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TOPICS IN SPECIAL FUNCTIONS

G. D. ANDERSON1, M. K. VAMANAMURTHY, AND M. VUORINEN

Abstract. The authors survey recent results in special functions, particularly the

gamma function and the Gaussian hypergeometric function.

1. Introduction

Conformal invariants are powerful tools in the study of quasiconformal mappings,

and many of these have expressions in terms of special functions. For instance, the

distortion results in geometric function theory, such as the quasiconformal Schwarz

Lemma, involve special functions. A frequent task is to simplify complicated in-

equalities, so as to clarify the dependence on important parameters without sacri�c-

ing sharpness. For these reasons we were led to study, as an independent subject,

various questions for special functions such as monotoneity properties and majo-

rants/minorants in terms of rational functions. These new inequalities gave re�ned

versions of some classical distortion theorems for quasiconformal maps. The classes

of functions that occur include complete elliptic integrals, hypergeometric functions,

and Euler's gamma function. The main part of our research is summarized in [AVV5].

In the later development most of our research has involved applications to geometric

properties of quasiconformal maps. However, some of the questions concerning special

functions, raised in [AVV1], [AVV3], and [AVV5], relate to special functions which

are useful in geometric function theory in general, not just to quasiconformal maps.

In this survey our goal is to review the latest developments of the latter type, due to

many authors [A1]�[A9], [AlQ1, AlQ2, AW, BPR1, BPR2, BPS, BP, EL, K1, K2, Ku].

The methods used in these studies are based on classical analysis. One of the

technical tools is the Monotone l'Hôpital's Rule, stated in the next paragraph, which

played an important role in our work [AVV4]�[AVV5]. The authors discovered this

result in [AVV4], unaware that it had been used earlier (without the name) as a

technical tool in di�erential geometry. See [Ch, p. 124, Lemma 3.1] or [AQVV, p. 14]

for relevant remarks.
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1.1. Lemma. For �1 < a < b < 1, let g and h be real-valued functions that are

continuous on [a; b] and di�erentiable on (a; b), with h0 6= 0 on (a; b). If g0=h0 is

strictly increasing (resp. decreasing) on (a; b), then the functions

g(x)� g(a)

h(x)� h(a)
and

g(x)� g(b)

h(x)� h(b)

are also strictly increasing (resp. decreasing) on (a; b).

Graphing of the functions and computer experiments in general played an impor-

tant role in our work. For instance, the software that comes with the book [AVV5]

provides computer programs for such experiments.

We begin this survey by discussing some recent results on the gamma function,

including monotoneity and convexity properties and close approximations for the

Euler-Mascheroni constant. Hypergeometric functions have a very central role in this

survey. We give here a detailed proof of the so-called Elliott's identity for these func-

tions, following an outline suggested by Andrews, Askey, and Roy in [AAR, p. 138].

This identity contains, as a special case, the classical Legendre Relation and has been

studied recently in [KV] and [BPSV]. After this we discuss mean values, a topic re-

lated to complete elliptic integrals and their estimation, and we present several sharp

approximations for complete elliptic integrals. We display inequalities for hypergeo-

metric functions that generalize the Landen relation, and conclude the paper with a

remark on recent work of geometric mapping properties of hypergeometric functions

as a function of a complex argument.

This survey does not cover recent work on the applications of special functions to

the change of distance under quasiconformal maps. For this subject the interested

reader may consult [AVV5].

2. The � and 	 functions

Throughout this paper � will denote Euler's gamma function, de�ned by

�(z) =

Z
1

0

e
�t
t
z�1

dt; Re z > 0;

and then continued analytically to the �nite complex plane minus the set of nonpos-

itive integers. The recurrence formula �(z + 1) = z �(z) yields �(n+ 1) = n! for any
positive integer n. We also use the fact that �(1

2
) =

p
�: The beta function is related

to the gamma function by B(a; b) = �(a)�(b)=�(a + b). The logarithmic derivative

of the gamma function will be denoted, as usual, by

	(z) �
d

dz
log �(z) =

�0(z)

�(z)
:

The Euler-Mascheroni constant 
 is de�ned as (see [A2], [TY], [Y])


 � lim
n!1

Dn = 0:5772156649 : : : ; Dn �
nX

k=1

1

k
� logn:

Then 	(1) = �0(1) = �
 and 	(1
2
) = �
 � 2 log 2. For a survey of the gamma

function see [G], and for some inequalities for the gamma and psi functions see [A1].
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2.1. Approximation of the Euler-Mascheroni constant. The convergence of the

sequence Dn to 
 is very slow (the speed of convergence is studied by Alzer [A2]). D.

W. DeTemple [De] studied a modi�ed sequence which converges faster and proved

1

24(n+ 1)2
< Rn � 
 <

1

24n2
; where Rn �

nX
k=1

1

k
� log

�
n+

1

2

�
:

Now let

h(n) = Rn � 
; H(n) = n
2
h(n); n > 1:

Since 	(n) = �
 � 1=n+
Pn

k=1 1=k; we see that

H(n) = (Rn � 
)n2 =

�
	(n) +

1

n
� log

�
n+

1

2

��
n
2
:

Some computer experiments led M. Vuorinen to conjecture that H(n) increases on
the interval [1;1) from H(1) = �
 + 1� log(3=2) = 0:0173 : : : to 1=24 = 0:0416 : : :.
E. A. Karatsuba proved in [K1] that for all integers n > 1; H(n) < H(n+1); by clever
use of Stirling's formula and Fourier series. Moreover, using the relation 
 = 1��0(2)
she obtained, for k � 1,

�ck � 
 � 1 + (log k)
12k+1X
r=1

d(k; r)�
12k+1X
r=1

d(k; r)

r + 1
� ck;

where

ck =
2

(12k)!
+ 2k2e�k; d(k; r) = (�1)r�1

kr+1

(r � 1)!(r + 1)
;

giving exponential convergence. Some computer experiments also seem to indicate

that ((n+ 1)=n)2H(n) is a decreasing convex function.

