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IntrodutionIn this thesis we literally live on the edge. More preisely, we visit the sameedge many times but we limb along di�erent paths, survey the view fromdi�erent angles, and ask weather or not the view looks similar and in whatsense similar. We also visit di�erent edges and ask, are these edges in somesense inluded in the same lass.In the language of mathematis, we onsider a ertain equivalene ofboundaries of an abstrat spae determined by two di�erent metris. Thegoal of this thesis is to answer a very simple question: When is the originalboundary of a metri spae homeomorphi to the Gromov boundary of thesame spae? In this dissertation one �nds both topologial and analytiriteria for the boundaries to be homeomorphi to a given metri spae.Motivation for this problem arises from the papers [BHK℄ and [HenK℄.In this thesis we onsider many di�erent metris, and for larity, theusual metri notations will have an additional subsript that refers to themetri in use.1 What is a Gromov boundary?Before we an understand the homeomorphi equivalene of Gromov andoriginal boundaries, we need to understand the onept of a Gromov bound-ary.1.1 The unit disWe start with a simple setting: the unit dis B2 = B2(0, 1) ⊂ R2 equippedwith the hyperboli metri h. For x, y ∈ B2 the hyperboli distane h is
h(x, y) = inf

γxy

∫

γxy

2
1 − |z|2 |dz|, (1.1)where γxy ⊂ B2 is a urve joining points x and y, and |dz| is the Eulideanlength element. The hyperboli spae (B2, h) is a geodesi spae � thatis, every pair of points x and y an be joined with a urve in B2 whosehyperboli length is exatly the hyperboli distane between the endpoints.We denote by [x, y] suh a urve, alled a geodesi. In the Eulidean sense,hyperboli geodesis are Eulidean line segments along radii or subars ofirles that are orthogonal to the boundary irle S1 = ∂B2, see Figure 1.This metri spae, (B2, h), is a Gromov hyperboli spae. Thus it is δ-hyperboli for some δ ≥ 0. This means that hyperboli triangles are δ-thin� that is, for all triples of geodesis [x, y], [y, z], [z, x] every point in [x, y]is within distane δ from [y, z] ∪ [z, x]. In fat, here we an ompute that

δ = log(
√

2 + 1). 5
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Figure 1: Example of hyperboli geodesis [a, b] and [x, y], geodesi rays [u, ξ]and [v, ξ] representing ξ, and a geodesi line [ξ, η]Does the metri spae (B2, h) have any kind of �boundary�? It is naturalto think that the Eulidean boundary S1 of B2 is also the boundary in thehyperboli sense, but is it, and does (B2, h) even have a boundary? We aneasily verify that the hyperboli length of any radius of B2 is in�nite, andtherefore (B2, h) is unbounded.A geodesi ray in (B2, h) is an isometri image of the interval [0,∞) ⊂ R .Two geodesi rays are equivalent if their Hausdor� distane in (B2, h) is �nite� that is, both rays have �nite neighbourhoods suh that the other ray isontained in the neighbourhood of the other ray. The Gromov boundary
∂GB2 is the set of all equivalene lasses of geodesi rays, and we say thata geodesi ray ends at ξ ∈ ∂GB2 if it represents the point ξ, see Figure 1.For eah x ∈ B2 and ξ ∈ ∂GB2 there is a geodesi ray [x, ξ] issuing from xand ending at ξ. Similarly, for every pair of points ξ, η ∈ ∂GB2 there is ageodesi line [ξ, η] from ξ to η that is an isometri image of (−∞,∞) endingat ξ and η in the obvious sense ([BrHa, �III.H Lemma 3.1 and Lemma 3.2℄,see also Figure 1). Clearly, the boundaries ∂GB2 and S1 an be identi�ed assets. That is, there exists an identity map S1 → ∂GB2 that is a bijetion,at least.In order to study this identity map in more detail, we need a metrion ∂GB2 . It is lear how to measure Eulidean distanes on S1, but thehyperboli metri h does not extend to the boundary ∂GB2 . This is whywe next give an alternate de�nition for the Gromov boundary whih at thesame time de�nes a metri on the Gromov boundary.The Gromov boundary ∂GB2 an be de�ned as the set of equivalene6



lasses of sequenes (xn) ⊂ B2 whih tend to in�nity in the sense that
lim

n,m→∞
(xn|xm)w = ∞,where

(x|y)w =
1
2
{h(w, x) + h(w, y) − h(x, y)} (1.2)is the Gromov produt between points x, y ∈ B2 with respet to a base point

w ∈ B2 . Two sequenes (xn), (yn) ⊂ B2, tending to in�nity, are equivalentif
lim

n→∞
(xn|yn)w = ∞.The hoie of the base point w does not a�et the Gromov boundary ∂GB2as a set.The Gromov produt (1.2) extends to the Gromov boundary ∂GB2 in anatural way. From the geometri point of view, the Gromov produt has thefollowing property:

