, whenever X � Y .

(b) ' is constant whenever X 6� Y .

3. Spaces Dp of Dirichlet Type

We now turn to a systematic study of the nonlinear superposition operators

between the spaces Dp. The results from the previous section immediately take care

of some cases. Speci�cally, the following result follows from Corollary 9 together

with the strict inclusion of Dq in Dp when p < q.
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Corollary 11. If p � 2 � q < 1, p 6= q, then S'(D
p) � Dq if and only if ' is

constant.

The following result is similar in spirit to Theorem 1 of [CG] for Bergman spaces.

The proof of necessity presented below can be adapted so as to shorten somewhat

the Bergman space proof in [CG].

Theorem 12. For q � p < 2, we have S'(D
p) � Dq if and only if ' is a polyno-

mial of degree at most
h
p(2�q)

q(2�p)

i
.

Proof. For suÆciency, the case p = q is easy so suppose q < p. It suÆces to verify

the statement for '(z) = zn, where n 2 N, n � s � p(2�q)

q(2�p)
, an inequality which

can be rewritten as
(n�1)pq

p�q
� 2p

2�p
. This last inequality, together with H�older's

inequality and Lemma 2(a), yields

k(fn)0kAq = n

�Z
D

jf 0fn�1jq dA
�1=q

� nkf 0kAp
�Z
D

jf j(n�1)pq=(p�q) dA
�(p�q)=pq

<� kfkDpkfkn�1
A2p=(2�p)

<� kfknDp : (1)

Thus S'(D
p) � Dq.

We now turn to necessity. Suppose ' is not a polynomial of degree at most

t �
h
p(2�q)

q(2�p)

i
, or equivalently that the Taylor expansion of ' about 0 has a non-zero

coeÆcient of order m > t. We shall show that S'(D
p) is not a subset of Dq. Since

(t+ 1)(2=p� 1) + 1 > 2=q, we can choose � 2 (0; 2=p� 1) such that m�+ 1 > 2=q.

It follows from the Cauchy estimates for '0 that there exist a constant c > 0 and

an unbounded sequence (wn) such that j'0(wn)j � cjwnjm�1. Dividing Cnf0g into
2N closed sectors with pairwise disjoint interiors and of angle �=N each, where

N � 2 is an integer larger than 2=�, we can always choose one such sector that

contains in�nitely many points of the form wn. By an appropriate choice of rotation

parameter � 2 T, we get a function  de�ned by the equation  (z) = '(�z)

with the property that for some sequence of points vn, j arg vnj � �=2N , we have

j 0(vn)j � cjvnjm�1. In fact the sequence (vn) can be chosen to be a subsequence of

(wn=�). By taking a further subsequence if necessary, we assume that jvnj � 2�n.

Let f(z) = (1�z)��. Since � 2 (0; 2=p�1), it follows from Lemma 3 that f 2 Dp.

We claim that  Æ f =2 Dq; note that this claim implies that S'(D
p) 6� Dq. To

prove the claim, we let zn = 1� v
�1=�
n , so that arg(1� zn) < �=4 and vn = f(zn).

Now j1 � znj = jvnj�1=� � 2�n, so the restriction on arg(1 � zn) ensures that

1� jznj � c1j1� znj for some universal c1 > 0. Thus

j( Æ f)0(zn)j = j 0(vn)f 0(zn)j � cjvnjm�1j1� znj���1 � ccm�+11 (1� jznj)�m��1:

Since m� + 1 > 2=q, it follows from Lemma 1 that ( Æ f)0(zn) grows so fast that

 Æ f cannot be in Aq, and so  Æ f =2 Dq.

�
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Corollary 13. If p < q < 2, then S'(D
p) � Dq if and only if ' is constant.

Proof. Since Dq � Dp, we may apply Theorem 12 to obtain that ' is linear. Since

the inclusion Dq � Dp is strict, ' must be constant. �

A nonlinear operator is said to be bounded if it transforms bounded sets into

bounded sets. Continuity is de�ned in the traditional way.

