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University Printing House
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I am deeply grateful for the fruitful and enjoyable collaboration. I extend my grati-

tude to Dr. Albert Clop and Professor James Gill, who pre-examined this work, for

their valuable comments. I would also like to thank Professor Kirsi Peltonen for

kindly agreeing to be the opponent during the public examination of my thesis.

I am also grateful to the Department of Mathematics and Statistics at the Univer-
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INTRODUCTION

1. Measures and dimensions

This thesis studies estimates on the size of images of certain sets under certain

kinds of Sobolev mappings. We will make assumptions on both the size of the pre-

images and properties of the mappings to obtain these estimates. Both Hausdorff

and Minkowski dimensions and Hausdorff measures will be used to characterize the

sets.

The generalized Hausdorff measure of a set A ⊂ R
n is defined as

Hh(A) = lim
δ→0

Hh
δ (A),

where

Hh
δ (A) = inf

{

∞
∑

i=1

h(diamUi) : A ⊂
∞
⋃

i=1

Ui, diamUi ≤ δ
}

and h : [0,∞[→ [0,∞[ is a dimension gauge: a non-decreasing function with

limt→0+ h(t) = h(0) = 0. In the special case where h(t) = tα for some α ≥ 0,

we have the usual Hausdorff α-dimensional measure, which we simply denote by Hα.

The Hausdorff dimension dimHA of a set A ⊂ Rn is the smallest α0 ≥ 0 such that

Hα(A) = 0 for any α > α0.

The lower Minkowski dimension dimM(A) of a bounded set A ⊂ Rn is defined as

dimM(A) = inf{s : lim inf
ε→0+

N(A, ε)εs = 0},

where N(A, ε), ε > 0, denotes the smallest number of balls of radius ε needed to

cover A, i.e.

N(A, ε) = min
{

k : A ⊂
k

⋃

i=1

B(xi, ε) for some {x1, . . . , xk} ⊂ R
n
}

.

The estimates obtained in this thesis, mentioned in the beginning of the section,

will naturally be referred to as “dimension distortion estimates”.

2. Quasiconformal mappings

Let Ω be a domain in Rn. A homeomorphism f in the Sobolev class W 1,1
loc (Ω,Rn) is

called quasiconformal if there exists a constant K ∈ [1,∞[ such that the inequality

|Df(x)|n ≤ K|Jf(x)|

holds almost everywhere in Ω. Here |Df(x)| denotes the operator norm of the formal

differential of f at the point x ∈ Ω, which exists provided all the distributional partial

derivatives of f exist, and Jf is the Jacobian of f .

Dimension distortion results for quasiconformal mappings were first obtained by

F.W. Gehring and J. Väisälä in [10]. They proved the existence of a constant
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β ∈ [α, 2[, depending only on K ∈ [1,∞[ and α ∈ [0, 2[, such that dimH f(E) ≤ β
for every planar K-quasiconformal mapping f : Ω → R2 and a set E ⊂ Ω with

dimHE ≤ α. The obtained estimate strongly relies on the higher integrability result

of B. Bojarski [5], which shows that for a planar K-quasiconformal mapping f , Jf is

locally Lq-integrable for all q ∈ [1, p(K)], where p(K) > 1 is some constant depending

only on K.

Later this dimension distortion estimate was generalized to higher dimensions [9].

This time the constant β ∈ [α, n[ depends on the dimension n of the underlying

space along with K and α ∈ [0, n[. Again, the result is a consequence of the higher

integrability of the Jacobian, obtained in the same paper for quasiconformal mappings

in Rn with n ≥ 2.

Since the inverse of a K-quasiconformal mapping is also quasiconformal, we obtain

a dimension distortion estimate of the form

dimHE ≥ α′ =⇒ dimH f(E) ≥ β ′,

where f : Ω → Rn is a K-quasiconformal mapping, E ⊂ Ω and β ′ ∈]0, n] is a constant,

depending only on n, K and α′ ∈]0, n].

The sharp integrability result for the Jacobian of a quasiconformal mapping in the

plane was established only in 1994 in [1] together with sharp dimension distortion

estimates. It was shown that each K-quasiconformal mapping f : Ω → R2, Ω ⊂ R2,

is in the class W 1,p
loc (Ω,R2) for all p < 2K

K−1
, and hence Jf is locally Lq-integrable

for all q < K
K−1

. These bounds are best possible. Dimension is distorted by a

K-quasiconformal mapping f for a set E ⊂ Ω in the following way

(1)
1

K

( 1

dimHE
−

1

2

)

≤
1

dimH f(E)
−

1

2
≤ K

( 1

dimHE
−

1

2

)

.