∣

∣(x|y)w − disth(w, [x, y])
∣

∣ ≤ 8δ (1.3)for any pair of points x, y ∈ B2 ∪∂GB2 and any hyperboli geodesi [x, y]between the points.Now the funtion dw : ∂GB2 ×∂GB2 → R,

dw(ξ, η) = exp{−(ξ|η)w}, (1.4)where w ∈ B2 is the base point, de�nes a metri. Taking the geometri prop-erty (1.3) of the Gromov produt into aount we obtain, up to a onstant,a good approximation for the metri dw :

dw(ξ, η) ≈ exp{− disth(w, [ξ, η])}, ξ, η ∈ ∂GB2 . (1.5)Again, the hoie of the base point w is irrelevant beause metris withdi�erent base points, dw and dw′ , are bi�Lipshitz equivalent.Considering the metri dw from the geometri point of view (1.5) it is easyto believe that the boundaries ∂GB2 and S1 are homeomorphi. Atually, itis easy to verify that the boundaries are even bi�Lipshitz equivalent. Thus
dw(ξ, η) ≈ |ξ − η| (1.6)for eah ξ, η ∈ ∂GB2 .

7



1.2 A general metri spaeThe unit dis B2 is a simple speial ase and easy to understand. Onean generalize these onepts to a more general metri spae (Ω, d). We�rst generalize the onept of the hyperboli metri h to the quasihyperbolimetri kd derived from the metri d.Let (Ω, d) be a loally ompat, reti�ably onneted and non�ompletemetri spae. The boundary ∂dΩ of Ω is ∂dΩ = Ω \Ω, where Ω is the metriompletion of Ω. The boundary ∂dΩ is nonempty, and for z ∈ Ω we denote
d(z) = distd(z, ∂dΩ) = inf{d(z, x) : x ∈ ∂dΩ}. (1.7)The quasihyperboli metri kd in Ω is de�ned to be

kd(x, y) = inf
γxy

∫

γxy

ds

d(z)
, x, y ∈ Ω, (1.8)where the in�mum is taken over all reti�able urves γxy joining points xand y in Ω, and ds is the length element with respet to the metri d. Therelation between the hyperboli metri h and the quasihyperboli metri kdin the unit dis B2 is kd(x, y) ≤ h(x, y) ≤ 2kd(x, y).There is also a third natural metri in Ω, denoted by ℓd(x, y) and de�nedas the in�mum of the lengths (in the original d-metri) of all urves joiningpoints x and y in Ω. If Ω is a domain in Rn, and d is the Eulidean metrirestrited to Ω, then ℓ = ℓd is the Eulidean path metri.Bonk, Heinonen and Koskela proved in [BHK, Proposition 2.8℄ that ifthe identity map (Ω, d) → (Ω, ℓd) is a homeomorphism, then it is also ahomeomorphism (Ω, d) → (Ω, kd) and (Ω, kd) is omplete. Furthermore, asa omplete loally ompat length spae, (Ω, kd) is geodesi and proper (i.e.losed balls are ompat), f. [BrHa, �I.3℄. From now on, depending on theontext, [x, y] denotes a hyperboli or a quasihyperboli geodesi between xand y.When (Ω, kd) is geodesi, the de�nition of the Gromov hyperboliity ofthe spae (Ω, kd) is given using triangles exatly as desribed in setion 1.1for (B2, h). If (Ω, kd) is a geodesi and proper Gromov hyperboli spae, wede�ne the Gromov boundary ∂GΩ similarly as in the hyperboli ase (B2, h),using geodesi rays. Also the Gromov produt (1.2), its geometri property(1.3) and the de�nition of the Gromov boundary ∂GΩ through it are similar.By ontrast (f. (1.4)), the funtion dw : ∂GΩ × ∂GΩ → R,

dw(ξ, η) = exp{−(ξ|η)w}, (1.9)where w ∈ Ω is a base point, does not, in general, de�ne a metri beause(1.9) does not neessarily satisfy the triangle inequality. However, there is aonstant ǫ(δ) > 0 suh that for 0 < ǫ < ǫ(δ) one �nds a metri dw,ǫ on ∂GΩsatisfying
1
2

exp{−ǫ(ξ|η)w} ≤ dw,ǫ(ξ, η) ≤ exp{−ǫ(ξ|η)w} (1.10)8



for ξ, η ∈ ∂GΩ. Combining (1.3), (1.9) and (1.10), we obtain, similarly to(1.5),
dw,ǫ(ξ, η) ≈ exp{−ǫdistkd

