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Introduction

In this thesis we literally live on the edge. More precisely, we visit the same
edge many times but we climb along different paths, survey the view from
different angles, and ask weather or not the view looks similar and in what
sense similar. We also visit different edges and ask, are these edges in some
sense included in the same class.

In the language of mathematics, we consider a certain equivalence of
boundaries of an abstract space determined by two different metrics. The
goal of this thesis is to answer a very simple question: When is the original
boundary of a metric space homeomorphic to the Gromov boundary of the
same space? In this dissertation one finds both topological and analytic
criteria for the boundaries to be homeomorphic to a given metric space.
Motivation for this problem arises from the papers |[BHK] and [HenK].

In this thesis we consider many different metrics, and for clarity, the
usual metric notations will have an additional subscript that refers to the
metric in use.

1 What is a Gromov boundary?

Before we can understand the homeomorphic equivalence of Gromov and
original boundaries, we need to understand the concept of a Gromov bound-
ary.

1.1 The unit disc

We start with a simple setting: the unit disc B? = B2(0,1) € R? equipped
with the hyperbolic metric h. For x,y € B? the hyperbolic distance A is

2

h(z,y) = 1725[, =P |dz], (1.1)
zy

where v,, C B? is a curve joining points = and y, and |dz| is the Euclidean
length element. The hyperbolic space (IB2,h) is a geodesic space — that
is, every pair of points z and y can be joined with a curve in B? whose
hyperbolic length is exactly the hyperbolic distance between the endpoints.
We denote by [z,y] such a curve, called a geodesic. In the Euclidean sense,
hyperbolic geodesics are Euclidean line segments along radii or subarcs of
circles that are orthogonal to the boundary circle $! = 9 B?, see Figure 1.
This metric space, (B2, k), is a Gromov hyperbolic space. Thus it is §-
hyperbolic for some § > 0. This means that hyperbolic triangles are d-thin
— that is, for all triples of geodesics [x,y], [y, 2], [z, ] every point in [z,y]
is within distance 0 from [y, z] U [z, z]. In fact, here we can compute that

§ =log(v2+1).



Figure 1: Example of hyperbolic geodesics [a, b] and [z, y], geodesic rays [u, &]
and [v, £] representing £, and a geodesic line [¢, 7]

Does the metric space (B2, h) have any kind of “boundary”? It is natural
to think that the Euclidean boundary $! of B? is also the boundary in the
hyperbolic sense, but is it, and does (B2, h) even have a boundary? We can
easily verify that the hyperbolic length of any radius of B? is infinite, and
therefore (B2, h) is unbounded.

A geodesic ray in (B, h) is an isometric image of the interval [0, 00) C R..
Two geodesic rays are equivalent if their Hausdorff distance in (B2, h) is finite
— that is, both rays have finite neighbourhoods such that the other ray is
contained in the neighbourhood of the other ray. The Gromov boundary
dc B2 is the set of all equivalence classes of geodesic rays, and we say that
a geodesic ray ends at £ € dg B? if it represents the point &, see Figure 1.
For each z € B? and ¢ € 9g B? there is a geodesic ray [z, ] issuing from 2
and ending at &. Similarly, for every pair of points &, € dg B? there is a
geodesic line [£,n] from & to n that is an isometric image of (—o0, 00) ending
at & and 7 in the obvious sense ([BrHa, §III.H Lemma 3.1 and Lemma 3.2],
see also Figure 1). Clearly, the boundaries dg B? and $! can be identified as
sets. That is, there exists an identity map $' — dg B? that is a bijection,
at least.

In order to study this identity map in more detail, we need a metric
on OgB?. It is clear how to measure Euclidean distances on $', but the
hyperbolic metric A does not extend to the boundary dgB?. This is why
we next give an alternate definition for the Gromov boundary which at the
same time defines a metric on the Gromov boundary.

The Gromov boundary dg B? can be defined as the set of equivalence



classes of sequences (z,,) C B? which tend to infinity in the sense that

lm (2, |Tm)w = oo,
n,m—00

where

(sly)a = 5 {h(w, ) + h(w,y) — h(z,v)) (1.2

is the Gromov product between points z,y € B? with respect to a base point
w € B?. Two sequences (z,,), (y,) C B2, tending to infinity, are equivalent
if

lm (2, |Yn)w = c0.
n—oo

The choice of the base point w does not affect the Gromov boundary d¢g B>
as a set.