2.2. Gamma function and volumes of balls. Formulas for geometric objects,

such as volumes of solids and arc lengths of curves, often involve special functions.

For example, if 
n denotes the volume of the unit ball Bn = fx : jxj < 1g in

R
n , and if !n�1 denotes the (n � 1)-dimensional surface area of the unit sphere

Sn�1 = fx : jxj = 1g, n > 2, then


n =
�n=2

�((n=2) + 1)
; !n�1 = n
n:

It is well known that for n > 7 both 
n and !n decrease to 0 (cf. [AVV5, 2.28]).

However, neither 
n nor !n is monotone for n on [2;1). On the other hand, 

1=(n log n)
n

decreases to e�1=2 as n!1 [AVV1, Lemma 2.40(2)].

Recently H. Alzer [A4] has obtained the best possible constants a; b; A; B;

�; � such that

a

n

n+1

n+1 6 
n 6 b

n

n+1

n+1;r
n+ A

2�
6


n�1


n

6

r
n +B

2�
;�

1 +
1

n

��

6

2
n


n�1
n+1

6

�
1 +

1

n

��
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for all integers n > 1. He showed that a = 2=
p
� = 1:12837 : : :, b =

p
e = 1:64872 : : : ,

A = 1=2, B = �=2� 1 = 0:57079 : : : , � = 2 � (log �)= log 2 = 0:34850 : : : , � = 1=2.
For some related results, see [KlR].

2.3. Monotoneity properties. In [AnQ] it is proved that the function

(2.4) f(x) �
log �(x+ 1)

x log x

is strictly increasing from (1;1) onto (1� 
; 1). In particular, for x 2 (1;1),

(2.5) x
(1�
)x�1

< �(x) < x
x�1

:

The proof required the following two technical lemmas, among others:

2.6. Lemma. The function

g(x) �
1X
n=1

n� x

(n + x)3

is positive for x 2 [1; 4).

2.7. Lemma. The function

(2.8) h(x) � x
2 	0(1 + x)� x	(1 + x) + log �(1 + x)

is positive for all x 2 [1;1).

It was conjectured in [AnQ] that the function f in (2.4) is concave on (1;1).

2.9. Horst Alzer [A2] has given an elegant proof of the monotoneity of the function

f in (2.4) by using the Monotone l'Hôpital's Rule and the convolution theorem for

Laplace transforms. In a later paper [A3] he has improved the estimates in (2.5) to

(2.10) x
�(x�1)�


< �(x) < x
�(x�1)�


; x 2 (0; 1);

where � � 1 � 
 = 0:42278 : : : , � � 1
2
(�2=6� 
) = 0:53385 : : : are best possible. If

x 2 (1;1), he also showed that (2.10) holds with best constants � � 1
2
(�2=6� 
) =

0:53385 : : : , � � 1.

2.11. Elbert and Laforgia [EL] have shown that the function g in Lemma 2.6 is positive

for all x > �1. They used this result to prove that the function h in Lemma 2.7 is

strictly decreasing from (�1; 0] onto [0;1) and strictly increasing from [0;1) onto
[0;1). They also showed that f 00 < 0 for x > 1, thus proving the Anderson-Qiu

conjecture [AnQ], where f is as in (2.4).

2.12. Berg and Pedersen [BP] have shown that the function f in (2.4) is not only

strictly increasing from (0;1) onto (0; 1), but is even a (nonconstant) so-called Bern-

stein function. That is, f > 0 and f 0 is completely monotonic, i.e., f 0 > 0, f 00 < 0,
f 000 > 0, . . . . In particular, the function f is strictly increasing and strictly concave

on (0;1).
In fact, they have proved the stronger result that 1=f is a Stieltjes transform, that

is, can be written in the form

1

f(x)
= c+

Z
1

0

d�(t)

x + t
; x > 0;
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where the constant c is non-negative and � is a non-negative measure on [0;1)
satisfying Z

1

0

d�(t)

1 + t
<1:

In particular, for 1=f they have shown by using Stirling's formula that c = 1. Also

they have obtained d�(t) = H(t)dt, where H is the continuous density

H(t) =

8<
: t

log j�(1� t)j+ (k � 1) log t

(log j�(1� t)j)2 + (k � 1)2�2
; t 2 (k � 1; k); k = 1; 2; : : : ;

0 ; t = 1; 2; : : : :

Here log denotes the usual natural logarithm. The density H(t) tends to 1=
 as t

tends to 0, and � has no mass at 0.

2.13. In �The Lost Notebook and Other Unpublished Papers� of Ramanujan [Ra1],

the Indian mathematical genius, appears the following record:

\�(1 + x) =
p
�

�
x

e

�xn
8x3 + 4x2 + x +

�x

30

o1=6

;

where �x is a positive proper fraction

�0 =
30

�3
= :9675

�1=12 = :8071 �7=12 = :3058

�2=12 = :6160 �8=12 = :3014

�3=12 = :4867 �9=12 = :3041

�4=12 = :4029 �10=12 = :3118

�5=12 = :3509 �11=12 = :3227

�6=12 = :3207 �1 = :3359

�1 = 1:�

Of course, the values in the above table, except �1, are irrational and hence the

decimals should be nonterminating as well as nonrecurring. The record stated above

has been the subject of intense investigations and is reviewed in [BCK], page 48

(Question 754). This note of Ramanujan led the authors of [AVV5] to make the

following conjecture.

