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Diss.

Functional magnetic resonance imaging (fMRI) is a scanning technique for revealing

haemodynamic changes connected with brain processing on the neuronal level.

In neuropsychology, fMRI has been used in designed experiments together with

controlled stimulation. fMRI data are temporal series of digital images corrupted

by spatio-temporally correlated physiological processes and scanner noise. The

statistical challenge in analysing fMRI data is to localize stimulus-related brain

activation and estimate its characteristics. In this thesis, the focus is on spatial

aspects of activations. A Bayesian approach is proposed and an a priori model

which describes the clustering of activations is suggested. The prior is used to

control the spatial extent, coherence and locations of clusters. Marked Gibbs point

processes have been used to construct the prior. The prior is designed so that

expert knowledge on the neuronal processing of interest can be incorporated into

statistical analysis. To model the conditional distribution of observations, given the

activations, Gaussian conditional autoregressive processes have been applied. Using

these processes, heteroskedasticity and spatial autocorrelation in noise is accounted

for. Inference is based on Markov chain Monte Carlo (MCMC) simulations of

the posterior distribution. A modi�ed version of an existing general simulation

method for Gibbs point processes is devised to sample the posterior. Real fMRI

data are analysed and the in�uence of di�erent amounts of prior information on the

uncertainty in activations is illustrated. An example of analysing synthetic data is

provided to compare the new method with conventional nonparametric techniques.

The conclusion is that, by adopting a structural approach, relevant features of

activations can be accounted for leading to a potentially more e�cient inference.

Key words: functional magnetic resonance imaging, marked point process, human

brain, Bayesian modelling, Markov chain Monte Carlo, image analysis
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List of main notation

Spaces, sets and constants

S set of brain voxels T number of scans

U voxellated Euclidean space � contrast vector

M product space S �R ~� extended contrast vector

D space of daughter con�gurations �d prior mean of daughters


(�) exponential space of a set � spatial interaction radius

Con�gurations and parameters

� cluster height w centre of a cluster

� unscaled cluster function d daughter con�guration

� daughter height w con�guration of centres

v relative location of a daughter x con�guration of clusters

Series, �elds, functions and matrices

Y = (Yt) time series of images 	 interaction function

Y = (Y (s)) voxel time series � = (�t(s)) noise �eld

D = (Dt) design series Z = (Z(s)) compressed data

X = (Xt) haemodynamic response W spatial covariances

X matrix of explanatory series V temporal correlations

I = (I(s)) indicator �eld in S � = (�(s)) spatial noise �eld

�(s) mean signal level at voxel s % = (%(s)) precision parameters

�(s) stimulation e�ect at voxel s � = (�l) interaction parameter

� = (�(s)) activation pro�le L(x) likelihood function

I� indicator �eld of � ~L(x) modi�ed likelihood

Bp(s) parent bell function � smoothing potential

Bd(s) daughter bell function
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Densities and measures

� counting measure in U h prior of a random centre

m1 Lebesgue measure h�;  � corrected densities

h� prior of daughter height fw prior of cluster centres

hv prior of daughter centres � Poisson process of clusters

�d unit rate daughter process ' intensity measure of �

fd density of daughters w.r.t. �d �w;� unit measure in M
h� prior of cluster height �(x) cluster prior density w.r.t. �

 prior number of centres p(x) cluster posterior density w.r.t. �

Miscellaneous

n(�) size of a con�guration j � j cardinality of a set

k � k Euclidean norm nz(�) number of nonzero elements
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1 Introduction

During the last two decades, functional neuroimaging (FNI) has become an im-

portant topic in biomedical statistics. FNI is a class of powerful techniques for

scanning the human brain, and it serves as a means for revealing activation pro-

cesses. Compared to the conventional methodology, FNI enables huge possibilities

for neuroscientists and neuropsychologists working in the �eld of brain research.

From the very beginning it has been recognized that data acquired using FNI

modalities have special features, and therefore, new statistical approaches are re-

quired to provide answers to questions relevant for neuroscientists applying FNI.

Our objective in this Ph.D. thesis is to introduce new statistical ideas for applying

Bayesian estimation methods in the context of FNI.

Statistical problems in connection with the modelling of FNI data originate

from neuroscienti�c questions. Thus, in order to understand the motivation behind

many statistical issues in FNI, it is necessary to have some familiarity with basic

concepts and notions of neuroscience. The starting point for most investigations

of FNI data lies in the general theory of the sensorimotor and cognitive function

of the human brain. The brain manipulates available information in a highly

parallel manner. Speci�cally, the brain can be considered to consist of many distinct

modules which can function more or less independently of each other. A generally

accepted view among neuroscientists is that these modules are localizable to some

extent. From this perspective, it is of interest to study how the brain is divided

into several modules, how localizable they are and what brain areas are responsible

for processing the given information (Frackowiak et al., 1997).

A comparison with conventional methodologies, such as experimental psychol-

ogy, lesion studies and electroencephalography (EEG), illustrates the potential in
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FNI. In the following, these techniques are discussed together with their shortcom-

ings.

In experimental psychology, behavioural measures are used to improve our un-

derstanding of the brain function. As an example, these measures can be used to

study dependencies between cognitive processes. By de�nition, two given tasks are

considered to be independent if they can be done at once as well as they would

be done separately. Experiments may help researchers to understand phenomena

on the cognitive level, but in order to �nd an interpretation on the neuronal level,

additional assumptions are needed. There is some tendency to presume that inde-

pendent processes are also isolated on the physiological level. If this presumption

is accepted, results from experimental psychology can lead to conclusions of con-

nections between neuronal nets in the human brain. Nevertheless, the brain is

essentially treated like a black box, and it remains unclear how the brain functions

as an organ.

Lesion studies belong to the category of psychological research where the objec-

tive is to investigate associations between behavioural measures and brain anatomy.

Typically, test individuals in these studies have experienced a surgical operation in

the past or have been injured accidentally. Each localized lesion and corresponding

observed change in his or her behaviour forms (at least) a hypothetical link be-

tween an anatomical structure and some function. However, an obvious di�culty

in examining damaged brains is that the studies cannot be designed. It can well

be the case that a patient having a lesion in an area of interest has also other

lesions around the cortex, the outer grey matter of the brain. In this situation, it

is unclear what lesions impair the performance of test tasks and how they possibly

interact. A matter of an additional concern exists. There is no guarantee that the

functional organization is not a�ected by lesions themselves. If the organization

is altered, the conclusions are not relevant for understanding the function of the

normal brain.

Lesion studies usually aim at clarifying the nature of the organization in the

normal brain. Sometimes the scienti�c interest is focused on �nding explanations

for abnormal behaviour and, further, on understanding di�erent types of variation

in the human population. In a situation like this, an immediate question is whether

the variability in the behaviour is linked with the variability in some anatomical

feature of the brain or not. To get insight into this problem, it is necessary to be

able to make measurements of the physical sizes of relevant brain structures such

as sulci, gyri, etc. In the past, post mortem studies were the only source of detailed

anatomical knowledge, but during the last decades progress has been made. Cur-

rently, it is possible to examine brain structures noninvasively from live individuals,

using anatomical imaging techniques. To exemplify, Leonard et al. (1993) studied

group di�erences between dyslexics and controls by acquiring anatomical planar

magnetic resonance (MR) images from prespeci�ed slice positions. The authors

made measurements from an area covering planum temporale and planum parietale

and were able to �nd indications about association between the relative sizes of

10



certain structures and dyslexic behaviour. This study and other ones of similar

type show that anatomical scanning can be an enlightening method if the objec-

tive is in the search of anatomical correlates explaining some unusual behaviour.

However, it does not seem to be an appropriate method to investigate how normal

brains work.

EEG o�ers considerable advantages over the previous methods in that the elec-

trical brain activity can be monitored. What is more, the temporal resolution of

the recorded signals is high, allowing us to observe changes in the activity within

the range of milliseconds. EEG signals are often recorded together with ordinary

responses. A drawback is that the spatial localization of activations is problematic,

and, typically, the precise origin of the signals remains undetected.

We conclude that all the methods mentioned have some major de�ciencies in

providing information upon the actual brain processing. The development of FNI

has meant a breakthrough for neuroscienti�c methodology. With special scanning

devices it is now possible to monitor spatio-temporal phenomena in the live human

brain. Some of the techniques are totally noninvasive and allow the brain to be

scanned repeatedly, which makes it possible to apply a variety of experimental

designs. This is an important property for constructing detailed brain maps of

functional organization.

There are several imaging modalities available for FNI experiments. An espe-

cially important modality, and the one that will receive our main attention in this

thesis, is functional magnetic resonance imaging (fMRI). fMRI is based on nuclear

magnetic resonance (NMR) and is an example of a vast collection of magnetic

resonance (MR) techniques (Stark & Bradley, 1988). fMRI is a noninvasive and

nonionising acquisition technique. Consequently, it allows test individuals to be

scanned an unlimited number of times without any known risk for health. Because

of these appealing features, fMRI is acknowledged to be one of the most promising

measurement methods for neuroscience.

The justi�cation for using fMRI to detect neuronal processing depends on com-

plex couplings between neuronal activity, brain haemodynamics and magnetic char-

acteristics of brain tissue. According to current neurobiological knowledge, neu-

ronal activation is accompanied with changes in local haemodynamics such as a

local increase in cerebral blood �ow and blood oxygenation. The results of dynam-

ics in microvasculature have been obtained by applying imaging spectroscopy to

examine the exposed cortex of di�erent animal species (Malonek & Grinvald, 1996).

The observations are expected to be generalizable to humans, however. The most

important haemodynamic changes pertain to oxyhemoglobin and deoxyhemoglobin

concentrations, which are expected to a�ect the local magnetic characteristics of

the tissue (Binder & Rao, 1994). Moreover, the radio frequency signals recorded by

the scanner are sensitive to changes in homogeneity of the local magnetic �elds of

the brain, and thus a series of resonance signal intensities can be used to delineate

brain activity (Figure 1.1). Due to the complexity of the scanning procedure, the
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neuronal dynamics

haemodynamics

observations

Figure 1.1 The fundamental coupling principle underlying the use of fMRI.

signal levels do not have an absolute meaning, but this is not a severe limitation

in practice.

An example of other imaging modalities is positron emission tomography (PET).

PET is an older technique than fMRI, and some of its features are inferior to those

of magnetic resonance methods. First, the acquisition time for one scan can be

about half a minute, and, second, the spatial resolution is usually lower than that

of fMRI. Furthermore, the injection of radioactive contrast agents is required in

PET studies limiting the total number of scans from a single individual. However,

PET maps can provide an absolute measurement (unlike fMRI maps) which allows

for investigating brain metabolism, for example. Both PET and fMRI are indirect

measurement techniques by nature.

The e�cient use of the fMRI technique in brain research is based on experi-

mental designs. In experiments, a controlled stimulus is used to stimulate a test

person. The recorded haemodynamic responses contain information on what parts

of the brain are activated as a result of stimulation. fMRI data are a series of

planar images Y1; : : : ; YT recorded at regular time intervals from chosen slice posi-

tions. Since each image consists of (rectangular) voxels, the whole data Y can be

thought of as a collection of spatial time series Y (s) = (Yt(s)). The MR signals are

typically contaminated by scanner noise and uncontrolled physiological factors.

The objectives of the analysis of complex experimental fMRI data are usually

localization of neuronal activation and estimation of activation magnitudes. In this

thesis we shall concentrate on Bayesian estimation of spatial properties of stimu-

lation e�ects. Our goal is to construct a prior distribution for brain activations

which could be used to incorporate neuroscienti�c expert knowledge into statisti-

cal analysis of fMRI data. Our approach is based on a neuroscienti�c assumption

that brain functions are localizable. We aim to model the set of activated voxels as
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a union of clusters. In our terminology, a cluster is a local area in the cortex. We

assume that relevant expert knowledge can be expressed in terms of spatial extents

and locations of clusters. The prior model has a hierarchical structure: we �rst

model the locations of the strongest response in the clusters and after that haemo-

dynamic e�ects, given the centre points. Our method provides applied researchers

with an opportunity to utilize their experience when carrying out statistical analy-

ses. It also challenges neuroscientists to specify numerically their prior conceptions

of spatial characteristics of the brain function.

Several other priors for modelling fMRI data have been suggested earlier. The

main ideas of some of these approaches are included in our proposal. Descombes

et al. (1998b) emphasized the spatial smoothness of activation characteristics in the

prior and applied nonparametric Bayesian smoothing methods (Besag et al., 1995)

for this purpose. Spatial smoothness is an ingredient also in our prior, but we do

not need to utilize smoothing techniques. Hartvig & Jensen (2000) suggested that

spatial contextuality and also the fraction of activated voxels should be controlled

in the prior. Similar ideas play an important role also in our approach. In our

model, the fraction of the activated areas is modelled by choosing a prior for the

number and extent of the clusters. The proposal in Hartvig (1999) is closest to our

work. In that work a con�guration of activation centres is introduced and activa-

tion magnitudes in the vicinity of the centres are described using a parsimonious

parametric model. Following Hartvig (1999), we utilize point processes in prior

modelling. Our work di�ers from the approach in Hartvig (1999) in that we do not

assume that activation magnitudes in the clusters can be modelled using simple

parametric methods.

Our second step, after choosing a prior for activations, is to model the con-

ditional distribution of signal measurements given the activations. This is not a

straightforward task since the noise is usually spatio-temporally autocorrelated. In

applications, the actual size of the correlations depends on the acquisition method.

The presence of these correlations is often evident but, nevertheless, they have not

always been accounted for in Bayesian analyses. Our opinion is that the careful

modelling of the noise processes is an inseparable part of a responsible analysis of

fMRI data. In this thesis, we show how Gaussian conditional autoregressive ran-

dom �elds can be �tted to the observed data, and we illustrate the consequences

of omitting the dependence structure in the noise.

Following the Bayesian paradigm, we draw inference on brain activations from

the posterior distribution of stimulation e�ects, which is the conditional distribution

of activations given the data. We show in this thesis that, using a cluster prior, it is

possible to make inference both on activation magnitudes and cluster centres. Also,

since we have explicitly de�ned the concept of a cluster, we can carry out inference

on other cluster characteristics than only centres. An appropriate measure of an

activated cluster that could be considered is the integrated activation strength

which describes the overall magnitude of the haemodynamic response.
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There exist also many non-Bayesian statistical methods for fMRI problems.

Statistical parametric mapping (SPM) techniques belong to this category, and they

are probably the most widely used by neuroscientists today (Friston et al., 1995a).

The SPM consists of several statistical tests on the global null hypothesis that

there are no activated voxels in the brain. The tests provide a means for �nding

an �estimate� for the set of activated voxels if the null hypothesis is rejected. In

practice, the use of the tests is straightforward, but the distribution theory of

the test statistics is rather involved and relies heavily on asymptotic properties of

stationary Gaussian random �elds. We shall consider the philosophy of SPM in

some detail in this thesis in order to be able to relate SPM and Bayesian analyses.

The material of the thesis is organized in the following manner. Two sets of

data, sound-stimulus data and word-stimulus data, are presented in Section 2, and

typical characteristics of fMRI data are illustrated. The latter data will be used only

to exemplify outlying observations, but the sound-stimulus data will be analysed

in detail later in Section 7. After having introduced functional data, we review

in Section 3 previous statistical methods for localizing activations and estimating

haemodynamic responses to stimulus. We �rst review Bayesian techniques and

then discuss the signi�cance tests which are the core of the SPM methodology.

In Section 4, we introduce the concept of an activation pro�le and suggest how

the clustering of activations in pro�les can be modelled. We propose a marked

Gibbs point process as a prior for a pro�le. In Section 5, we compress the orig-

inal spatio-temporal data to purely spatial data and suggest how to model the

conditional distribution of the compressed data given the activation pro�le. The

choice of the prior and likelihood leads to a posterior distribution for a pro�le. As

is typical in spatial applications, the posterior is high-dimensional and, therefore,

standard numerical integration algorithms and conventional Monte Carlo methods

(Ripley, 1987) are not practical for summarizing the posterior. To carry out infer-

ence, we construct in Section 6 a computationally intensive Markov chain Monte

Carlo (MCMC) sampling algorithm for obtaining samples from the posterior.

The proposed Bayesian approach is applied in Section 7 to analyse the sound-

stimulus data. In particular, we consider the sensitivity of the results to the choice

of the prior. The priors used re�ect di�erent levels of prior knowledge on an audi-

tory processing of interest. In Section 8, we compare structural and Markov random

�eld priors by analysing synthetic data. The comparison is based on an index which

measures the discrepancy between a true pro�le and a posterior distribution. In

Section 9, we brie�y consider alternative means for quantifying prior beliefs and for

modelling the noise in the data. The purpose of the section is to clarify the role of

several parameters of our prior and likelihood models by contrasting our models to

some modi�ed ones. Finally, Section 10 contains some observations related to our

approach and fMRI statistics in general. The material in the Appendix consists of

a few technical details which have been omitted from the main text.
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2 Acquisition and characteristics of fMRI

data

Functional MRI studies are conducted for �nding answers to neuroscienti�c ques-

tions pertaining to the functional anatomy of the brain. These investigations con-

sist of planning the experiment (the stimulation paradigm) and acquiring both

functional and anatomical scans. We describe the data collection procedure and

discuss the main properties of fMRI data. The discussion will form a basis for

the statistical modelling in later sections. We illustrate some of the steps using

example data from neuropsychological experiments. The present section will cover

more details than are actually used in this thesis. Primarily, they are included for

the sake of completeness and also to show the rich variety of aspects of fMRI data.

2.1 Acquisition of fMRI data

An experimental design includes a speci�cation how test persons are stimulated

during functional scanning. The use of a design usually aims at a high-level con-

trol over the brain processing during scanning. The planning of an experimental

design is mainly based on psychological expertise. Perhaps the simplest method

to stimulate an individual is to apply a periodic on/o�-stimulus paradigm where

two test conditions alternate during the scanning. Chapter 8 of Frackowiak et al.

(1997) contains a comprehensive exposition on several types of study designs.

The planning of an experiment is not entirely a matter of neuropsychological

thinking since there is always some measurement error (to a varying degree) in

acquisitions. From the statistical viewpoint, a central issue is the construction of

such designs that, when used, give the least variable estimates of changes in local
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brain haemodynamics. For example, in the situation of a simple on/o� paradigm

the task is to adjust the frequency of the stimulus. According to classical results

in signal processing, the amount of information on stimulus e�ects is maximized

if the spectral density of the noise is low at the forcing frequency of the stimulus

paradigm and some of its harmonics; see Chapter 2 of Brillinger & Krishnaiah

(1983).

The functional scans are acquired from selected slice positions relevant to the

objective of the study. Modern scanners can be used for the whole brain imaging

but unimportant slices can also be ignored. In the imaging procedure the chosen

slices are scanned repeatedly in time. The dynamics of scanning depends on two

parameters: the acquisition time for one image and the waiting time before start-

ing a new acquisition. These time constants together characterize the temporal

resolution.

The acquired functional MR images consist of pixels on a regular grid. The

typical size ranges from 64 � 64 to 256 � 256. The �eld of view (FOV) together

with the number of pixels determine the nominal spatial resolution. In functional

imaging, the typical side length of a pixel varies between 1.0 and 3.0 mm. Since

each pixel has a third dimension due to slice thickness, the term voxel (in place of

a pixel) is also frequently used. Often, brain slices are chosen to be about 5.0 to 7.0

mm thick. Since the primary purpose of functional scanning is to investigate the

temporal behaviour of the resonance signal in a brain location, it is more natural

to consider the observed data as a collection of spatial time series rather than as a

stack of images.

It is a common practice to acquire also whole brain anatomicalMR scans when

functional experiments are conducted. This provides an anatomical reference for

any statistical conclusions concerning the functional images. The brain pixels

can be segmented to white matter, grey matter and cerebro-spinal �uid (CSF)

(Lange, 1996). For studying the brain function, it is the grey matter of the human

cortex that the scienti�c interest is focused on since information is processed and

manipulated there. Accordingly, the analysis of the data could be restricted to

signals from the grey matter. However, the current practice has ignored the use of

segmentations in this way. The main reason for considering three-dimensional vol-

umes instead of two-dimensional cortical sheets is that nonnegligible inaccuracies

occur in extracting the cortical surface from anatomical images and in registering

it to functional images. We shall follow this usual convention.

As example data, we introduce here two series of functional scans from neu-

ropsychological experiments: sound-stimulus data and word-stimulus data. The

two data sets represent part of the dyslexia project of the Department of Psychol-

ogy of Jyväskylä University in June 1997. The project was conducted to study

di�erences in auditory processing between controls and dyslexic individuals, who

have speci�c di�culties in reading and writing. Both data sets consist of 40 scans

taken from a single sagittal brain slice from the left hemisphere of the same dyslexic
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person, the �rst test person scanned. The particular subject was an adult male.

In each scanning session, the stimulus paradigm had the same alternating periodic

pattern. In sound-stimulus sessions, the test persons alternatingly listened to the

background noise of the scanner or a speech-like sound produced by manipulat-

ing human voice digitally (together with scanner noise). The manipulated sounds

were generated by reducing the fast spectral components characteristic to speech,

and the �nal stimulus consisted of pure sine wave tones. In word-stimulus ses-

sions, the digital sounds were replaced by short spoken words. Both stimuli were

presented to subjects binaurally using a computer playback system, a magneti-

cally shielded transducer system and air conduction through paired plastic tubes

(Vuorinen, 2000). Both stimuli began about 5 seconds before scanning to overcome

the delay of haemodynamic response. The design is sketched in Figure 2.1.