(w, [ξ, η])}, (1.11)whenever 0 < ǫ < ǫ(δ) and ξ, η ∈ ∂GΩ. Notie that the hoies of the basepoint w and 0 < ǫ < ǫ(δ) are irrelevant, beause metris dw,ǫ and dw′,ǫ′ areequivalent. In fat, the metris are equivalent in the following way:
dw,ǫ(ξ, η) ≈ dw′,ǫ′(ξ, η)

ǫ

ǫ′ (1.12)for all ξ, η ∈ ∂GΩ. The Gromov boundary equipped with this metri dw,ǫ isalways ompat (f. [Bo℄ and [GhHa℄).Going bak to the ase of the unit dis (B2, h) and equipping the Gromovboundary ∂GB2 with the metri dw,ǫ for 0 < ǫ < 1 we observe that theboundaries S1 and ∂GB2 are not bi-Lipshitz anymore (f. inequality (1.6)).Instead, we �nd that
dw,ǫ(ξ, η) ≈ |ξ − η|ǫ (1.13)for all ξ, η ∈ ∂GB2 .1.3 Equivalene of Gromov and original boundariesWhen we study a more general Eulidean metri spae than B2, inequal-ity (1.13) is not neessarily true. However, Bonk, Heinonen and Koskelaproved in [BHK, Theorem 1.11℄ that for a ertain lass of Eulidean spaesthe boundaries are quasisymmetri. That is, for some homeomorphism

f : [0,∞) → [0,∞) and for all triples of distint points ξ, η, ζ we have
dw,ǫ(ζ, ξ)
dw,ǫ(ζ, η)

≤ f
( |ζ − ξ|
|ζ − η|

)

. (1.14)In partiular, they proved that a bounded domain in Rn is uniform if andonly if it is both Gromov hyperboli with respet to the quasihyperbolimetri and its Eulidean boundary is quasisymmetrially equivalent to theGromov boundary. Here by the uniformity of a metri spae (Ω, d) we meanthat Ω is quasi�onvex (inequality (1.15)) and satis�es the twisted one on-dition (inequality (1.16)). That is, for some D ≥ 1 every pair points x, y ∈ Ωan be joined with a urve γxy in Ω suh thatlengthd(γxy) ≤ Dd(x, y), (1.15)and for every a ∈ γxy

min{lengthd(γxy(x, a)), lengthd(γxy(a, y))} ≤ Dd(a), (1.16)where γxy(x, a) is the suburve of γxy from x to a and γxy(a, y) is the restof the urve. 9



Now the question is, how muh an we relax the assumptions on thedomain Ω ⊂ Rn so that the Eulidean boundary and the Gromov boundaryare still homeomorphi? More generally, an one do something like this alsoin more general metri spaes? We ontinue with a ouple of instrutiveexamples.The upper half plane is uniform, but the quasihyperboli geodesi ray
[w,∞), where w is any point in the upper half plane, annot be identi�edwith any point in the Eulidean boundary R×{0} of the half plane.The unit dis exluding the radius B2 \([0, 1] × {0}) equipped with theEulidean metri is not uniform and one Eulidean boundary point on theradius may de�ne two distint points on the Gromov boundary, see Figure 2.Again, the Eulidean and the Gromov boundaries annot be identi�ed evenas sets. However, if we hange the Eulidean metri to the Eulidean pathmetri ℓ, the boundary de�ned by the metri ℓ and the Gromov boundaryare even quasisymmetri (this fat follows from the proof of [BHK, Theo-rem 1.11℄). Thus in attempting to answer our question it is better to onsiderbounded quasi�onvex metri spaes (see the de�nition in (1.15)).

ξ

[x, ξ]

[y, ξ]

x

y

B2 \([0, 1] × {0})

Figure 2: One Eulidean boundary point de�nes two distint Gromov bound-ary pointsBoundedness and quasionvexity of a metri spae are not enough toguarantee that the two di�erent boundaries are homeomorphi. Indeed, let
Ω = (0, 1) × (0, 1) \

∞
⋃

j=1

({ 1
2j

× [0,
1
2
]
}) (1.17)be as pitured in Figure 3 and let us equip Ω with the Eulidean path metri

ℓ. In order that the boundaries ∂ℓΩ and ∂GΩ be homeomorphi, the boundary
∂ℓΩ should be ompat. It is losed and bounded but not, however, ompat.Indeed, let (xj) ⊂ ∂ℓΩ be the sequene of the �midpoints�,

xj =
( 3

2j+2
, 0

)

.10



This sequene does not have a onvergent subsequene beause
ℓ(xj , xj+1) ≥ 1for every j ∈ N .