2.14. Conjecture. Let

G(x) = (e=x)x�(1 + x)=
p
�

and

H(x) = G(x)6 � 8x3 � 4x2 � x =
�x

30
:

Then H is increasing from (1;1) into (1=100; 1=30) [AVV5, p. 476].

2.15. In a nice piece of work, E. A. Karatsuba [K2] has proved the above conjecture.

She did this by representing the function H(x) as an integral for which she was able
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to �nd an asymptotic development. Her work also led to an interesting asymptotic

formula for the gamma function:

�(x+ 1) =
p
�

�
x

e

�x�
8x3 + 4x2 + x +

1

30
�

11

240x
+

79

3360x2
+

3539

201600x3

�
9511

403200x4
�

10051

716800x5
+

47474887

1277337600x6
+
a7

x7
+ � � �+

an

xn
+�n+1(x)

�1=6
;

where �n+1(x) = O( 1
xn+1

), as x!1, and where each ak is given explicitly in terms

of the Bernoulli numbers.

3. Hypergeometric functions

Given complex numbers a, b, and c with c 6= 0;�1;�2; : : : , the Gaussian hyperge-

ometric function is the analytic continuation to the slit plane C n [1;1) of

(3.1) F (a; b; c; z)= 2F1(a; b; c; z)�
1X
n=0

(a; n)(b; n)

(c; n)

zn

n!
; jzj < 1:

Here (a; 0) = 1 for a 6= 0, and (a; n) is the shifted factorial function

(a; n) � a(a + 1)(a+ 2) � � � (a+ n� 1)

for n = 1; 2; 3; : : :.
The hypergeometric function w = F (a; b; c; z) in (3.1) has the simple di�erentiation

formula

(3.2)
d

dz
F (a; b; c; z) =

ab

c
F (a+ 1; b+ 1; c+ 1; z):

The behavior of the hypergeometric function near z = 1 in the three cases a+b < c,

a + b = c, and a+ b > c; a; b; c > 0, is given by

(3.3)

8>>><
>>>:
F (a; b; c; 1) = �(c)�(c�a�b)

�(c�a)�(c�b)
; a+ b < c;

B(a; b)F (a; b; a+ b; z) + log(1� z)

= R(a; b) +O((1� z) log(1� z));

F (a; b; c; z) = (1� z)c�a�bF (c� a; c� b; c; z); c < a + b;

where R(a; b) = �2
 � 	(a) � 	(b), R(a) � R(a; 1 � a), R(1
2
) = log 16; and where

log denotes the principal branch of the complex logarithm. The above asymptotic

formula for the zero-balanced case a + b = c is due to Ramanujan (see [As], [Be1]).

This formula is implied by [AS, 15.3.10].

The asymptotic formula (3.3) gives a precise description of the behavior of the

function F (a; b; a + b; z) near the logarithmic singularity z = 1. This singularity can

be removed by an exponential change of variables, and the transformed function will

be nearly linear.

3.4. Theorem. [AQVV] For a; b > 0, let k(x) = F (a; b; a + b; 1 � e�x), x > 0.
Then k is an increasing and convex function with k0((0;1)) = (ab=(a + b), �(a +
b)=(�(a)�(b))).
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3.5. Theorem. [AQVV] Given a; b > 0, and a + b > c, d � a + b � c, the function

`(x) = F (a; b; c; 1� (1 + x)�1=d), x > 0, is increasing and convex, with `0((0;1)) =
(ab=(cd), �(c)�(d)=(�(a)�(b))).

3.6. Gauss contiguous relations and derivative formula. The six functions

F (a� 1; b; c; z), F (a; b� 1; c; z), F (a; b; c� 1; z) are called contiguous to F (a; b; c; z).
Gauss discovered 15 relations between F (a; b; c; z) and pairs of its contiguous functions
[AS, 15.2.10�15.2.27], [R2, Section 33]. If we apply these relations to the di�erentia-

tion formula (3.2), we obtain the following useful formulas.

3.7. Theorem. For a; b; c > 0, z 2 (0; 1), let u = u(z) = F (a� 1; b; c; z), v = v(z) =
F (a; b; c; z), u1 = u(1� z), v1 = v(1� z). Then

z
du

dz
= (a� 1)(v � u);(3.8)

z(1� z)
dv

dz
= (c� a)u+ (a� c+ bz)v;(3.9)

and

(3.10)
ab

c
z(1� z)F (a+ 1; b+ 1; c+ 1; z) = (c� a)u+ (a� c+ bz)v:

Furthermore,

(3.11) z(1�z)
d

dz

�
uv1+u1v�vv1

�
=(1�a�b)

�
(1�z)uv1�zu1v�(1�2z)vv1)

�
:

Formulas (3.8)-(3.10) in Theorem 3.7 are well known. See, for example, [AAR,

2.5.8]. On the other hand, formula (3.11), which follows from (3.8)-(3.9) is �rst

proved in [AQVV, 3.13 (4)].

Note that the formula

(3.12) z(1� z)
dF

dz
= (c� b)F (a; b� 1; c; z) + (b� c+ az)F (a; b; c; z)

follows from (3.9) if we use the symmetry property F (a; b; c; z) = F (b; a; c; z).