The Gromov product (1.2) extends to the Gromov boundary dg B? in a
natural way. From the geometric point of view, the Gromov product has the
following property:

|(@]y)w — distp (w, [z, y])| <86 (1.3)

for any pair of points z,y € B?UdgB? and any hyperbolic geodesic [x, ]
between the points.
Now the function dy,: 9¢ B? x0¢ B?> — R,

dw(&,m) = exp{—([n)w}, (1.4)

where w € B? is the base point, defines a metric. Taking the geometric prop-
erty (1.3) of the Gromov product into account we obtain, up to a constant,
a good approximation for the metric d,, :

du(&,n) = exp{—disty(w,[€, 1)}, & n€deB. (1.5)

Again, the choice of the base point w is irrelevant because metrics with
different base points, d,, and d,,, are bi-Lipschitz equivalent.

Considering the metric d,, from the geometric point of view (1.5) it is easy
to believe that the boundaries g B? and $! are homeomorphic. Actually, it
is easy to verify that the boundaries are even bi—Lipschitz equivalent. Thus

dw(&,m) =~ | — 1 (1.6)

for each &, € 0 B2.



1.2 A general metric space

The unit disc B? is a simple special case and easy to understand. One
can generalize these concepts to a more general metric space (2,d). We
first generalize the concept of the hyperbolic metric h to the quasihyperbolic
metric kg derived from the metric d.

Let (€, d) be a locally compact, rectifiably connected and non-complete
metric space. The boundary 949 of Q is 9;Q = Q\ 2, where Q is the metric
completion of 2. The boundary 9,42 is nonempty, and for z €  we denote

d(z) = distg(z, 04Q) = inf{d(z,z) : © € 0;02}. (1.7)
The quasihyperbolic metric k4 in €2 is defined to be
d
ka(z,y) = inf/ L ayeq, (1.8)
Yzy Yay d(Z)

where the infimum is taken over all rectifiable curves 7., joining points x
and y in Q, and ds is the length element with respect to the metric d. The
relation between the hyperbolic metric A and the quasihyperbolic metric kg
in the unit disc B? is kq(z,y) < h(z,y) < 2kq(z,y).

There is also a third natural metric in €2, denoted by ¢4(x,y) and defined
as the infimum of the lengths (in the original d-metric) of all curves joining
points z and y in Q. If Q is a domain in R", and d is the Euclidean metric
restricted to €2, then £ = {; is the Euclidean path metric.

Bonk, Heinonen and Koskela proved in [BHK, Proposition 2.8] that if
the identity map (Q2,d) — (€,44) is a homeomorphism, then it is also a
homeomorphism (Q,d) — (92, kg) and (€2, kg) is complete. Furthermore, as
a complete locally compact length space, (€2, kg) is geodesic and proper (i.e.
closed balls are compact), cf. [BrHa, §1.3]. From now on, depending on the
context, [x,y] denotes a hyperbolic or a quasihyperbolic geodesic between x
and y.

When (9, kg) is geodesic, the definition of the Gromov hyperbolicity of
the space (9, kq) is given using triangles exactly as described in section 1.1
for (B2, h). If (Q, kq) is a geodesic and proper Gromov hyperbolic space, we
define the Gromov boundary 95 similarly as in the hyperbolic case (B2, h),
using geodesic rays. Also the Gromov product (1.2), its geometric property
(1.3) and the definition of the Gromov boundary 952 through it are similar.
By contrast (cf. (1.4)), the function dy,: 0c x a2 — R,

dw (&, m) = exp{—(&[n)w}, (1.9)

where w € €1 is a base point, does not, in general, define a metric because
(1.9) does not necessarily satisfy the triangle inequality. However, there is a
constant €(d) > 0 such that for 0 < € < €() one finds a metric dy, on g2
satisfying

%eXp{—e(é\n)w} < du,e(&m) < exp{—e(&|n)w} (1.10)



for £&,m € 0g92. Combining (1.3), (1.9) and (1.10), we obtain, similarly to
(15),

dw,e(ga 77) ~ exp{—edistkd(w, [5) 77])}7 (1'11)

whenever 0 < € < €(0) and &,n € Jgf2. Notice that the choices of the base
point w and 0 < € < €(0) are irrelevant, because metrics dy,  and d,y o are
equivalent. In fact, the metrics are equivalent in the following way:

dw,ﬁ(&n) ~ dw/,e’(ga"?)? (1.12)

for all £, n € 0gQ). The Gromov boundary equipped with this metric dy, ¢ is
always compact (cf. [Bo| and [GhHal).