In this particular dyslexia study, limitations on hardware made it necessary

to examine functional data from one brain slice only. To choose the most relevant

position for the functional slice, the functional scanning was preceded by anatomical

MR imaging. The suitability of a slice was evaluated on the basis of anatomical

structures identi�ed on the slice. For studying dyslexia, examples of brain regions

of interest are the planum region and the auditory cortex. The slice containing

important anatomical structures was selected for the functional study. Figure 2.2

illustrates the anatomy from the selected functional slice position. When referring

to the segmentation in Figure 2.2, we shall make use of the abbreviations that

follow each region name. Since image voxels outside the brain are usually less

interesting, we shall make use of a brain mask in all the �gures of the thesis to

extract the actual brain voxels. The technical details, such as the adjustments of

the imaging device, are listed in Table 2.1.

2.2 Typical features of fMRI data

Stimulation e�ects are of primary interest in the acquired fMRI data. Before

estimating these e�ects from the data, it is usually appropriate to preprocess the

data to remove certain uninteresting features, which will be listed below.

Functional experiments are usually carefully arranged in order to optimize the

quality of the data. To minimize disturbances in the MR signals recorded, auxil-

iary devices can be used to help the test persons to lie motionless while scanning

(Kwong, 1995). Despite these e�orts, observations tend to contain harmful features

which must be removed during the data preprocessing steps. A typical disturbance

is a gradual rigid head motion. To understand how it a�ects the signal, we note

that the overall mean of voxel time series is dependent on the location of the voxel.

If the head of a person rotates slowly during the scanning, any voxels for which

the baselines of the surrounding voxels have large di�erences may contain trends.

Head movements can be corrected by applying translations and rotations in the

three-dimensional space so that the sums of squared di�erencies between corre-
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Table 2.1 Values of the imaging parameters in the experiment.

scanner Siemens Impact Expert

�eld strength 1.0 Tesla

dim. of slices 5 mm � 220 mm � 220 mm

MRI pulse sequence spin echo

time to repeat (TR) 730.0 ms

time to echo (TE) 15.0 ms

spatial resolution 512 � 512

pixel size 0.43 mm � 0.43 mm

fMRI pulse sequence Turbo-Flash

TR 90.0 ms

TE 56.0 ms

spatial resolution 256 � 256

pixel size 0.86 mm � 0.86 mm

acquisition time (TA) 14.0 s

· · ·

1 2 3 4 39 40

A

B

Figure 2.1 The design of the sound-stimulus experiment. Test condition A cor-

responds to listening to manipulated sounds. During condition B a test person

listened to the background noise of the scanner. The scanning intervals are num-

bered as 1; 2; : : : ; 40. After onset of either stimuli there was a wait of a few seconds

before functional scanning; see the gaps between the scanning intervals.
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sponding voxel intensities of a base image (a �xed functional scan, for example)

and other functional images are minimized. The correction is based on all informa-

tion contained in the rectangular MR images; even voxels outside the brain can be

utilized. This strategy has a potential to give more precise displacement estimates

than those calculated using information from brain tissue only. Otherwise, the

signal intensities outside brain tissue are considered unimportant and are ignored

from the actual statistical analysis since they do not provide any information on

changes in brain haemodynamics. Inappropriate aligning techniques may in�uence

the spectral properties of the signal. In fact, while aligning the images e�ectively

removes low-frequency components, incorrect image alignment can increase the

high-frequency components of the noise, as reported by Hajnal et al. (1994).

The search of outlying observations applies as well in fMRI data analysis as

in most empirical studies. An informal but useful diagnostic method for detecting

large deviations in brain signals is to visualize data using spatio-temporal displays.

In Figure 2.3 signal series from the word-stimulus data are shown. A logically

sound strategy to detect outliers is �rst to determine the time points that have

been corrupted, and then examine numerically in what brain areas the voxel time

series contain untypical values at the selected time points. In this particular data,

the 18th value in the middle of the time series is clearly an outlying observation.

The voxel series that were severely corrupted are highlighted on the right in Figure

2.3.

Outliers may arise in several di�erent ways. In echo planar imaging (EPI)

studies, the MR signal stabilizes only after a few seconds from the start, and, con-

sequently, the �rst images are outliers which are usually discarded completely. In

the single slice imaging, out-of-plane motion spoils the MR signals because aligning

the functional images in the imaging plane does not lead to a reasonable correc-

tion. For the multislice imaging, out-of-plane motion is not as serious a problem.

The presence of outliers can be regarded as a missing data problem. However, it

seems that the tendency in fMRI research is to guarantee that experimental data

are of high quality rather than to correct data for low-quality observations. In the

dyslexia study, a conventional �xation device was used to provide moderate head

restraint.

In group studies, data must be collected from several individuals. Pooling

information over more than one subject necessitates the replacing of the natural 3D

coordinate system of the brain by normalized coordinates since individual anatomy

exhibits large variation. The change in coordinates transforms the individual brain

anatomy to standardized anatomy. Several normalization techniques exist but

perhaps the most popular is the piecewise-linear method published in Talairach &

Tournoux (1988).

As shown above, certain data manipulation operations are recommended at a

preprocessing stage. However, manipulation may increase the risk of invalidating

the results of subsequent statistical analyses and may lead to biased inference. In

fMRI problems there are risks since it is quite easy to create (applying software
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Figure 2.2 An anatomical image from the functional slice position (left) fromwhich

four regions relevant to the study were marked (right). The names of the regions:

1 transverse temporal gyrus (or primary auditory cortex) (TTG), 2 temporal bank

of planum (PT), 3 parietal bank of planum (PP) and 4 superior temporal gyrus

(STG).

Figure 2.3 A 3�6 window where sudden head motion was visually detected from

the voxel time series of the word-stimulus data at 18th time point (left). The con-

taminated voxels are painted white (right). A voxel was considered contaminated

if the di�erence between the signal intensity (at 18th time point) and the mean of

a series exceeded three times the standard deviation of the series.
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packages) new modi�ed data, visualize the manipulated intensities, and choose for

detailed analysis the data that accords with one's prior expectations. As Lange

(1996) has remarked: �Voxels can be grouped, stretched, smoothed, replaced or oth-

erwise altered in in�nite number of ways to cause desired features to appear or

disappear at will.� One of the most important things how statistics could con-

tribute to FNI should be removing such arbitrariness from the data analysis of

functional images.

We shall now discuss the characteristics of brain activations in detail. The

e�ects of controlled stimulation have both spatial and temporal properties. Neu-

roscienti�c theories, lesion studies and studies based on neuroimaging support the

hypothesis that to some extent neural processing is segregated to brain regions

especially reserved to some special function. It follows that the spatial locations

of stimulus-related neuronal processing depend on the experimental design. As to

temporal properties, the dynamical range of neurons in brain tissue is in millisec-

onds. The time homogeneity of the neural response is an assumption which fMRI

analyses are typically heavily based on. If inhomogeneity arises, a possible reason

may be an attentional e�ect, adaptation to stimulation, or learning. Usually, it is a

design issue to guarantee the stability of the response in experiments. Sometimes,

learning e�ects may be of interest themselves (Frackowiak et al., 1997).

The haemodynamic responses have slightly di�erent spatial and temporal prop-

erties from the neural ones. Spatially, the haemodynamic response is di�used a few

millimeters around a neurally activated tissue (Malonek & Grinvald, 1996). Tem-

porally, the haemodynamic response is slower than the neural response. In fMRI

literature it is common to describe this slowness using concepts called delay and

dispersion. The size of the delay determines how long it takes before the MR signal

level starts to change as a result of neural activity. Dispersion, in turn, quanti�es

the speed at which the signal rises to its maximum and falls to its minimum level.

The delay is usually between 4 and 10 seconds (Bandettini et al., 1993; Friston

et al., 1994b). A challenging issue in fMRI research is that the size of delay and

dispersion may vary spatially around the cortex (Lange & Zeger, 1997).

A natural means to estimate the temporal pattern of a haemodynamic response

to stimulus is by �tting a convolution model. In on/o�-experiments, the design

can be described as a sequence (Dt)
T
t=1 of 1's and �1's. Then, a temporal pattern

(Xt(s))
T
t=1 can be modelled as

Xt(s) = a0(s)Dt + a1(s)Dt�1 + a2(s)Dt�2 + : : : ; (2.1)

where a0(s); a1(s); : : : are some parametric weights. An advantage in convolution

models is that there is an obvious relation between haemodynamic delays and

dispersions and the model weights. We do not consider the modelling of temporal

features of haemodynamic responses in detail in this thesis. Discussion on this

topic can be found elsewhere in fMRI literature; see Rajapakse et al. (1998), for

example. The temporal features are usually less interesting for brain mapping
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purposes, but taking them into account leads to potentially sharper localization.

Figure 2.4 illustrates the temporal patterns that the local haemodynamics can take

as a result of instabilities in neuronal processing.

Unknown delays and dispersions are not a problem in our sound-stimulus data.

Our data were temporally sparsely acquired as the stimulation paradigm of the data

shows (Figure 2.1). Therefore, unknown haemodynamic delays can be ignored in a

natural way. In this thesis, our continuing assumption is that the temporal charac-

teristics of haemodynamic responses are known. To simplify the presentation, we

also presume that these temporal patterns are spatially invariant, i.e., Xt(s) � Xt.

The interpretation of the single voxel time series is not always as straightforward

as we have explained above. Sometimes external processes, such as rigid head

motion, are associated with the stimulation paradigm. In that kind of situation, the

head motion induces extra variability to the intensity time series which resembles

activation but which must not be interpreted as such. Logically, this phenomenon

is called artefactual activation. Hajnal et al. (1994) devised a simple method for

detecting signs of stimulus-correlated motion. First, an image (which may be any

one of the scans) is selected from the stack of functional images. Then, the selected

image is matched with all other images of the functional series by calculating

optimal translations and rotations. In this way, arti�cial data can be constructed,

and the results obtained from the analysis of both the original and the arti�cial

data can be compared. If the �ndings are highly consistent with each other, the

reliability of the results from the original data is obviously questionable. Stimulus-

correlated motion tends to increase the number of activated clusters although it

can also have potential to hide true activations. Handling the correlated motion is

basically a design issue since the interpretation of the results is always conditional

on the assumption that the experiment is controlled by the design.

We shall next discuss some aspects of noise which contaminate MR measure-

ments from the tissue. As already explained, rigid head motion distorts the MR

signal. There are also other sources of noise, such as respiration and heart beat-

ing, which originate from normal body physiology. Both respiration and cardiac

e�ects a�ect the CO2 level and the O2 consumption, which the resonance signal is

sensitive to.

The strength of the noise variance varies among voxels in a slice as Figure 2.5

indicates. The proximity of large blood vessels tends to increase the variability of

the noise (Kwong, 1995). There is some evidence that part of inhomogeneity in

variances can be explained so that noise deviation actually scales with the level of

the baseline signal. If this is the case in the data, it can be advantageous to analyse

the data on a logarithmic scale. From Figure 2.6 it can be observed that the overall

mean of the series and variance are related, but not strongly in our sound-stimulus

data.

A sensible strategy for treating respiratory and cardiac e�ects is to measure

the evolvement of these processes during the scanning and use them as covariates
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0 20 40 60 80 100

scans

Figure 2.4 Simulated temporally homogeneous and inhomogeneous haemodynamic

responses: stimulation paradigm (�), a homogeneous response pattern (� �) and

an inhomogenous one (���). The homogeneous pattern was generated by applying

the convolution formula (2.1) to an arti�cial stimulation series (or design series) of

length 100. The inhomogeneous temporal pattern is a randomly scaled version of

the homogeneous one.

5 10 15 20 25 30

75
 m

m

96 mm

−0.4 0.0 0.4

Figure 2.5 Voxelwise standard deviations of residual series in the sound-stimulus

data (left) and voxelwise temporal autocorrelations at lag one in the same data

(right). The residual series were calculated by �tting a linear model to data using

the design series of the experiment as an explanatory series. On the left, the

numerical values are measured in MR units of the scanner.
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in statistical modelling. However, the inclusion of physiological covariates requires

the establishing of a mathematical model linking the measured processes to the

observed MR signals. This link is avoided if physiological e�ects on the MR signal

are measured directly inside the brain. This can be done by locating structures of

the cerebral blood circulation system and predicting physiological covariates from

anatomically selected time series. A natural solution to the prediction problem is

to assume that respiratory and cardiac e�ects have a �xed frequency or that at

least this frequency varies smoothly in time (Petersen, 1998). A drawback in this

approach is that problems with uncertainty of the locations of vessels are encoun-

tered. In general, spatial periodograms can be useful in indicating quasiperiodic

physiological �uctuations in a brain slice (Lange & Zeger, 1997).

The background noise level of the magnet also a�ects the quality of fMRI data.

To estimate the size of variation in the MR signal due to the scanner itself, we

selected a collection of voxels outside the body of the test subject and extracted

voxel time series from this set for further analysis. In this way, we estimated that

the median standard deviation of the background noise was around 1 % of the

overall MR signal level in brain tissue in the sound-stimulus data.

Typically, the noise is correlated between intensities of voxels close both in

space and time. This spatio-temporal dependence structure is the joint e�ect of

several endogenous physiological processes. In Figure 2.5, estimated voxelwise

temporal autocorrelations of lag one in the sound-stimulus data are shown. The

temporal correlations are weak, which is probably a consequence of the temporally

somewhat sparse acquisition method. We observe that some voxels near anatomical

boundaries exhibit a larger temporal dependence than voxels elsewhere. Time can

be regarded as an additional dimension to spatial dimensions when modelling fMRI

data. However, it has a slightly di�erent role since it is far less natural to presume

the stationarity of the spatial dependence structure than that of the temporal

correlation structure. A reason for this is that spatial correlations may be local,

that is, they may depend on the local brain anatomy. Nevertheless, most of the

current practice has adopted the stationarity of spatial autocorrelations. Obviously,

if space stationary dependence models are to be applied, they must be �tted to

the mean correlation structure over the whole brain slice. By de�nition, the mean

spatial correlation at some spatial lag l is the average of spatial correlations between

all pairs of voxels which are separated by l. The mean spatial correlations in the

four main directions (with respect to the coordinate system of the image) of noise

series of the sound-stimulus data are shown in Figure 2.7. It can be seen from

this �gure that the strength of the correlations are nearly of the same size in all

four directions. In other words, no anisotropic phenomena were detected when the

mean structure was analysed.

The material of this section has covered several key issues in fMRI research:

the role of experimental designs, data acquisition, preprocessing steps, activation

processes, and the features of noise. Consequently, there are many aspects in fMRI
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problems that might deserve to be subject to statistical research. We shall limit

the scope of the thesis to spatial aspects of fMRI data. In the following section we

shall review part of the statistical research on fMRI problems and emphasize the

aims and means of spatial modelling.
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Figure 2.6 The standard deviation of the residual series of the sound-stimulus

data plotted against the overall mean of observed voxel time series. Each point in

the �gure corresponds to one brain voxel. The residual series were calculated as

explained in the caption of Figure 2.5.
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Figure 2.7 Empirical mean spatial autocorrelations in the sound-stimulus data in

the coordinate directions of the image (left) and in the twomain diagonal directions

(right). On the horizontal axis, the distance is measured in voxels. Distance of 10

voxels corresponds to 8.6 mm.
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3 A review on statistical methods for fMRI

data

The purpose of the present section is to overview some previously suggested sta-

tistical analysis techniques for fMRI data. We shall discuss the assumptions, goals

and computational methods of the papers emphasizing the treatment of spatial

aspects in functional MRI data. Nearly all the methods proposed concern the

problem of estimating the haemodynamic processes or localizing neuronal activa-

tions. The statistical methods di�er from each other considerably and they will

cover both Bayesian issues and frequentist signi�cance tests. In addition to spatial

modelling ideas, other topics that will be discussed in detail are the parallels and

dissimilarities of the two fundamentally di�erent approaches in the context of FNI.

3.1 Bayesian estimation of brain activations

Bayesian estimation of the presence of activation is considered among others in

Everitt & Bullmore (1999) and Hartvig & Jensen (2000). In the presence/absence

analysis an indicator �eld I = (I(s)) is de�ned in the space of brain voxels S
in order to use it to classify voxels to activated (I(s) = 1) and non-activated

(I(s) = 0). Both papers suggest that each voxel time series Y (s) of a fMRI data

Y = (Y (s)) is reduced to a scalar-valued test statistic Q(s) which is sensitive to

stimulus-related changes. The key idea is to build a model for f(Q(s)jI(s)), the
conditional density of the observation Q(s) given the state of activation I(s), and

to describe prior beliefs in the indicator �eld I in terms of a prior distribution.

This leads to a joint distribution model for (Q; I), and the properties of I after

observing Q can be inferred from the posterior distribution I jQ.
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In both papers, the components ofQ were assumed to be conditionally indepen-

dent given I . Everitt & Bullmore (1999) made further assumptions and considered

the components I(s) independent and identically distributed a priori. In that case,

the components of I are independent in the posterior and the marginal posterior

probabilities Pr(I(s) = 1jQ(s)) can be calculated directly from the Bayes rule

f(Q(s)jI(s) = 1) Pr(I(s) = 1)

f(Q(s)jI(s) = 1) Pr(I(s) = 1) + f(Q(s)jI(s) = 0) Pr(I(s) = 0)
: (3.1)

Hartvig & Jensen (2000) considered the approach by Everitt & Bullmore (1999)

ine�cient since the spatial clustering of activations was ignored from the prior

model of I . In principle, clustering can be accounted for by applying a spatially

correlated prior model for I . A problem with correlated priors is that there are no

computationally e�cient formulas available for calculating the marginal posterior

probabilities of I . The only solution is to apply computationally intensive Markov

chain Monte Carlo (MCMC) techniques for estimating the posterior probabilities.

The authors of Hartvig & Jensen (2000) recognized that it can be su�cient to carry

out local inference around each voxel s if the objective is to make inference on the

state of I(s). In local inference, a neighbourhood Ns of a voxel s is chosen and a

model is formulated only for sub�eld I(Ns) and a subset Q(Ns) of all observations

Q. The authors suggested several local uniform correlation prior models for the

sub�eld I(Ns), proposed inference to be drawn from I(Ns)jQ(Ns) and derived

expressions in a closed form for the marginal posteriors I(s)jQ(Ns). Ideally, it

would be more e�cient to make use of all the data and condition on Q rather

than only on Q(Ns). However, most of the information provided by the data is

contained in Q(Ns), and, therefore, it can be sensible to ignore data outside the

neighbourhood Ns of s and utilize cleverly constructed analytical approximations.

To contrast the local approach with the more conventional global approach, it

must be emphasized that MCMC simulations of the posterior of I can be used to

calculate estimates for any probabilities and it is not necessary to restrict attention

to marginals I(s). In applications, the crucial issue is whether relevant questions

can be answered in terms of marginal probabilities or not.

A common feature in the two papers is that the stochastic properties of noise

are not fully accounted for. Assuming the conditional independence of the com-

ponents of Q, given I , is equivalent to assuming that noise processes are spatially

uncorrelated. Clearly, this is a simpli�cation and is made for mathematical conve-

nience. Since the noise in fMRI data is spatially correlated, it should be re�ected

in the statistical models.

Descombes et al. (1998b) focused on the calculation of Bayesian point estimates

for several spatial and temporal characteristics of activation processes. They as-

sumed that the properties of fMRI data can be described using a few spatial pa-

rameter �elds, one of which is an indicator �eld I for activation. The aim was to

calculate maximum a posteriori (MAP) estimates for these spatial parameters. The

main idea in the construction of the prior for the parameters was to smooth pa-

rameter �elds avoiding smoothing between activated and non-activated voxels and
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encouraging sharp boundaries for activated clusters. To this end, they employed

nonparametric Bayesian smoothing techniques. The activation indicator �eld was

assigned a contextual prior, and the way how the other parameter �elds were

smoothed depended on the segmentation de�ned by the indicator �eld. In other

words, the suggested prior has a hierarchical structure. The point estimate of the

activation indicator �eld provides a classi�cation of the voxels. The choice of the

likelihood function of the parameter maps was based on mathematical convenience

and did not have a probabilistic justi�cation. Salli et al. (2001) also employed the

segmentation idea and showed that the sensitivity to weak activations increased as

the result of �spatial contextual clustering�.

Kornak et al. (1999) considered the Bayesian estimation of indicator �eld I and

magnitudes of activations. The data Y were modelled as

Yt(s) = �(s) + �(s)Xt(s) + �t(s); (3.2)

where �(s) is an overall mean in voxel s, X(s) = (Xt(s))
T
t=1 is the temporal pattern

of stimulus-related activation in voxel s, �(s) represents the magnitude of response

in s and � = (�t(s)) is zero mean noise term. Thus, the temporal patterns of

activations were allowed to depend on location. The patterns X(s) were estimated

parametrically simultaneously with terms �(s) from the data. To incorporate spa-

tial prior knowledge, � was factorized as �(s) = ��(s)I(s), where �� is a smooth

�eld and I is a positively correlated indicator �eld. The Gaussian conditional au-

toregressive (CAR) �eld was used as the prior of �� and a thresholded intrinsic

Gaussian Markov random �eld as the prior of I . Then, the estimated magnitudes

Z(s) = �̂(s) were modelled as

Z(s) = ��(s)I(s) + �(s); (3.3)

where � is an uncorrelated zero mean Gaussian process with spatially homogeneous

variance. The motivation for using a multiplicative model is of similar type as in

the approach by Descombes et al. (1998b).