Corollary 14. If q < p < 2 and S'(D
p) � Dq then the operator S' : Dp ! Dq is

bounded and continuous.

Proof. We know from Theorem 12 that the mere action of S' obliges ' to be a

polynomial: '(z) =
P

n

j=0 ajz
j , where n �

h
p(2�q)

q(2�p)

i
. By the triangle inequality, we

have

kS'(f)� S'(fk)kDq �
nX
j=1

jaj jkf j � f
j

k
kDq

so it will suÆce to consider only the case '(z) = zn and show that

kfn � fn
k
kDq �Mkf � fkknDp :

But this is easy: from inequality (1) of Theorem 12 we readily deduce that

jfn(0)j+ n�1k(fn)0kAq <� (jf(0)j+ kf 0kAp)n :
This can be rewritten as kfnkDq �Mkfkn

Dp , and both boundedness and continuity

follow immediately. �

In particular, we have the following result.

Corollary 15. Let q < p < 2, n 2 N, and n �
h
p(2�q)

q(2�p)

i
. If fk ! f in Dp, then

fn
k
! fn in Dq (as k!1).

The next case shows a di�erence in comparison with the Bergman space case.

Proposition 16. If 2 < p <1 and q � p <1, then for any entire function ' we

have S'(D
p) � Dq.

Proof. Let f 2 Dp. By integrating the pointwise bound in Lemma 1(a), we see

that f is bounded, and so '0 Æ f is bounded on D for any entire function '. Thus�Z
D

j('0 Æ f) � f 0jq dA
�1=q

� C

�Z
D

jf 0jp dA
�1=p

; q � p: �

Theorem 17. If 2 < p < q <1, then S'(D
p) � Dq if and only if ' is constant.

Proof. Suppose ' is not constant. Fixing 0 < c < 1 such that K � j'0(c)j > 0

and � = 1 � 2=q, we let f(z) = c + (1 � z)1�2=q. Then f 2 Dp nDq by Lemma 3

and, since 0 < 1 � 2=q < 1, f is in the disk algebra. In particular f(1) = c and

j'0(f(r))j ! K as r ! 1�. Consequently,

j(' Æ f)0(r)j
K(1� 2=q)(1� r)2=q

! 1 as r! 1� ;

and so j(' Æ f)0(r)j grows at least as fast as (1� r)2=q as r ! 1�. By Lemma 1, we

deduce that (' Æ f)0 cannot be in Aq. Thus S'(f) =2 Dq and we are done. �
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4. Action on the Dirichlet Space

The only remaining case for superposition operators between unweighted

Dirichlet-type spaces, namely S' : D ! Dq for q < 2, requires a more pro-

found study than the other cases. This is essentially due to the fact that p = 2 is

the critical Sobolev exponent for the plane.

First, we need some de�nitions. We de�ne a Young function to be a convex

homeomorphism  : [0;1)! [0;1). If � is a positive measure on a set X, and  

is a Young function, then the associated Orlicz norm is given by

kfk (L)(X;�) = inf

�
t > 0 j

Z
X

 (jf(x)j=t) d�(x)� 1

�
:

It is also convenient to de�ne certain classes of entire functions. Speci�cally, for

each t � 1, E(t) is the class of entire functions f such that

9 C;C 0 > 0 8 z 2 C : f(z) � C exp(C 0jzjt):

Equivalently f 2 E(t) if f has order less than t, or order t and �nite type.