Going back to the case of the unit disc (B?, k) and equipping the Gromov
boundary Oz B? with the metric dy.e for 0 < € < 1 we observe that the
boundaries $! and dg B? are not bi-Lipschitz anymore (cf. inequality (1.6)).
Instead, we find that

duw,e(§,m) ~ [€ — 1| (1.13)
for all £,m € 0 B2.

1.3 Equivalence of Gromov and original boundaries

When we study a more general Euclidean metric space than B2, inequal-
ity (1.13) is not necessarily true. However, Bonk, Heinonen and Koskela
proved in [BHK, Theorem 1.11] that for a certain class of Euclidean spaces
the boundaries are quasisymmetric. That is, for some homeomorphism
f:1]0,00) — [0,00) and for all triples of distinct points &, 7, we have

dw,e(gag) ‘C _§|
e <1 =) (1L.14)

In particular, they proved that a bounded domain in R" is uniform if and
only if it is both Gromov hyperbolic with respect to the quasihyperbolic
metric and its Euclidean boundary is quasisymmetrically equivalent to the
Gromov boundary. Here by the uniformity of a metric space (€2, d) we mean
that Q is quasi—convez (inequality (1.15)) and satisfies the twisted cone con-
dition (inequality (1.16)). That is, for some D > 1 every pair points z,y €
can be joined with a curve 7., in Q such that

lengthy(Vey) < Dd(z,y), (1.15)
and for every a € vz,

min{lengthy(1ry (z,)), lengthy(1y(a,y))} < Dd(a),  (116)

where 7,y (z,a) is the subcurve of v,, from x to a and ~,y(a,y) is the rest
of the curve.



Now the question is, how much can we relax the assumptions on the
domain £ C R" so that the Euclidean boundary and the Gromov boundary
are still homeomorphic? More generally, can one do something like this also
in more general metric spaces? We continue with a couple of instructive
examples.

The upper half plane is uniform, but the quasihyperbolic geodesic ray
[w, 00), where w is any point in the upper half plane, cannot be identified
with any point in the Euclidean boundary R x{0} of the half plane.

The unit disc excluding the radius B2\ ([0,1] x {0}) equipped with the
Euclidean metric is not uniform and one Euclidean boundary point on the
radius may define two distinct points on the Gromov boundary, see Figure 2.
Again, the Euclidean and the Gromov boundaries cannot be identified even
as sets. However, if we change the Euclidean metric to the Fuclidean path
metric ¢, the boundary defined by the metric £ and the Gromov boundary
are even quasisymmetric (this fact follows from the proof of [BHK, Theo-
rem 1.11]). Thus in attempting to answer our question it is better to consider
bounded quasi—convex metric spaces (see the definition in (1.15)).

B2\([0, 1] % {0})

Figure 2: One Euclidean boundary point defines two distinct Gromov bound-
ary points

Boundedness and quasiconvexity of a metric space are not enough to
guarantee that the two different boundaries are homeomorphic. Indeed, let

Q= (0,1) x (0,1)\ [j ({2% « [0, %]}) (1.17)
j=1

be as pictured in Figure 3 and let us equip €2 with the Euclidean path metric
£. In order that the boundaries 0,2 and ;) be homeomorphic, the boundary
0¢€2 should be compact. It is closed and bounded but not, however, compact.
Indeed, let (z;) C 0p§2 be the sequence of the “midpoints”,

3
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This sequence does not have a convergent subsequence because

Uz, j41) > 1

Figure 3: A bounded quasi—convex domain €2 with 9,2 not compact

for every j € N.