Taskinen (1998) used the model

Yt(s) = �(s) + �(s)Xt + �t(s); (3.4)

where the temporal pattern of activation (Xt)
T
t=1 was assumed to be known and

the same in all voxels. The approach di�ered from that of Kornak et al. (1999) in

the way how the stochastic properties of the noise � were modelled. First, all �elds

�t = (�t(s)) were assumed to be independent and identically distributed, having a

Gaussian CAR distribution. Second, the noise � was modelled as a heteroskedas-

tic process using one precision parameter for each voxel. A pairwise di�erence

smoothing prior (Besag et al., 1995) was used to account for the smoothness in

the coe�cients �(s). In a similar manner, the uncertainty due to many additional

precision terms was accounted for by introducing another smoothing prior.
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Hartvig (1999) suggested a spatio-temporal prior model for the activation pro-

cess which can be used to make inference from both spatial and temporal properties

of activations. The model for data Y is assumed to have the form

Yt(s) = �(s) + �(s)X�

t + �t(s); (3.5)

where �(s) is the magnitude of activation in s, X� = (X�
t ) is the temporal pattern

of activation (the same for all s), and � = (�t(s)) is a correlated error process. The

temporal pattern X� was assumed to be a sum X�
t = Xt + Gt where X = (Xt)

is a haemodynamically convolved design series and G = (Gt) is a random e�ect

describing the (possible) temporal instability of the activation process. It was

suspected that the level of attention of a test person, for example, can produce

departures from the time homogeneity of the MR response. The attention e�ect

G was assumed to follow a Gaussian (zero mean) random walk with increments

having a known variance.

The author suggested two models for magnitudes �(s): one model where the

magnitudes are restricted to be positive, and the other without any restrictions. We

shall �rst consider the restricted model. The modelling of the spatial features of the

approach was motivated by neuronal arguments. It was assumed that typically only

some parts of the brain are involved in the neuronal processing of interest during

the image acquisition. A set of points a1; : : : ; ak (in the continuous version of the

space of brain voxels) called centre points were introduced to represent the active

brain areas in such a way that haemodynamic e�ects occur only in the proximity

of the con�guration fa1; : : : ; akg. To construct the magnitude �eld corresponding

to the centre con�guration, a local spatial pro�le (Gaussian bell) was assigned

to each centre. A Gaussian bell B(s; b) is an exponential of a negative de�nitive

square form of the argument vector s. Bell characteristics can be represented as a

vector b = (c; �; d) the components of which are eccentricity c, angle of rotation �

with respect to the centre of a bell, and area d of contourellipse at half height. In

mathematical terms, the model for � is a superposition

�(s) = h1B(s � a1; b1) + � � �+ hkB(s � ak ; bk); (3.6)

where h1; : : : ; hk are some positive heights. The author claimed that �to some

extent [the bells in the sum above] can be thought of as individual [activation]

centres in the brain�.

By the formulation (3.6), the map of magnitudes � is parameterized by the

heights h1; : : : ; hk, centre points a1; : : : ; ak and bell characteristics b1; : : : ; bk. These

parameters can be represented as a marked point con�guration z = fz1; : : : ; zkg
where each point zi = (ai; (bi; hi)) is a combination of a location ai and a mark

(bi; hi). Depending on the stochastic properties of z, di�erent prior models for �

result. The author suggested a pairwise interaction Gibbs process for z having
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density

�pos(z) /
kY
i=1

[pa(ai)pc(ci)pd(di)ph(hi)]
Y
i6=j

	(zi; zj) (3.7)

with respect to a unit rate Poisson process in the product space of the (continuous)

search volume and the mark space. The densities pa; pc; pd and ph can be used

to control the number of centres, their location and the bell characteristics. To

complete the construction of the prior it is enough to specify these densities and

the interaction function 	. A repulsive interaction function 	 was used and the

degree of repulsion was modelled to be dependent on the similarity of the Gaussian

bells. The similarity of two bells, zi and zj , can be quanti�ed by the Kullback

J-divergence measure

dJ(zi; zj) =

Z
(fi � fj) log

fi

fj
; (3.8)

where fi and fj are the Gaussian densities corresponding to the bells. The sug-

gested pairwise interaction function was then

	(zi; zj) = 1� exp(�(dJ(zi; zj)=�)p); (3.9)

where � represents the radius of spatial interaction and p determines the type of

decay of the interaction. It follows that the inhibition depends both on the bell

characteristics bi and bj and on the locations ai and aj . On the other hand, the

heights hi and hj do not play any role.

The prior for a general signed �eld of parameters � was de�ned as the distribu-

tion of the di�erence �(1)��(2) of two positive �elds, �(1) and �(2). In order that

�(1) would correspond to the positive of part �+ = max(�; 0) of � = �(1)��(2), it

was required that the supports of �(1) and �(2) should not overlap much. This was

accomplished by considering the joint distribution of two marked point processes,

z(1) and z(2), which inhibit each other. Their joint density ~� was given by

~�(z(1); z(2)) / �pos(z
(1))�pos(z

(2)) exp

�
�

X
s

�(1)(s)�(2)(s)

�
; (3.10)

where 
 is a positive penalty parameter controlling the strength of inhibition.

The noise in Y was assumed to be homoskedastic, and a separable model was

used to model the spatio-temporal correlations of �. This leads to a likelihood

function for � and temporal (random) e�ect G. The resulting posterior is a Gibbs

point process, and an MCMC simulation algorithm was devised by the author to

obtain samples from the posterior. Essentially, the MCMC technique used was an

application of a general Metropolis-Hastings algorithm for �nite point processes

introduced by Geyer & Møller (1994).

To adjust the densities ph and pd it was suggested that the heights and areas

should have an uninformative prior but very small (in width or height) bells should
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be penalized. A similar penalization argument concerned heavily eccentric bells,

which guides the choice of pc. As to the value of 
, small values should be avoided.

Hartvig (1999) showed that if the noise is modelled as an uncorrelated process,

there is a value 
 = 
0 such that the two processes, z(1) and z(2), are independent

in the posterior. In principle, the posterior independence of these processes permits

inference to be drawn separately from the positive and negative parts of the � �eld.

However, it was not shown whether the proposed value of 
 is large enough in

practice. Also, this suggestion depends on the number of scans, which is somewhat

strange. The rationale behind the use of 	 was not stated clearly. However, it

is fairly easy to see how the interaction function in�uences the role of the prior.

Plainly, if inhibition is weak, the bells may overlap each other and the points in the

con�guration z = fz1; : : : ; zkg can be harder to interpret. At the other extreme,

if inhibition is strong, � will be a superposition of distinct Gaussian bells. This

is probably too restrictive a prior assumption since each bell is given by a simple

parametric function.

The last two Bayesian papers that we shall review here are Descombes et al.

(1998a) and Hartvig (2000). They di�er slightly from the Bayesian proposals above

in that the focus was neither on localizing activations nor on inferring magnitudes

of activations. Instead, Descombes et al. (1998a) considered Bayesian methods for

noise reduction to restore the complete spatio-temporal activation signal from a

series of scans. Hartvig (2000), in turn, aimed at drawing inference on neuronal

�elds by deconvoluting pro�les.

We discuss �rst the paper by Descombes et al. (1998a). In this approach, the

activation signal was assumed to be smooth in space and time. The idea was to con-

struct a robust smoothing prior for the activation process, calculate the maximum

a posteriori (MAP) estimate of the activations and treat this estimate as a new,

less contaminated data. To calculate the MAP estimate, a version of simulated

annealing was applied for this purpose. The MAP estimate can then be treated as

data which will be the subject for further analysis. No parametric assumptions on

activation signals were made. In particular, the design plays no role in the proce-

dure. The authors argued that the preceding noise reduction step before inferential

steps tends to lead to improved inference. The suggested method is not genuinely

Bayesian since it leads to an improper posterior distribution. However, from a

purely operational point of view, this is not a complication since the objective is in

calculating the posterior mode, not posterior probabilities. Petersson et al. (1999)

argue that a Bayesian restoration of a spatio-temporal activation signal is not rec-

ommended since the e�ect of bias on the restored signal can be more di�cult to

understand than the bias created by a linear smoothing �lter, which is commonly

used in image analysis. The point is that it is not straightforward to model a

stochastic relation between restored intensities and unobserved activations.

Hartvig (2000) made an attempt to model coupling between spatial haemo-

dynamic e�ects and the underlying neuronal �eld in order to make inference on
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the latter �eld. A basic assumption was that a linear model such as (3.4) cap-

tures the activation information from the data Y . As in Taskinen (1998), the

temporal pattern of activations, X = (Xt), is assumed to be known. Instead of

modelling the original data Y in the analysis, the least squares estimate of � (de-

noted here by Z) was considered. The compressed data Z can be expressed as a

sum Z(s) = �(s) + �(s), where � is a spatial zero mean Gaussian process. The

map � was modelled as a spatial convolution of a neuronal �eld � = (�(s)) by the

formula

�(s) =
X
v

k(s; v)�(v); (3.11)

where k(�; �) is a convolution kernel. The motivation for considering spatial decon-

volutions is that the haemodynamic process does not necessarily provide enough

localized information on neuronal processing since the blood oxygen level dependent

(BOLD) resonance signal is typically di�used a few millimetres in the microvas-

culature (Malonek & Grinvald, 1996). The variates �(v) of the neuronal �eld �

were modelled as independent and identically distributed in the prior. This prior,

common to all variables �(s), was de�ned as a mixture of three distributions in

the following way. First, the conditionals �(s)j�(s) > 0 and �(s)j�(s) < 0 were

speci�ed. Second, mixing probabilities p+ and p� were assigned to them in such

a way that the sum of p+ and p� is less than one. Then, the prior is the mixture

of the two conditionals and the Dirac distribution where the weight of the Dirac

probability measure is 1 � p+ � p�. It follows that a priori a given �(s) can be

zero with positive probability.

In principle, available prior information on the neuronal �eld � can be taken

into account when specifying the component distributions. To apply the convo-

lution approach, an appropriate choice for the width of the smoothing kernel k is

necessary, and recognizing this, Hartvig (2000) suggested a method for estimating

the width as well as other hyperparameters from the data. Finally, a highly devel-

oped simulation technique was proposed for drawing inference from the posterior.

We comment here on two features of the approach above. Firstly, an uncor-

related model was �tted to the spatial noise process � = (�(s)) in the paper. It

follows that part of the errors will be included in � in the posterior. Consequently,

it is expected that the sizes of spatial correlations estimated from the raw residuals

of �̂ and from the model residuals Z � E(� jZ) will not match. In fact, this is

exactly what was observed in the diagnostic considerations of the analysis. This

indicates that more sophisticated noise models should be used which account for

the presence of spatial correlations in fMRI data. The second comment is related

to the meaningfulness of the approach itself. A kind of drawback in this approach

is that the � �eld does not have a much simpler structure than �. Usually, the

statistical models aim to �nd simple explanations. Another issue of concern is that

the neuronal �eld was assigned a noninformative prior. However, since the fMRI

data cannot provide direct information on any neuronal �eld, it follows that the
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posterior variability of � is not necessarily moderate. Naturally, neuronal �elds

are of considerable interest, but more informative priors for � should be used if

possible.

As explained, our continuing theme is to discuss spatial phenomena in fMRI

data. Nevertheless, it is important to note here that Bayesian methods have been

utilized in fMRI studies also in many other ways, such as temporal modelling of

voxel time series (Kershaw et al., 1999; Kershaw et al., 2001). Bayesian thinking

has also proved to be useful in studies of other imaging modalities, in improving

the quality of reconstructed PET images, for example (Alenius & Ruotsalainen,

1997; Sastry & Carson, 1997; Kao et al., 1998). These topics are beyond our scope,

and therefore we shall not pursue discussion on these applications here.

3.2 Random �eld tests on activations

Perhaps the most popular analysis technique for detecting activated brain voxels is

the statistical parametric mapping (SPM) method, which provides several signi�-

cance tests for localizing haemodynamic responses. At its simplest, the approach

consists of �tting a linear model (3.4) to data Y and calculating a statistical para-

metric map (SPM), the least squares estimates of all �(s) divided by their standard

errors:

G(s) =
�̂(s)

s.e.(�̂(s))
(3.12)

The essence of the method is to examine the map G, test the signi�cance of some

of its geometrical features and base the localization on the test results.

Early approaches towards analysing SPMs are contained in Friston et al. (1991)

and Worsley et al. (1992), where voxelwise values of an SPM were referred to the

quantiles of the distribution of the maximum statistic of a stationary Gaussian

random �eld. If the observed maximum of the SPM is statistically signi�cant,

the global null hypothesis is rejected and the voxels, in which the SPM score

exceeds the chosen quantile, are considered to be activated. Since each voxel can

be assigned a P-value from the reference distribution, the approach is called voxel-

level inference. The main contributions of these articles were the following. First,

it was observed that the inference becomes unnecessarily conservative if spatial

correlations between the SPM scores are ignored. Second, the authors were able to

derive a useful approximation for the tail distribution of the maximum functional.

To detect brain activations, it is natural to consider also other properties of

SPMs than only intensities in individual voxels. Friston et al. (1994a) set a height

threshold th for an SPM G to create a binary map and analysed the spatial ex-

tents S1; : : : ; SN of the resulting contiguous suprathreshold patterns (or clusters)
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C1; : : : ; CN . In mathematical terms, this is stated as

fs j G(s) > thg = C1 [ � � � [ CN : (3.13)

Poline & Mazoyer (1994a) and Poline et al. (1997) extended this approach by

combining evidence against the null hypothesis from both the spatial extent Si
and the peak height Pi of a cluster Ci. The way how the two characteristics of a

cluster can be combined in testing is not unique, and recognizing this, the authors

suggested two di�erent combination ideas. In order to �nd out which clusters

are statistically signi�cant, the following two basic properties of suprathreshold

patterns were applied. First, the clusters Ci are approximately independent of each

other, and, second, the number of clusters,N , is approximately Poisson distributed

(Adler, 1981). Using these principles, the distribution of the maximum of the

clusterwise statistics was derived. This kind of cluster-level inference requires the

speci�cation of the height threshold th, and hence the testing of clusters is not

unique in the same way as that of voxels.

In addition to the voxel- and cluster-level methods above, Friston et al. (1995a)

introduced inference on the set-level. In this case, two thresholds are needed to

specify the test, a height threshold th for SPM and a spatial extent threshold ts for

cluster sizes. The height threshold th determines the clusters C1; : : : ; CN as in the

cluster test, but now clusters having smaller extent than the extent threshold ts are

discarded, and the �nal test statistic is then the number of clusters (M , say) that

survive in the second thresholding. The signi�cance of an observed value ofM can

be calculated, noting that the total countN follows a Poisson distribution, and that

the distribution of the extent Si of a suprathreshold cluster Ci is approximately

known (Friston et al., 1994a). If the observed count is signi�cant, the union of

the survived clusters is an estimate of the set of activated voxels. Otherwise, the

estimate is the empty set.

We conclude that hypothesis tests have been proposed on three levels of spatial

hierarchy for SPMs: voxel-, cluster- and set-level.

The approximations for the distributions of the test statistics under the null

hypothesis are valid if it can be assumed that the SPM of interest is a reasonable

approximation of a di�erentiable strictly stationaryGaussian random �eld. Clearly,

the probabilistic properties of an SPM are completely characterized by its spatial

autocorrelation function and its variance, if the assumption is valid. If analytical

approximations of the reference distributions are not accurate enough, Monte Carlo

tests can be used at the expense of longer computation time. Part of the relevant

results on Gaussian �elds have also been generalized to other statistic �elds, such

as t�, F� and �2��elds (Worsley, 1994; Cao, 1999).

To achieve the desired level of regularity for an SPM, it is typically necessary

to smooth the original data linearly. The width of the smoothing kernel is a

compromise: the new data should be smooth enough so that the theory of smooth

Gaussian random �elds is applicable, and at the same time, �ne small-scale details
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of the original data should be retained. Since smooth maps � remain almost

unchanged in a smoothing operation, one can argue that smoothing is safe when

the true activations are quite smooth. It is important to notice that a smoothing

operation provides a nonparametric estimate of activation magnitudes in a natural

way. The level of smoothing is frequently reported as the full width half maximum

(FWHM) of the smoothing kernel. The consequences of linear �ltering on the

results are twofold. On one hand, the sensitivity of a test usually increases against

activation signals having the same width as the smoothing kernel. On the other

hand, the signi�cant activations may be displaced by a few voxels and the sensitivity

to detect signals having di�erent width may decrease. This means that the choice

of the kernel width will be re�ected in the results. One solution is to smooth the

data using several kernels and simultaneously examine the data in many spatial

scales, as suggested by Poline & Mazoyer (1994b). If this strategy is adopted, it

is obvious that the appropriate range of kernel widths decreases as the number of

scans increases.

Lange & Zeger (1997) worked with original unsmoothed data and advocated

for focused (or regional) tests on brain activation. The inferential idea in focused

inference can be described in the following way. Let �̂ be an estimate for �, � the

covariance matrix of �̂ and R a set of p brain voxels. To test a hypothesis �R = 0,

we can employ the test statistic

CR = �̂
T

R�̂
�1
R
�̂R; (3.14)

where �R is the covariance matrix of �̂R. Assuming that the noise process is multi-

variate Gaussian, the statistic CR follows approximately the chi square distribution

with p degrees of freedom under the null hypothesis. The null distribution is exact

if the covariance structure is estimated accurately. The distributional properties

of CR can be derived analytically and there is no need to apply asymptotics of

Gaussian random �elds. It is also important to observe that the topological or

geometrical properties of the set R do not play any special role in the form of the

statistic CR or in its null distribution since these properties are implicitly contained

in the covariance matrix �R. In contrast, the probability structure of a statistical

parametric map over a set R is always closely related to the geometry of R in a

way which can be quanti�ed only approximately.

The statistic CR resembles the S-statistic by Worsley et al. (1995). By de�-

nition, S is the sum of squares over the whole SPM. It follows that S equals to

the C-type statistic if zeros are put to the o�-diagonal elements of the covariance

matrix �. The null behaviour of S is more complicated than that of CR. However,

an approximative solution is available. In principle, the test (3.14) is straightfor-

ward to use. However, in case R is large, inverting �̂R may be computationally

problematic. Thus, a regional test is practical only when R has a moderate size.

To evaluate the performance of the localization tests, two concepts, sensitivity

and speci�city, are commonly used in fMRI literature. Sensitivity is synonymous
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to the power of a test, and accordingly, a method is called sensitive if it is able

to detect the occurrence of weak activation signals. Here, the word detection

means that the presence of activation somewhere is observed ignoring the accuracy

of localization. Speci�city, in turn, is not an equally well-de�ned concept. In

informal terms, a method has strong speci�city if most of the voxels of the set of

estimated activations are truly activated. Friston et al. (1995a) note that both

cluster- and set-level inference have weaker speci�city properties than voxel-level

inference. The lack of speci�city means in practice that detected brain activity

cannot be attributed to individual voxels but only to a collection of voxels. This is

a fundamental feature of spatial testing and cannot be avoided. The same authors

also recognized the in�uence of the spatial characteristics of an activation map

� on the detecting power. For example, voxel-level inference is powerful against

activation maps containing high peaks, cluster-level inference in turn detects peaks

with at least moderate spatial extent, and set-level inference is powerful if the

map consists of many peaks. On the basis of simulation studies, Friston et al.

(1995a) reported that generally the three test procedures are hierarchically related

to each other in such a way that set-level inference is more powerful than cluster-

level inference and that cluster-level infererence is more powerful than voxel-level

inference. The word generally means here that complex stimulation paradigms are

commonplace and that activation maps � are likely to have a spatially dispersed

shape in such experiments. We conclude that sensitivity and speci�city are usually

con�icting requirements.

In the construction of the test (3.14), geometrical features of activations were

not emphasized. In fact, CR merely measures the overall magnitude of �̂R. It seems

likely that a CR-based test is typically less powerful than SPM tests since it is not

based on likely spatial properties of activations. On the other hand, the statistic

CR has potential sensitivity to spatially completely unstructured alternatives (for

example, unsmooth situations) compared with the tests for SPMs. The prevalence

of such activations in real data sets is questionable, however. Lange & Zeger (1997)

did not comment on the potential power of their test. The degree of speci�city of

the regional test depends crucially on the size of the region of interest. If R is a

large region and the observed value of the test statistic is signi�cant, it is not clear

what voxels are responsible for the result of the test, and thus the speci�city of

the test is necessarily low. A bene�t from restricting the scope of inference to a

subset is that then the test will not be overconservative. This also increases the

speci�city of the test procedure. To �nish the discussion, it is worth mentioning

that published arguments against focused testing exist: the use of pre-speci�ed

subregions has not received wide acceptance among applied scientists, and it has

been criticized as being scienti�cally unreasonable (Discussion in Lange & Zeger

(1997)).
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3.3 Contrasting frequentist and Bayesian fMRI analy-

ses

We have overviewed two philosophically dissimilar lines of statistical reasoning,

frequentist and Bayesian, for carrying out inference in this section. Since there are

two disparate ways of thinking, we here clarify the situation by contrasting these

fundamental mainlines in the context of fMRI.