The integrability of exp(cjf j2) has been studied in very general contexts (see for

example [Tr], [Mo], [CM], [M], and [Ch]). A whole collection of results with this


avor is usually termed the Trudinger or Trudinger-Moser inequality . In the context

of analytic functions, this inequality essentially goes back to Beurling's doctoral

thesis in the 1930's, where he proves [Be, p. 34] the distributional inequality

f 2 D; kfkD � 1; f(0) = 0 =) jf� 2 [0; 2�] : jf(ei�)j > �gj � e��
2+1 ;

and also shows that this is sharp in a certain sense. This readily implies the Orlicz

estimate

kfk (L)(T;m) � CkfkD; f 2 D;

where  is the Young function given by  (t) = exp(t2)�1, and m is Lebesgue mea-

sure. Since the space of polynomials is dense1 in D, and since
R
T
 (�P (ei�)) d� <1

for every polynomial P , it is not hard to deduce the �rst statement of the following

theorem (the second statement, however, requires much more analysis!).

Theorem 18 [CM], [M]. For all f 2 D and � > 0, we have
R 2�
0

exp(�jf(ei�)j2) d� <
1. Moreover,

R 2�
0

exp(�jf(ei�)j2) d� is uniformly bounded for all f in the unit ball

of D if and only if � � 1.

We are now ready to prove the main result of this section.

1This follows, for instance, from the formula k
P
1

j=1
ajz

j
k
2

D
=
P
1

j=1
jjaj j

2
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Theorem 19. If q < 2 and ' is entire, then S'(D) � Dq if and only if ' 2 E(2).
Proof. We �rst prove suÆciency. Let ' 2 E(2). By [Ti, x8.51, p. 265], we also have
'0 2 E(2), and so there exists � > 0 such that j'0(w)j � e� jwj

2

for all suÆciently

large jwj. Applying �rst H�older's inequality and then Theorem 18, we obtain

Z
D

jf 0jqj'0 Æ f jq dA �
�Z
D

jf 0j2 dA
�q=2 �Z

D

j'0 Æ f j2q=(2�q) dA
�(2�q)=2

� kfkq
D

�
K +

Z
D

exp[2q�jf j2=(2� q)] dA

�(2�q)=2
<1 ;

for all f 2 D. Note that we used the following fact:

Z
D

e�jf j
2

dA =

1X
n=0

�n

n!

Z
D

jf j2n dA �
1X
n=0

�n

n!

Z
T

jf j2n d� =
Z
T

e�jf j
2

d� :

To prove necessity, let us take an entire function ' =2 E(2). If '0 were in E(2),
simple integration would give us ' 2 E(2). Thus '0 =2 E(2) and there exists a

sequence (wn)
1

n=1 of complex numbers outside the unit ball such that

j'0(wn)j � n exp(n2 jwnj2):

Clearly, jwnj ! 1 as n ! 1, so by passing to a subsequence and rotating if

necessary, we may assume that 2jwnj < jwn+1j and 0 � argwn < �=4 for all n 2 N.

De�ne the domain 
 as in Proposition 7 so that 0 2 
 (this is easily achieved by

adding a constant to the function ', which does not change anything), with the

auxiliary data

rn =
1p

n log2(n+ 1)
; hn =

1

3 (n+ 1) log2(n+ 2) jwn+1 � wnj
;

and let F be a Riemann map from D onto 
 with the property F (0) = 0. By the

case p = 2 of Proposition 7, we see that F 2 D = B2. Next, let zn = F�1(wn) 2 D,

and choose a sequence of disks D0

n
= D(zn; a(1�jznj)), where 0 < a < 1 is �xed, in

such a way that F (D0

n) � Dn = D(wn; rn=2); this is possible because of Lemma 4.

Suppose N is a large integer. By the geometric growth rate of jwnj, we see thatPN

n=1 jwn � wn�1j2 is uniformly comparable with jwN j2. By joining the wN with

w0 = 0 via the piecewise linear \join the dots" path through the points, we obtain

the following inequalities on the Poincar�e metric:

�
(0; wN) <�
NX
n=1

(1 + h�1
n
jwn+1 � wnj)

<� N +

 
NX
n=1

jwn+1 � wnj2N log2N

!