(0, 1

2
)

Ω

Figure 3: A bounded quasi�onvex domain Ω with ∂ℓΩ not ompatAll the above�mentioned spaes equipped with the quasihyperboli met-ri really are Gromov hyperboli spaes. It is not always the ase thatan abstrat quasihyperboli metri spae is Gromov hyperboli, and this issomething we have to take are of, when we are studying Gromov bound-aries. In [BB℄, Balogh and Bukley studied geometri haraterizations ofGromov hyperboliity of bounded domains in Rn equipped with the quasi-hyperboli metri. They disovered that a bounded domain in Rn equippedwith the Eulidean path metri satis�es the Gehring�Hayman theorem ifthe domain is Gromov hyperboli in the quasihyperboli metri. Thus itis natural to study spaes that satisfy the Gehring�Hayman theorem. Thisproperty has turned out to be a entral tool for proving theorems related toGromov hyperboli spaes (e.g. [BHK℄).2 The Gehring�Hayman theoremLet us take a brief look at the Gehring�Hayman theorem and its history.2.1 The unit disGiven x, y ∈ B2, the hyperboli geodesi [x, y] is, in the Eulidean sense,essentially the shortest urve joining x to y in B2 . More preisely,length([x, y]) ≤ π

2
length(γxy),whenever γxy is a urve joining points x and y in B2 . Gehring and Haymanproved in [GH℄ that hyperboli geodesis are also essentially the shortesturves in any onformal image of the unit dis. They proved the followingtheorem 11



Theorem 2.1. [GH, Theorem 2℄ If f : B2 → Ω ⊂ C is a onformal mapping,and [u, v] is a hyperboli geodesi and γuv is any other urve joining the points
u, v ∈ Ω, then length([u, v]) ≤ C length(γuv),where C ≥ 1 is an absolute onstant.Beause hyperboli geodesis are, by de�nition, onformally invariant,Theorem 2.1 says thatlength(f([x, y])) ≤ C length(f(γxy)),where x = f−1(u) and y = f−1(v). Furthermore, beause f is a onformalmapping, Theorem 2.1 really says that

∫

[x,y]
|f ′(z)| |dz| ≤ C

∫

γxy

|f ′(z)| |dz| (2.1)for every x and y in B2 . Hene, in the unit dis, a hyperboli geodesi isessentially the shortest urve also with respet to the density ρ(z) = |f ′(z)|,in the sense of the deformed metri dρ, where
dρ(x, y) = inf

γxy

∫

γxy

ρ(z) |dz| (2.2)and the in�mum is taken over all urves γxy in B2 with endpoints x and y.2.2 A general metri spaeThe Gehring�Hayman theorem has been studied quite a bit. See for instane[HeiN℄ and [HeiR℄. Also in [BKR℄ Bonk, Koskela and Rohde generalized theGehring�Hayman inequality (2.1) to onformal deformations of the unit ballBn, n ≥ 2, and they found the ritial properties of |f ′(z)| in inequality (2.1)that appear to be essential for suh a generalization.The density ρ(z) = |f ′(z)|, where f : B2 → Ω is a onformal mapping,satis�es a Harnak inequality (with the onstant e12, f. [Po, p. 10℄)
e−12ρ(x) ≤ ρ(z) ≤ e12ρ(x)for all z ∈ B(x, (1−|x|)/2) and all x ∈ B2 . Balls B(x, (1−|x|)/2) are alledWhitney type balls. The density ρ(z) = |f ′(z)| also satis�es the area growthestimate (with the onstant π),
∫

Bρ(x,r)
ρ2(z) dA(z) ≤ πr2for all x ∈ B2, where Bρ(x, r) refers to the ball with entre x and radius rin the metri dρ, see the de�nition in expression (2.2).12



These two properties of the density ρ are the ritial ones, and Bonk,Koskela and Rohde put this into a more abstrat form: If a ontinuousfuntion ρ : Bn → (0,∞) satis�es a Harnak inequality with a onstant
A ≥ 1,

A−1ρ(x) ≤ ρ(z) ≤ Aρ(x) HI(A)for all z ∈ B(x, (1− |x|)/2) and all x ∈ Bn, and a Eulidean volume growthondition with a onstant B > 0,
∫

Bρ(x,r)
ρn dmn ≤ Brn VG(B)for all x ∈ Bn and all r > 0, where mn denotes n-dimensional Lebesguemeasure, then ρ is alled a onformal deformation. In [BKR, Theorem 3.1℄they proved that a hyperboli geodesi is essentially the shortest urve inthe unit ball Bn, also with respet to onformal deformations.Subsequently, Herron showed in [Her1℄ that Bn an be replaed with anyuniform metri measure spae (Ω, d, µ) with bounded geometry. We provedin [1℄ that one an relax the assumption of �bounded geometry� of a uniformmetri measure spae, and still a quasihyperboli geodesi is essentially theshortest urve with respet to onformal deformations.Theorem 2.2. [1, Theorem 1.1℄ Let Q > 1 and let (Ω, d, µ) be a non�omplete uniform spae equipped with a measure that is Q-regular on balls ofWhitney type. If ρ : Ω → (0,∞) is a onformal deformation on Ω, then thereis a onstant C ≥ 1 that depends only on the data assoiated with Ω and ρsuh that