The example in [1, Theorem 1.4] provides a quasiconformal mapping, for which equal-

ity in (1) is reached.

3. Beltrami equation

The proofs in [1] utilize the Beltrami equation, which has no convenient analogues

in higher dimensions. This makes the generalization of the results difficult.

Every K–quasiconformal mapping in the complex plane f : Ω → C satisfies the

Beltrami equation

(2) ∂f(z) = µ(z)∂f(z),

where ∂ = 1
2
(∂x + i∂y), ∂ = 1

2
(∂x − i∂y), and µ = µf = ∂f/∂f is called the Bel-

trami coefficient of f . Note that quasiconformality implies ||µ||∞ = K−1
K+1

< 1. This

equation was studied by Morrey in the late 1930s. In [26] he proved the existence

of homeomorphic solutions for a given Beltrami equation (2) with ||µ||∞ < 1. These

solutions are K–quasiconformal mappings with K =
1+||µ||∞
1−||µ||∞

. The existence theorem

may be stated as follows (see [19, Theorem 11.1.2]).

Theorem 1. Let µ be a measurable function in a domain Ω ⊂ C and suppose

||µ||∞ < 1. Then there is a quasiconformal mapping g : Ω → C whose Beltrami
6



coefficient is equal to µ almost everywhere in Ω. Moreover, every W 1,2
loc (Ω) solution

to the Beltrami equation (2) is of the form

(3) f(z) = F (g(z)),

where F : g(Ω) → C is a holomorphic mapping.

The decomposition in (3) is called Stoilow factorization. This tool allows one to

remove the injectivity assumption in the planar setting for certain distortion theo-

rems.

The case when ||µ||∞ = 1 was first studied in [25] and further in [7]. In these

works, the existence of homeomorphic solutions of (2) was established under certain

integrability conditions on K(z) =
1+|µ(z)|
1−|µ(z)|

. We deal with two different cases when

||µ||∞ = 1: mappings of exponentially integrable distortion and mappings of sub-

exponentially integrable distortion, defined in Sections 4 and 6, respectively.

A planar mapping f : Ω → C of finite distortion with distortion function K (see the

next section for the definition) satisfies the Beltrami equation (2) almost everywhere

in Ω with

µ(z) = µf(z) =

{

∂f(z)/∂f(z), if ∂f(z) 6= 0,

0, otherwise,

such that |µ(z)| =
K(z)−1
K(z)+1

< 1. Conversely, the Beltrami equation (2) with |µ(z)| < 1

for almost every z implies distortion inequality (4) with K(z) =
1+|µ(z)|
1−|µ(z)|

for almost

every z, for its pointwise solutions in W 1,1
loc .

Mappings of exponentially integrable distortion form a particular class of mappings

of finite distortion with exp(λK) locally integrable for some λ > 0 (here K is the

distortion function of the mapping). The existence of a homeomorphic solution g for

the Beltrami equation (2) with K =
1+|µ|
1−|µ|

such that exp(λK) ∈ L1 for some λ > 0

was proved in [7, Théorème 1] and [19, Theorem 11.8.3]. Moreover, every mapping f
of λ-exponentially integrable distortion satisfying the same Beltrami equation admits

a Stoilow factorization (3) with holomorphic F .

The Beltrami equation (2) with sub-exponentially integrable distortion function

K =
1+|µ|
1−|µ|

(see Section 6) also has homeomorphic solutions and every mapping of

sub-exponentially integrable distortion admits Stoilow factorization (see [19, Theo-

rem 11.8.2] and [4, Theorems 20.5.1 and 20.5.2]).

4. Mappings of finite exponentially integrable distortion

Mappings of finite distortion form a natural generalization of the class of quasi-

conformal mappings, where K may be an unbounded function. More precisely, a

continuous mapping f : Ω → Rn of the class W 1,1
loc (Ω,Rn) is called a mapping of fi-

nite distortion if there exists a measurable function K : Ω → [1,∞[ such that the

inequality

(4) |Df(x)|n ≤ K(x)Jf(x)

holds for almost every x in Ω. In order to obtain nice properties for the mapping f ,

the Jacobian Jf is additionally assumed to be locally integrable in Ω. An optimal
7



choice for the function K is

K(x) = Kf(x) =

{

|Df(x)|n

Jf (x)
, if Jf(x) 6= 0,

1, otherwise.