<� N(1 + log2N)jwN j2 <� N3=2jwN j2:
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Thus

Z
D

j'0 Æ F jq jF 0jq dA �
NX
n=1

Z
D0
n

j'0 Æ F jq jF 0jq dA

�
NX
n=1

 Z
D0
n

j'0 Æ F jqjF 0j2 dA
! �

rn

1� jznj

�q�2

�
NX
n=1

�Z
Dn

j'0jq dA
�
rq�2n exp (�C(2� q)�
(0; wn))

>�
NX
n=1

r2
n
j'0(wn)jqrq�2n

exp (�C(2� q)�
(0; wn))

�
NX
n=1

exp
�
(qn2 � C 0n3=2)jwnj2

�
=1:

Above the �rst estimate is trivial, the second follows from Lemma 4, the third

involves a change of variables and the Poincar�e metric estimate from the end of

Section 1, the fourth uses the area version of the mean value inequality, and the

last uses the estimates on j'0(wn)j and the Poincar�e metric from earlier in this

lemma. �

Note that it follows from the above proof of suÆciency, together with the second

statement of Theorem 18, that S' maps the unit ball of D into a ball of �xed radius

in Dq whenever ' is entire of order < 2, or of order 2 and type at most (2� q)=2q.
Having now completed the classi�cation of all entire functions ' for which

S'(D
p) � Dq, for all possible choices of indices p; q 2 (0;1), let us pause to

summarize our results. If p < q, the situation is very simple: ' must be constant.

The more complicated case q � p is summarized by the following table, where E

denotes the space of all entire functions, P (r) is the space of all polynomials of

degree at most [r], and E(2) is as before.

Table 1. The space of symbols f' j S' : Dp 7! Dqg when q � p.

p < 2 p = 2 p > 2

q < 2 P

�
p(2� q)

q(2� p)

�
E(2) E

q = 2 | P (1) E

q > 2 | | E
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5. Some new inequalities of Trudinger-Moser type

Using techniques similar to the ones employed in [BO], we now derive some

inequalities of Trudinger-Moser type for analytic functions. Unlike the results in

[BO], however, our inequalities will not always hold in the more general setting of

Sobolev functions, a point to which we shall return towards the end of this section.

Recall that Q(z; r) denotes the open square of center z and side-length 2r.

Lemma 20. There exists a universal constant C such that

kf � f(z)kL1(Q(z;r)) � Cr

 Z
Q(z;2r)

jf 0jp dA
!1=p

;

whenever f is holomorphic in Q(z; 2r), z 2 C, and p � 1.

Proof. Suppose w 2 Q(z; r). By the Sub-mean Value Property, we have

jf(w)� fQ(z;3r=2)j �
Z
D(w;r=2)

jf(u)� fQ(z;3r=2)j dA(u)

� 36

�

Z
Q(z;3r=2)

jf(u)� fQ(z;3r=2)j dA(u):

In a similar fashion,

jfQ(z;3r=2) � f(z)j �
Z
D(z;3r=2)

jfQ(z;3r=2) � f(u)j dA(u)

� 4

�

Z
Q(z;3r=2)

jf(u)� fQ(z;3r=2)j dA(u):

It follows that

L � kf � f(z)kL1(Q(z;r)) �
40

�

Z
Q(z;3r=2)

jf(u)� fQ(z;3r=2)j dA(u):

But by Cauchy-Schwarz and a classical Poincar�e inequality [GT, p. 164], there is a

universal constant C1 such that

Z
Q(z;3r=2)

jf � fQ(z;3r=2)j dA � C1r

 Z
Q(z;3r=2)

jf 0j2 dA
!1=2

� C1r sup
Q(z;3r=2)

jf 0j:

Since f 0 is also analytic, we see as before that

sup
Q(z;3r=2)

jf 0j � 64

�

Z
Q(z;2r)

jf 0j dA � 64

�

 Z
Q(z;2r)

jf 0jp dA
!1=p

;

and so we are done. �

Our next lemma is a version of the Whitney decomposition, as given in [Sa].
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Lemma 21. Given a proper subdomain 
 of Rn, and a number A � 1, there

exists a constant C dependent only on A and n, and a countable family of pairwise

disjoint open cubes fQk j k 2 Ig such that:

(i) 
 =
S
k2I

Qk;

(ii) 5A � dist(Qk; @
)= diamQk � 15A; k 2 I;
(iii)

P
k2I

�AQk � C�
.