—~
=
N[

All the above-mentioned spaces equipped with the quasihyperbolic met-
ric really are Gromov hyperbolic spaces. It is not always the case that
an abstract quasihyperbolic metric space is Gromov hyperbolic, and this is
something we have to take care of, when we are studying Gromov bound-
aries. In [BB], Balogh and Buckley studied geometric characterizations of
Gromov hyperbolicity of bounded domains in R" equipped with the quasi-
hyperbolic metric. They discovered that a bounded domain in R™ equipped
with the Euclidean path metric satisfies the Gehring—Hayman theorem if
the domain is Gromov hyperbolic in the quasihyperbolic metric. Thus it
is natural to study spaces that satisfy the Gehring-Hayman theorem. This
property has turned out to be a central tool for proving theorems related to
Gromov hyperbolic spaces (e.g. [BHK]).

2 The Gehring-Hayman theorem

Let us take a brief look at the Gehring-Hayman theorem and its history.

2.1 The unit disc

Given x,y € B2, the hyperbolic geodesic [z,%] is, in the Euclidean sense,
essentially the shortest curve joining « to y in B?. More precisely,

length([z,y]) < glength(’yxy),

whenever v,, is a curve joining points z and y in B?. Gehring and Hayman
proved in [GH] that hyperbolic geodesics are also essentially the shortest
curves in any conformal image of the unit disc. They proved the following
theorem

11



Theorem 2.1. [GH, Theorem 2| If f: B — Q C C is a conformal mapping,
and [u,v] is a hyperbolic geodesic and Yy, is any other curve joining the points
u,v € S, then

length([u,v]) < Clength(vuy),

where C' > 1 is an absolute constant.

Because hyperbolic geodesics are, by definition, conformally invariant,
Theorem 2.1 says that

length(f([z,y])) < Clength(f(vay)),

where 2 = f~(u) and y = f~!(v). Furthermore, because f is a conformal
mapping, Theorem 2.1 really says that

()] |dz C ") dz 2.1
/m]\fuu (<c [ Ir@las (2.1)

Yy

for every  and y in B?. Hence, in the unit disc, a hyperbolic geodesic is
essentially the shortest curve also with respect to the density p(z) = |f'(2)],
in the sense of the deformed metric d,, where

Yay

dy(z,y) = inf/ p(z) |dz] (2.2)
Ty

and the infimum is taken over all curves v,, in B? with endpoints = and y.

2.2 A general metric space

The Gehring-Hayman theorem has been studied quite a bit. See for instance
[HeiN] and [HeiR|. Also in [BKR] Bonk, Koskela and Rohde generalized the
Gehring-Hayman inequality (2.1) to conformal deformations of the unit ball
B", n > 2, and they found the critical properties of |f/(z)| in inequality (2.1)
that appear to be essential for such a generalization.

The density p(z) = |f'(z)|, where f: B? — Q is a conformal mapping,
satisfies a Harnack inequality (with the constant e'?, cf. [Po, p. 10])

e Pp(x) < p(z) < ep(a)

for all z € B(x, (1—|z])/2) and all z € B?. Balls B(x, (1 — |z|)/2) are called
Whitney type balls. The density p(z) = |f/(z)| also satisfies the area growth
estimate (with the constant 7),

/ P2 (2) dA(z) < mr?
BP(va)

for all # € B?, where B,(z,7) refers to the ball with centre z and radius
in the metric d,, see the definition in expression (2.2).

12



These two properties of the density p are the critical ones, and Bonk,
Koskela and Rohde put this into a more abstract form: If a continuous
function p: B" — (0,00) satisfies a Harnack inequality with a constant
A>1,

A~ p(x) < p(2) < Ap(x) HI(A)

for all z € B(z, (1 —|z|)/2) and all z € B", and a Euclidean volume growth
condition with a constant B > 0,

/ p"dm, < Br" VG(B)
By(x,r)

for all z € B" and all » > 0, where m,, denotes n-dimensional Lebesgue
measure, then p is called a conformal deformation. In [BKR, Theorem 3.1]
they proved that a hyperbolic geodesic is essentially the shortest curve in
the unit ball B", also with respect to conformal deformations.

Subsequently, Herron showed in [Herl]| that B" can be replaced with any
uniform metric measure space (£2,d, u) with bounded geometry. We proved
in [1] that one can relax the assumption of “bounded geometry” of a uniform
metric measure space, and still a quasihyperbolic geodesic is essentially the
shortest curve with respect to conformal deformations.