∫

[x,y]
ρ ds ≤ C

∫

γxy

ρ dswhenever [x, y] is a quasihyperboli geodesi and γxy is a urve joining x to
y in Ω.From now on the version of Gehring�Hayman theorem we are using inthe metri spae (Ω, d) says that for some C ≥ 1 and for all x, y ∈ Ω it holdsthat lengthd([x, y]) ≤ C lengthd(γxy) (2.3)whenever [x, y] is a quasihyperboli geodesi and γxy is a urve joining x to
y in Ω.3 Homeomorphi equivalene of Gromov and orig-inal boundaries: A topologial ondition3.1 Conformal deformations of the Eulidean unit ballLet us onsider the unit ball Bn equipped with a onformal metri dρ as ageneral metri spae. What is its original boundary and what is then the13



Gromov boundary? Are they homeomorphi and are they related to theEulidean boundary? For simpliity, the metri notations whih refer to themetri dρ will have just the additional subsript ρ.Suppose the density ρ is a onformal deformation suh that Bn
ρ :=

(Bn, dρ) is bounded. The ρ-boundary ∂ρBn of Bn
ρ is ∂ρBn = Bn

ρ \ Bn
ρ ,where Bn

ρ is the metri ompletion of Bn
ρ .The quasihyperboli metri spae (Bn, kρ) derived from the metri dρ isomplete, proper and geodesi. Bonk, Koskela and Rohde showed in [BKR,Proposition 6.2℄ that there is a onstant C ≥ 1 suh that

C−1 ≤ ρ(x)(1 − |x|)
distρ(x, ∂ρBn)

≤ C for eah x ∈ Bn,and therefore the spaes (Bn, h) and (Bn, kρ) are bi�Lipshitz equivalent.Thus (Bn, kρ) is Gromov hyperboli (f. [BrHa, �III.H℄). Furthermore, for theGromov boundaries (∂GBn, dw,ǫ) and (∂GBn
ρ , d′w,ǫ) we obtain by omparinginequalities (1.4), (1.10) and (1.2) that there are onstants C ≥ 1 and 0 <

α ≤ 1 suh that
C−1d′w,ǫ(ξ, η)

1

α ≤ dw,ǫ(ξ, η) ≤ Cd′w,ǫ(ξ, η)αfor all ξ, η ∈ ∂GBn, where ǫ has been hosen suh that dw,ǫ, d′w,ǫ are metris(remember also inequality (1.12)). In partiular, the Gromov boundaries arehomeomorphi. We already know that the boundaries Sn−1 and ∂GBn arehomeomorphi (inequalities (1.6) and (1.13)) and hene the boundaries Sn−1and ∂GBn
ρ are homeomorphi.But what about the boundaries ∂GBn

ρ and ∂ρBn? Let us go bak to oneof the previous examples to see that these boundaries are not always homeo-morphi. Let ρ(z) = |f ′(z)|, where f : B2 → Ω is a onformal mapping ontothe simply onneted domain Ω in (1.17) and pitured in Figure 3. Whenthe metri ℓ in Ω is the Eulidean path metri, we an identify (B2, dρ) with
(Ω, ℓ) and the boundary ∂ρB2 with ∂ℓΩ. We already disovered that theboundary ∂ℓΩ is not ompat and thus the boundary ∂ρB2 is not ompat.Hene, ∂ρB2 annot be homeomorphi to S1 or to ∂GB2

ρ .It seems that in order to show that ∂ρBn is homeomorphi to Sn−1,and thus to ∂GBn
ρ , we have to assume the ompatness of the boundary

∂ρBn . This turns out to be both neessary and su�ient ondition, and thenext theorem (that is a onsequene of Theorem 3.3 below) shows that thefollowing onditions are equivalent:(i) (∂ρBn, dρ) is ompat(ii) (Bn ∪∂ρBn, dρ) is ompat(iii) The identity map id : (Bn, dρ) → (Bn, | · |) has a homeomorphiextension to i : (Bn ∪∂ρBn, dρ) → (Bn ∪Sn−1, | · |).