The core of the SPM methods is the nonparametric testing of global null hy-

potheses. The emphasis is on ingenious hypothesis testing, that is, on a clever

choice of a test statistic. The SPM tests are not based on any explicit statistical

model of an activation map, and consequently, the inferential procedure does not

provide any model-based estimates for activations. This kind of concentration on

hypothesis testing is sometimes called the �hypothesis testing fallacy� in fMRI liter-

ature. The SPM theory cannot provide any con�dence for the detected activation

pattern. The point is that the random �eld theory can give an approximation for

the probability of detecting (false) activation when no activation is present. How-

ever, there is not any useful answer how the detected set of activations is related to

the true set of activations if there are truly activated voxels in the search volume.

When applying Bayesian methods, the inference is drawn from the posterior

distribution of an activation map. The posterior is constructed by suggesting a prior

model and a likelihood function for the activation process. The prior describes our

prior beliefs in activations. The likelihood, in turn, re�ects the stochastic properties

of the noise in imaging. Thus, both the noise and the activation phenomenon are

subject to modelling. This di�erentiates Bayesian and SPM analyses since in SPM

only the noise is addressed for stochastic modelling.

A frequentist approach attempting to model activations may run into di�-

culties since there are no obvious suitable parsimonious parametric models for

describing spatial properties of haemodynamic e�ects. The importance of par-

simonious models in estimation is a well-known statistical principle. Generally,

models with an economic structure lead to less variable estimates for the e�ects

of interest (Altham, 1984). Historically, the lack of activation models was the

original motivation for considering random �eld techniques. However, adopting

the Bayesian paradigm, one can allow a large collection of parameters, control the

e�ective dimension of the parameter space by choosing appropriate priors, and

thereby increase the e�ciency of the inference on activations. In SPM, the only

means to account for any prior knowledge is the choice of the signi�cance test.

We conclude that some connections do exist between the aforementioned SPM and

Bayesian proposals but that they cannot be reconciled perfectly. In general, classi-

cal signi�cance tests and posterior probabilities cannot be related in a satisfactory

manner. A discussion on this topic can be found in Bernardo et al. (1992).

Finally, we remark that an important di�erence between SPM and Bayesian

analyses is the way how spatial smoothing is carried out. The linear spatial smooth-
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ing of fMRI data, which precedes SPM analyses, is not necessary in those analyses

which do not utilize probabilistic results of the theory of di�erentiable Gaussian

�elds. The elegance of the Bayesian approach is that spatial smoothness can be

imposed on activation maps in the prior and the data itself is left unchanged.

3.4 Comment upon Bayesian methods for fMRI data

We have reviewed several Bayesian approaches for analysing fMRI data in this

section. The level of prior modelling has varied considerably among the proposed

Bayesian models. Both Everitt & Bullmore (1999) and Hartvig & Jensen (2000)

modelled the prior probability that a voxel is activated in the search volume.

The latter authors also accounted for spatial contextuality of brain activations.

Descombes et al. (1998b), Kornak et al. (1999), and Taskinen (1998) emphasized a

single feature of activations, the spatial smoothness of activation intensities, which

was accomplished by applying nonparametric Bayesian smoothing techniques. The

approach by Hartvig (1999), in turn, led to a high-level model since the basic el-

ements of describing the activation are (low-dimensional) spatial objects instead

of single voxels. Our view is that high-level approaches may be reasonable in the

context of fMRI. To defend our claim, we refer to a discussion in Friston et al.

(1995a) where the authors consider the in�uence of the experimental design on

activation pro�les. They remark:

�It should be noted : : : that many experiments discount functional in-

tegration and attempt to elicit activity in one area that is functionally

specialised for a single sensorimotor or cognitive process. In this in-

stance, the signal may well comprise one (or a small number of) foci.�

Thus, in certain situations useful prior information is available, and this knowledge

may be structural, for example the probable number of activation foci. Since high-

level approaches are ideally suited for making full use of structural prior knowledge,

we conclude that high-level prior models deserve more statistical attention. We ex-

pect that neuropsychological expertise can be utilized more e�ciently if structural

models are applied. Following Hartvig (1999), we shall consider prior models based

on point processes in the next section.
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4 Bayesian modelling of spatial activation

processes

In the following three sections we shall develop a new Bayesian approach for mod-

elling spatial aspects of haemodynamic responses to controlled stimulation, propose

a statistical model for noise in voxel time series and construct a computationally

intensive algorithm for drawing inference from the posterior distribution of brain

activations. In this section, we consider the problem of constructing a prior model

which could be used to describe a certain set of prior assumptions on activations.

We shall �rst state these assumptions and then suggest a marked point process for

prior modelling.

4.1 Activation pro�les

In earlier sections we concentrated on the Bayesian estimation of a single stim-

ulation e�ect. Sometimes it is desirable to contrast several e�ects since relevant

neuroscienti�c hypotheses may involve comparisons among responses to di�erent

stimulation types. In order to combine information from several e�ects, it is ad-

visable to acquire all functional data during the same scanning session. Otherwise,

uncontrolled contaminating factors may in�uence the comparability of the func-

tional images. In practice, several (m, say) designs can be concatenated to a single

design which consists of m consecutive temporal blocks:

design 1 design 2 � � � design m: (4.1)

Let us assume that each block is an on/o�-design, where the stimulus paradigm

consists of two alternating states, the only di�erence between the blocks being that
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the stimulation type is di�erent. In this case, the common temporal characteristics

of the designs can be represented as a series D = (Dt)
p
t=1 of 1's and �1's where p

is the number of scans in a block. We presume that the corresponding temporal

pattern of the haemodynamic response X = (Xt)
p
t=1 (common to all individual

designs) is known, that is, suitable estimates for the convolution weights of the

equation (2.1) are available. Assuming the design is balanced, the overall mean of

the temporal pattern (Xt)
p
t=1 is zero. Then, the expected value of the observed

series Y (s) can be modelled using two parameters for each voxel:

E Yt+p(k�1)(s) = �(k)(s) + �(k)(s)Xt (4.2)

where k = 1; : : : ; m are the blocks, t = 1; : : : ; p are points of time in each block,

�(k)(s) is the mean level of the resonance signal in voxel s in block k, and �(k)(s)

is the stimulation e�ect. To study contrasted e�ects, sums of the form

�(s) = �T �(s) = �1�
(1)(s) + � � �+ �m�

(m)(s) (4.3)

can be estimated in each voxel, where the choice of the contrast vector

� = (�1; : : : ; �m)
T (4.4)

re�ects the scienti�c hypothesis to be studied. Adopting the same nomenclature

as in Friston et al. (1995b), we shall call sums (4.3) pro�les. To exemplify, pro�les

such as

�(1); �(1)��(2) and �(1)�(1=2)(�(2)+�(3)) (4.5)

are contrasts that might be of interest in an fMRI study (assuming m � 3).

If contrasted e�ects are to be estimated, one can choose whether to assign a

prior for all the e�ects �(k) = (�(k)(s)), k = 1; : : : ; m, or whether to construct

directly a prior for a pro�le � = (�(s)). We suggest that if there are a few pro�les

or just one which are of primary neuroscienti�c interest, it may be advantageous to

adopt the latter procedure. The reason for this is that then the parameter space is

potentially smaller, which may decrease the computational burden in our MCMC

calculations (Section 6). In this thesis, we shall consider the Bayesian estimation

of a single contrast and thus our aim is to construct a prior model for a pro�le.

A pro�le is a measure of a functional change in signal intensity. In this thesis,

we assume that functional changes typically occur only in some brain regions and

that they are clustered. More precisely, we presume that an indicator �eld

I�(s) = 1f�(s) 6=0g(s) (4.6)

consists of clusters of ones. We shall also assume that these clusters are coherent.

By this we mean that intensities �(s) and �(u) have the same sign whenever s and

u are contained in the same cluster. In other words, we believe that in general it

is plausible to expect neighbouring voxels to respond to stimuli coherently.
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Our prior model for pro�les is based on what can be known about clusters a

priori. Our view is that neuroscienti�c experience from previous fMRI studies can

provide useful information on the locations and number of clusters. Naturally, the

probable locations and counts depend on the design and also on the contrast which

de�nes the pro�le. For example, the number of activation foci may be small if the

objective of the experiment is to highlight the functional segregation of the human

brain, as Friston et al. (1995a) claim. Moreover, experience from lesion studies may

provide valuable information on the organization of the brain function, see Shaywitz

et al. (1995) and a commentary to it by Rugg (1995). Also, there is information

available on the spatial extent of a cluster, that is, how large a cluster is likely to be.

These arguments motivate us to consider a model whose distributional properties

can be expressed in terms of locations, counts and extents. To this end, we suggest

the following decomposition

�(s) = �1�1(s� w1) + � � �+ �n�n(s � wn); (4.7)

for a pro�le where w = fw1; : : : ; wng is a con�guration of voxels (i.e. points in

a discrete space), �1; : : : ; �n are spatial functions, and �1; : : : ; �n are real-valued

scaling factors. We shall utilize this decomposition in the following way. First, each

term in the sum (4.7) will correspond to one cluster of the pro�le �. Consequently,

the number of points in w equals the number of clusters in �. Second, a point

wi is to represent the location of the strongest response in a cluster. We shall call

these points cluster centres. The role of cluster centres is interesting since they can

be used to localize a spatial activation pattern using a single voxel. A motivating

reason for emphasizing the importance of strongest responses (or local peaks in a

pro�le) is that in statistical parametric mapping (SPM) analyses it is a common

practice to report the positions of these voxels in standardized brain coordinates.

Third, the functions �i will be used to model the coherence and the spatial extent

of clusters. We accomplish this by using functions which are nonnegative and are

null outside some neighbourhood of the origin. For consistency, we also require

that functions �i attain the maximum at the origin. Then, the strongest responses

are located at the points wi. Finally, the terms �i are used to scale the magnitudes

of �i. Clearly, these scaling terms also determine the signs of clusters.

We shall �rst consider a model for �. We describe haemodynamic e�ects around

a cluster centre by the model

�(s) = Bp(s) +

kX
j=1

�jBd(s� vj); (4.8)

which is a sum of a parent bell Bp and daughter bells Bd scaled by positive �j
and shifted by vj . This construction is a step towards nonparametric Bayesian

modelling compared with the approach by Hartvig (1999). The purpose of this

formulation is to introduce a structure inside clusters which could be used to control

some properties of clusters in the prior. We shall treat the bells Bp and Bd as
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�xed spatial objects, whereas the number k of the daughter bells and parameters

�j and vj will be assigned priors. We assume that Bp and Bd are non-negative

spatial functions which are centred at the origin and have the same maximum.

In particular, the two bells could be isotropic and normalized Gaussian bells with

possibly di�erent spatial width. When using Gaussian bells, we shall cut the tails

of the bells in such a way that bell values less than 5% of the bell maximum are

rounded to zero. Clearly, this kind of thresholding determines the spatial extent

or radius of the bell.

We explain now how the choice of k, �j and vj in�uences the shape and extent

of �. First, the spatial extent of a cluster is related to parameters vj . If all vj
are small, the resulting cluster has small extent. Second, the shape of a cluster

depends on the scaling factors �j : if all the scaling terms �j have small positive

values, the shape of � resembles that of the parent bell Bp. In particular, � has a

peak near the origin. We note that the spatial extent is smallest when all �j vanish.

Third, the number k of daughter bells describes the complexity of a cluster. Figure

4.1 illustrates our construction and exempli�es e�ects that the heights �j and the

spatial width of a Gaussian daughter bell Bd can have on the intensities �(s).

4.2 Prior modelling of pro�les

To assign probabilistic properties to the sum (4.7), we treat the con�guration w,

functions �1; : : : ; �n and scaling terms �1; : : : ; �n stochastically independent of

each other a priori. The independence property is justi�ed in our context since we

do not expect any general relationships between the locations, spatial extents and

magnitudes of clusters. We shall complete the construction of the prior by sug-

gesting priors for w, � and �. We emphasize here that our prior has a hierarchical

structure: the prior of w is a model for the locations of clusters and the conditional

prior � jw is a model for stimulus-related e�ects, given the locations.

We shall assume that the number of daughters k is Poisson distributed with

some mean �d. Then, �d represents our uncertainty on the complexity of a cluster.

We denote by h� the continuous prior density from which the scaling parameters

�1; : : : ; �k are drawn independently. We suggest that h� should be supported in

the unit interval since our purpose is to model clusters with one main peak. The

most uninformative choice is to let h� follow the uniform distribution on the unit

interval. With this extreme choice, the maximum of � is not necessarily attained at

the origin and the interpretation of the cluster centres wi will be unclear. However,

we can increase the prior probability that the parent bell forms the highest peak

of a cluster by preferring small values for scaling factors �j .

We shall denote by hv the prior density from which the centres v1; : : : ; vk of the

daughter bells are drawn independently of each other. Here, the reference measure

of the density hv is the counting measure � in U , the voxellated version of R2 (or

R
3 if the data consist of more than one brain slice; the set of brain voxels S is
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Figure 4.1 The intensities of nine di�erent � which all consist of one parent bell

and two daughter bells (k = 2). The common heights of the daughter bells are

0.2 (left column), 0.4 (middle column) and 0.6 (right column). The radii of the

daughter bells are 2 (top row), 4 (middle row) and 6 (bottom row) voxels. The

daughter bells have the same relative position in all nine spatial patterns. The

radius of the parent bell is three voxels. All the patterns are magni�ed in order to

facilitate the visual inspection. In reality, the voxels have smaller size.
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regarded as a subset of U). We have now suggested a model for � using local point

con�gurations

d = f(v1; �1); : : : ; (vk; �k)g; (4.9)

which we shall call daughter con�gurations. It follows from the construction that d

is an inhomogeneous Poisson point process with intensity measure

�dhvh� d (� �m1). Clearly, the daughter point process has density

fd(di) = e1��d �
n(di)

d (4.10)

with respect to a unit rate Poisson process �d in U �R+ whose intensity function

is hv(v)h�(�) with respect to � �m1. An advantage of the construction based on

the sum (4.8) is that if the parent and daughter bells are smooth, there is no need

for controlling the smoothness of the resulting pro�le in any way. In other words,

the implicit prior requirement about the smoothness of pro�les is automatically

satis�ed.

The role of the parameters �i is to scale the magnitude of clusters. In fact,

in the model (4.7) we treat separately the strength of activation (using �) and

the shape of the local activation surface (using �). Hartvig (1999) applied a prior

which penalizes Gaussian bells having magnitude close to zero. Our choice is to

apply an informative prior on the counts n(w) rather than on the heights. An

uninformative prior density h� for � (with respect to Lebesgue measure) could be

the normal distribution with mean zero and variance suitably large.

We shall construct a prior model for the con�guration w of cluster centres

so that the prior can be used to control the locations and the number of the

centres. In practice, the prior expectations on the locations of centres concern

some anatomically de�ned regions in the brain. Let us suppose R is a brain region

(or a union of regions) which is expected to exhibit stimulus-related activation.

This belief can be quanti�ed by introducing a density h(s) in S (with respect to

�) which will represent the prior density of the location of a random point in w.

The simplest way to describe prior beliefs is to assume that h is constant in R and

S n R. Adopting this strategy, it is su�cient to specify the prior mean of

n(w\R)=n(w); (4.11)

the portion of centres falling into R. If there is no obvious reason to favour some

brain regions, one can always use the ignorance choice h(s) / 1. The prior number

of the centres can be modelled by introducing a discrete distribution  for the

counts n(w). In this context, a relevant aspect of the total count which could

be modelled is a probable upper bound of n(w). In other words, we specify how

distributed the indicator �eld I� can be a priori. Using the density h and the

distribution  , we can construct a simple tentative point process model for the
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centres by sampling the number of them from  and then drawing equally many

centres independently from h. The resulting process has density

w 7! e n(w)!  (n(w)) (4.12)

with respect to an inhomogeneous unit rate Poisson process with intensity h.

In addition to locations and counts of centres, there is one more aspect of prior

knowledge which can be used to decrease prior uncertainty on the con�guration

w. In the context of medical imaging, it may be natural to expect that the inter-

distance of two centres cannot be arbitrarily small. In particular, one may assume

that the distances between centres typically exceed some physical distance �. Neu-

ropsychological expertise can provide approximations for the probable intercentre

distances. From the modelling point of view, this means that the centres inhibit

each other a priori. To take inhibition into account, we modify the density (4.12)

and weight it by multiplying the density by a product
Q

i<j 	(wi; wj) of interac-

tion terms, where 	 is a spatial interaction function. We shall use the following

interaction function:

	(wi; wj) =

(
(kwi � wjk=�)p kwi � wjk � �

1 kwi � wjk > �:
(4.13)

Here, � and p are positive parameters which determine the size of inhibition as a

function of distance. The roles of these parameters are quite clear: as p increases

to in�nity, all pairwise distances less than � become increasingly heavily penalized,

whereas distances more than � will not be penalized. The special case p = 1
leads to the hard-core process. Generally, too large values of � limit the collection

of possible pro�les, whereas some prior information will be ignored if very small

values of � are used. Our opinion is that in applications it can be more natural to

use an inhibition technique based on Euclidean distances than one based on the

Kullback J-divergence measure, see (3.9). For the background on point processes

with pairwise interaction and �nite point processes in general, we refer to van

Lieshout (2000), Stoyan et al. (1995) and Daley & Vere-Jones (1988).

A slight di�culty is encountered when accounting for information on interdis-

tances. The modi�ed version of the density of the centre process does not have

the desired stochastic properties mentioned above. The distribution of a randomly

chosen centre will not any longer follow h(s), and a similar remark applies to  .

This problem can be solved by replacing h and  in (4.12) by corrected densities

h� and  �. Analytical solutions for this correction operation do not seem to be

available but we can get insight into the size of corrections by simulating the centre

process. The simulations can be carried out using an MCMC algorithm by Geyer

& Møller (1994). The details can be found in Appendix A.2. This leads to the

prior density

fw(w) / n(w)! �(n(w))
Y
i<j

	(wi; wj) (4.14)
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with respect to the Poisson process with intensity h�.

In our prior model formulation, a pro�le is parametrized by a marked point

con�guration x = fx1; x2; : : : ; xng where each point

xi =
�
wi; (�i;di)

�
(4.15)

consists of two components: a location wi and a mark (�i;di). We show here that

the process x can be regarded as a Gibbs point process, that is, it has a density

with respect to a Poisson process. To this end, we introduce a new unit measure

�w;� in M = S �R for which

d�w;� = h�(s)h�(�) d (� �m1): (4.16)

Now, let � be a Poisson process in the product space of M and the exponential

space D = 
(U �R+) equipped with an intensity measure ' = �w;� � �d. Then,

the Gibbs process whose density with respect to � is

�(x) = fw(w)

n(x)Y
i=1

fd(di) (4.17)

/ en(x)(1��d)n(x)!  �(n(x)) �
P

i n(di)

d

Y
k<j

	(wk; wj); (4.18)

is actually equivalent to our cluster process. We note that a sample from � is a ran-

dom con�guration z = fz1; z2; : : : ; zng where n, the number of points, follows the
Poisson distribution with mean one, the locations wi of the points zi =

�
wi; (�i; di)

�
are independent samples from h� and the points are independently marked.

We emphasize that the proposed interaction between two clusters, xi and xj ,

depends only on the intercentre distance kwi�wjk and not on the actual shape of

the two clusters. Consequently, a change in the model of � does not have any e�ect

on the likely number of clusters and their probable locations if the centre process

w is kept unchanged. In other words, we have separated intrinsic properties of

clusters and spatial interaction between clusters from each other.
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5 Modelling of the noise processes

In the previous section we introduced a prior distribution for pro�les as a �rst step

towards making posterior inference on haemodynamic e�ects induced by controlled

stimulation. In the following, we establish a probability model for data, given

the activation pro�le. Our objective is to consider noise models for fMRI data

which would be practical in computations while being adequate descriptions of the

distributional properties of errors in the observations.

5.1 Likelihood of an activation pro�le

We continue the discussion in subsection 4.1. In short, we assume that a concate-

nated design (4.1) has been applied and fMRI data Y have been acquired. Then,

the data Y can be modelled as

Y (s) =
h
X(�)X(�)

i��(s)
�(s)

�
+ �(s); (5.1)

where X =
�
X(�)X(�)

�
is the matrix of explanatory series corresponding to block

e�ects and stimulation e�ects; the exact form ofX can be found in Appendix A.1.

We also assume that a contrast vector � = (�1; : : : ; �m) has been chosen and aim

to �nd a likelihood function for the corresponding pro�le � = �T �. To begin

with, we note that if the noise � = (�(s)) is a Gaussian process and if, moreover,

the space-time covariance structure of � is known, all information in data on � is

carried by its generalized least squares estimate (GLS) �̂ = �T �̂. Therefore, once

a model for � is �tted, we may compress the original spatio-temporal data Y to

purely spatial data Z = �̂ without any loss of information. In the following, we
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shall consider a spatio-temporal Gaussian model for � and derive a formula for the

conditional density of Z j� which provides us with a likelihood function for �.