3.13. Corollary. With the notation of Theorem 3.7, if a 2 (0; 1); b = 1� a < c; then

uv1 + u1v � vv1 = u(1) =
(�(c))2

�(c+ a� 1)�(c� a+ 1)
:

4. Hypergeometric differential equation

The function F (a; b; c; z) satis�es the hypergeometric di�erential equation

(4.1) z(1� z)w00 + [c� (a+ b+ 1)z]w0 � abw = 0:

Kummer discovered solutions of (4.1) in various domains, obtaining 24 in all; for a

complete list of his solutions see [R2, pp. 174, 175].
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4.2. Lemma. (1) If 2c = a + b + 1 then both F (a; b; c; z) and F (a; b; c; 1� z) satisfy
(4.1) in the lens-shaped region fz : 0 < jzj < 1; 0 < j1� zj < 1g.
(2) If 2c = a+b+1 then both F (a; b; c; z2) and F (a; b; c; 1�z2) satisfy the di�erential

equation

(4.3) z(1� z
2)w00 + [2c� 1� (2a + 2b+ 1)z2]w0 � 4abzw = 0

in the common part of the disk fz : jzj < 1g and the lemniscate fz : j1� z2j < 1g.

Proof. By Kummer (cf. [R2, pp. 174�177]), the functions F (a; b; c; z) and

F (a; b; a + b + 1 � c; 1 � z) are solutions of (4.1) in fz : 0 < jzj < 1g and fz :
0 < j1 � zj < 1g, respectively. But a + b + 1 � c = c under the stated hypotheses.

The result (2) follows from result (1) by the chain rule. �

4.4. Lemma. The function F (a; b; c;
p
1� z2) satis�es the di�erential equation

Z
3(1� Z)zw00 � fZ(1� Z) + [c� (a+ b + 1)Z]Zz2gw0 � abz

3
w = 0;

in the subregion of the right half-plane bounded by the lemniscate r2 = 2 cos(2#),
��=4 � # � �=4, z = rei#. Here Z =

p
1� z2, where the square root indicates the

principal branch.

Proof. From (4.1), the di�erential equation for w = F (a; b; c; t) is given by

t(1� t)
d2w

dt2
+ [c� (a+ b + 1)t]

dw

dt
� abw = 0:

Now put t =
p
1� z2. Then

dz

dt
= �

t

z
;
dt

dz
= �

z

t
;
d2t

dz2
= �

1

t3

and
dw

dt
= �

t

z

dw

dz
;
d2w

dt2
=

t2

z2

d2w

dz2
�

1

z3

dw

dz
:

So

t(1� t)
h
t2

z2
w
00 �

1

z3
w
0

i
+
h
c� (a+ b + 1)t

i�
�

t

z

�
w
0 � abw = 0:

Multiplying through by z3 and replacing t by Z �
p
1� z2 gives the result. �

If w1 and w2 are two solutions of a second order di�erential equation, then their

Wronskian is de�ned to be W (w1; w2) � w1w
0

2 � w2w
0

1.

4.5. Lemma. [AAR, Lemma 3.2.6] If w1 and w2 are two linearly independent solutions

of (4.1), then

W (z) = W (w1; w2)(z) =
A

zc(1� z)a+b�c+1
;

where A is a constant.

(Note the misprint in [AAR, (3.10)], where the coe�cient x(1� x) is missing from

the �rst term.)

4.6. Lemma. If 2c = a+ b+ 1 then, in the notation of Theorem 3.7,

(4.7) (c� a)(uv1 + u1v) + (a� 1)vv1 = A � z1�c(1� z)1�c:
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Proof. If 2c = a+b+1 then by Lemma 4.2(1), both v(z) and v(1�z) are solutions
of (4.1). Since W (z) = W (v1; v)(z) = v0(z)v1(z)� v(z)v01(z), we have

z(1� z)W (z) = z(1� z)(v0v1 � vv
0

1)

= (c� a)(uv1 + u1v) + (2a+ b� 2c)vv1

= (c� a)(uv1 + u1v) + (a� 1)vv1:

Next, since 2c = a + b + 1, Lemma 4.5 shows that zc(1 � z)cW (z) = A, and the

result follows. �

Note that in the particular case c = 1; a = b = 1
2
the right side of (4.7) is constant

and the result is similar to Corollary 3.13. This particular case is Legendre's Relation

(5.3), and this proof of it is due to Duren [Du].

4.8. Lemma. If a; b > 0; c � 1; and 2c = a+b+1; then the constant A in Lemma 4.6

is given by A = (�(c))2=(�(a)�(b)): In particular, if c = 1 then Lemma 4.6 reduces to

Legendre's Relation (5.8) for generalized elliptic integrals.

Proof. The idea of the proof is to replace the possibly unbounded hypergeometric

functions in formula (4.7) by bounded or simpler ones. Therefore we consider three

cases.

C ase (1): c � 2: Now a+ b � c+ 1 � 3: By (3.3) or [AS, 15.3.3], we have

u(z) = (1� z)2�cF (c+ 1� a; c� b; c; z); u1(z) = z
2�c

F (c+ 1� a; c� b; c; 1� z);

v(z) = (1� z)1�cF (c� a; c� b; c; z); v1(z) = z
1�c

F (c� a; c� b; c; 1� z):

Hence

A = (c� a)[(1� z)F (c+ 1� a; c� b; c; z)F (c� a; c� b; c; 1� z)

+zF (c+ 1� a; c� b; c; 1� z)F (c� a; c� b; c; z)]

+(a� 1)F (c� a; c� b; c; z)F (c� a; c� b; c; 1� z):

Now, since a+ b� c = c� 1; letting z ! 0; from (3.3) we get

A = (c� a)
�(c)�(c� 1)

�(a)�(b))
+ (a� 1)

�(c)�(c� 1)

�(a)�(b)

= (c� 1)
�(c)�(c� 1)

�(a)�(b)
=

(�(c))2

�(a)�(b)
;

as claimed.