We usually refer to this K, when we speak of the “distortion function” of f .

A special class of mappings of finite distortion is the class of mappings of expo-

nentially integrable distortion, that is, such mappings for which exp(λK) ∈ L1
loc(Ω)

holds for their distortion functions K and some λ > 0. This assumption allows one

to obtain such properties for the mapping as monotonicity, continuity (without an

a priori assumption), discreteness, openness and Luzin condition N [18, 23, 22].

It was shown in [15] and [28] that the estimate

dimHE < n =⇒ dimH f(E) < n

does not necessarily hold when f is a general mapping of exponentially integrable

distortion. It was shown in [15] that there exists a constant C ≥ 1 depending only

on n, such that for any given λ > 0 and ε ∈]0, λ[, a mapping f : Rn → Rn of

(λ/C − ε)-exponentially integrable distortion may be constructed so that f sends a

set C of Hausdorff dimension strictly less than n to a set C′ of Hausdorff dimension

n. More precisely, the image set C′ has a positive generalized Hausdorff measure Hh

with gauge function h(t) = tn logλ(1/t).
The paper [15] also gives an estimate for the size of the image of the unit circle

S1 ⊂ R2 under a planar mapping of exponentially integrable distortion. The estimate

is obtained in terms of a generalized Hausdorff measure: there exists an absolute

constant k > 0 such that if f : R2 → R2 is a homeomorphism of λ-exponentially

integrable distortion for some λ > 0 then Hh(f(S1)) <∞ for h(t) = t2 logkn(1/t).
This thesis deals with estimates of the similar form. In [B], the estimate above

was proved for a more general class of pre-images and with a slightly better gauge

function for the generalized Hausdorff measure of image sets. The following theorem

was established.

Theorem 2. [B, Theorem 1] Let f ∈ W 1,1
loc (Ω; R2), Ω ⊂ R

2, be a mapping of locally

λ-exponentially integrable distortion, λ > 0. Set hs(t) = t2 logs(1/t) for s ∈ R. If

E ⊂ R2 satisfies dimH(E) < 2, then Hhs(f(E)) = 0 for all s < λ, where Hhs is the

generalized Hausdorff measure associated to hs.

The example in [15] mentioned above shows this result is sharp modulo the con-

stant.

The proof is based on the fact that generalized derivatives of mappings of expo-

nentially integrable distortion which are a priori assumed to be only locally inte-

grable, actually enjoy higher regularity. Some higher regularity results were proved

in [7, 16, 17, 8] and [2] gives the sharp regularity for the planar case. The regularity

is stated in terms of Orlicz-Sobolev classes: it was first shown that

|Df |2 logcλ−1(e+ |Df |) ∈ L1
loc(Ω)

with a constant c (which may depend on the dimension) for a mapping f of λ-exponen-

tially integrable distortion, and then in [2, Theorem 1.1], it was demonstrated that

in the planar case, c may be taken as any number strictly less than 1.
8



Thus, it suffices to establish a dimension distortion estimate for Orlicz-Sobolev

mappings to conclude Theorem 2. Such estimates were obtained in the planar case

in [A, Theorem 1.1], [B, Theorem 2] and [27, Theorem 1.1], and the results were

generalized to higher dimensions in [D, Theorem 1].

5. Orlicz-Sobolev mappings

An Orlicz function is a continuously increasing function P : [0,∞) → [0,∞) such

that P (0) = 0 and limt→∞ P (t) = ∞. Given an Orlicz function P , we denote by

LP (Ω) the Orlicz class of integrable functions h : Ω → R such that
∫

Ω

P (ν|h|) <∞

for some ν = ν(h) > 0. An Orlicz-Sobolev class W 1,P (Ω) is the class of mappings

g ∈W 1,1(Ω,R2) which have all first order partial derivatives in the class LP (Ω).

Due to the form of the higher regularity condition for the mappings of exponentially

integrable distortion, we are particularly interested in dimension distortion estimates

for mappings in the Orlicz-Sobolev class W 1,P (Ω,R2) with P (t) = t2 logλ(e + t) for

some λ > 0. The proof of [B, Theorem 1] relies on the following result.

Theorem 3. [B, Theorem 2] Let Ω be an open set in R2 and f : Ω → f(Ω) ⊂ R2 be a

homeomorphism in W 1,2(Ω; R2) with |Df |2 logλ(e+ |Df |) ∈ L1
loc(Ω) for some λ > 0.