We use this lemma only in the case 
 = D, A = 20, in which case we �x one

such collection W of Whitney squares. It is also convenient to write r(Q) for the

sidelength of a square Q, and z(Q) for the center of a Q. As the reader may readily

verify, r(Q)=r(Q0) 2 [1=4; 4] whenever Q;Q0 2 W are adjacent; it follows that the

nine-fold dilate of any square in W contains all adjacent Whitney squares.

It is convenient to de�ne the radially weighted measures

d��(z) = (1� jzj2)� dA(z); � > �1; z 2 D:

Clearly r(Q) � 1 � jwj2 for every w 2 Q 2 W, and so ��(Q)=r(Q)
�+2 2 [1=C;C]

for some C dependent only on �.

We now state and prove an easy lemma which is well-known to experts.

Lemma 22. Given z 2 D, let fQigni=1 � W be the Whitney squares intersecting

the line segment [0; z]. Then n=(1+�(0; z)) 2 [1=C;C] for some universal constant

C.

Proof. Without loss of generality we assume that z 6= 0, and write ẑ = z=jzj. Since
the Poincar�e lengths of the segments Ij = [(1 � 2�j+1)ẑ; (1 � 2�j)ẑ] are bounded

above and below, it suÆces to show that the number of Whitney squares whose

closures intersect any one segment Ij is bounded above, and that there is at least

one Whitney square that intersects Ik only for k = j.

The upper bound follows readily from the fact that if Q 2 W intersects Ij , then

the Euclidean length of the intersection of 2Q and Ij must be comparable to jIj j;
we also need the bounded overlap of the squares 2Q, as assured by Lemma 21(iii).

The lower bound follows from the fact that we have picked rather small Whitney

squares: since A = 20 is \fairly large", any square whose closure includes the

midpoint of Ij cannot intersect Ik for any k 6= j. �

We are now ready to state and prove an imbedding theorem which is the main

result in this section, and involves the Young function

 p(s) = exp(sp=(p�1))� 1; p > 1;

The imbedding is rather sharp, a point we shall discuss further at the end of the

�nal section.
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Theorem 23. Given p 2 (1;1) and � 2 (�1;1), there exists a constant C such

that

kfk p(L)(D;��) � CkfkBp ; f 2 Bp:

Proof. The case of a constant function is trivial so we assume that f is non-constant.

We normalize f so that f(0) = 0 and kfkBp = 1. We also de�ne j0 to be the least

integer larger than p� 1.

First, note that by the sublinearity of  p, we have

Z
D

 p(jf j=C) d�� � C 0 ) kfk p(L)(D;��) � CC 0:

Combining this fact with H�older's inequality, we see that it is suÆcient to prove

that for some bounded constant C,

Z
D

 0
p
(jf j=C) d��(x) �

X
Q2W

Z
Q

 0
p
(jf j) d�� <� 1;

where  0p(s) =
P
j�j0

sjp=(p�1)=j!.

Poincar�e-type inequalities on general John domains were discovered by Bojarski

[Bo] and Martio [M]. Although, we are only working with the unit disk, we nev-

ertheless use a common trick for such analysis: we separately control \local" and

\global" terms, the former being the above integrals over Q, but with jf j replaced
by jf � f(z(Q))j, and the latter being the constants jf(z(Q))j which we control by

a chaining argument. First we control the local terms; these are not very delicate,

so we can take C = 1.