C ase (2): 1 < c < 2. Now, 1 < c < a+ b < c+ 1 < 3: Then

A = (c� a)[(1� z)c�1u(z)F (c� a; c� b; c; 1� z) + z
c�1

u1(z)F (c� a; c� b; c; z)]

+(a� 1)F (c� a; c� b; c; z)F (c� a; c� b; c; 1� z):

Now letting z ! 0; from (3.3), as in Case (1), we get

A = (c� a)
�(c)�(c� 1)

�(a)�(b)
+ (a� 1)

�(c)�(c� 1)

�(a)�(b)

= (c� 1)
�(c)�(c� 1)

�(a)�(b)
=

(�(c))2

�(a)�(b)
;

as claimed.
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C ase (3): c = 1: Now a + b = 1: Then

A = (1� a)[u(z)v1(z) + u1(z)v(z)� v(z)v1(z)]

= (1� a)u1(z)v(z) + (1� a)v1(z)[u(z)� v(z)]:

From [R1, Ex. 21(4), p.71] we have

u(z)� v(z) = F (a� 1; b; c; z)� F (a; b; c; z)

=
c� b

c
zF (a; b; c + 1; z)� zF (a; b; c; z);

so that
u(z)� v(z)

z
=

c� b

c
F (a; b; c+ 1; z)� F (a; b; c; z)! �b=c;

as z ! 0: Also, by (3.3), zv1(z)! 0 as z ! 0: Hence, letting z ! 0; we get

A = (1� a)u1(1) = (1� a)
�(c)�(c+ 1� a� b)

�(c+ 1� a)�(c� b)

= (1� a)
(�(c))2

(1� a)�(a)�(b)
=

(�(c))2

�(a)�(b)
;

as claimed.

Note that, in Case (3), �(c) = �(1) = 1;�(b) = �(1� a); and thus by [AS, 6.1.17]

A = 1=(�(a)�(1� a)) = (sin�a)=�: �

For rational triples (a; b; c) there are numerous cases where the hypergeometric

function F (a; b; c; z) reduces to a simpler function (see [PBM]). Other important

particular cases are generalized elliptic integrals, which we will now discuss. For

a; r 2 (0; 1), the generalized elliptic integral of the �rst kind is given by

Ka = Ka(r) =
�

2
F (a; 1� a; 1; r2)

= (sin�a)

Z �=2

0

(tan t)1�2a(1� r
2 sin2 t)�a dt;

K
0

a = K
0

a(r) = Ka(r
0):

We also de�ne

�a(r) =
�

2 sin(�a)

K
0

a(r)

Ka(r)
; r

0 =
p
1� r2:

The invariant of the linear di�erential equation

(4.9) w
00 + pw

0 + qw = 0;

where p and q are functions of z, is de�ned to be

I � q �
1

2
p
0 �

1

4
p
2

(cf. [R2,p.9]). If w1 and w2 are two linearly independent solutions of (4.9), then their

quotient w � w2=w1 satis�es the di�erential equation

Sw(z) = 2I;
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where Sw is the Schwarzian derivative

Sw �
�
w00

w0

�
0

�
1

2

�
w00

w0

�2

and the primes indicate di�erentiations (cf. [R2, pp. 18,19]).

From these considerations and the fact that Ka(r) and K
0

a(r) are linearly indepen-
dent solutions of (4.3) (see [AQVV, (1.11)]), it follows that w = �a(r) satis�es the
di�erential equation

Sw(r) =
�8a(1� a)

(r0)2
+

1 + 6r2 � 3r4

2r2(r0)4
:

The generalized elliptic integral of the second kind is given by

Ea = Ea(r) �
�

2
F (a� 1; 1� a; 1; r2)

= (sin�a)

Z �=2

0

(tan t)1�2a(1� r
2 sin2 t)1�a dt

E
0

a = E
0

a(r) = Ea(r
0);

Ea(0) =
�

2
; Ea(1) =

sin(�a)

2(1� a)
:

For a = 1
2
; Ka and Ea reduce to K and E, respectively, the usual elliptic integrals of

the �rst and second kind, respectively. Likewise �1=2(r) = �(r), the modulus of the

well-known Grötzsch ring in the plane [LV].

4.10. Corollary. The generalized elliptic integrals Ka and Ea satisfy the di�erential

equations

r(r0)2
d2Ka

dr2
+ (1� 3r2)

dKa

dr
� 4a(1� a)rKa = 0;(4.11)

r(r0)2
d2Ea

dr2
+ (r0)2

dEa

dr
+ 4(1� a)2rEa = 0;(4.12)

respectively.

Proof. These follow from (4.3). �

For a = 1
2
these reduce to well-known di�erential equations [AVV5, pp. 474-475],

[BF].