Theorem 2.2. [1, Theorem 1.1] Let Q > 1 and let (2,d, ) be a non—
complete uniform space equipped with a measure that is Q-regular on balls of
Whitney type. If p: Q — (0,00) is a conformal deformation on Q, then there
s a constant C' > 1 that depends only on the data associated with 0 and p

such that
/ pds < C pds
[:B)y] ’Yzy

whenever [x,y] is a quasihyperbolic geodesic and gy is a curve joining x to
y in §.

From now on the version of Gehring-Hayman theorem we are using in
the metric space (€2, d) says that for some C' > 1 and for all z,y € € it holds
that

lengthy([z,y]) < Clengthy(~uy) (2.3)

whenever [z,y] is a quasihyperbolic geodesic and ~,, is a curve joining x to
y in Q.

3 Homeomorphic equivalence of Gromov and orig-

inal boundaries: A topological condition

3.1 Conformal deformations of the Euclidean unit ball

Let us consider the unit ball B" equipped with a conformal metric d, as a
general metric space. What is its original boundary and what is then the

13



Gromov boundary? Are they homeomorphic and are they related to the
Euclidean boundary? For simplicity, the metric notations which refer to the
metric d, will have just the additional subscript p.

Suppose the density p is a conformal deformation such that B :=
(]B",dﬁﬂs bounded. The p-boundary 9,B" of By is J,B" = IB_:} \ B,
where B is the metric completion of B} .

The quasihyperbolic metric space (B", k,) derived from the metric d, is
complete, proper and geodesic. Bonk, Koskela and Rohde showed in [BKR,
Proposition 6.2] that there is a constant C' > 1 such that

o P=la)

f h B"
= st (2,9, B") or each x € B",

and therefore the spaces (B",h) and (B",k,) are bi-Lipschitz equivalent.
Thus (B", k,) is Gromov hyperbolic (cf. [BrHa, §II1.H]). Furthermore, for the
Gromov boundaries (0g B",dy.) and (9 B, d;,, ;) we obtain by comparing

inequalities (1.4), (1.10) and (1.2) that there are constants C' > 1 and 0 <
a < 1 such that

L «a
Cd, (6,0)7 < dwe(&,n) < Od, (&,7)

for all £,7 € O B", where € has been chosen such that d,,, al’w7e are metrics
(remember also inequality (1.12)). In particular, the Gromov boundaries are
homeomorphic. We already know that the boundaries $"~! and 05 B" are
homeomorphic (inequalities (1.6) and (1.13)) and hence the boundaries $"*
and Jg B are homeomorphic.

But what about the boundaries d¢ B}, and d, B"? Let us go back to one
of the previous examples to see that these boundaries are not always homeo-
morphic. Let p(z) = |f'(2)|, where f: B? — Q is a conformal mapping onto
the simply connected domain  in (1.17) and pictured in Figure 3. When
the metric £ in Q is the Euclidean path metric, we can identify (B2, d,) with
(Q,¢) and the boundary 9,B? with 9,Q2. We already discovered that the
boundary 9,(2 is not compact and thus the boundary 9, B? is not compact.
Hence, 0, B2 cannot be homeomorphic to $* or to dg ]B%.

It seems that in order to show that d,B" is homeomorphic to g1
and thus to dgBj, we have to assume the compactness of the boundary
0, B™ . This turns out to be both necessary and sufficient condition, and the
next theorem (that is a consequence of Theorem 3.3 below) shows that the
following conditions are equivalent:

(i) (9,B™,d,) is compact
(ii) (B"™uwo,B",d,) is compact
(iii) The identity map id: (B",d,) — (B",|-|) has a homeomorphic
extension to i: (B"Ud, B",d,) — (B"U$" 1| -]).

(3.1)

14



Theorem 3.1. Suppose that p: B" — (0,00) is a conformal deformation.
Then the three conditions in (3.1) are equivalent.

Combining this theorem with the previous discussion we obtain a corol-
lary:

Corollary 3.2. Let p: B" — (0,00) be a conformal deformation. Then
0, B™ is compact if and only if the Gromov boundary O B is homeomorphic
to the p-boundary 0, 1B" .

In the classical situation Theorem 3.1 really says that a conformal map-
ping f: B2 — Q C C has a homeomorphic extension from B? onto QU 9,12,
where €2 is equipped with the Euclidean path metric /, if and only if the
boundary 9, is compact (cf. [Po]).