L �
X
Q2W

Z
Q

 0
p
(jf � f(z(Q))j) d��

=

1X
j=j0

1

j!

X
Q2W

Z
Q

jf � f(z(Q))jjp=(p�1) d��

�
1X
j=j0

1

j!

X
Q2W

��(Q) kf � f(z(Q))kjp=(p�1)
L1(Q)

�
1X
j=j0

C
jp=(p�1)
1

j!

X
Q2W

��(Q) r(Q)
jp=(p�1)

� Z
2Q

jf 0jp
�j=(p�1)

�
1X
j=j0

C
jp=(p�1)
2

j!

X
Q2W

��(Q)

�Z
2Q

jf 0jp d�p�2
�j=(p�1)

;

where the inequalities follow from H�older's inequality, Lemma 20, and the fact that

�p�2(Q) � r(Q)p, and the constants C1; C2 depend only on p.
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Now ��(Q) is bounded, so it can be ignored. Since j > p � 1, and the squares

2Q, Q 2 W, have bounded overlap, we have

X
Q2W

�Z
2Q

jf 0jp d�p�2
�j=(p�1)

�

0
@X
Q2W

Z
2Q

jf 0jp d�p�2

1
A
j=(p�1)

�
�
C3

Z
D

jf 0jp d�p�2
�j=(p�1)

= C
j=(p�1)
3 ;

for some universal constant C3. It follows that L �  p(C2C
1=p
3 ) <� 1, as required.

It remains to control the global terms

G �
1X
j=j0

1

j!

X
Q2W

��(Q)

� jf(z(Q))j
C

�jp=(p�1)
:

Let us �x Q 2 W for the moment, and let fQigni=1 be the squares inW that intersect

[0; z(Q)], ordered in their natural order so that 0 2 Q1, Qn = Q, and squares with

adjacent indices are adjacent. We de�ne an addition square Q0 to have center 0

and sidelength the same as Q1. It follows that Qi�1 � 9Qi for all 1 � i � n|in

fact, we have already noted this property for adjacent Whitney squares, and it is

obvious in the remaining case i = 1. Let us also write zi = z(Qi).

Using Lemma 20 as before, and then H�older's inequality for sums, we deduce

that

jf(z(Q))j = jf(zn)� f(z0)j �
nX
i=1

jf(zi)� f(zi�1)j

�
nX
i=1

�Z
18Qi

jf 0jp d�p�2
�1=p

�
 

nX
i=1

Z
18Qi

jf 0jp d�p�2
!1=p 

nX
i=1

1

!1�1=p

:

Using the bounded overlap of 18Qi, we see that the �rst factor in the last line

is bounded. By Lemma 22 and the fact that �(0; z) � log(100=(1 � jzj)) for all
jzj � 1=2, we see that jf(z(Q))j � C4 log

1�1=p(1=r(Q)) for some universal constant

C4.

It follows that if we �x " 2 (0; �+ 1), and let C = C4="
1�1=p, then

G �
X
Q2W

��(Q)

1X
j=j0

(C4=C)
jp=(p�1) logj(1=r(Q))

j!

�
X
Q2W

��(Q)r(Q)
�" �

X
Q2W

���"(Q) � 1: �
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Finally in this section, let us mention related results and generalizations of The-

orem 23. First, related results that hold for arbitrary Sobolev functions, and more

general weights and Euclidean domains, are investigated in [BO]. In particular

Theorem 1.2 in that paper implies our Theorem 23 in the case p � 2. There are,

however, easy counterexamples among Sobolev functions when p < 2. Neverthe-

less, one could use the methods of [BO] to get a generalization of Theorem 23 (for

analytic functions) that handles a much larger class of weights and domains.