5. Identities of Legendre and Elliott

In geometric function theory the complete elliptic integrals K(r) and E(r) play an

important role. These integrals may be de�ned, respectively, as

K(r) = �

2
F (1

2
; 1
2
; 1; r2); E(r) = �

2
F (1

2
;�1

2
; 1; r2);

for �1 < r < 1. These are Ka(r) and Ea(r), respectively, with a = 1
2
. We also

consider the functions

K
0 = K

0(r) = K(r0); 0 < r < 1;

K(0) = �=2; K(1�) = +1;
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and

E
0 = E

0(r) = E(r0); 0 6 r 6 1;

where r0 =
p
1� r2. For example, these functions occur in the following quasiconfor-

mal counterpart of the Schwarz Lemma [LV]:

5.1. Theorem. For K 2 [1;1), let w be a K-quasiconformal mapping of the unit

disk D = fz : jzj < 1g into the unit disk D0 = fw : jwj < 1g with w(0) = 0. Then

jw(z)j 6 'K(jzj);

where

(5.2) 'K(r) � �
�1

�
1

K
�(r)

�
and �(r) �

�K0(r)

2K(r)
:

This result is sharp in the sense that for each z 2 D and K 2 [1;1) there is an

extremal K-quasiconformal mapping that takes the unit disk D onto the unit disk D0

with w(0) = 0 and jw(z)j = 'K(jzj) (see [LV, p. 63]).

It is well known [BF] that the complete elliptic integrals K and E satisfy the Le-

gendre relation

(5.3) EK
0 + E0K�KK0 =

�

2
:

For several proofs of (5.3) see [Du].

In 1904, E. B. Elliott [E] (cf. [AVV3]) obtained the following generalization of this

result.

5.4. Theorem. If a; b; c > 0 and 0 < x < 1 then

(5.5) F1F2 + F3F4 � F2F3 =
�(a + b+ 1)�(b+ c + 1)

�(a+ b + c+ 3
2
)�(b + 1

2
)
:

where

F1 = F

�
1

2
+ a;�

1

2
� c; 1 + a+ b; x

�
;

F2 = F

�
1

2
� a;

1

2
+ c; 1 + b + c; 1� x

�
;

F3 = F

�
1

2
+ a;

1

2
� c; 1 + a+ b; x

�
;

F4 = F

�
�

1

2
� a;

1

2
+ c; 1 + b+ c; 1� x

�
:

Clearly (5.3) is a special case of (5.5), when a = b = c = 0 and x = r2. For a

discussion of generalizations of Legendre's Relation see Karatsuba and Vuorinen [KV]

and Balasubramanian, Ponnusamy, Sunanda Naik, and Vuorinen [BPSV].

Elliott proved (5.5) by a clever change of variables in multiple integrals. Another

proof was suggested without details in [AAR, p. 138], and here we provide the missing

details.

Proof of Theorem 5.4. In particular, let y1 � F3, y2 � x�a�b(1� x)b+cF2. Then

by [R2, pp. 174, 175] or [AAR, (3.2.12), (3.2.13)], y1 and y2 are linearly independent

solutions of (4.1).
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By (3.12),

(5.6) x(1�x)y01 =
�
a+ b + c+

1

2

�
F1 +

�
�
�
a+ b + c+

1

2

�
+

�
a +

1

2

�
x

�
F3;

and by (3.9),

x(1� x)y02 =x(1� x)
�
� (a+ b)x�a�b�1(1� x)b+c

� (b + c)x�a�b(1� x)b+c�1
�
F2

� x
�a�b(1� x)b+c

��
a + b+ c +

1

2

�
F4

+

�
�
�
a + b+ c+

1

2

�
+

�
c+

1

2

�
(1� x)

�
F2

�
:

(5.7)

Multiplying (5.7) by y1 and (5.6) by y2 and subtracting, we obtain

x(1� x)(y2y
0

1 � y1y
0

2) =

�
a + b+ c+

1

2

�
x
�a�b(1� x)b+cF1F2

+

�
�
�
a + b+ c +

1

2

�
+

�
a+

1

2

�
x

�
x
�a�b(1� x)b+cF2F3

+ x(1� x)
�
(a+ b)x�a�b�1(1� x)b+c + (b+ c)x�a�b(1� x)b+c�1

�
F2F3

+ x
�a�b(1� x)b+c

�
a+ b + c+

1

2

�
F3F4

+ x
�a�b(1� x)b+c

�
�
�
a+ b + c+

1

2

�
+

�
c+

1

2

�
(1� x)

�
F2F3

=

�
a + b+ c+

1

2

�
x
�a�b(1� x)b+cF1F2

+ x
�a�b(1� x)b+c

�
�
�
a+ b + c+

1

2

�
+

�
a +

1

2

�
x + (a+ b)(1� x)

+ (b + c)x�
�
a + b+ c +

1

2

�
+

�
c+

1

2

�
(1� x)

�
F2F3

+ x
�a�b(1� x)b+c

�
a+ b + c+

1

2

�
F3F4

=

�
a + b+ c+

1

2

�
x
�a�b(1� x)b+cF1F2 + x

�a�b(1� x)b+c
�
�
�
a + b+ c+

1

2

��
F2F3

+

�
a+ b + c+

1

2

�
x
�a�b(1� x)b+cF3F4:

So

x(1� x)W (y2; y1) =
A

xa+b(1� x)�b�c

= x
�a�b(1� x)b+c

�
a+ b + c+

1

2

�
[F1F2 + F3F4 � F2F3]
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by Lemma 4.5. Thus

F1F2 + F3F4 � F2F3 = A;

where A is a constant.

Now, by (3.3),

F1F2 tends to F

�
1

2
+ a;�

1

2
� c; a+ b+ 1; 1

�
=

�(a+ b + 1)�(b+ c+ 1)

�(b + 1
2
)�(a+ b + c+ 3

2
)

as x! 1, since 1
2
+ a + (�1

2
� c) = a� c < a + b+ 1.