(3.1)14



Theorem 3.1. Suppose that ρ : Bn → (0,∞) is a onformal deformation.Then the three onditions in (3.1) are equivalent.Combining this theorem with the previous disussion we obtain a orol-lary:Corollary 3.2. Let ρ : Bn → (0,∞) be a onformal deformation. Then
∂ρBn is ompat if and only if the Gromov boundary ∂GBn

ρ is homeomorphito the ρ-boundary ∂ρBn .In the lassial situation Theorem 3.1 really says that a onformal map-ping f : B2 → Ω ⊂ C has a homeomorphi extension from B2 onto Ω∪ ∂ℓΩ,where Ω is equipped with the Eulidean path metri ℓ, if and only if theboundary ∂ℓΩ is ompat (f. [Po℄).We an atually show that Theorem 3.1 holds in a more general setting,and this is the main theorem in the paper [2℄:Theorem 3.3. [2, Theorem 1.1℄ Suppose that ρ : Bn → (0,∞) is a densitythat satis�es either
∫

Bρ(x,r)
ρn dmn ≤ ϕ(r) for all x ∈ Bn and r > 0,where ϕ is an inreasing homeomorphism of (0,∞) so that ϕ(r) = Brn| log r|n−1for some B > 0 and for every 0 < r < e−1, or both a Harnak inequalityHI(A) and for some B > 0 it holds that

∫

Bρ(x,r)
ρn dmn ≤ Brn−ǫ for all x ∈ Bn and r > 0,where ǫ is su�iently small, depending on the onstant in HI(A). Then thethree onditions in (3.1) are equivalent.In addition, when n = 2 these three onditions are also equivalent to(iv) Bn

ρ is bounded and ∂ρBn is loally onneted.However, when n ≥ 3, there are examples where (iv) holds but none of(i,ii,iii) in (3.1) are true.We do not know, whether or not Corollary 3.2 holds in the setting inTheorem 3.3. Firstly, we do not know the preise riteria for (Bn, kρ) tobe Gromov hyperboli. For example, if ρ(z) = 1
1−|z| , then the metri spae

(Bn, dρ) is omplete and the boundary ∂ρBn is empty. In this ase we arenot able to de�ne the quasihyperboli metri kρ. If ρ(z) = 1 − |z|, then themetri spae (Bn, dρ) is bounded and it has a single boundary point. Further-more, (Bn, kρ) is Gromov hyperboli beause quasihyperboli triangles are
π-thin. By suitably gluing versions of the above densities one further obtainsan unbounded spae whose boundary is a singleton, and whose quasihyper-bolization is Gromov hyperboli. Seondly, even though (Bn, kρ) is Gromovhyperboli in the setting of Theorem 3.3, we do not know, if the Gromovboundary ∂GBn

ρ is homeomorphi to Sn−1 .15



3.2 A general metri spaeLet us prove a metri spae version of Theorem 3.1 (and Corollary 3.2).Theorem 3.4. Let (Ω, d) be loally ompat, non�omplete, bounded, andquasi�onvex metri spae. Assume that (Ω, kd) is Gromov hyperboli andthat (Ω, d) satis�es the Gehring�Hayman theorem. Let w ∈ Ω be a base point.Then the following three onditions are equivalent:(i) (∂dΩ, d) is ompat(ii) (Ω ∪ ∂dΩ, d) is ompat(iii) The identity map id : (∂GΩ, dw,ǫ) → (∂dΩ, d) is a homeomorphism.Proof. The impliations (iii)⇒ (i) and (ii)⇒ (i) are lear beause (∂GΩ, dw,ǫ)is always ompat and ∂dΩ ⊂ Ω is losed. The impliation (i) ⇒ (ii) followsby adapting the proof of the same assertion for Theorem 3.3:Let {Aα}α∈I be a d-open over of the set Ω∪∂dΩ. Let J ⊂ I be a maximalindex set suh that for every α ∈ J it holds that Aα ∩∂dΩ 6= ∅. Beause ∂dΩis ompat, there exists a �nite index set J ′ ⊂ J suh that
∂dΩ ⊂

⋃

α∈J ′

Aα.Now A := (Ω∪ ∂dΩ) \⋃

α∈J ′ Aα is d-losed and A ⊂ Ω. Beause the identitymap (Ω, d) → (Ω, kd) is a homeomorphism, A is losed also in the senseof kd. Beause ∂dΩ is ompat and A is d-losed, it holds that there exist
c > 0 suh that d(z) ≥ c for every z ∈ A. Thus, beause (Ω, d) satis�esthe Gehring�Hayman theorem and it is quasi�onvex and bounded, A is alsobounded in the sense of kd. Hene, there is x ∈ Ω and M > 0 suh that

A ⊂ Bkd
(x,M),and beause of the properness of the spae (Ω, kd) the set A is ompat.Consequently, A is ompat in the metri d. Moreover, there is a �nite indexset I ′ ⊂ I so that