Then, for E ⊂ R2, we have

dimH (E) < 2 =⇒ Hhλ (f (E)) = 0

for hλ (t) = t2 logλ
(

1
t

)

.

This theorem, stated for homeomorphisms, actually only uses the monotonicity of

f . Recall that a continuous real-valued function u : Ω → R (Ω ⊂ Rn) is said to be

monotone if for every ball B ⊂ Ω we have

sup
∂B

f = sup
B
f and inf

∂B
f = inf

B
f.

A mapping f : Ω → Rn is called monotone if its component functions are monotone.

However, the assumption of being a homeomorphism is not too restrictive in the case

of planar mappings of finite distortion because of Stoilow factorization.

As one can see, the direct combination of Theorem 3 with the higher regular-

ity result of Theorem 1.1 in [2] would give us Theorem 2 with s < λ − 1 instead

of s < λ. The gap is bridged with the help of the so-called “minimal decomposi-

tion” of the Beltrami coefficient, proved in [7, Proposition 3] for the quasiconformal

case and generalized to the case of mappings of exponentially integrable distortion

by [2, Corollary 4.4]. We also use Stoilow factorization to obtain homeomorphic map-

pings. Eventually, the initial mapping f is decomposed into a holomorphic mapping,

a quasiconformal mapping and a homeomorphism with finite distortion, having better

integrability properties than the distortion of the initial mapping. We employ higher

regularity from [1] to obtain a generalized Hausdorff measure distortion estimate for

the quasiconformal mapping in question.
9



In the proof of Theorem 3, we estimate the generalized Hausdorff measure of the

image using the 5r–covering theorem. The covering sets are the images of the balls

which cover the initial set E. First, we bound the diameters of the images of these

balls from above by the integrals of the differential of our mapping f over larger

annuli. This is done simply using properties of monotone Sobolev mappings. Passing

from a larger annulus to a smaller ball is possible thanks to the following concept of

a maximal operator. Assume that Ω ⊂ R2 is a square and h : Ω → R is nonnegative

and integrable. The maximal operator MΩ is defined by

MΩh(x) = sup
{

−

∫

Q

h dx : x ∈ Q ⊂ Ω
}

,

where the supremum is taken over all subsquares of Ω containing the given point

x ∈ Ω. Direct estimations bound the diameters of the images of the initial balls

by the integrals of MΩ|Df | over the balls which are five times smaller and pairwise

disjoint by the 5r–covering theorem. Having obtained this estimate, we are able to

establish an arbitrarily small bound for the sum

∑

diam2 f(B) logλ

(

1

diam f(B)

)

over the initial covering balls. The estimations take advantage of the size of the initial

set E and the same Orlicz-type integrability for MΩ|Df | as for |Df |. The latter is

by [12, Lemma 5.1].

A better estimate than the one in Theorem 3 was established in [A] for the

Minkowski dimension. The following was shown.

Theorem 4. [A, Theorem 1.1] Let Ω and Ω′ be open sets in R2 and f : Ω → Ω′ a

homeomorphism of class W 1,1
loc (Ω; R2) with

|Df |2 logλ−1(e+ |Df |) ∈ L1
loc(Ω)

for some λ > 0. Then

Hhλ(f(E)) = 0

for hλ (t) = t2 logλ
(

1
t

)

and every set E ⊂ Ω of lower Minkowski dimension dimM(E)

strictly less than two.

The sharpness of this theorem is demonstrated by the previously mentioned exam-

ple in [15, Proposition 5.1]. Indeed, it may be shown that the constructed homeo-

morphism f , sending a set of Hausdorff (and Minkowski) dimension strictly less

than n to a set of positive generalized Hausdorff measure Hh with gauge function

h(t) = tn logλ(1/t), belongs to the class W 1,P
loc (Rn,Rn) with P (t) = tn logs(e + t) for

all s < λ− 1 (see [A, Section 2]).

The proof of the theorem relies on the Hölder continuity estimates for the inverse

of a Sobolev mapping. In order to establish such estimates for f , we use the fact that

f−1 belongs to the class BVloc(f(Ω),Rn) under our assumptions [14, Theorem 1.2].