Next

F3F4 � F3F2 = F3(F4 � F2);

where F4 � F2 � const � (1� x)2 +O((1� x)3), and

F3 =
�(a + b+ 1)�(b + c+ 1)

�(b+ 1
2
)�(a+ b + c+ 1

2
)

if a+ 1
2
+ 1

2
� c < a+ b + 1, or �c < b, i.e., b > 0 or c > 0. If �c = b = 0, then

F3 =
R(a+ 1

2
; 1
2
� c)

B(a + 1
2
; 1
2
� c)

+O((1� x) log(1� x))

by (3.3). In either case the product F3(F4 � F2) tends to 0 as x! 1. The third case

a+ 1
2
+ 1

2
� c > a+ b+1 is impossible since we are assuming that b; c are nonnegative.

Thus A = �(a+ b + 1)�(b+ c+ 1)=(�(b+ 1
2
)�(a+ b + c+ 3

2
)), as desired. �

The generalized elliptic integrals satisfy the identity

(5.8) EaK
0

a + E
0

aKa �KaK
0

a =
� sin(�a)

4(1� a)
:

This follows from Elliott's formula (5.5) and contains the classical relation of Legendre

(5.3) as a special case.

Finally, we record the following formula of Kummer [Kum, p. 63, Form. 30]:

F (a; b; a+ b� c+ 1; 1� x)F (a+ 1; b+ 1; c+ 1; x)

+
c

a+ b� c+ 1
F (a; b; c; x)F (a+ 1; b+ 1; a+ b� c + 2; 1� x)

= Dx
�c(1� x)c�a�b�1; D =

�(a+ b� c + 1)�(c+ 1)

�(a+ 1)�(b+ 1)
:

This formula, like Elliott's identity, may be rewritten in many di�erent ways if we

use the contiguous relations of Gauss. Note also the special case c = a+ b� c+ 1:
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6. Mean values

The arithmetic-geometric mean of positive numbers a; b > 0 is the limit

AGM(a; b) = liman = lim bn;

where a0 = a, b0 = b, and for n = 0; 1; 2; 3; :::;

an+1 = A(an; bn) � (an + bn)=2; bn+1 = G(an; bn) �
p
anbn;

are the arithmetic and geometric means of an and bn; respectively. For a mean value

M , we also consider the t-modi�cation de�ned as

Mt(a; b) = M(at; bt)1=t:

For example, the power mean of a; b > 0 is

At(a; b) =

�
at + bt

2

�1=t

;

and the logarithmic mean is

L(a; b) =
a� b

log(b=a)
:

The power mean is the t-modi�cation of the arithmetic mean A1(a; b).

The connection between mean values and elliptic integrals is provided by Gauss's

amazing result

AGM(1; r0) =
�

2K(r)
:

This formula motivates the question of �nding minorant/majorant functions for K(r)
in terms of mean values. For a �xed x > 0 the function t 7! Lt(1; x); t > 0; increases
with t by [VV, Theorem 1.2 (1)]. The two-sided inequality

L3=2(1; x) > AG(1; x) > L(1; x)

holds; the second inequality was pointed out in [CV], and the �rst one, due to J. and

P. Borwein [BB2], proves a sharp estimate settling a question raised in connection

with [VV]. Combined with the identity above, this inequality yields a very precise

inequality for K(r):
Several inequalities between mean values have been proved recently. See, for in-

stance, [AlQ2], [QS], [S1], [S2], [S3], [T], [C], and [Br].

Finally, we remark that the arithmetic-geometric mean, together with Legendre's

Relation, played a central role in a rapidly converging algorithm for the number � in

[Sa]. See also [BB1, H, Le, Lu].

7. Approximation of elliptic integrals

E�cient algorithms for the numerical evaluation of K(r) and E(r) are based on

the arithmetic-geometric mean iteration of Gauss. This fact led to some close majo-

rant/minorant functions for K(r) in terms of mean values in [VV].

Next, let a and b be the semiaxes of an ellipse with a > b and eccentricity e =p
a2 � b2=a, and let L(a; b) denote the arc length of the ellipse. Without loss of

generality we take a = 1. In 1742, Maclaurin (cf. [AB]) determined that

L(1; b) = 4E(e) = 2� � 2F1(
1
2
;�1

2
; 1; e2):
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In 1883, Muir (cf. [AB]) proposed that L(1; b) could be approximated by the ex-

pression 2�[(1+b3=2)=2]2=3. Since this expression has a close resemblance to the power

mean values studied in [VV], it is natural to study the sharpness of this approxima-

tion. Close numerical examination of the error in this approximation led Vuorinen

[V2] to conjecture that Muir's approximation is a lower bound for the arc length.

Letting r =
p
1� b2, Vuorinen asked whether

(7.1)
2

�
E(r) = 2F1

�
1
2
;�1

2
; 1; r2

�
>

�1 + (r0)3=2

2

�2=3
for all r 2 [0; 1].
In [BPR1] Barnard and his coauthors proved that inequality (7.1) is true. In fact,

they expanded both functions into Maclaurin series and proved that the di�erences

of the corresponding coe�cients of the two series all have the same sign.

Later, the same authors [BPR2] discovered an upper bound for E that complements

the lower bound in (7.1):

(7.2)
2

�
E(r) = 2F1

�
1
2
;�1

2
; 1; r2

�
6

�1 + (r0)2

2

�1=2
; 0 6 r 6 1:

See also [BPS].

In [BPR2] the authors have considered 13 historical approximations (by Kepler,

Euler, Peano, Muir, Ramanujan, and others) for the arc length of an ellipse and

determined a linear ordering among them. Their main tool was the following Lemma

7.3 on generalized hypergeometric functions. These functions are de�ned by the

formula

pFq(a1; a2; � � � ; ap; b1; b2; � � � ; bq; z) � 1 +
1X
n=1

�p
i=1(ai; n)

�q
j=1(bj; n)

�
zn

n!
;

where p and q are positive integers and in which no denominator parameter bj is

permitted to be zero or a negative integer. When p = 2 and q = 1, this reduces to
the usual Gaussian hypergeometric function F (a; b; c; z).