We can actually show that Theorem 3.1 holds in a more general setting,
and this is the main theorem in the paper [2]:

Theorem 3.3. [2, Theorem 1.1] Suppose that p: B" — (0,00) is a density
that satisfies either

/ Pt dmy, < o(r) for all x € B" and r > 0,
Bp(xvr)

where ¢ is an increasing homeomorphism of (0,00) so that p(r) = Br™|logr|*!
for some B > 0 and for every 0 < r < e~', or both a Harnack inequality
HI(A) and for some B > 0 it holds that

/ p"tdm, < Br"¢ for all x € B" and r > 0,
BP(va)

where € is sufficiently small, depending on the constant in HI(A). Then the
three conditions in (3.1) are equivalent.
In addition, when n = 2 these three conditions are also equivalent to

(iv) B} is bounded and 0, B™ is locally connected.

However, when n > 3, there are examples where (iv) holds but none of
(i,i1,iii) n (3.1) are true.

We do not know, whether or not Corollary 3.2 holds in the setting in
Theorem 3.3. Firstly, we do not know the precise criteria for (B",k,) to
be Gromov hyperbolic. For example, if p(z) = 1+|2|’ then the metric space
(B",d,) is complete and the boundary 9, B" is empty. In this case we are
not able to define the quasihyperbolic metric k,. If p(z) = 1 — |2|, then the
metric space (B",d,) is bounded and it has a single boundary point. Further-
more, (B",k,) is Gromov hyperbolic because quasihyperbolic triangles are
m-thin. By suitably gluing versions of the above densities one further obtains
an unbounded space whose boundary is a singleton, and whose quasihyper-
bolization is Gromov hyperbolic. Secondly, even though (B", k,) is Gromov
hyperbolic in the setting of Theorem 3.3, we do not know, if the Gromov
boundary d¢ Bj is homeomorphic to gt

15



3.2 A general metric space
Let us prove a metric space version of Theorem 3.1 (and Corollary 3.2).

Theorem 3.4. Let (2,d) be locally compact, non—complete, bounded, and
quasi—convexr metric space. Assume that (2, kq) is Gromouv hyperbolic and
that (2, d) satisfies the Gehring—Hayman theorem. Let w € S be a base point.
Then the following three conditions are equivalent:

(i) (0482, d) is compact
(i) (U040, d) is compact
(iii) The identity map id: (g, dy,c) — (042, d) is a homeomorphism.

Proof. The implications (iii) = (i) and (ii) = (i) are clear because (9¢£2, dy )
is always compact and 930 C Q is closed. The implication (i) = (ii) follows
by adapting the proof of the same assertion for Theorem 3.3:

Let {Aq}aer be a d-open cover of the set QU2 Let J C I be a maximal
index set such that for every o € J it holds that A, N2 # (). Because 9,
is compact, there exists a finite index set J’ C .J such that

042 C | J Aa.

aelJ’

Now A := (QUgQ) \Unejr Aa is d-closed and A C Q. Because the identity
map (Q,d) — (Q,kq) is a homeomorphism, A is closed also in the sense
of k4. Because 9,€) is compact and A is d-closed, it holds that there exist
¢ > 0 such that d(z) > c for every z € A. Thus, because (£2,d) satisfies
the Gehring—Hayman theorem and it is quasi—convex and bounded, A is also
bounded in the sense of k4. Hence, there is € €2 and M > 0 such that

AC Ekd(x,M),

and because of the properness of the space (£2,kq) the set A is compact.
Consequently, A is compact in the metric d. Moreover, there is a finite index
set I’ C I so that

Ac | Aa,

ael’

and hence we find a finite index set I’ U J’ such that

Quaec | Aa

acl’'uJ’

Therefore (U 9482, d) is compact.

The last step is to prove the implication (ii) = (iii). We show only that
the identity map id: (0g€, dy,c) — (04f2, d) is well-defined because the rest
of the proof follows direct from other results: The same arguments as in
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[3, Theorem 1.1] apply to prove that the map id is bijective and that id~*
is continuous. Therefore, the well-known topological result (see e.g. [Mu])
implies that id ™! is a homeomorphism, hence id is as well.