We apply the obtained Hölder continuity while estimating the Lebesgue measure of

the image with the help of the inequality |f(A)| ≤
∫

A
Jf from [22, Lemma 3.2]. We

further use the higher integrability of the Jacobian of an Orlicz-Sobolev mapping

from [20, Corollary 9.1] to continue with the estimations. Finally, the Besicovitch
10



covering theorem allows us to make conclusions on the generalized Hausdorff measure

of the image based on the obtained estimate for its Lebesgue measure.

A sharp dimension distortion estimate in the plane for Hausdorff dimensions was

proved in [27]:

Theorem 5. [27, Theorem 1.1] Let Ω be an open set in R2 and f : Ω → f(Ω) a

homeomorphism of the class W 1,1
loc (Ω; R2) with

|Df |2 logλ−1(e+ |Df |) ∈ L1
loc(Ω)

for some λ > 0. Then, with hλ(t) = t2 logλ 1
t
,

Hhλ(f(E)) = 0

for every set E ⊂ Ω such that dimH h(E) < 2.

The proof follows the same strategy as in Theorem 4, but the coverings used in the

proof are dealt with in a finer way.

Planar results mentioned in this section were generalized to higher dimensions

in [D]:

Theorem 6. [D, Theorem 1] Let Ω ⊂ Rn be an open set and f : Ω → Rn a continuous

map in W 1,1
loc (Ω,Rn) with |Df |n logλ(e+ |Df |) ∈ L1

loc(Ω) for some λ ∈ R. Then, with

hγ (t) = tn logγ
(

1
t

)

,

dimH(E) < n =⇒ Hhγ (f(E)) = 0,

if one of the following cases occurs:

(i) λ > n− 1 and γ < λ− n + 1.

(ii) f is monotone, λ > 0, and γ ≤ λ.
(iii) f is a homeomorphism, f−1 ∈ W 1,p

loc (f(Ω),Rn) for some p > n− 1, λ > −1,

and γ ≤ λ+ 1.

The items (ii) and (iii) are generalizations of Theorems 3 and 5, respectively. The

proofs repeat the same main steps. The assumption f−1 ∈ W 1,p
loc (f(Ω),Rn) in (iii) is

dictated by the techniques of the proof since we wish to obtain a Hölder continuity

estimate for f−1 analogous to the one we used in the proofs of Theorems 4 and 5.

The proof of (i) relies on the estimate from [21, Theorem 3.2] on the oscillation of a

Sobolev function on balls. Further estimations on the images of balls use techniques

similar to the ones in the proof of (ii). This time, the diameters of the images of the

balls are bounded by [21, Theorem 3.2] by integrals over the same balls, so we do

not have to use maximal operators to pass to smaller balls. We use the Besicovitch

covering theorem instead of the 5r–covering theorem to obtain our balls, which do

not overlap too many times.

We do not know if the estimates in (i) and (ii) are sharp. However, the same

example as above shows sharpness of the estimate in (iii).

As in the planar case, once we have higher regularity for mappings of finite distor-

tion, we may combine it with the obtained dimension distortion estimates for Orlicz-

Sobolev mappings. A mapping of exponentially integrable distortion is monotone, its

inverse was proved to have nice regularity properties [13], and the higher regularity

is demonstrated in [8, Theorem 1.1]. All this gives us the following corollary:
11



Corollary 1. [D, Corollary 2] Let Ω ⊂ Rn be a domain and λ > 0. There exist

positive constants c1 and c2 depending only on n such that if f : Ω → Rn is of

λ-exponentially integrable distortion and satisfies

(i) λ > 1/c1 and γ ≤ c1λ− 1 or

(ii) f is homeomorphic and γ ≤ c2λ,

then the following implication is true:

dimH(E) < n =⇒ Hhγ (f(E)) = 0,

where hγ (t) = tn logγ
(

1
t

)

.

The example above demonstrates sharpness of (ii) modulo the constant.

6. Mappings of sub-exponentially integrable distortion

The assumption of exponential integrability for the distortion function may be

relaxed by replacing it with a more general Orlicz condition. That is, one may

assume eA(K) ∈ L1
loc with some smooth increasing function A : [1,∞[→ [0,∞[ such

that

(5)

∞
∫

1

A(t)

t2
dt = ∞,

where K is a distortion function of a mapping of finite distortion f : Ω → Rn, Ω ⊂ Rn

(see [4, Section 20.5]). In particular, when A(t) = p t
1+log t

− p, for some p > 0, such a

mapping f is called a mapping of sub-exponentially integrable distortion. Mappings

of sub-exponentially integrable distortion are continuous, open, discrete and satisfy

Luzin condition N [24].