7.3. Lemma. Suppose a; b > 0. Then for any � satisfying ab
1+a+b

< � < 1,

3F2(�n; a; b; 1 + a+ b; 1 + �� n; 1) > 0

for all integers n > 1.

7.4. Some approximations for K(r). At the end of the preceding section we pointed
out that upper and lower bounds can be found for K(r) in terms of mean values.

Another source for the approximation of K(r) is based on the asymptotic behavior at

the singularity r = 1, whereK(r) has logarithmic growth. Some of the approximations

motivated by this aspect will be discussed next.

Anderson, Vamanamurthy, and Vuorinen [AVV2] approximatedK(r) by the inverse
hyperbolic tangent function arth, obtaining the inequalities

(7.5)
�

2

 
arth r

r

!1=2

< K(r) <
�

2

arth r

r
;
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for 0 < r < 1. Further results were proved by Laforgia and Sismondi [LS]. Kühnau

[Ku] and Qiu [Q] proved that, for 0 < r < 1,

9

8 + r2
<

K(r)

log(4=r0)
:

Qiu and Vamanamurthy [QVa] proved that

K(r)

log(4=r0)
< 1 +

1

4
(r0)2 for 0 < r < 1:

Several inequalities for K(r) are given in [AVV5, Theorem 3.21]. Later Alzer [A3]

showed that

1 +
�

�

4 log 2
� 1
�
(r0)2 <

K(r)

log(4=r0)
;

for 0 < r < 1. He also showed that the constants 1
4
and �=(4 log 2)� 1 in the above

inequalities are best possible.

For further re�nements, see [QVu1, (2.24)] and [Be].

Alzer and Qiu [AlQ1] have written a related manuscript in which, besides proving

many inequalities for complete elliptic integrals, they have re�ned (7.5) by proving

that
�

2

�arth r
r

�3=4
< K(r) <

�

2

arth r

r
:

They also showed that 3=4 and 1 are the best exponents for (arth r)=r on the left and

right, respectively.

One of the interesting tools of these authors is the following lemma of Biernaki and

Krzy» [BK] (for a detailed proof see [PV1]):

7.6. Lemma. Let rn and sn, n = 1; 2; : : : be real numbers, and let the power series

R(x) =
P
1

n=1 rnx
n and S(x) =

P
1

n=1 snx
n be convergent for jxj < 1. If sn > 0 for

n = 1; 2; : : :, and if rn=sn is strictly increasing (resp. decreasing) for n = 1; 2; : : :,
then the function R=S is strictly increasing (resp. decreasing) on (0; 1).

7.7. Generalized elliptic integrals. For the case of generalized elliptic integrals

some inequalities are given in [AQVV]. B. C. Carlson has introduced some standard

forms for elliptic integrals involving certain symmetric integrals. Approximations for

these functions can be found in [CG].

8. Landen inequalities

It is well known (cf. [BF]) that the complete elliptic integral of the �rst kind

satis�es the Landen identities

K

�
2
p
r

1 + r

�
= (1 + r)K(r); K

�
1� r

1 + r

�
=

1 + r

2
K
0(r):

Recall that K(r) = �

2
F (1

2
, 1

2
; 1; r2). It is thus natural to consider, as suggested in

[AVV3], the problem of �nding an analogue of these formulas for the zero-balanced

hypergeometric function F (a; b; c; r) for a; b; c > 0 and a + b = c, at least when the

parameters (a; b; c) are close to (1
2
, 1
2
; 1). From (3.3) it is clear that F (a; b; c; r2) has a

logarithmic singularity at r = 1, if a; b > 0, c = a+ b (cf. [AAR]). Some re�nements

of the growth estimates were given in [ABRVV] and [PV1].
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Qiu and Vuorinen [QVu1] proved the following Landen-type inequalities: For a; b 2
(0; 1), c = a + b,

F

�
a; b; c;

�
2
p
r

1 + r

�2�
6 (1 + r)F (a; b; c; r2)

6 F

�
a; b; c;

�
2
p
r

1 + r

�2�
+

1

B
(R� log 16)

and

1 + r

2
F (a; b; c; 1� r

2) 6 F

�
a; b; c;

�
1� r

1 + r

�2�

6
1 + r

2

�
F (a; b; c; 1� r

2) +
1

B
(R� log 16)

�
;

with equality in each instance if and only if a = b = 1
2
. Here B = B(a; b), the beta

function, and R = R(a; b) = �2
 � 	(a)� 	(b), where 	 is as given in Section 2.

9. Hypergeometric series as an analytic function

For rational triples (a; b; c) the hypergeometric function often can be expressed in

terms of elementary functions. Long lists with such triples containing hundreds of

functions can be found in [PBM]. For example, the functions

f(z) � zF (1; 1; 2; z) = � log(1� z)

and

g(z) � zF

�
1;

1

2
;
3

2
; z2
�

=
1

2
log

�
1 + z

1� z

�
have the property that they both map the unit disk into a strip domain. Observing

that they both correspond to the case c = a+b one may ask (see [PV1, PV2]) whether

there exists Æ > 0 such that zF (a; b; a + b; z) and zF (a; b; a + b; z2) with a; b 2 (0; Æ)
map into a strip domain.

Membership of hypergeometric functions in some special classes of univalent func-

tions is studied in [PV1, PV2, BPV2].
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