Secondly, one could relax the assumption that the functions are analytic, replac-

ing it by an assumption that they are harmonic (in any of a large class of Euclidean

domains), or that they are solutions of some (rather general) elliptic equation. Ba-

sically, these two claims follow from the weak manner in which analyticity was used:

it was needed only to get the local estimate in Lemma 20, and similar estimates

can be derived for solutions to elliptic equations (although the proof is then quite

di�erent!). This idea is pursued further in the case of Poincar�e inequalities in [BK].

6. From Besov spaces to weighted Dirichlet spaces

In Section 4, we characterized E(2), the entire functions of order less than 2,

or of order two and �nite type, as the functions which take the Dirichlet space

into the intersection of all larger Dq spaces. We now consider the second question

mentioned in the introduction: characterize the entire functions of other possible

orders in a similar way. Theorem 3 of [CG] characterizes the entire functions of

order at most p as symbols of the superposition operators acting from
S
p<q

Aq

to the Bergman-Nevanlinna (area) class BN of functions f in the disk for which

log+ jf j is area-integrable. However, this answer is not completely satisfactory, as

this union of Bergman spaces does not have a satisfactory natural norm topology.

Theorem 4 of the same paper says membership in E(p) is a suÆcient condition for

being a superposition operator from Ap into BN . By considering a di�erent scale

of spaces, we get a \necessary and suÆcient result" of this type between Banach

function spaces. More precisely, we shall see that each E(t) is the space of symbols

of superposition operators from Bp into D
q

�
, for suitable indices p, q, and �.

The space of polynomials is dense in Bp for every 1 < p < 1; this follows, for

instance, from the representation of Besov space as a mixed-norm space given by

the special case q = p, t = 1� 1=p of Lemma 1.2 in [Bu]. As in Section 4 for D, we
deduce that for all p > 1, � > �1, C > 0, and f 2 Bp, we have

8 p > 1; � > �1; C > 0; f 2 Bp :
Z
D

exp
�
cjf jp=(p�1)

�
d�� <1 : (2)

Note that here the integration is performed with respect to a weighted area measure,

unlike in the classical Trudinger-Moser inequality. This by no means a�ects the

similarity of the argument, since in Theorem 19 we had to convert the integral over

the circle into the integral over the disk by embedding the Hardy space into the

Bergman space.

We now prove the following generalization of Theorem 19, which shows that

we can distinguish between the classes E(t) for each t > 1 via their action as

superposition operators.
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Theorem 24. Let 1 < p < 1, 0 < q � p, and � > q (p � 1)=p � 1. Then

S'(B
p) � D

q

�
if and only if ' 2 E(p=(p� 1)).

Proof. To prove suÆciency, we assume that ' 2 E(p=(p�1)). As before, there exists
some � such that for all suÆciently large jwj, we have j'0(w)j � exp(� jwjp=(p�1)).
Considering �rst the case q < p, we apply H�older's inequality and (2) to deduce

thatZ
D

j'0 Æ f jqjf 0jq(1� jzj)� dA =

Z
D

j'0 Æ f jq(1� jzj)
��q(p�2)

p jf 0jq(1� jzj)
q(p�2)

p dA

�
�Z
D

jf 0jp(1� jzj)p�2 dA
�q=p

�

�
�Z
D

j'0 Æ f j
pq

p�q (1� jzj)(��
q(p�2)

p
)� p

p�q dA

�(p�q)=p

� kfkq
Bp

Z
D

exp
�
�pqjf jp=(p�1)=(p� q)

�
(1� jzj)� dA

<1 ;

where � = (�p� pq + 2q)=(p� q) > �1 because of our assumptions on � and q.

The remaining case is q = p, � > p � 2. De�ning 
(s) = [(2 + �)s=p] � 2, we

have Ds


(s)
� D

p

�
for all s < p, a fact which follows from the corresponding result

for weighted Bergman spaces as given in [BKV, Theorem 1.3]. By the case q < p,

we have S'(B
p) � Ds


(s), whenever p=(3+ �� p) < s < p. Since p=(3+ �� p) < p,

we may choose such a number s, and deduce that S'(B
p) � Ds


(s) � D
p

�
.