The higher regularity for these mappings in general dimensions was studied in [6].

An Orlicz-Sobolev condition established there has the following form in the case of

our particular A: |Df | ∈ L
Pβ

loc(Ω) for a mapping f : Ω → Rn of sub-exponentially

integrable distortion and all β < cp, where

(6) Pβ(t) =
tn

log(e+ t) log1−β(log(ee + t))

and c > 0 is a constant depending only on n. This result was sharpened for the

planar case in [11]. The constant c is removed and the higher regularity condition

becomes plainly

|Df |2

log(e+ |Df |) log1−β(log(ee + |Df |))
∈ L1

loc(Ω)

for a planar mapping of sub-exponentially integrable distortion f : Ω → R2 and all

β < p.
Paper [C] takes advantage of these higher regularity results. We apply techniques

that are similar to the ones used in the proofs of Theorems 4, 5 and 6 (iii). In the

case of the higher regularity of the form (6), these techniques give us a dimension

distortion estimate of the following form, where hn,β(t) = tn(log log(1/t))β and Kf is

the distortion function of f :
12



Theorem 7. [C, Theorem 1] There exists a constant c > 0, which depends only on

the dimension n of the underlying space, such that for every homeomorphism of finite

distortion f ∈W 1,1
loc (Ω; Rn), Ω ⊂ R

n, with

e
Kf

1+log Kf ∈ Lp
loc(Ω)

for some p > 0, we have Hhn,β(f(E)) = 0 for all β < cp, whenever E ⊂ Ω is such

that dimHE < n.

Due to the general form of all auxiliary results we use in the proof of the theorem

above, one could extend this theorem to a case of a more general function A in the

Orlicz integrability condition for the distortion function, in particular, when A is

given by

Ap,k(t) =
pt

1 + log(t) log(log(e− 1 + t)) · · · log(. . . (log(ee··
·
e

− 1 + t)) . . .)
− p

with some p > 0 and k ∈ N, where k means that the last logarithmic expression is a

k-th iterated logarithm.

When n = 2, the assumption that f is a homeomorphism is not necessary due to

Stoilow factorization:

Theorem 8. [C, Theorem 2] Let f ∈ W 1,1
loc (Ω; R2), Ω ⊂ R2, be a mapping of finite

distortion with

e
Kf

1+log Kf ∈ Lp
loc(Ω).

Then Hh2,β(f(E)) = 0 for all β < p, whenever E ⊂ Ω is such that dimHE < 2.

Paper [C] provides an example to show that Theorems 7 and 8 are sharp modulo

the constants:

Example 1. [C, Example 1] There exists a constant C ≥ 1 depending only on

n, such that for any β > 0 and ε ∈]0, β[, we may construct sets C, C′ ⊂ [0, 1]n,

satisfying dimH C < n and Hhn,β(C′) > 0, and a mapping of finite distortion f ∈
W 1,1([0, 1]n; Rn), such that

e
Kf

1+log Kf ∈ L
1
C

β−ε([0, 1]n)

and f(C) = C′.

The construction is analogous to the one in [15, Proposition 5.1]. The image and

the pre-image sets C, C′ ⊂ [0, 1]n are Cantor sets which are obtained as Cartesian

products of Cantor sets on the real line with themselves. The Cantor set on the real

line used for construction of the pre-image set C is a“standard”self-similar Cantor set,

obtained as an infinite intersection of families of equal length intervals, such that the

length of each interval of the next generation differs from the length of the previous

generation intervals by a fixed factor. The construction in the case of the image set

C′ is very similar, but the above mentioned factor is not fixed. This allows one to

obtain a set of positive generalized Hausdorff measure with the required gauge.
13



Figure 1. “Cubical frames” used in the construction.

Eventually, the cube [0, 1]n on both the pre-image and the image side becomes split

into so-called “cubical frames” (see Figure 1), that is, sets of the form

{x ∈ R
n : r < |x|∞ < R},

where | · |∞ denotes the maximal norm defined as |x|∞ = max{|xi|}
n
i=1 for x ∈ Rn.

The frames are pairwise disjoint and cover the cube [0, 1]n up to a set of Lebesgue

measure zero. The behaviour of our mapping f is essentially defined by its form on

those frames, where it looks like

(a|x|∞ + b)
x

|x|∞

up to a translation (here, the numbers a and b are adjusted so that the pre-image

frame is mapped exactly onto the image frame, inner boundary to inner boundary).