A ⊂
⋃

α∈I′

Aα,and hene we �nd a �nite index set I ′ ∪ J ′ suh that
Ω ∪ ∂dΩ ⊂

⋃

α∈I′∪J ′

Aα.Therefore (Ω ∪ ∂dΩ, d) is ompat.The last step is to prove the impliation (ii) ⇒ (iii). We show only thatthe identity map id : (∂GΩ, dw,ǫ) → (∂dΩ, d) is well�de�ned beause the restof the proof follows diret from other results: The same arguments as in16



[3, Theorem 1.1℄ apply to prove that the map id is bijetive and that id−1is ontinuous. Therefore, the well�known topologial result (see e.g. [Mu℄)implies that id−1 is a homeomorphism, hene id is as well.Thus let ξ ∈ ∂GΩ. Then there is a geodesi ray [w, ξ]. Let (xj) ⊂ [w, ξ]be a sequene suh that kd(w, xj) → ∞, when j → ∞. Beause (Ω∪ ∂dΩ, d)is ompat, in the metri d the sequene (xj) has a onvergent subsequene
(xjk

)k. From the Gehring�Hayman theorem and quasi�onvexity we obtainthat for every r > 0 there is Nr > 0 suh that for eah p ≥ 1,

ℓd([xjk
, xjk+p

]) < r,whenever k > Nr. Thus the limit ξ′ := limj→∞ xj exists in the metri d andit has to be on the boundary ∂dΩ.Let [y, ξ] be another geodesi ray that represents the point ξ ∈ ∂GΩ. Inthe sense of d the ray [y, ξ] ends at the point ξ′′ ∈ ∂dΩ. Let us show that
ξ′ = ξ′′. Let u ∈ {w, y}, and let [u, ξ](t) be the image of t ∈ [0,∞) ⊂ R,where [u, ξ] : [0,∞) → Ω is a mapping parametrized by the ar length withrespet to the metri kd. Then beause the geodesi rays [w, ξ] and [y, ξ] areequivalent, there exists a onstant M > 0 suh that

kd([w, ξ](t), [y, ξ](t)) < M for eah t ≥ 0(for details see the proof of [3, Theorem 1.1℄). Furthermore, by the elemen-tary inequality (see [GP, Lemma 2.1℄ and [BHK, Inequality (2.4)℄) it followsthat for eah t ≥ 0,

log
(

1 +
d([w, ξ](t), [y, ξ](t))

min{d([w, ξ](t)), d([y, ξ](t))}
)

≤ k([w, ξ](t), [y, ξ](t)) < M.Therefore beause d([w, ξ](t)) → 0 and d([y, ξ](t)) → 0, when t → ∞, itmust be that
d([w, ξ](t), [y, ξ](t)) → 0,when t → ∞, and thus ξ′ = ξ′′.4 Homeomorphi equivalene of Gromov and orig-inal boundaries: An analyti onditionWe have given a partial, topologial answer to our question: �When is theoriginal boundary of a metri spae homeomorphi to the Gromov boundaryof the same spae?� We now turn to the analyti aspets, following [3℄. Herethe starting point is also [BHK, Theorem 1.11℄ with the paper [HenK℄.Based on [BHK℄, a bounded domain in Rn is uniform if and only if it isGromov hyperboli in the quasihyperboli metri and its Eulidean boundary17



is quasisymmetrially equivalent to the Gromov boundary. It is also well�known that in a bounded uniform domain Ω ⊂ Rn the quasihyperboli metri
k satis�es a logarithmi growth ondition

k(w, x) ≤ C log
(d(w)

d(x)

)

+ C ′ (4.1)where w is a �xed base point in Ω and onstants C ≥ 1 and C ′ < ∞ dependon the onstant of uniformity and the diameter of the domain (f. [GM℄).Here d(x) is an abbreviation for the Eulidean distane from the point x tothe Eulidean boundary ∂Ω.However, this growth ondition (4.1) does not neessarily guarantee thatthe boundaries are quasisymmetri. Indeed, let us onstrut a simply on-neted planar domain Ω for whih the quasihyperboli metri satis�es thegrowth ondition (4.1), but the boundary ∂ℓΩ in the Eulidean path metriis not quasisymmetrially equivalent to the Gromov boundary ∂GΩ. To on-strut Ω, we �weld� the sequene of squares Qj = (aj − lj , aj)× (1, lj), where
aj = 1 − 2−j and lj = 2−j , j = 0, 1, 2, . . . , to the square (−1, 1)2 via theintervals (aj − lj/2− l2j , aj − lj/2 + l2j ) × {1}, j = 2, 3, 4, . . . , as in Figure 4.Let the origin be the base point. The quasihyperboli metri k satis�es theondition (4.1), but taking two boundary points from the �throat� of thesmall square and the third from the top middle of the same square showsthat the Gromov boundary annot be quasisymmetri to ∂ℓΩ. Nevertheless,the boundary ∂ℓΩ is homeomorphi to the Gromov boundary ∂GΩ, see [BP℄and [KOT℄.