When constructing correlated models in spatio-temporal problems, a straight-

forward possibility is to treat spatial and temporal covariances separately. Let us

assume that the covariances of � can be represented as products

cov(�t(s); �k(u)) = wsuvtk; (5.2)

where W = (wsu) is a spatial covariance matrix and V = (vtk) is a temporal

correlation matrix. Then, if we use notation ~�
T
= [0 �T ], the compression can be

carried out in a voxelwise manner:

Z(s) = ~�
T
(XT V �1X)�1XT V �1Y (s); (5.3)

as is shown in detail in Appendix A.1. Interestingly, the compression is independent

of the choice of W . The compressed data Z is actually a sum Z(s) = �(s) + �(s),

where � = (�(s)) is a zero mean process. The relation between � and � is expressed

in the identity

�(s) = ~�
T
(XT V �1X)�1XT V �1�(s); (5.4)

and thus there is a simple relationship between the second-order moments of � and

those of �. In fact,

cor(�(s); �(u)) = wsu=
p
wsswuu; (5.5)

var(�(s)) = wss
~�
T
(XT V �1X)�1~�: (5.6)

It follows from the separability assumption that the spatial correlation structure

of � and each �t are equal. Also, the variances of � and each �t are proportional.

To model spatial correlation, we would like to use a spatial process whose density

can easily be expressed in a closed form. The reason for this is that we must be

able to handle the posterior density of �, and to this end, the likelihood of � must

not involve complicated expressions, such as inverses of large correlation matrices.

We choose to model � using a Gaussian conditional autoregressive process (CAR)

(Besag, 1974; Ripley, 1981). In mathematical terms, the joint density function of

� will be proportional to

exp
�
�1

2

�X
s

%(s)2�(s)2 +
X
l

�l
X
s�u=l

%(s)%(u)�(s)�(u)
��
; (5.7)

where � = (�l) is a spatial interaction parameter vector and % = (%(s)) is a

positive scaling (or precision) parameter. Here, � determines the spatial correlation

structure of �. The spatial parameter % adjusts the variance of the � �eld, and using

it we may model possible heteroskedasticity of the � process.
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Formula (5.7) de�nes a valid density if the quadratic form in the parenthesis

is negative de�nite. This imposes a restriction on the values that � can take. A

su�cient condition is that X
l

j�lj < 1 and �l = ��l (5.8)

for all lags l (Ripley, 1981). In principle, the components of � may take both

positive and negative values. However, all the variates �(s) are positively associated

if � is negative. Consequently, the �tted values �̂l will typically be negative in our

context since usually positive spatial autocorrelations are to be modelled. Clearly,

the choice � = 0 corresponds to spatial independence.

The application of the autoregressive model above means that we expect the

spatial dependence structure to be nearly homogeneous over the search volume,

i.e. independent of location. This follows from the formula for the density of the

process since the strength of interaction between each pair �(s) and �(s + l) is

governed by �l which does not depend on s. The model (5.7) is useful if it provides

a suitable �t when using only a few nonzero interaction terms �l. Naturally, these

terms correspond to small spatial lags l.

As to the temporal correlation matrix V , we do not impose any model assump-

tions on it, except we presume that � is stationary in time, that is, vtk � vt�k. Since

the number of voxels in the search volume is often high compared with the number

of scans T , the use of parsimonious temporal models is not always necessary when

estimating V . However, autoregressive (AR) processes frequently used in time se-

ries analysis provide a natural model family for V if a parametric approach seems

appropriate.

Assuming % and � are known, the likelihood function for � has the form

L(� jZ) / exp

 
�1

2

X
s

%(s)2(z(s)� �(s))2

!

� exp

 
�1

2

X
l

�l
X
s�u=l

%(s)%(u)(z(s)� �(s))(z(u)� �(u))

!
:

(5.9)

Since a pro�le � is parametrized by a con�guration x, this leads to a likelihood

for con�gurations, and we shall also use the notation L(x jZ) along with L(� jZ),
which should not cause any misunderstandings in the following sections.

As discussed in Section 2, measurements from brain haemodynamics are con-

taminated in several ways. It is not our purpose to decompose the noise and model

some of the noise components separately. This would lead to a detailed descrip-

tion of the noise mechanism, but is not of primary interest. Instead, we con�ne

ourselves to modelling the net e�ect of the di�erent sources of the noise.
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5.2 Estimation of spatial interaction and the precision

parameters

To use the likelihood function (5.9) in posterior analysis, we estimate � and %

and substitute the estimates into the posterior. The estimation errors will have a

negligible in�uence if the temporal degrees of freedom T � 2m is large enough. We

start the estimation procedure by �tting the temporal correlation matrix V and

the spatial interaction parameter � . Using the ordinary least squares residuals

�̂(s) = (I �X(XT X)�1XT )y(s); (5.10)

a nonparametric estimate of V can be calculated by pooling all voxelwise informa-

tion on temporal dependence. This leads to the estimate

v̂d =
1

jSj
X
s

P
t�k=d �̂t(s)�̂k(s)P

t �̂t(s)
2

(5.11)

for the autocorrelation at a time lag d. The natural order for estimating the model

parameters � and % is to estimate � �rst since it determines the spatial correlation

structure. Once � is estimated, the scaling terms % can be used to adjust the

voxelwise variances of the CAR model to match with the voxelwise variability of

the noise in the data. We suggest that the interaction parameter could be estimated

by �nding a value for � for which the mean spatial correlation (MSC) of the model

(5.7)

MSC(l) =
1

Nl

X
s�u=l

cor(�(s); �(u)) =
1

Nl

X
s�u=l

cor(�t(s); �t(u)) (5.12)

matches suitably well with the empirical mean correlations

[MSC(l) =
1

Nl

X
s�u=l

P
t �̂t(s)�̂t(u)qP

t �̂t(s)
2
P

t �̂t(u)
2

: (5.13)

Here, Nl is the number of pairs (s; u) such that s � u = l. Simulating the model

(5.7) using several values for the strength of interaction, one can �nd the range of

plausible values of � . At this point, the scaling parameters of the model (5.7) can

be chosen arbitrarily (% � 1, say) since they do not have any e�ect on the spatial

correlations. It is usually su�cient to consider only the �rst few spatial lags l since

spatial autocorrelations tend to decay to zero for large l.

The variances of � and the precision parameters are related by

%(s)2 = !(s)2= var(�(s)); (5.14)
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where !(s)2 is the variance of the unnormalized density

exp
�
� 1

2

�X
s

�(s)2 +
X
l

�l
X
s�u=l

�(s)�(u)
��
: (5.15)

In order to �t the precision parameters %(s), it is necessary to estimate the variance

of �(s) from the data Y and also the variance !(s)2 of the model (5.15), where �

is replaced by its estimate. Since the voxelwise variances of Yt(s) can be estimated

by

cvar(Yt(s)j�; �) = TX
t=1

�̂t(s)
2=(T � 2m); (5.16)

we have

cvar(�(s)) = 1

T � 2m

TX
t=1

�̂t(s)
2 ~�

T
(XT V̂ �1X)�1~�: (5.17)

The unconditional variances of CAR �elds do not have useful analytical expres-

sions. Therefore, !(s)2 has to be calculated for each s using Monte Carlo methods.

Since the autoregressive model (5.15) possesses the following simple formulae for

conditional mean and variance,

E(�(s)j�(�s)) = �(1=%(s))
X
u

�s�u%(u)�(u) (5.18)

var(�(s)j�(�s)) = 1=%(s)2; (5.19)

it is straightforward to apply Gibbs sampling (Gilks et al., 1996). The Monte Carlo

estimate of !(s)2 is then the empirical variance of the sample.

In fully Bayesian analyses, it is a rule to assign priors to all unknown nuisance

parameters and thereby account for the (prior) uncertainty in them. In this section,

we have chosen a di�erent route since we have suggested the estimation of the noise

parameters directly from the data. In other words, we have adopted an empirical

Bayes approach. We shall come back to this topic later in subsection 9.2, where

we discuss possibilities for fully Bayesian strategies.
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6 Markov Chain Monte Carlo sampling

We suggested in Sections 4 and 5 that inference on a pro�le � could be based on

the posterior distribution of the pro�le, which is the conditional distribution of �

given the compressed data Z. The density p of the posterior (with respect to �) is

proportional to the product of the likelihood function and the prior density:

p(x jZ) / L(x jZ) �(x): (6.1)

We recall that � is the marked Poisson process constructed in Section 4. For conve-

nience, we suppress the dependence on Z and use the notation p(x) and L(x). In

order to draw inferential conclusions, it is necessary to be able to calculate poste-

rior probabilities of events of interest or, more generally, compute posterior means

of functionals of marked point con�gurations x. Then, the posterior inference is

reduced to the calculation of integrals of interest with respect to the posterior mea-

sure. What makes this a nontrivial task is that in our case the posterior distribution

has no analytical form simple enough for carrying out integration analytically or

by applying standard numerical methods. The utilization of classical Monte Carlo

methods is also problematic since there is no apparent direct technique available

to obtain samples from the posterior. A solution for drawing samples is to ap-

ply Markov Chain Monte Carlo (MCMC) methods (Gilks et al., 1996). Using

MCMC, realizations x(1);x(2); : : : are simulated by constructing a stochastic tran-

sition mechanism in the parameter space. The transitions generate a Markov chain

that converges to the target distribution.

In our point process approach, the dimension of the parameter space varies

with the size n of the con�guration x = fx1; : : : ; xng. Therefore, we cannot simply

apply sampling techniques designed for �xed dimensional probability distributions.

Green (1995) devised a general reversible jump MCMC algorithm for simulating
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distributions in which the dimension is random. Geyer & Møller (1994) focused

on simulating �nite Gibbs point processes in the exponential space (see Carter

& Prenter (1972)). Both methods are suitable for handling variable dimensional

problems. Here, we shall apply the latter technique for sampling our posterior

p(x).

6.1 MCMC sampling of the cluster posterior

To generate a Markov chain with our posterior p as the equilibrium distribution,

we propose the following �ve basic transition types: updating of all the heights �

of daughter bells of a random cluster, updating of the scaling factor � of a random

cluster, displacement of a random cluster, removal/insertion of a random daughter

from a random cluster and, �nally, removal/insertion of a random cluster. Then,

the actual transition measure can be constructed as a mixture of these �ve move

types. In this thesis, we have been using the same selection probability 0.20 for all

basic moves although other mixtures could also be used.

In Metropolis-Hastings sampling, an updating rule consists of a proposal step

and the corresponding acceptance probability. The acceptance probabilities are

always calculated as the minimum of a Metropolis-Hastings ratio (MHR) and one

to ensure the convergence of the chain to the target distribution. In the follow-

ing, we shall introduce several proposal distributions and derive formulas for the

related Metropolis-Hastings ratios. The convergence of the sampler is discussed in

Appendix A.4.

To update heights of daughter bells of a random cluster, we use proposals ��j
for which log ��j has a uniform distribution with mean log �j . Then, the Metropolis-

Hastings ratio is

MHR� =
L(x�)

L(x)

kY
j=1

h�(�
�

j )

h�(�j)

kY
j=1

��j

�j
: (6.2)

To propose a new scaling factor �� for a random cluster, we sample a normal

distribution with the present value � as the mean. In this case,

MHR� =
L(x�)

L(x)

h�(�
�)

h�(�)
: (6.3)

Our third transition type is to move a randomly chosen cluster while keeping

its other characteristics unchanged. We shall use a proposal distribution which

favours small moves from the present location wi to a new location w�i . We apply

a distribution which has the density

qS(w
�

i jwi) / 1S\Di
(w�i ) exp(�rkw�i � wik2) (6.4)

with respect to the counting measure �. Here, Di = fw�i j kw�i �wik � Rg is a disc
centred at wi, R is a �xed positive radius of Di and r is a tuning parameter of this
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proposal technique. Large positive values of r encourage small moves from wi to

w�i . The density qS is easily seen to be a conditional distribution of

q(w�i jwi) / 1Di
(w�i ) exp(�rkwi � w�i k2) (6.5)

conditioned on the event fw�i 2 Sg. It follows that the identity
qS(wijw�i )=qS(w�i jwi) = g(wi)=g(w

�

i ) (6.6)

holds, where g(wi) is the probability that an unconditional realization belongs to

S when the current location is wi. If xi is the cluster to be moved, the acceptance

ratio is

MHRw =
L(x�)

L(x)

h�(w�i )

h�(wi)

g(wi)

g(w�i )

Y
j 6=i

	(w�i ; wj)

	(wi; wj)
: (6.7)

In this thesis, we have con�ned ourselves to use only the choice r = 0.

The transition for changing the number of clusters is the most complicated

transition type in our sampler. We employ here the updating mechanism by Geyer

& Møller (1994), in which one new cluster is inserted to the current con�guration

or a cluster is removed from the con�guration. We use the following special case

of their general sampling algorithm. To update the con�guration, we �rst make a

random decision whether to propose an insertion of a new cluster or to delete an

existing one, both choices being equally likely. If a decision of inserting a cluster is

made, we propose a cluster � from a birth density b(�jx) (with respect to intensity
measure ') which depends on the present con�guration x. If we choose to delete

a cluster, we select randomly one cluster from x and propose that cluster to be

removed. The acceptance ratio for inserting a cluster is

MHRc;i =
p(x�)

p(x)

1=(n+ 1)

b(�jx) ; (6.8)

and for deleting a cluster

MHRc;r =
p(x�)

p(x)

b(�jx�)
1=n

; (6.9)

where n = n(x) and x� is the proposed con�guration. If there are no clusters

(x = ;) and a removal is proposed, we do nothing.

The construction of a suitable birth density b(�jx) requires some thought since

a cluster � is a multi-dimensional object. It is di�cult to suggest a proposal mech-

anism which possesses a convenient analytical expression and, at the same time,

generates proposals that will be accepted reasonably often. We shall apply here

a sequential proposing technique following Hartvig (1999). The sampling ideas in

Hartvig (1999) are not directly applicable here since we have a di�erent param-

eter space. We have modi�ed the sequential technique and present here a re-

lated sampling method. Let x = fx1; : : : ; xng be the current con�guration, where
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xi = (wi; (�i;di)), and let � = (w; (�;d)) be a new cluster which is to be proposed.

Then, sequentiality means that we �rst propose d, then w and �nally �.

We apply a simple proposal mechanism for daughter con�gurations

d = f(�1; v1); : : : ; (�k; vk)g (6.10)

and propose them from a Poisson process whose intensity measure is

�dh�(�)hv(v) d(m1 � �): (6.11)

We recall that �d is the expected prior number of daughters in a cluster. The

density of this proposal distribution with respect to �d is simply

q(d) = e1��d�
n(d)

d (6.12)

and it does not depend on the present con�guration x.

A natural method to propose a new location w is to utilize conditional posterior

distributions. However, since � has not been proposed yet, we have to replace

this scaling factor by some constant ~� and draw a sample from the conditional

posterior distribution wjd;x; ~�. The density of this distribution with respect to �

is proportional to

p(x[(w; (~�;d)))h�(w) / L(x[(w; (~�;d)))�(x[(w; (~�;d)))h�(w) (6.13)

/ L(x[(w; (~�;d)))h�(w)
nY
i=1

	(wi; w): (6.14)

In practice, empirical knowledge on the size of a probable percentual change in the

MR signal level (due to neuronal activation) can suggest a range for reasonable

values of ~�. To use the density above we should calculate the likelihood term

L(x[(w; (~�;d))) and consider sums like
P

s�u=l %(s)%(u)�(s)�(u�w), which would
be time-consuming. Here, the terms �(s) = z(s) � �(s) are the current residuals.

To simplify updating calculations we introduce a modi�ed likelihood ~L, for which

~L(x) / exp
�
�1

2

X
s

~%(s)2(z(s)� �(s))2
�
; (6.15)

for all con�gurations x and where ~%(s)2 match with the inverse voxelwise variances

1= var(Z(s)jx). This likelihood corresponds to a noise model which has the same

voxelwise variances as the original model but now the noise is spatially independent.

We shall propose w from the conditional distribution of the modi�ed posterior ~p

where the original likelihood L is replaced by ~L. Thus, we use the density

q(wjx;d; ~�) / ~L(x[(w; (~�;d)))h�(w)
nY
i=1

	(wi; w) (6.16)
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to propose a new location. The calculation of the modi�ed likelihood function
~L(x[(w; (~�;d))) involves computation of the square sum

P
s ~%(s)

2(z(s)� ��(s))2,
where ��(s) = �(s)+ ~��(s�w) is a temporary pro�le. This, in turn, requires that

the sums
P

s ~%(s)
2�(s)�(s�w) andPs ~%(s)

2�(s�w)2 are calculated for all locations
w. The calculation of these convolutions is also a time-consuming operation but

now it is easier to apply the fast Fourier transform (FFT) to speed up computations.

In the special case ~� = 0 we have a particularly simple form for proposing

locations:

q(wjx;d; 0) / h�(w)

nY
i=1

	(wi; w): (6.17)

In fact, this is the conditional prior density of a cluster location, given the other

clusters x1; x2; : : : ; xn of the con�guration. It is seen that in this case the proposal

distribution ignores the form of the likelihood function and is computationally more

e�cient. On the other hand, probable cluster locations are not proposed as likely

if ~� = 0. It is di�cult to give general recommendations, but we anticipate that

using the computationally more involved proposal density q(wjx;d; ~�), the chain
reaches the equilibrium faster, and that the proposal density q(wjx;d; 0) may be

useful in exploring the posterior in the equilibrium.

After proposing the daughter con�guration d and the new parent centre w,

we �nally propose the height � of the new cluster from the conditional modi�ed

posterior distribution given x, d and w. The density (with respect to m1) is in

this case

q(�jx;d; w) / ~p(x[(w; (�;d)))h�(�) / ~L(x[(w; (�;d)))h�(�): (6.18)

If h� is a normal density, then q(�jx;d; w) is also a normal density. It is probable

that this proposal distribution is usually narrower than the one based on the original

likelihood L since we ignore spatial correlations in the data.

For the calculation of the acceptance probabilities for inserting or removing

a cluster, we need the density of the birth distribution b(�jx) with respect to

' = �w;� � �d. The birth density of a new cluster � with respect to ' will be

b(�jx) = q(�jx;d; w)
h�(�)

q(wjx;d; ~�)
h�(w)

q(d): (6.19)

The Metropolis-Hastings ratio for accepting an insertion of a proposed cluster � is

MHRc;i =
p(x�)

p(x)

1=(n+ 1)

b(�jx) (6.20)

=
L(x�)

L(x)

 �(n+ 1)

 �(n)

e1��d�
n(d)

d

Qn
i=1	(w;wi)

b(�jx) ; (6.21)

56



where x� = x[ �, and for accepting a removal of a random cluster � 2 x we have

MHRc;r =
p(x�)

p(x)

b(�jx�)
1=n

(6.22)

=
L(x�)

L(x)

 �(n� 1)

 �(n)

b(�jx�)
e1��d�

n(d)

d

Q
wi 6=w

	(w;wi)
; (6.23)

where x� = x n �. It is important to observe that although we have used a modi�ed

likelihood ~L to propose clusters, we use the original likelihood L and posterior

density p to correct the proposal distribution in order to maintain detailed balance.

Another important detail is that ~� can be considered random in the following sense.

Since for each choice of ~� the transition operation is reversible, we may �rst draw ~�

randomly and then update the con�guration using the sampled value of ~�, ignoring

the randomness of ~�.

The �fth transition type is to insert or remove a daughter from a randomly

chosen cluster xi. First, we decide whether to insert or remove a daughter. The

two proposal types have an equal probability. Second, in case of an insertion we

use our prior densities hv and h� for proposing a new location v and a new height

�. The proposed con�guration x� will then be x with the new daughter d = (�; v)

included in the chosen cluster xi. The acceptance ratio is easy to calculate since

the density of the birth distribution is identically one with respect to the intensity

measure of �d. In fact,

MHRd;i =
L(x�)

L(x)

�(x�)

�(x)

1=(k+ 1)

1
=
L(x�)

L(x)

�d

k + 1
; (6.24)

if the number of daughters in the selected cluster xi is k. In case of a removal we

pick randomly one daughter from the cluster and our proposal x� will then be x

with the chosen daughter deleted from xi. The acceptance ratio is now

MHRd;r =
L(x�)

L(x)

k

�d
: (6.25)

If there are no daughters in the chosen cluster and a removal is proposed, we do

nothing. Furthermore, if there are no clusters, that is x = ;, we also do nothing.

6.2 MCMC estimation

The MCMC estimation of functionals of the posterior distribution p is based on

the assumption that the simulated Markov chain is in equilibrium. In practice, we

cannot simulate the chain in equilibrium since x(0) cannot be drawn from p. We

can simulate only the conditional values of the chain given the initial state x(0).

As a consequence, the distributional properties of the realizations x(1);x(2); : : : can
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be far from p since the serial dependence in the chain is typically non-negligible.