The integrability assumption in (5) is essential if one wishes to obtain dimension

distortion estimates for mappings of finite distortion. Indeed, Section 5 of [22] pro-

vides a construction of a homeomorphism f of finite distortion K with eA(K) ∈ L1
loc

for some function A : [1,∞[→ [0,∞[ such that

∞
∫

1

A(t)

t2
dt <∞,

and f maps a set of Hausdorff dimension strictly less than the dimension n of the

underlying space to a set of positive Lebesgue measure. More precisely, A is taken

as A(t) = p t
log2(e+t)

− p for some particular p > 0. See [24] for refined constructions.

7. Inverse estimate

By now, we have discussed generalizations for the estimate

dimHE ≤ α =⇒ dimH f(E) ≤ β,
14



obtained for the case of quasiconformal mappings in [10, 9, 1]. A counterpart for the

inverse estimate

dimHE ≥ α′ =⇒ dimH f(E) ≥ β ′

is given in [E] for the mappings of exponentially integrable distortion. It is again

formulated in terms of generalized Hausdorff measures:

Theorem 9. [E, Theorem 1] There exists a constant cn > 0, depending only on n,
such that for any homeomorphic mapping f : Ω → R

n of λ-exponentially integrable

distortion, we have Hhn,λ,s,cn (f(E)) > 0 for each set E ⊂ Rn such that Hs(E) > 0,

where hn,λ,s,cn(t) = exp(−cnλ
1
n s log

n−1
n 1

t
).

This estimate follows from the modulus of continuity of the inverse of a mapping of

exponentially integrable distortion, obtained in [15]. The estimate is asymptotically

sharp modulo the constant cn as the dimension s tends to zero. This is demonstrated

by the following example.

Example 2. [E, Example 1] For any s ∈]0, n[ and λ > 0 there exists a homeo-

morphism f ∈ W 1,1
loc (Rn,Rn) of µ-exponentialy integrable distortion for all µ ∈]0, λ[,

mapping a set C of positive s–dimensional Hausdorff measure to a set C′ such that

Hh(C′) = 0 for all h(t) = exp(−C ′ log(n−1)/n(1/t)) with

(7) C ′ > C(λ, s) =











(

n
n−1

)
n−1

n λ
1
n s

(n−s)
1
n (1−s)

n−1
n
, 0 < s < 1

(

n
n−1

)
n−1

n λ
1
n s log

n−1
n m(s)

(n−s)
1
n log 2

, 1 ≤ s < n,

where m(s) = (⌈2
1

n−sn
s

2(n−s) ⌉)n (here, ⌈a⌉ for a number a ∈ R, denotes the smallest

integer greater or equal to a).

Note that the dependence C(λ, s) behaves asymptotically like n(n−2)/n

(n−1)(n−1)/nλ
1/ns

when s is small.

Figure 2. Cantor set in Example 2
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The construction uses the same idea as Example 1, but this time, the Cantor sets

are constructed with the help of balls rather than cubes, similarly to the way it is

done in [3, Theorem 7.2]. The limit sets are obtained as infinite intersections of

families of balls of equal size (see Figure 2). The fact that now our mapping f “lives”

on “spherical annuli” not “cubical frames” allows us to take it as a standard radial

stretching on those annuli, that is, a mapping of the form
∣

∣

∣

x

r

∣

∣

∣

α−1

(x− x0) + x′0,

where the numbers r and α depend on the radii of annuli, and x0 and x′0 are the

centres of the pre-image and the image annuli, respectively.

Finally, [E] gives the following corollary to Theorem 9.

Corollary 2. Let f : Ω → Rn be a homeomorphic mapping of exponentially integrable

distortion. Then we have Hh(f(E)) > 0 for all E ⊂ Ω such that dimHE > 0, where

h(t) = exp((log−1 log 1
t
) log

n−1
n 1

t
).

This is a simple modification to Theorem 9, which sacrifices accuracy in order to

get rid of the uncertain constant cn. The expression log−1 log 1
t

here may be replaced

with any function ψ such that ψ(t) → 0 and ψ(t) log
n−1

n 1
t
→ ∞ as t→ 0.

8. Further investigation

Another question which may be studied is: How big should the pre-image set be

if we wish that its image under a homeomorphism of finite distortion have Hausdorff

dimension n? We are able to answer this question for mappings of exponentially

integrable distortion in the plane using already familiar techniques. We will see that

the fact that a pre-image is of dimension two is not enough to guarantee dimension

two on the image side. However, there is some finer scale, indicating that certain sets

are sufficiently large.