(0, 0)

Qj

(aj , 1)

Ω

lj

Figure 4: Example of a domain Ω, whose boundary in the Eulidean pathmetri is not quasisymmetri to the Gromov boundary18



Moreover, not every growth ondition guarantees that the boundariesan be identi�ed even as sets. For example, let
Ω = {(x, y) ∈ R2 : x ≥ −1, |y| < exp{−x}},and let the origin be the base point. Now the quasihyperboli metri ksatis�es the growth ondition

k(0, z) ≤ C
d(0)
d(z)

+ C (4.2)for some C ≥ 1, but the the ray [0,∞) annot be identi�ed with any pointin the Eulidean boundary ∂Ω.Thus, in order that the boundary ∂ℓΩ and the Gromov boundary ∂GΩbe homeomorphi, we need a ondition stronger than (4.2). Suppose thatwe are given the growth ondition
kd(w, x) ≤ φ

(d(w)
d(x)

)

, (4.3)where φ : (0,∞) → (0,∞) is an inreasing funtion and w is a �xed basepoint in a metri spae (Ω, d), f. [HenK℄. It is more onvenient to write
d(x) ≤ d(w)

φ−1(kd(w, x))
, (4.4)and let us assume that the funtion φ satis�es

∞
∑

j=1

1
φ−1(j)

< ∞. (4.5)Condition (4.5) is su�ient for the original boundary and the Gromov bound-ary to be homeomorphi in a rather general setting. This is the ontent ofour main theorem in [3℄.Theorem 4.1. [3, Theorem 1.1℄ Let (Ω, d) be a loally ompat, and non�omplete quasi�onvex spae. Assume that (Ω, kd) is Gromov hyperboli andthat the Gehring�Hayman theorem holds in (Ω, d). Let w ∈ Ω be a basepoint and suppose that the quasihyperboli metri kd satis�es (4.3) and (4.5).Under these assumptions, the identity map id : (∂GΩ, dw,ǫ) → (∂dΩ, d) is ahomeomorphism, and, moreover, ∂dΩ is ompat.5 Final remarksEven though we have now given two partial answers to our problem whihonsidered, when is the original boundary of a metri spae homeomorphi to19



the Gromov boundary of the same spae, there are still some parts missingin the theory. When is the quasihyperboli metri spae (Ω, kd) Gromovhyperboli? Is the Gehring�Hayman theorem always true in (Ω, d) if (Ω, kd)is Gromov hyperboli? What are the minimal assumptions on (Ω, d) so thatgeometri haraterizations of Gromov hyperboliity an be done as in [BB℄?The Gehring�Hayman theorem for onformal deformations also raisesfurther questions. We already stated in the introdution of [1℄ that theGehring�Hayman theorem is a entral tool in many papers, espeially in[Her1℄ and [Her2℄. We expet that Theorem 2.2 will allow one to relax theassumption of �bounded geometry� and thus extend large parts of the papers[Her1℄ and [Her2℄ to a muh more general setting.In onlusion, this �eld is not totally studied and there is plae for furtherresearh.Referenes[BB℄ Z. M. Balogh and S. M. Bukley, Geometri haraterizationof Gromov hyperboliity. Invent. Math. 153 (2003), 261�301.[BP℄ J. Beker and Ch. Pommerenke, Hölder ontinuity of onfor-mal maps with quasionformal extension. Complex Variables TheoryAppl. 10 (1998), 267�272.[BHK℄ M. Bonk, J. Heinonen and P. Koskela, Uniformizing GromovHyperboli spaes. Astérisque 270 (2001), 1�99.[BKR℄ M. Bonk, P. Koskela and S. Rohde, Conformal metris on theunit ball in Eulidean spae. Pro. London Math. So. (3) 77 (1998),635�664.[Bo℄ M. Bourdon, Struture onforme au bord et �ot géodésiques d'unCAT(−1) espae. Enseign. Math. 83 (1995), 267�289.[BrHa℄ M. R. Bridson and A. Haeflinger, Metri Spaes and Non�positive Curvature. Springer�Verlag, 1999.[BuKo℄ S. M. Bukley and S. L. Kokkendorff, Comparing the Floydand ideal boundaries of a metri spae. Trans. Amer. Math. So. 361(2009), no. 2, 715�734.[GH℄ F. W. Gehring and W. K. Hayman, An inequality in the theoryof onformal mapping. J. Math. Pures Appl. (9) 41 1962, 353�361.[GM℄ F. W. Gehring and O. Martio, Lipshitz lasses and quasion-formal mappings. Ann. Aad. Si. Fenn. Ser. A I Math. 10 (1985),203�219. 20
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