However, the chain will asymptotically converge to the target p. Therefore, the

chain will be nearly stationary after some initial period, which is commonly called

burn-in time. To avoid sampling bias, it is a common practice to approximate the

burn-in time K and discard the realizations x(1); : : : ;x(K). To get an estimate

for the burn-in time, it is useful to monitor the behaviour of the chain. There

are usually many aspects of the chain that could be monitored, but two natural

candidates are the values of the log likelihood function and log prior. The formulae

for these functionals are given by the equations

log �(x) = n(x)(1� �d) + log �(n(x)) +

n(x)X
i=1

h
n(dk) log �d + log i

i
+
X
i<j

log	(wi; wj) + const.;

(6.26)

and

logL(x) =� 1

2

X
s

%(s)2(z(s)� �(s))2

� 1

2

X
l

�l
X
s�u=l

%(s)%(u)(z(s)� �(s))(z(u)� �(u)) + const.;

(6.27)

which contain two unknown constants that can be ignored. Clearly, log p(x) is the

sum of logL(x) and log �(x) up to an additive constant.

After the burn-in time K has been approximated, the mean �g of a random

variable g(x) can be estimated by

�̂g = (1=(N �K))

NX
n=K+1

g(x(n)): (6.28)

Also, quantiles of g(x) can be estimated by empirical quantiles of realizations

g(x(K+1)); : : : ; g(x(N)). The calculation of the sampling variance of the estimate

�̂g is based on the estimation of the covariances 
k = cov(g(x(n)); g(x(n+k))).

Asymptotically,

\var(�̂g) =
�

0 + 2

1X
k=1


k

�
=(N �K): (6.29)

Therefore, a naive method to estimate var(�̂g) would be to sum all estimated

covariances 
̂k. However, this estimate lacks consistency (Priestley, 1981). An

appropriate strategy is to allow the number of covariance terms (to be summed) to

depend on the length of the realized chain. Geyer (1992) proposed that an estimate

of the sum (6.29) should contain only terms up to 
̂2m+1 where the truncation
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value m is the largest integer for which the sequence 
̂2 + 
̂3; : : : ; 
̂2m + 
̂2m+1 is

positive and monotonically decreasing. The resulting standard error can be used

to construct Monte Carlo con�dence interval for �g since the estimate (6.28) is

consistent and asymptotically normally distributed (Kipnis & Varadhan, 1986).

We end this section by suggesting two elementary computational techniques to

speed up sampling calculations. The �rst one concerns the updating of the pro�le

�, which is important since the current value of � is needed for computing accep-

tance probabilities. We note that an updating operation can change the value of �

only inside some cluster. Clusters, in turn, are local spatial objects. Therefore, each

transition a�ects � only locally and it is enough to update only part of � instead

of deriving it from x (using (4.7) and (4.8)) each time x happens to change. The

second computational idea concerns the time-e�ciency when monitoring the likeli-

hood function L(x). A useful observation is that the likelihood ratios L(x�)=L(x)

are always calculated when computing the acceptance probability for a proposed

new state x�. Therefore, no extra calculations are required to keep track of the

values of the likelihood. However, to avoid accumulation of rounding errors, it is

advisable to compute both the pro�le � and the log likelihood from scratch at

regular intervals.
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7 Analysis of the sound-stimulus data

In Sections 4, 5 and 6 we suggested a Bayesian technique for accounting for sub-

jective prior knowledge and presented a method for sampling the posterior. The

development of ideas proceeded on a theoretical level, and we discussed the mod-

elling concepts in general. The purpose of this section is to show how our Bayesian

machinery can be used in a real application and to answer speci�c inferential ques-

tions. We shall illustrate the proposed new Bayesian approach by applying it to

the analysis of the sound-stimulus data. Some basic properties of these data were

already described in Section 2. We recall that the auditory stimulus had a periodic

pattern and consisted of two alternating test conditions. In this experiment, there

is only one natural contrast� to be examined: the di�erence in the mean resonance

signal levels between the two states of the brain. Consequently, the intensities of

the pro�le � will now simply be the amplitudes of the auditory activation process

in the scanned brain slice. We recall also that these data were acquired from a

single functional slice position.

The auditory experiment was designed in such a way that only a few regions

in the brain were expected to be involved in processing the test task. In fact, the

experiment could be considered an example of brain studies mentioned by Friston

and his co-workers in the motivating citation at the end of Section 3 of this thesis.

This kind of subjective knowledge could be modelled in a natural way by assign-

ing a suitable prior to the number of activated clusters. Another source of useful

neuropsychological prior knowledge is that certain brain regions more likely partic-

ipate in the neural processing of interest. We shall consider here the regions TTG,

PT, PP and STG (Figure 2.2). These regions were identi�ed from an anatomical

scan by an expert (Dr. Jennifer Hiemenz, University of Georgia, personal com-

munication). To illustrate the utilization of information on the locations of brain
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Table 7.1 Areas of brain regions.

Region name Area (in voxels)

TTG 145

PT 227

PP 422

STG 1377

Union R 794

All brain voxels 7530

activations, we shall assume that the union of TTG, PT and PP has a signi�cant

role in processing the speci�c type of auditory stimulus. The symbol R shall be

used for this union. The areas of these regions (measured in voxels) are listed in

Table 7.1. We observe that the region R contains about one tenth of all the brain

voxels on the slice.

The total number of functional scans in the sound-stimulus data is 40. We

do not aim to analyse the complete data here. Instead, we shall consider the

�rst four scans and make inference on the pro�le � based on these functional

images. The reason for this is that in this thesis we are mainly interested in

considering situations where the posterior is sensitive to subjective prior knowledge

(to some extent at least). If a series of 40 scans is analysed, the domination of

the data will be more pronounced. We shall, however, use all the data when

estimating the spatio-temporal characteristics of the noise in the series of scans.

Consequently, the application in this section can be considered a special case of

applying a concatenated design. The data are visualized in Figure 7.1.

7.1 The choice of the model

Priors

We shall apply three di�erent priors describing di�erent levels of prior knowl-

edge on the parent con�guration. In prior A, the number of parent centres is

assumed to be distributed uniformly from 0 to 10. In prior B, the total count of

these centres is assumed to have a narrower distribution, namely from 0 to 5. The

two priors, A and B, will be uninformative with respect to the locations of the

centres. The prior C will be adjusted so that the number of centres is restricted

between 0 and 5 (as in the case of prior B) and the location of a random centre is

assumed to belong to region R with probability 0:50. The probability 0:50 is quite

high proportioned to the fact that region R contains only about one tenth of the
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Figure 7.1 The compressed data Z (left) and the estimated voxelwise standard

deviations of Z given the activations (right).

voxels. Therefore, when applying the third prior, the centres will favour region R.
The reason for employing several priors is that we want to illustrate how sensitive

the posterior is to priors used in typical applications. The di�erent adjustments

of the prior are used in an illustrative purpose but they are close to choices which

could be used by an applied scientist.

Our cluster model contains several hyperparameters. Our aim is to select such

values for these parameters that the clusters will have acceptable physical dimen-

sions (Malonek & Grinvald, 1996). To begin with, the parent bell and the daughter

bell are chosen to be isotropic Gaussian bells having a common radius of spatial

extent. A plausible choice for this radius is four voxels (3.4 mm). We assume a

priori that the parent bells cannot overlap one another. To accomplish this, we

shall use a hardcore spatial interaction function 	 where the radius of inhibition is

eight voxels. We note that daughter bells of di�erent parents may overlap although

the parent bells do not. The corrected forms for the prior count distribution  of

parent points and the density h of the location of a random parent can be computed

as shown in Appendix A.2.

Our choice for daughter locations v is uniform on voxels that have distance to

the origin at most 4 voxels (3.4 mm). Thus, the maximum spatial extent for any

cluster measured from the parent centre is 8 voxels (6.9 mm). As the prior for

scaling factors � of daughter bells we shall take the uniform distribution at the

unit interval (0; 1). This choice re�ects a prior belief that clusters are not strongly

peaked spatial objects. In fact, uniform distributions at intervals like (0; 0:5) or

(0; 0:1) would favour more peaked clusters in the pro�le since then the role of

the parent bell would be emphasized. As to the prior number of daughters in a
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Figure 7.2 A Q-Q plot for observed and theoretical temporal correlations of lag

one.

cluster, our purpose is to be economical in the overall number of parameters in

the posterior. Our choice is to take the Poisson mean of the number of daughters

to be 4.0. Finally, we assign a prior for a scaling factor �. Following the logical

development of the material in Section 4, our aim is to be relatively uninformative

with respect to the magnitudes of activations. Data analytic considerations suggest

that the zero-mean normal distribution having standard deviation 6.0 serves for this

purpose.

Likelihood

To �t the parameters of the likelihood function to the data, we �rst considered

the strength of temporal dependence in the series of scans. The empirical temporal

autocorrelations were small in most voxels and, moreover, a comparison with an

arti�cial temporally uncorrelated data showed that the distributions of empirical

and theoretical autocorrelations match quite well (Figure 7.2). The probable reason

for this is that the functional data was temporally sparsely sampled (see Figure

2.1). We conclude that the error time series �(s) can be treated as temporally

uncorrelated noise in this particular data.

We �tted the spatial correlation structure of the Gaussian noise model (5.7)

using only lags of length one in horizontal and vertical directions. The curves in
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Figure 7.3 Observed (solid curve) and �tted (dotted curve) mean spatial correla-

tions. The distance is measured in voxels and the distance of 15 voxels corresponds

to about 13 mm.

Figure 7.3 represent the empirical mean spatial correlations for each lag and the

corresponding correlations computed from simulated realizations of the Gaussian

model. It is seen that the choice � = �0:249 is a plausible estimate for the strength

of spatial dependence in the data. The precision parameters % = (%(s)) were

calculated by the formula (5.14) using simulations from the �tted autoregressive

model (5.15) and noise variance estimates from the data. The �tted values of the

precision parameters are visualized in Figure 7.4.

7.2 Sampling

We shall apply the MCMC sampling method suggested in Section 6 to calculate

Monte Carlo estimates for various functionals of the posterior. To carry out pos-

terior simulation, we have to replace the tuning parameters of the proposal distri-

butions with known numerical values. In a sense, the actual choice of these values

does not matter because the sampler has the same convergence properties irrespec-

tive of the choice of the parameters of the proposal distributions (Appendix A.4).

However, the level of mixing of the resulting Markov chain may crucially depend

on the tuning of the proposal mechanism.

To avoid mixing problems, we performed a few test runs and monitored the

acceptance probabilities of the proposed moves of the chain. We aimed to propose

large moves while maintaining reasonably high acceptance rates. As a result, we

arrived at the following sampling scheme. A new height �� of a cluster is proposed

from the normal distribution having the current height � as the mean and standard
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Figure 7.4 The map of the �tted precision parameters %̂ = (%̂(s)).

deviation 0:5. A displacement for the location w� of the parent of a cluster is

drawn uniformly over voxels less than three voxels away from the current location

w. New heights �� of daughter bells are proposed so that log �� is uniform on

(log � � 0:3; log � + 0:3). The location of a new daughter is proposed uniformly

from voxels less than four voxels away from the origin. Also, the proposed height

of the new daughter bell is uniformly distributed at the unit interval (0; 1).

The proposal mechanism for generating new clusters is adjusted as follows. The

number of daughters to a new cluster is proposed from the Poisson distribution with

mean 4.0. The locations and heights of daughters are proposed uniformly as in the

case of inserting/removing single daughters from an existing cluster. For proposing

the location of a new cluster, a height ~� must be chosen. We select these heights

randomly from a set of 100 values ranging from -10.0 to 10.0. We recall that the

randomness of ~� can be ignored as explained in Section 6. Table 7.2 illustrates the

mean acceptance probabilities of each of the �ve move types.

Test runs revealed that the sampler approached equilibrium in 50000 sweeps

when starting from the empty con�guration. This con�guration is usually a poor

initial state for the chain, but otherwise its use is very convenient since then no

extra estimation procedure is needed to provide values for initialization. To speed

up calculations we implemented the two computational ideas which were mentioned

at the end of Section 6. It turned out that in order to avoid rounding errors it is

su�cient to compute the pro�le and the log likelihood from scratch at every 100th

and 300th update, respectively. The sample paths (after the burn-in) of log prior

and log likelihood are visualized in Figure 7.5. Monitoring results indicated that

realizations are strongly autocorrelated. Therefore, we subsampled only every 20th

update for posterior analysis.
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Figure 7.5 The behaviour of the log likelihood (top) and log prior (below) during

MCMC simulation. The series are mean-corrected. The subsampling rate was 20

and, therefore, the length of the series is 20000 (instead of 400000).
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Table 7.2 Acceptance probabilities.

Move type Mean acceptance rate

Parent height 0.808

Parent location 0.092

Daughter height 0.466

Daughter add/del 0.482

Cluster add/del 0.004

7.3 Results

We simulated the three posteriors for priors A, B and C 400000 sweeps after the

burn-in. To compare the posteriors we have juxtaposed their summary maps in

Figure 7.6. The Monte Carlo standard errors were calculated for the posterior

mean maps. The sizes of these errors ranged between 0:1 and 0:3 in those voxels

where the estimation error was expected to be largest. In all of these voxels, the

standard errors were from 1:0 to 4:0% of the estimated voxel means. It can be seen

from the posterior deviation maps that the posterior variability is non-negligible

in the same areas where the posterior mean of the pro�le is not vanishing. Also,

a visual inspection reveals that the overall variability slightly decreases when the

prior becomes stronger.

The interpretation of the posterior mean maps requires some care. For exam-

ple, the number of �hills� and �valleys� in the pro�le can well be somewhat larger

than the typical number of clusters in a (posterior) con�guration x. The clusters

of x may appear and disappear in di�erent locations during the simulation, which

explains this peculiar phenomenon. We want to stress here that although the pos-

terior mean map is useful for describing the strength of brain activation voxelwise,

it does not necessarily resemble a typical posterior pro�le �. In this sense, the

maximum a posteriori (MAP) estimate of the posterior could be an interesting al-

ternative for the mean when carrying out Bayesian point estimation. We shall not

study MAP estimates here, however.

We have now illustrated what the e�ects of incorporating di�erent levels of

prior knowledge can be on the inference. From now on, we shall con�ne ourselves

to examining the posterior A.

The two posterior moments, the mean and standard deviation, provide us with

some information on the posterior uncertainty in activation magnitudes. It is an

appealing feature of the Bayesian paradigm that it allows for investigating uncer-

tainty directly in terms of probabilities. The left of Figure 7.7 shows voxelwise

posterior probabilities that the pro�le intensities �(s) are positive.
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Figure 7.6 Voxelwise means (left column) and standard deviations (right column):

posterior A (top row), B (middle row) and C (bottom row).
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Here, a high posterior probability in a voxel indicates that the voxel was ac-

tivated when the test person was stimulated using digital sounds. We note that

the intensities �(s) are not normally distributed in the posterior, and thus the

probabilities cannot be expressed using the posterior moments.

In addition to considering the activation magnitudes, it is also possible to ex-

amine the con�guration of the centres of the parent bells. The right of Figure 7.7

shows the map of probabilities that a voxel belongs to the support of some parent

bell. As is easily observed, the number of local patterns in this map is larger than

ten. This is related to our previous comment upon clusters and the way how their

locations are random in the posterior.

Up to this point, we have been constructing maps for summarizing our pos-

terior. We shall now consider two speci�c inferential questions which can be an-

swered using single probability statements. The problem which we study �rst

concerns brain activation in given regions. Let us suppose a region of interest can

be identi�ed from anatomical scans. Then, it may be natural to consider the mean

activation in that region in order to infer from the role of that particular part of

the brain in neuronal processing. The mean activation magnitude over a region

has a one-dimensional posterior distribution from which the inference can easily be

drawn. An illustration of this is shown in Figure 7.8. The Monte Carlo estimate for

the posterior probability that the mean activation over region R is positive is 0.94.

In general, the size of a region may have some in�uence on the interpretability of

the results. The regional mean is a less accurate predictor for the whole regional

pro�le for large regions than for smaller ones. Thus, regions should be chosen as

small as possible in applications.

Our second problem is related to the sizes of the clusters, that is, to the elements

xi in con�gurations x = fx1; : : : ; xng. The size of a cluster is a potentially relevant
notion in fMRI research. Basically, there are two separate means for measuring

the size of a cluster: the spatial extent and the highest activation magnitude of

a cluster. Interestingly, the parametrization of our cluster model can be used to

construct a simple combined measure of extent and magnitude. We suggest that

the size of a cluster xi could be assessed using the integral of �i�i(s) overU . Clearly,Z
�i�i(s) d�(s) = �i

Z
Bp(s) d�(s) + �i

kiX
j=1

�j;i

Z
Bd(s) d�(s); (7.1)

where ki is the number of daughter bells in xi. We shall call (7.1) the integrated

activation magnitude. The integrated activation magnitude is more informative

than the extent and maximum magnitude of a cluster together since the integrated

measure provides information also on activation magnitudes in the neighbouring

voxels of the cluster centre. The calculation of the proposed measure is illustrated

in Figure 7.9. Integrated magnitudes were calculated for each cluster of MCMC

samples x. The extreme values, the lowest and the highest, were used to esti-

mate the posterior distributions of the lowest and the highest integrated activation
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magnitudes. Naturally, one could choose to utilize the integrated measures of all

the clusters in a con�guration (and not to ignore all but the two extreme ones)

to produce other summaries of the posterior of x as well. However, a problem is

what kind of descriptors of the set of integrals (7.1) would be appropriate in real

applications.

A minor defect in our de�nition of an integrated measure of the cluster size is

that it is not edge-corrected. In other words, an incorrect value results if a cluster is

located near the boundary of the brain slice. We shall not consider edge-corrected

versions of (7.1) in this thesis.
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Figure 7.7 Posterior probabilities that an activation magnitude is positive (left).

Posterior probabilities for belonging to a parent bell (right).
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Figure 7.8 The histogram of the posterior samples of the regional mean over the

union R of TTG, PT and PP. The number of MCMC samples is shown on the

vertical axis. The total number of samples was 20000.
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Figure 7.9 Histograms of the obtained realizations of the lowest and highest inte-

grated magnitudes among clusters in the pro�le. The number of MCMC samples

is shown on the vertical axis. The total number of samples was 20000.
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8 Analysis of synthetic data

8.1 Nonparametric Bayesian smoothing

The cluster prior model was developed to be a means for incorporating relevant

subjective prior knowledge on an activation process into the statistical analysis of

fMRI data. In the previous section, we illustrated the use of the cluster approach in

an application. We used the prior for controlling the probable number of clusters,

their locations and extents. Consequently, the adjustment of the prior was quite

involved. A natural question is: how do the posteriors change if the cluster prior is

replaced by a more conventional Markov random �eld prior? Interestingly, Bayesian

image analysis has to o�er a whole class of prior models, the pairwise di�erence

smoothing priors, which have a parsimonious hyperparameter structure (Besag,

1989). These priors are (improper) Markov random �elds with density

�M (�) / exp

�
�
1

X
s�u

�

�
�(s)� �(u)


2

��
; (8.1)

where � is an increasing non-negative and even smoothing potential and 
1 and


2 are positive constants. A basic concept of pairwise smoothing is the notion of a

neighbourhood relation '�'. Typically, the neighbourhood of a pixel s is de�ned to

consist of pixels spatially close to s. The motivation in the use of pairwise di�erence

priors is that if spatially close pixels are expected to have similar attributes, a prior

like (8.1) can be used to penalize large di�erences between neighbouring pixels. The

control parameters 
1 and 
2 can be used to tune the properties of the di�erence

prior. In informal terms, 
1 determines the level of smoothing and 
2 accounts for

the scale of data.
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Depending on the application, various choices of � have been suggested in

the literature. Convex potentials have been used to support gradually changing

surfaces in the prior, whereas concave potentials have been used to encourage

abrupt changes in otherwise smooth images (Besag et al., 1995; Geman & Reynolds,

1992). Among the convex�, a popular choice is the Gaussian potential �G(x) = x2.

A less heavy penalization for large di�erences in neighbouring intensities is provided

by the Huber potential

�H(x) =

(
x2 jxj � 1

2jxj � 1 jxj > 1;
(8.2)

which is also convex (Künsch, 1994). An example of a concave potential is

�Ge(x) =
jxj

1 + jxj ; (8.3)

which was suggested by Geman & Reynolds (1992). An interesting feature of

the Geman potential is that it can be used to implicitly model the e�ects of an

unobserved edge process. In particular, the level of statistical modelling can be

kept simple since it is not necessary to formulate probabilistic properties of sharp

edges. The graphs of these examples of potentials are shown in Figure 8.1.

It is interesting to carry out comparisons between pairwise di�erence models

and our cluster approach and assess how the posteriors di�er from each other. In the

context of estimating activation pro�les, there is no single choice among the above

potentials which would obviously be more suitable than the others. On one hand, a

convex smoothing technique (like Gaussian) could be a natural candidate. However,

a special property of the Gaussian prior is that it penalizes large di�erences heavily.

In practice, this means that small clusters may be smoothed away from posterior

realizations. In other words, there is a risk for oversmoothing. On the other hand,

there is some justi�cation for applying a concave smoother such as the Geman

prior. Each cluster might be viewed as having a boundary curve, and these curves

could be considered a kind of edges which would be preserved in concave smoothing.