The proof of necessity requires only minor changes to the proof of necessity in

Theorem 19. First, we choose points wn so that '0(wn) > n exp
�
(n jwnj)p=(p�1)

�
.

Then we choose

rn =
1

n1=p log2=(p�1)(n+ 1)
; hn =

rn+1

3
�
n1=pjwn+1 � wnj

�1=(p�1) ;
and get the estimate �
(0; wn) � Cp;tn

tjwnjp=(p�1), for every t > 1=(p � 1). We

omit the rest of the details, which are practically identical. �

The bounds on q and � in this theorem are sharp. First let us show that the

inequality for � in the above theorem cannot be replaced by an equality. For

q < p, we see this by taking ' � 1 and using the fact that Bp � D
q

�
only when

� > q(p� 1)=p� 1; this last fact in turn follows from a non-containment result for

weighted Bergman spaces (for which see the comments on sharpness that precede

Theorem 1.3 in [BKV]). For p = q, we instead take '(z) = z2 and use the fact

that Bp 6� D
2p
p�2; this fact again follows from the same comments on sharpness in

[BKV].

As for the sharpness of q, we take ' � 1 and suppose q > p. The same comments

in [BKV] also imply that Bp � D
q

�
only if � � q � 2. Since q � 2 > q(p� 1)=p� 1,

we have a counterexample if we take � close to the critical index q(p� 1)=p� 1.

The following corollary for operators to unweighted Dirichlet spaces follows im-

mediately from Theorem 24.
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Corollary 25. Let 1 < p <1, 0 < q < minfp; p=(p� 1)g. Then S'(B
p) � Dq if

and only if ' 2 E(p=(p� 1)).

Theorem 24 tells us that if t 2 (1;1), 0 < q � t=(t�1), and � > q=t�1, then E(t)
is the class of superposition operators from Bt=(t�1) toD

q

�
. Since E0(t) � T

s>t
E(s)

is the space of all functions of order at most t, we deduce the following corollary.

Corollary 26. Let 1 < t < 1, 0 < q � t=(t � 1), and � � q=t � 1. Then

S'

�S
p<t=(t�1)B

p

�
� D

q

�
if and only if ' 2 E0(t). In particular, this applies to

the case � = 0, q = minft; t=(t� 1)g.
Note that, whereas E(t) is the space of functions ' satisfying a bound of the

form '(w) � C exp(C 0jwjt), a de�nition of E0(t) requires a sequence of such bounds.
Thus it seems unreasonable to hope that E0(t) is the class of all superposition oper-

ators from one nice function space to another, and the above corollary is probably

as good as one can expect to get. In a related vein, C�amera and Gim�enez [CG,

Theorems 3 and 7] prove that E(t) is the space of symbols of superposition op-

erators from both
S
p>t

Ap and
S
p>t=2H

p into BN , the Nevanlinna area class of

analytic functions f in the disk for which log+ jf j is integrable with respect to dA.

Finally, we note that the proof of Theorem 24 reduces the task of showing that

the Young function in Theorem 23 is sharp to the construction of entire functions

with certain rates of growth. Let us just address the sharpness of the parameter p.

To prove this, it suÆces to know that there are entire functions 'r of each possible

order t > 0. Indeed for each t > 0, the function

't(z) =

1X
n=0

zn

(n!)1=t

has order t; see [Ti, x8.4, p. 255]. Since 'r 2 E(t) n E(s), 0 < s < r < t, it follows

that E(s) ( E(t) whenever 0 < s < t. As a consequence, Theorem 23 becomes false

if we change  p to  s for any 1 < s < p, since otherwise one could modify the proof

of Theorem 24 to deduce that S'(B
p) � D

q

�
for all ' 2 E(s=(s�1)) ) E(p=(p�1)),

thus contradicting the statement of Theorem 24.
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