In examining this problem, we make use of the area distortion result for the inverse

of a planar mapping of exponentially integrable distortion proved in [7, Théorème 1].

More precisely, for E ⊂ R2 we use the estimate

|f(E)| ≥ C exp
(

−
A

λ
log2

(

2 +
1

|E|

))

,

where f is a planar homeomorphism of λ–exponentially integrable distortion, C is

a constant depending on the data, and A is an absolute constant. This estimate

implies higher integrability of the Jacobian of f−1. In particular, Jf−1 ∈ LP
loc with

P (t) = t exp(β log1/2(e+ t)), for all β < (λ/A)1/2. Such higher regularity in combina-

tion with techniques of [27] now applied to the inverse, gives a dimension distortion

estimate

Hh(E) > 0 =⇒ dimH f(E) ≥ s

for any h(t) = t2 exp(C2 log1/2(1/t)) with C2 <
(

2 λ
A
(2 − s)

)1/2
.

For fixed C2 > 0 and s ∈]0, 2[, a construction of the type of [15, Proposition 5.1]

with C ⊂ [0, 1]2 on the pre-image side and C′ ⊂ [0, 1]2 on the image side, such that
16



Hh(C) > 0 for h(t) = t2 exp(C2 log1/2(1/t) and dimH(C′) = s, gives a mapping with

λ–exponentially integrable distortion for all λ > 0 such that

C2 >
( λ

B

(

2
2
s
−1 − 1

)

)1/2

,

where B is an absolute constant. We see that this example demonstrates asymptotical

sharpness modulo a constant of the estimate above as s approaches 2.

As in [E], we may give a statement for the boundary case, making the esti-

mate rougher. That is, for any planar mapping with exponentially integrable dis-

tortion f , we have dimH f(E) = 2, if E ⊂ R2 is such that Hh(E) > 0 with

h(t) = t2 exp(ψ(t) log1/2(1/t)) for some function ψ such that ψ(t) → 0 and

ψ(t) log
n−1

n 1
t
→ ∞ as t→ 0.

We are also able to give an answer to the opposite question: How small should

the pre-image set be if we wish that its image under a mapping of finite distor-

tion have Hausdorff dimension zero? This time, we involve higher integrability

from [2, Theorem 1.1] and a dimension distortion estimate of the form

Hh(E) = 0 =⇒ Hβ(f(E)) = 0, where h(t) = | log t|−(1+α)β(n+β)/n2

,

proved in [3, Theorem 5.1] for a compact E ⊂ Ω and a monotone mapping f : Ω → R
n

in the Orlicz-Sobolev class W 1,P (Ω,Rn) with P (t) = tn logα(e+ t), α ≥ 0. As in the

proof of Theorem 2, we apply the decomposition from [2, Corollary 4.4] to obtain

a better estimate. All this gives the following result: if f : Ω → R2, Ω ⊂ R2, is

a mapping of λ–exponentially integrable distortion for some λ > 0, and E ⊂ Ω is

such that Hh(E) = 0 with h(t) = | log t|−
λs

2−s
+ε for some s ∈]0, 2[ and ε ∈]0, λs

2−s
[

then dimH f(E) < s. Obviously, in order to get dimension zero on the image side, it

is enough to assume Hh(E) = 0 for the pre-image set with any function h tending

to zero as t approaches zero more slowly than log−γ(1/t) for each γ > 0, such as

h(t) = | log | log t||−1, for instance. This time constructions of the types described

above do not give possible sharpness or even asymptotical sharpness of the obtained

estimate.
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10. Frederick W. Gehring and Jussi Väisälä, Hausdorff dimension and quasiconformal mappings, J.

London Math. Soc. (2) 6 (1973), 504–512. MR 0324028 (48 #2380)
11. James T. Gill, Planar maps of sub-exponential distortion, Ann. Acad. Sci. Fenn. Math. 35

(2010), no. 1, 197–207. MR 2643404
12. Luigi Greco, Tadeusz Iwaniec, and Gioconda Moscariello, Limits of the improved integrability of

the volume forms, Indiana Univ. Math. J. 44 (1995), no. 2, 305–339. MR 1355401 (96k:46051)
13. Stanislav Hencl, Pekka Koskela, and Jan Malý, Regularity of the inverse of a Sobolev homeo-
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