However, there hardly exist any sharp edges in activation pro�les. Because of these

controversies, we choose to apply the absolute value potential �A(x) = jxj since
it is an intermediate choice between both convex and concave potentials. As a

sidenote, we remark that asymptotically the Geman prior tends to our choice as


2 increases.

To compare the di�erent modelling strategies, we want to relate the resulting

posteriors to the true state of activations in data and check how well they predict

the underlying true activation pro�le. To this end, we shall consider synthetic data

instead of real functional measurements. The synthetic data were generated by

corrupting a known pro�le �(0) with additive scanning noise. The search volume is

a rectangular region having width and height 50 and 30 voxels, respectively. The

pro�le consists of three exactly similar clusters where each cluster is a superposition

73



x
0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

Figure 8.1 Graphs of smoothing potentials: absolute value (�), Gaussian (� � �),
Huber (- -) and Geman (� �).

of one parent bell and one daughter bell. The radius of the parent and daughter

bell is three voxels. The daughter bells are located four voxels to the right from

their parent centres. Moreover, the height of each daughter bell is half from that

of their parents. The pro�le and the data are visualized in Figure 8.2.

The noise was acquired in a real fMRI experiment where echo-planar imaging

(EPI) technique was used. The spatial resolution of the functional images was 128

� 128. Using a mask with size 50� 30 voxels, part of the voxel series was extracted

from the complete data. The additive noise �eld was constructed by compressing

these series in the spirit of Section 5. After the compression, the noise �eld was

standardized dividing each intensity by its standard deviation in order to have unit

variance in all voxels. The reason for normalizing the noise was to facilitate the

examination of the posterior maps. We note that simulated noise �elds drawn from

known random �elds could also be utilized in a comparison study like this. Now,

our autoregressive model for noise will also be evaluated, and we gain information

on how our results are related to the unobserved activation process in real problems.

We shall apply two cluster priors, A and B, in the present study. In prior A, the

prior count of parents is uniform from 0 to 10. This range is limited to be between

0 and 5 in prior B. In both of these priors we shall be ignorant with respect to
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Figure 8.2 The underlying true pro�le of the synthetic data (left) and the data

itself (right).

the locations of centres. The common radius of the parent and daughter bells is

chosen three voxels instead of four (as was chosen in the previous section) since

now the spatial resolution is lower. Using the same logic, the inhibition radius was

changed to six voxels instead of eight. Otherwise, the priors A and B are similar

with the priors of Section 7. For example, the parent bells cannot overlap each

other a priori. We shall denote the corresponding posterior distributions also by

A and B, which should not cause any confusion.

To use the pairwise di�erence prior we �x 
2 to one (for obvious identi�ability

reasons). Thus,

�M (�) / exp
��
1X

s�u

j�(s)� �(u)j�; (8.4)

and, therefore, the only control parameter is 
1, the level of smoothing. We do not

aim to estimate this parameter from the data in any way. Instead, we try a few

values of 
1 and examine the behaviour of the resulting posteriors. A reasonable

strategy is to avoid oversmoothing while aiming to decrease the posterior variability

by increasing 
1.

We �tted to the data essentially the same noise model which was applied in the

analysis of the sound-stimulus data. The only di�erence is that the space of voxels

S is the 50 � 30 rectangle instead of a slice from the human brain. The interaction

and precision parameters were calculated in a similar fashion as in Section 7. The

spatial interaction parameter � was estimated to be about �0:24.
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To compare the posteriors mentioned above, it is necessary to make use of

MCMC sampling. We applied the same sampling scheme of the cluster posterior

as in Section 7, except that a displacement of a location of a parent was proposed

from a neighbourhood which was one voxel smaller than the one used earlier.

The MCMC sampling of the Markov posterior is quite straightforward since the

posterior is a Markov random �eld. The details of the sampling can be found in

Appendix A.3. We simulated Markov posteriors using a few values for 
1. In these

simulations the length of the burn-in period was 15000 sweeps and the chains were

run for 300000 sweeps towards equilibrium. The cases 
1 = 1:0 and 
1 = 2:0 will

be illustrated here and are denoted by C and D, respectively.

The simulation results are shown in Figures 8.3, 8.4 and 8.5. These maps

indicate that the use of nonparametric Bayesian smoothing and point process prior

models result in strikingly di�erent posteriors. First, the mean map of the posterior

C (Figure 8.3) is not as patterned as the mean ofA andB. In particular, one cannot

obtain any useful details of activations by inspecting the mean of C orD. The mean

of A and B immediately suggest locations where activations might occur. Second,

the voxelwise standard deviations of C and D are relatively homogeneous (Figure

8.4). However, in A and B the posterior variance is highly inhomogeneous and

tends to be larger in the same locations where the posterior mean is nonzero. This

phenomenon was observed also in Section 7. Comparing B and C in Figure 8.4, it

can be seen that the variability of the posterior B is smaller than the variability of

the posterior C in a large fraction of voxels.

Finally, maps of expected di�erences,

s 7!
q
E(�(s)� �(0)(s))2; (8.5)

possess clearly dissimilar features (Figure 8.5). These maps are of interest in a

comparison study like this since they reveal information on the concentration of our

posterior distributions around the true pro�le. An overall measure of concentration

is the root mean squared deviation Ic:

Ic =

s
(1=jSj)

X
s

E
�
�(s)� �(0)(s)�2: (8.6)

Measured in this manner, the posteriors C and D were less concentrated than A

and B. In fact, these indices of concentration were 0:50, 0:42, 0:83, and 0:60 for

A, B, C, and D, respectively. As expected, for the posterior B, Ic was smaller

than for A. The di�erence is explained by the fact that the prior of B is more

informative than that of A.
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Figure 8.3 Mean maps for posteriors A (top left), B (top right), C (bottom left)

and D (bottom right); see the text for the de�nitions.
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Figure 8.4 Maps of posterior standard deviations. The ordering of the maps is the

same as in Figure 8.3.
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Figure 8.5 Maps of expected di�erences. The ordering of the maps is the same as

in Figure 8.3.
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The simulation results support our belief that in the context of fMRI, the use

of high-level spatial models for brain activations can be more appropriate than

a straightforward use of conventional Markov random �eld priors. One powerful

feature of the cluster approach is that the spatial organization of activated brain

voxels can be incorporated into the statistical analysis. Nonparametric smoothing

techniques do not allow for such a possibility. Another interesting dissimilarity

between the two prior modelling strategies also exists: the cluster prior can be

used to model negative association between pro�le intensities, whereas pairwise

di�erence priors always impose positive associations between intensities. This can

be deduced as follows. Let us assume that two voxels, s1 and s2, are given from

the search volume S. Then, for a Markov prior the conditional prior probability

Pr
�
�(s1) > 0 j �(s2)

�
(8.7)

is an increasing function of �(s2). For a cluster prior, in turn, this conditional

probability can be larger when �(s2) is zero than when �(s2) is positive. In her

thesis, van Lieshout (1994) discusses the notions of negative and positive associa-

tions generally in the context of object processes.

The bell model of Hartvig (1999) is closely related to our approach since it is

also based on point processes. It would be natural to contrast the bell model with

our approach. However, we shall not investigate the in�uence of prior models any

more in this thesis. Nevertheless, it seems that some di�erences can be observed

between the two approaches without carrying out any further simulations. Our

view is that the bell prior focuses on small-scale modelling of clustering of voxels,

whereas our cluster prior aims at a large-scale control of clustering. For example, let

us assume that it is expected that there are at most about �ve activated regions in

the cortex and that there is an upper bound for the spatial extent of these regions.

In this instance, the bell prior can be used to describe only the probable range of

the number of Gaussian bells but not that there are approximately �ve regions.

Using the cluster prior, the probable number of regions provides the prior for the

number of cluster centres and the extent of the regions guides the adjustment of the

daughter process. We remark that if the inhibition in the bell model is strong, all

the properties of clustering can be controlled perfectly. However, in that case the

clusters will be restricted to have a strict parametric form, which may be criticized.

8.2 The role of spatial correlations in the scanning noise

In this section, we have focused on considering di�erent prior models for activations

and evaluating the posterior moments. We end this section by carrying out one

more synthetic analysis to study the consequences of using an incorrect likelihood

function.

In Section 3, we reviewed several Bayesian strategies to estimate brain acti-

vations and remarked that in some proposals the scanning noise was treated as a
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random process without any spatial autocorrelation structure. We investigated the

importance of utilizing spatially correlated noise models by replacing the original

likelihood L(�) by the modi�ed likelihood function ~L(�) from Section 6:

~L(�) / exp
�
�(1=2)

X
s

~%(s)2
�
z(s)� �(s)

�2�
: (8.8)

We recall that substituting the modi�ed likelihood ~L to the formula of a posterior

density corresponds to the use of a spatially independent noise model. To evaluate

the role of the noise model, we employed the prior A and analysed the synthetic

data once again. It is immediately observed from Figure 8.6 that both the means

and standard deviations are altered when the likelihood is changed: the number

of hills in the mean maps increases, and there is also an apparent decrease in

the overall posterior variance. These results indicate that the spatial coherence of

fMRI noise should not be ignored in the statistical analysis of functional data. If

the spatial autocorrelation in noise is not accounted for, the posterior variability

will be underestimated and the inferential conclusions tend to be too optimistic.

The ultimate reason for the relevance of modelling autocorrelations in fMRI

analyses is that the interaction strength is comparable with the spatial extent

of brain activations. If the activations covered large areas in a brain slice, the

modelling of noise would be an issue of less importance. As this is not the case

in fMRI, studies on exploring the statistical properties of noise and on modelling

them are justi�ed.
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Figure 8.6 Upper row: posterior mean (left) and standard deviation (right) of A.

Lower row: the moments of the modi�ed posterior (based on the uncorrelated noise

model) in the same order as in the upper row.
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9 Discussion on modelling and computation

In Sections 7 and 8 we illustrated applications of our Bayesian model introduced in

Sections 4 and 5. In this section, we comment upon the techniques used and discuss

some alternative ideas that could be applied in prior modelling, in modelling noise

processes and in MCMC simulations.

9.1 Prior distributions

The role of the parent points

In our formulation a pro�le is a superposition of parent and daughter bells in

the following manner:

�(s) = �1�1(s� w1) + � � �+ �n�n(s� wn) (9.1)

=

nX
i=1

�iBp(s� wi) +

nX
i=1

niX
j=1

�i�ijBd(s� (wi + vij)): (9.2)

A natural question is what kind of a pro�le model could be constructed simply

by de�ning a pro�le as a superposition of daughter bells and omitting the parents

completely. Clearly, this could result in a less complex prior model for a pro�le.

We show here that the parents have an important role in our model and that

superpositions of only one type of bells do not have similar prior properties as the

present model.
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If the parent bells are omitted from the sum (9.1), we shall have an alternative

model for pro�les:

~�(s) =

nX
i=1

niX
j=1

�i�ijBd(s� (wi + vij)): (9.3)

A feature of this model is that the role of the parent centres is less pronounced. For

example, ~�(wi) may be null for some centres wi. This does not �t well with our

de�nition of the centre of a cluster. In our thinking, the purpose of the centre is

to represent the location of the strongest haemodynamic response to stimulation.

Another modi�cation of the original pro�le model is to replace the products �i�ij
that are used to scale the daughter bells by independent random variates. For

example, one might model pro�les by

~�(s) = ~�1Bd(s� ~v1) + � � �+ ~�mBd(s� ~vm); (9.4)

where ~�i are (signed) independent variates and f~v1; ~v2; : : : ; ~vmg follows some clus-

tered point process. A defect in this approach is that the scaling factors ~�i are

uncorrelated by construction, and so the signs ~�i and ~�j of two bells are not related

in any way to the interdistance k~vi�~vjk between the bells. Therefore, the resulting
clustered spatial patterns are not as coherent a priori as in our formulation.

We conclude that the consequences of omitting some central parts of our con-

struction can be considerable. An important feature of our model is that the

daughter points are always nested in a parent con�guration, that is, each daughter

bell is linked directly to her parent bell. As a sidenote, we remark that a priori

the complete con�guration of all daughter centres wi + vij is actually a sample

from a doubly stochastic Poisson process. In fact, the intensity function ~h(s) of

the daughter process, given a parent con�guration w, is

~h(s) = hv(s� w1) + � � �+ hv(s� wn): (9.5)

These kind of processes are also called Cox processes (Stoyan et al., 1995).

Modelling of �

A fundamental element in our prior for an activation pro�le is the concept of a

cluster. We have been applying a speci�c model for a cluster. We expect, however,

that other competitive models exist for this purpose. It is possible that many other

prior models for � which re�ect the idea that � is non-negative with its centre at the

origin and with some prespeci�ed maximal extent give similar posterior inference

on pro�les. We believe that, in general, local point con�gurations may be useful for

parametrizing clusters. In our formulation, the daughter con�gurations d served

for this purpose.
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Modelling of interaction

We used an interaction function 	 in the cluster prior (4.17) in order to force

the centres wi of xi to inhibit mutually. We recall our choice for 	:

	(xi; xj) =

(
(kwi � wjk=�)p kwi � wjk � �;

1 kwi � wjk > �:
(9.6)

The inhibition between clusters was made to be dependent only on the intercentre

distances. There are also some other interesting means of modelling the interac-

tion. Baddeley & Lieshout (1993) list a variety of ways to encourage inhibiting

con�gurations. Let

S(xi) = wi + fs j �i(s) 6= 0g (9.7)

denote the space occupied by a cluster xi. An alternative choice is to make	(xi; xj)

depend on whether the sets S(xi) and S(xj) overlap or not. Then, 	 could be

modelled by

	(xi; xj) =

(
# S(xi) \ S(xj) 6= ;;
1 S(xi) \ S(xj) = ;; (9.8)

where # is a constant between 0 and 1. It follows that in this formulation con�g-

urations are penalized according to the count of (unordered) pairs of overlapping

clusters. A slightly di�erent choice for the interaction function could be

	(xi; xj) = #jS(xi)\S(xj)j; (9.9)

where jS(xi) \ S(xj)j is the area (or volume) of the intersection. With this inter-

action function, the strength of inhibition between two clusters depends on how

much they overlap. A common feature of the interaction functions above is that

they lead to priors with only pairwise interactions. If the product
Q

i<j 	(xi; xj)

in the prior (4.17) is replaced by

& jS(x1)[S(x2)[���[S(xn)j; (9.10)

where & is a constant, we get a point process with higher-order interactions. To

favour con�gurations x with distinct clusters, the constant & should be �xed to be

larger than 1.

The cluster model is closely related to the object processes. The forms of inter-

action discussed in Baddeley & Lieshout (1993) do not assume any parametrization

unlike our suggestion. Our approach is easier to implement since we have to cal-

culate neither areas of pairwise intersections of sets nor areas of unions of planar

sets.
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Modelling of null intensities

Our last comment upon priors concerns the Markov random �eld models dis-

cussed in Section 8. In the analysis of the synthetic data, we used pairwise di�er-

ence priors to encourage spatially smooth pro�les. As explained in the previous

sections, our belief is that the pro�les are not only smooth but also strongly spa-

tially organized. Therefore, we expect that an activation pro�le may contain a

considerable amount of null intensities. However, a smoothing prior (8.1) cannot

be used to model the presence of nulls in an image. We suggest here how to modify

the density (8.1) so that it could be used to model both smoothness and the null

intensities.

Let us consider an atomic smoothing prior which has density

��(�) / ��nz(�) exp
�
�
1

X
s�u

j�(s)� �(u)j=�
�
exp
�
�(1=2)

X
s

(
3�(s)=�)
2
�

(9.11)

with respect to an atomic reference measure
Q

sm
�(d�(s)) wherem� = �0+m and

�0 is the Dirac measure with unit mass at the origin. Here, nz(�) is the number of

nonzero components in �, and � is a scale parameter of this model (Appendix A.3).

To understand the role of 
3, it is convenient to consider the case 
1 = 0. Then,

the components �(s) of � are independent and the density (9.11) is proportional

to

��nz(�) exp
�
�(1=2)

X
s

(
3�(s)=�)
2
�
: (9.12)

Now, 
3 controls the number of null intensities. In fact, if � is a (chosen) probability

level, the choice


3 = �
p
2�=(1� �) (9.13)

corresponds to a spatial prior model for which a component �(s) is null with

probability �. Also, the conditional variance of (�(s)j�(s) 6= 0) is �2=
23 for all s.

It is obvious that large positive values of 
1 enforce spatial ordering to intensity

values �(s). Unfortunately, when 
1 is not zero, the interpretation of 
3 is not as

clear as in (9.12) because of the interactions among the components �(s). In order

to adjust the fraction of null intensities (that is, non-activated voxels) a priori, it

is necessary to simulate the density (9.11) to �nd a corrected value for 
3.

We expect that high-level strategies are more suitable than pixel-based low

level models in fMRI problems. Nevertheless, a simple model like (9.11) is easy to

implement and results of high-level analyses can be contrasted with those of less

involved analyses.
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9.2 Likelihood

Our likelihood function is based on a Gaussian conditional autoregressive random

�eld (CAR) model. We recall the density of the spatial noise �eld � is proportional

to

exp

�
�1

2

�X
s

%(s)2�(s)2 +
X
l

�l
X
s�u=l

%(s)%(u)�(s)�(u)
��

(9.14)

We shall now discuss the Bayesian estimation of the parameters of this model and

possibilities to generalize the noise model.

In Section 5, we suggested how the (nuisance) parameters % and � can be esti-

mated from the data. We also remarked that the uncertainty in these estimates can

usually be ignored. The reason for this is that in typical fMRI studies the number

of scans T is so large that there are enough degrees of freedom for a reasonably ac-

curate estimation. However, if the scanning series are short, it may be appropriate

to account for the uncertainty in % and � . In principle, the uncertainty could be

taken into account by assigning priors to % and � . For example, a pairwise di�er-

ence smoothing prior could be used for % to discourage abrupt spatial changes in

%(s). While this kind of fully Bayesian approach would be philosophically satisfac-

tory, computational di�culties will arise. The updating of � will be a problematic

issue since the normalizing constant of the density (9.14) depends in a complicated

way on � and is actually analytically intractable. Therefore, to update � , compu-

tationally intensive techniques for estimating normalizing factors must be applied

(Higdon, 1994). Interestingly, the scaling parameter % can be updated without

any di�culties (if � is kept �xed) since then the normalizing constant of (9.14) is

proportional to the product
Q

s %(s) (Taskinen, 1998).

An underlying assumption in the use of the noise model (9.14) is that the spatial

correlation structure in fMRI data is almost homogeneous. In other words, the size

of spatial correlations is at the same level all around the brain slices. It follows

that, irrespective of the degree of nonstationarity in data, the model will be �tted

to match the average size of the spatial correlations. What is interesting is that the

CAR model could be modi�ed to accomodate nonstationary spatial correlations.

Replacing the interaction parameter � = (�l) by a new interaction term � = (�su)

in (9.14), we could de�ne a new spatial process, the density of which is proportional

to

exp

�
�1

2

�X
s

%(s)2�(s)2 +
X
s;u

�su%(s)%(u)�(s)�(u)
��
: (9.15)

In order to apply this more general noise model, it would be valuable to have some

auxiliary spatial covariate information which could be utilized when estimating

the interaction structure. At present, there does not seem to exist any imaging

modality which could give such information. Therefore, we have chosen to consider

only homogeneous noise models in this thesis.
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An important aspect of the CAR model is that it is a Markov random �eld

meaning that the noise �(s) in a voxel s depends on other noise terms only through

those terms �(u) where u is close to s. These voxels u constitute the neighbourhood

of s and it is determined by the spatial lags l. This conditional independence

is not important per se, but it simpli�es the updating formulas in our MCMC

computations. We also note that the Markov property of the noise model has an

important role when spatially unstructured smoothing priors (8.1) for pro�les are

used. In that case, the posterior is also a Markov random �eld, which facilitates

the sampling of the posterior.

9.3 Sampling issues

Our posterior p(x) is a high-dimensional nonstandard distribution, and, appar-

ently, there is no direct simulation method for it. Recognizing this, we applied

a special case of the Geyer-Møller simulation algorithm. An alternative to the

MCMC algorithm of Section 6 could be an application of the importance reweight-

ing technique (Gilks et al., 1996). In our situation, importance sampling could be

used in the following way. Let us suppose that g is some relevant function of x

and that the expected value of g(x) must be calculated. To this end, a collection

of samples x1; : : : ;xM could be drawn from some density p�(x) and the posterior

expectation of g(x) could be estimated from the importance reweighting formula

\Ep(g(x)) = (1=M)

MX
m=1

g(x(m))p(x(m))=p�(x(m)): (9.16)

What is appealing, our prior density �(x) (see (4.17)) could be used as the density

p� since � is easy to simulate. We recall that the simulation of � consists of two

steps. First, a con�guration of parent centres w = fw1; : : : ; wng is simulated from

an inhibitory point process (see Appendix A.2). Second, marks (�i;di) are drawn

from the mark distribution independently of each other and are assigned to each

centre wi. Thus, the simulation procedure is e�cient. A disappointing feature

of this algorithm is that the standard errors of the estimates (9.16) will be large

unless the prior � and the posterior p are nearly identical. This happens exactly

when the data contains only a small amount of information. We expect that this

requirement severely limits the use of importance sampling.

As already mentioned, our MCMC algorithm is a special case of the general

Geyer-Møller algorithm. Our sampler could be modi�ed at least in two ways.

First, when proposing a change in the number of clusters, we considered insertions

and deletions equally likely. In other words, an insertion was always proposed

with probability 0.50. However, the probability to propose a new cluster could

depend on the current con�guration x, and, in particular, on the prior probability

 (n(x)). A minor correction to the Metropolis-Hastings acceptance probabilities is

su�cient if the proposal mechanism is modi�ed in this way. Second, when we had
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decided to propose a cluster to be deleted, each cluster had the same probability

to be removed. In other words, the removal mechanism did not depend on the

characteristics of the clusters xi. Alternatively, we could, for example, propose to

delete more often clusters xi which have a small height �. Then, small clusters

would be proposed to be deleted with higher probability than large ones. Exact

recommendations for tuning the sampler are very di�cult to give since the posterior

depends on data, and the properties of the data may vary. There are also other

methods for simulating point processes than the Metropolis-Hastings algorithm by

Geyer & Møller (1994). Spatial birth-and-death processes provide an important

class of Markov chains that could also be utilized (Preston, 1975). An interesting

di�erence between a Metropolis-Hastings sampler and a birth-and-death sampler

deserves to be mentioned here. When a Metropolis-Hastings algorithm is used,

the number of points n(x) may well remain unchanged. On the contrary, it is

possible to construct a birth-and-death sampler for which the number of points

always either increases or decreases when updating (Stoyan et al., 1995).
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10 Statistics and fMRI: concluding remarks

The main contribution in this thesis is a new Bayesian modelling technique for

estimating activation pro�les in the human brain. The proposed Bayesian approach

is a structural model based on marked Gibbs point processes. There are three main

reasons for using a structural strategy to model pro�les. First, the experimental

designs applied often provide useful prior information on the neuronal processing of

interest. Second, expert knowledge on various characteristics of brain activations

can be incorporated into statistical analysis conveniently. Third, posterior inference

can be made both on activation pro�les and related parameters like centres of

neuronal activation. Our view is that the suggested prior model can be regarded

as a candidate solution to the problem of searching for �models parametrizing the

activation foci�, an issue posed by Petersson et al. (1999).

Our focus was to consider only pro�les with respect to which the likelihood

(or data) is not highly informative. If a pro�le can be estimated from the data

with high precision, the application of sophisticated Bayesian techniques becomes

more or less inappropriate since the posterior will not be sensitive to the prior.

Considering the utilization of designs such as (4.1), it is obvious that the standard

errors of (classical) estimates of �(s) depend on p, the number of scans per an

individual design, and that they decrease as p increases. Since the total number

of scans T = mp is not usually very large in fMRI experiments, it follows that

the errors in the estimates cannot be very small, particularly when m is large.

For a Bayesian, this means that as m increases (keeping T �xed) the domination

of data decreases in the posterior and that the posterior becomes more sensitive

to prior information on the activation processes. Consequently, when applying

concatenated designs, Bayesian inferential conclusions may di�er from those from

classical analyses, which cannot utilize prior knowledge as elegantly.
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The Bayesian paradigm provides a natural framework for modelling activation

processes in neuroimaging problems. In this context, an especially elegant feature

of Bayesian thinking is that it is not necessary to assume the number of parameters

to be known, typical in frequentist analyses. The number of parameters or objects

can be assigned a prior probability distribution which makes it possible to com-

bine e�ciency and �exibility, the ability to describe varying forms of activations.

Sometimes, Bayesian techniques can be viewed as ways for controlling the e�ec-

tive degrees of freedom (Green & Silverman, 1994), and nonparametric Bayesian

smoothing, for example, can be seen from this perspective.

When analysing image data using Bayesian methods, a structured approach

can be advantageous both at the prior modelling stage and in inferential steps.

First, the structure facilitates incorporating prior information into the subsequent

inference. Second, the parameters of the model can be thought of extracting in-

formation from the image of interest. All the questions we are interested in can

then be directly answered using the posterior of the parameters. In particular, the

inference principles are uni�ed. The subjective nature of the Bayesian paradigm is

sometimes considered to be a matter of concern. However, as argued by Bayesian

statisticians, all model-building is based on personal (or subjective) judgement to

some extent, and thus in a strict sense �objective inference� does not really exist.

Bayesian approaches are becoming more popular in natural sciences � this tendency

being supported by increases in computer power.

The development of statistical methods for FNI should follow advances in neu-

roscienti�c methodology. For example, most functional investigations now are o�-

line studies, which means that data are processed after a scanning operation has

been completed. As noted by Lange et al. (1999), a bene�t in an o�-line process-

ing is that the same data can be inspected using several di�erent strategies, which

potentially reveals more information on the brain function than any single analy-

sis. Interestingly, on-line studies may become more common in the next few years.

The idea of real-time processing has many advantages, of which Cox et al. (1995)

point out a few. For example, the quality of data can be directly assessed and

reacquisitions can be carried out if found necessary. What seems promising from

the neuroscienti�c point of view, the experimental design can be adjusted during

the acquisition, and it is possible to arrange the experiment to be interactive in the

sense that the stimulus will depend on the brain response history of a test person.

In the pioneering work by Cox et al. (1995), a recursive computational method was

suggested for revealing activation processes in almost real-time. It remains to be

seen in what form Bayesian ideas can be utilized in on-line analyses. Our proposal,

in its present form, is not adequate for such a use.

As neuroimaging continues its rapid development, new questions will certainly

arise, and fast on-line processing comprises perhaps just one challenge among many.

It is expected that FNI will be an inspiring �eld for applied scientists and that the

interplay between FNI and statistical science will be fruitful for both also in the

future.
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A Appendix

A.1 Generalized least squares estimation

In Section 5, it was claimed that the generalized least squares (GLS) estimation

of �(s) and �(s) can be carried out in a voxelwise manner under the separability

assumption. In other words, the estimates of these parameters depend only on the

observations in the voxel time series Y (s). To show this, let $(s) = (�(s); �(s))

be a single parameter containing all the voxel parameters. We shall treat the voxel

time series Y (s) and the noise time series �(s) as column vectors:

Y (s) = (Y1(s); : : : ; YT (s))
T ; (A.1)

�(s) = (�1(s); : : : ; �T (s))
T : (A.2)

The data Y , the coe�cients $ and the noise term � will be represented as vectors

Y = (Y (s1)
T ; : : : ; Y (sjSj)

T )T ; (A.3)

$ = ($(s1)
T ; : : : ; $(sjSj)

T )T ; (A.4)

� = (�(s1)
T ; : : : ; �(sjSj)

T )T : (A.5)

Let J = (1; : : : ; 1)T be column vector of size p. Then, the matrixX in the equation

(5.1) is

X =
�
X(�)X(�)

�
=
�
Im
J Im
X

�
; (A.6)

where Im is the identity matrix of size m and X = (Xt)
p
t=1. A spatio-temporal

version of our linear model (5.1) can be expressed as

Y = ~X$+ �; (A.7)
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where ~X is the Kronecker product I
X of the identity matrix I of size jSj and
X. Assuming the space-time covariance matrix C of � is known, the generalized

least squares estimate for $ is given by

$̂ = ( ~X
T
C�1 ~X)�1 ~X

T
C�1Y (A.8)

If C is separable, that is, C = W 
V , the estimate of $ is

( ~X
T
C�1 ~X)�1 ~X

T
C�1Y = (A.9)

((I
XT )(W�1

V �1)(I
X))�1(I
XT )(W�1


V �1)Y = (A.10)

(I
((XT V �1X)�1XT V �1))Y (A.11)

and therefore

$̂(s) = (XT V �1X)�1XT V �1Y (s): (A.12)

A.2 MCMC estimation of  � and h�

In Section 4 we introduced a parent centre process with density

fw(w) / n(w)! �(n(w))
Y
i<j

	(wi; wj) (A.13)

with respect to an inhomogenous unit rate Poisson process with an intensity func-

tion h�. We show here how MCMC methods can be used to �nd a discrete density

 � and an intensity function h� such that the number of centres n(w) and the

location of a random centre w follow prespeci�ed  and h.

We discuss �rst how to sample the density (A.13). The sampling scheme of

Geyer & Møller (1994) can be applied here. We shall use two updating rules:

displacement of a random centre and insertion/removal of a random centre. Let

w = fw1; w2; : : : ; wng be the current con�guration. To displace a random centre

wi, we propose a new location w� for it from h�. The acceptance ratio is then

MHRd =
Y
j 6=i

	(w�; wj)

	(wi; wj)
: (A.14)

If w is empty, we do nothing. To change the number of centres in the con�guration

w, we �rst choose whether to insert or remove, both operations being equally likely.

If we decide to insert a new centre, we sample a centre w� from h�. The acceptance

ratio is

MHRi =
 �(n+ 1)

 �(n)

nY
j=1

	(w�; wj): (A.15)
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In case of removal, we select a centre wi from the con�guration w at random. The

acceptance ratio is now

MHRr =
 �(n� 1)

 �(n)
Qn

j=1	(w
�; wj)

: (A.16)

If the con�guration w is empty, we do nothing.

The corrected values for  � and h� can be estimated by trial and error. First,

some initial values are chosen. For example,  (0) =  and h(0) = h. Then, samples

of the centre process are used to estimate ~ (1), the distribution of counts of the

model, and ~h(1), the density of a random centre. These MCMC estimates can be

used to �nd new iterated values,  (1) and h(1), and the procedure can be repeated

m times until ~ (m) �  and ~h(m) � h. It is useful to recognize that the ratio

 (k�1) = ~ (k) can provide a suitable value for  (k) at iterate k. Although this kind

of estimation method is quite elementary, it is usually practical since the simulation

of the model (A.13) is typically very time-e�cient.

A.3 Some notes on Markov random �elds

Sampling of Markov posteriors

In Section 8 we simulated the posterior distribution of a pro�le � which was a

Markov random �eld. We used single-voxel updates in sampling. For the MCMC

sampling of Markov posteriors we used the proposal density

q(�(s)�j�(s)) / exp
��(1=2)(�(s)� � �(s))2=�20�; (A.17)

where �0 is a tuning constant of the proposal density. The Metropolis-Hastings ra-

tio is the product of the likelihood ratio L(�(s)�)=L(�(s)), prior ratio

�(�(s)�)=�(�(s)) and the proposal ratio q(�(s)j�(s)�)=q(�(s)�j�(s)). Since the

proposal mechanism q is symmetric, the last ratio is identically one. The prior

ratio �(�(s)�)=�(�(s)) is

exp
�

1
X
s�u

�j�(s)� �(u)j � j�(s)� � �(u)j��: (A.18)

Atomic models

In Section 9 we suggested an atomic smoothing prior (see equation (9.11)). It

was claimed that the parameter � is a scaling parameter of the density ��. To

show this, we prove the following simple lemma.
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Lemma Let m�

k =
Qk

i=1(� + m) be a product measure and let nz(�) be the

number of nonzero components of �. ThenZ
��nz(�)g(� =�) dm�

k(�) =

Z
g(�) dm�

k(�) (A.19)

for all positive � and positive functions g.

Proof We proceed using induction. The case k = 1 is trivial. Let � = (~�; �)

where ~� = (�1; : : : ; �k). Assume that the formula holds for k. Noting that

nz(�) = nz(~�) + nz(�), we getZ
��nz(�)g(� =�) dm�

k+1(�) =

Z
��nz(

~�)

�Z
��nz(�)g(~�=�; �=�) dm�(�)

�
dm�

k(
~�)

(A.20)

=

Z
��nz(

~�)

�Z
g(~�=�; �) dm�(�)

�
dm�

k(
~�) (A.21)

=

Z �Z
��nz(

~�)g(~�=�; �) dm�

k(
~�)

�
dm�(�) (A.22)

=

Z �Z
g(~�; �) dm�

k(
~�)

�
dm�(�) (A.23)

=

Z
g(�) dm�

k+1(�); (A.24)

which proves the lemma.

Now, let f be the density (with respect to m�

k) of a random variable �. Then,

Pr(� � 2 E) = Pr(� 2 ��1E) =
Z
��1E

f(�) dm�

k(�) (A.25)

=

Z
Rk

1��1E(�)f(�) dm
�

k(�) (A.26)

=

Z
Rk

1��1E(� =�)f(� =�)�
�nz(�) dm�

k(�) (A.27)

=

Z
E

��nz(�)f(� =�) dm�

k(�); (A.28)

which con�rms our claim.

For MCMC sampling of an atomic posterior, the same proposal density (A.17)

can be used but now with respect to m�. Then, our proposal �(s)� comes from

a certain mixture of a normal distribution and Dirac degenerate distribution. In

fact, after some computations it follows that �(s)� is zero with probability

1

1 + �0
p
2� exp(1

2
�(s)2=�20)

(A.29)
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or otherwise a sample from N(�(s); �20). Also, this choice leads to the proposal

ratio

q(�(s)j�(s)�)
q(�(s)�j�(s)) =

�0
p
2� + exp(�1

2�(s)
2=�20)

�0
p
2� + exp(�1

2
(�(s)�)2=�20)

: (A.30)

It is interesting that now the proposal ratio is not identically one although we are

using centred Gaussian densities. This is a consequence of using a reference measure

that contains atoms. The prior ratio ��(��)=��(�) of an atomic smoothing prior

di�ers slightly from that of a conventional smoothing prior. If the absolute value

potential is used, the prior ratio is

�p exp
�

1=�

X
s�u

�j�(s)� �(u)j � j�(s)� � �(u)j��
� exp

�
(1=2)
23((�(s)

�)2 � �(s)2)=�2
�
;

(A.31)

where the exponent p is 1, 0 or -1 depending on whether the number of nonzero

components of �� is smaller, equal to or higher than that of �.

A.4 Convergence results

We shall here justify the convergence of our MCMC sampler constructed in Section

6. Our sampler is a mixture of �ve transition rules. We can update the height �

of a random cluster, heights �j of all daughters in a random cluster, location w

of a random parent centre, insert/remove a daughter from a random cluster and

�nally insert/remove a random cluster. According to the results of Geyer & Møller

(1994), the last updating rule is reversible and irreducible. Therefore, to prove

the convergence, it is enough to show that the �rst four rules are reversible. We

prove here that inserting/removing daughters and updating heights of daughters

are reversible transitions. The proofs for the other rules are very similar. To prove

the reversibility, let x = (w; (�;d)) be a cluster from a con�guration x. We aim to

show that we can update the conditional posterior distribution of d, given x nx, w
and �, in a reversible manner. Let us denote p((xnx)[ (w; (�;d))) by f(d). Then,
we have to show that the integralZ

D

Z
D

�A�B(d;d
�)A(d� jd)f(d) dP (d� jd)d�d(d) (A.32)

is symmetric in A and B where P (�jd) is one of the two proposal measures for

daughter con�gurations d, A(d� jd) is the corresponding acceptance probability

and D = 
(U �R+).
To begin with, we note that removing and deleting daughters from a �xed

cluster x is clearly reversible with respect to f(d) since this rule is based on the

Geyer-Møller acceptance probabilities. We shall now consider the updating of
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heights of daughter bells in more detail. To this end, let A and B be two collections

of con�gurations with the same number of points in the con�gurations, say k. In

this case, the proposal measure P reduces to a k-dimensional proposal density

q(��j�) and the integral (A.32) has formZ
D

Z
Rk

�A�B(d;d
�)A(d� jd)f(d)q(��j�) d��1 : : : d��k d�d(d): (A.33)

The roles of A and B are clearly symmetric if they are both empty sets or contain

only the empty con�guration (k = 0). Let k > 0 and use notation

g(d;d�) = A(d� jd)f(d)q(��j�). Then the integralZ
D

Z
Rk

�A�B(d;d
�)g(d;d�) d��1 : : : d�

�

k d�d(d) (A.34)

equals to

e�1

k!

Z
(R2)k

�Z
R2k

�A�B(d;d
�)g(d;d�)h�(�1) � � �h�(�k) d��1 � � �d��k d�1 � � �d�k

�
hv(v1) � � �hv(vk) dv1 � � �dvk

(A.35)

The reversibility condition is satis�ed if

g(d;d�)h�(�1) � � �h�(�k) (A.36)

is symmetric in (�; ��) for any given v. This holds if we use a Metropolis-Hastings

type acceptance probability

A(d� jd) = min

�
1;
f(d�)q(�j��)h�(��1) � � �h�(��k)
f(d)q(��j�)h�(�1) � � �h�(�k)

�
: (A.37)

In conclusion, we have shown that the reversibility holds if a �xed cluster x is

considered. It follows from this that the reversibility property holds also (now with

respect to p(x)) when the cluster x is chosen randomly from x.
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Yhteenveto

Funktionaalinen magneettiresonanssikuvantaminen (fMRI) on aivotoimintojen tut-

kimusta varten kehitetty mittausmenetelmä, joka on viime vuosina vakiinnuttanut

paikkansa neuropsykologisissa koeasetelmissa. fMRI:n avulla aivokudoksen her-

mosolujen aktiivisuutta voidaan havaita epäsuorasti seuraamalla aivokuoren ve-

renkierrossa ilmeneviä muutoksia. Menetelmän avulla pyritään paikallistamaan

kontrolloitujen ärsykkeiden synnyttämiä aivovasteita. Resonanssiaineisto koos-

tuu sarjasta viipalemaisia pikselikuvia, joissa tilaresoluutio on tyypillisesti noin

128�128. Yleensä aineisto on luontevinta tulkita kokoelmaksi spatiaalisia aikasar-

joja, koska tavoitteena on tarkkailla resonanssisignaalin kulkua ajassa kussakin pik-

selissä. Aineistojen tilastollista analysointia vaikeuttavat aivojen hemodynamiikan

epätäsmällinen tuntemus, havainnointia häiritsevät satunnaiset fysiologiset tekijät

ja itse mittauslaitteen synnyttämä kuvauskohina.

Väitöstutkimuksessa on rajauduttu tarkastelemaan aktivaatioprosessien spa-

tiaalisten piirteiden tilastollista inferenssiä. Keskeisenä tuloksena esitetään bay-

esläiseen tilastotieteeseen perustuva malli aivojen aktivaatiopro�ilien analysointia

varten. Aktivaatiopro�ilin priorimallilla pyritään kuvailemaan aktivaatioiden klus-

teroitumista. Lähestymistapa on epäparametrinen siinä mielessä, että priorilla

ei pyritä säätelemään klusterin muotoa. Priorilla halutaan korostaa klustereiden

oletettavaa spatiaalista laajuutta ja aktivaatioiden koherenttisuutta. Mallin eri-

tyisenä ominaisuutena voidaan pitää klustereiden keskusten muodostaman pisteku-

vion pitämistä yhtenä parametrina. Käytetty priorimalli konstruoidaanmerkkisten

Gibbsin pisteprosessien avulla.

Väitöstyössä korostetaan pro�ilin uskottavuusfunktion valinnan merkitystä, eri-

tyisesti kohinan spatiaalisen riippuvuusrakenteen mallintamista. Kohinan malleina

on käytetty gaussisia ehdollisesti autoregressiivisiä prosesseja. Korrelaatiorakentei-

den lisäksi uskottavuusfunktiossa otetaan huomioon aivojen fysiologisiin prosessei-

hin liittyvä kohinan heteroskedastisuus.

Tilastollinen päättely nojautuu aktivaatiopro�ilin posteriorijakauman simuloin-

tiin. Simulointeja varten työssä on johdettu yleisestä Gibbsin pisteprosesseille

esitetystä MCMC-menetelmästä tarkoitukseen soveltuva algoritmi. Simuloinnissa

on erikoispiirteenä parametriavaruuden dimension muuttuminen päivitysten yhtey-

dessä.

Bayesläistä mallia on sovellettu lukihäiriötutkimuksen yhden koehenkilön osa-

aineiston analysointiin, jossa havainnollistetaan ennakkotiedon laadun ja määrän

vaikutusta tilastolliseen epävarmuuteen aktivaatiopro�ilista. Työssä tarkastellaan

myös synteettistä aineistoa ehdotetun priorimallin vertaamiseksi muihin prioreihin.

Vertailukohteena on käytetty epäparametrisia tasoitusprioreja, jotka poikkeavat

hyperparametrirakenteen suhteen ratkaisevasti klusteripriorista. Simulointitulok-

sista ilmenee, että tavanomaisin epäparametrisin priorein ei voida kuvailla kaikkia

aktivaatiopro�ileille olennaisia piirteitä, tärkeimpänä aktivaatioiden voimakasta
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spatiaalista organisoitumista. Väitöksessä todetaan, että (spatiaalisessa mielessä)

rakenteellisten mallien avulla fMRI-analyysiin voidaan tuoda joustavasti yksityis-

kohtaista asiantuntijatietoa tutkittavasta aivotoiminnosta. Lisäksi työssä koroste-

taan koeasetelman vaikutusta posterioripäättelyn sensitiivisyyteen priorin suhteen

ja todetaan, että bayes-päättely voi olla erityisen hyödyllistä, jos tutkittavassa

pro�ilissa halutaan kontrastoida useiden eri ärsykkeiden vasteita.

105