Thus let & € 0. Then there is a geodesic ray [w,¢]. Let (z;) C [w,{]
be a sequence such that k;(w,z;) — oo, when j — co. Because (22U 94€2, d)
is compact, in the metric d the sequence (z;) has a convergent subsequence
(2}, )k From the Gehring-Hayman theorem and quasi-convexity we obtain
that for every r > 0 there is N, > 0 such that for each p > 1,

gd([xjk s xjk+p]) <,

whenever k > N,.. Thus the limit £ := lim;_, o x; exists in the metric d and
it has to be on the boundary 94{2.

Let [y,£] be another geodesic ray that represents the point £ € 9g€2. In
the sense of d the ray [y,£] ends at the point &’ € 9;0. Let us show that
¢ =¢" Let u € {w,y}, and let [u,&|(t) be the image of t € [0,00) C R,
where [u,&]: [0,00) — € is a mapping parametrized by the arc length with
respect to the metric kg. Then because the geodesic rays [w, ] and [y, £] are
equivalent, there exists a constant M > 0 such that

kq(Jw, &](t), [y, &](t)) < M for each t > 0

(for details see the proof of |3, Theorem 1.1|). Furthermore, by the elemen-
tary inequality (see [GP, Lemma 2.1] and [BHK, Inequality (2.4)]) it follows
that for each ¢ > 0,

d([w, £](), [y, €1(t))
min{d([w, £](£)), d([y, €](£))}

Therefore because d([w,&](t)) — 0 and d([y,&](t)) — 0, when ¢ — oo, it
must be that

log (1 + ) < k((w, E)0), [,€](8) < M.

d([w, £](2), [y, €] (t)) — O,

when t — oo, and thus ¢ = ¢”.
]

4 Homeomorphic equivalence of Gromov and orig-
inal boundaries: An analytic condition

We have given a partial, topological answer to our question: “When is the
original boundary of a metric space homeomorphic to the Gromov boundary
of the same space?” We now turn to the analytic aspects, following [3]. Here
the starting point is also [BHK, Theorem 1.11] with the paper [HenK].
Based on [BHK], a bounded domain in R" is uniform if and only if it is
Gromov hyperbolic in the quasihyperbolic metric and its Euclidean boundary
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is quasisymmetrically equivalent to the Gromov boundary. It is also well-
known that in a bounded uniform domain €2 C R" the quasihyperbolic metric
k satisfies a logarithmic growth condition

k(w,x) < Clog(M) +C' (4.1)

d(x)
where w is a fixed base point in Q and constants C' > 1 and C’ < oo depend
on the constant of uniformity and the diameter of the domain (cf. [GM]).
Here d(z) is an abbreviation for the Euclidean distance from the point x to
the Euclidean boundary 0f2.

However, this growth condition (4.1) does not necessarily guarantee that
the boundaries are quasisymmetric. Indeed, let us construct a simply con-
nected planar domain €2 for which the quasihyperbolic metric satisfies the
growth condition (4.1), but the boundary 9, in the Euclidean path metric
is not quasisymmetrically equivalent to the Gromov boundary dg€2. To con-
struct €2, we “weld” the sequence of squares Q; = (a; —lj,a;) x (1,1;), where
aj=1-27 and l; = 277, j = 0,1,2,..., to the square (—1,1)? via the
intervals (a; —1;/2 — l?,aj —1;/2+ ZJQ) x {1}, 7=2,3,4,..., as in Figure 4.
Let the origin be the base point. The quasihyperbolic metric k satisfies the
condition (4.1), but taking two boundary points from the “throat” of the
small square and the third from the top middle of the same square shows
that the Gromov boundary cannot be quasisymmetric to 9y€2. Nevertheless,
the boundary 9,2 is homeomorphic to the Gromov boundary Jg€2, see [BP]|
and [KOT].

Q

L

O

(aj7 1)

Figure 4: Example of a domain 2, whose boundary in the Euclidean path
metric is not quasisymmetric to the Gromov boundary
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Moreover, not every growth condition guarantees that the boundaries
can be identified even as sets. For example, let

Q= {(z,y) e R*: x> —1, |y < exp{—2}},

and let the origin be the base point. Now the quasihyperbolic metric &
satisfies the growth condition
d(0
k(0,2) < C(— +C (4.2)
(2)
for some C' > 1, but the the ray [0, 00) cannot be identified with any point
in the Euclidean boundary 0f).
Thus, in order that the boundary 9,2 and the Gromov boundary 9g2
be homeomorphic, we need a condition stronger than (4.2). Suppose that
we are given the growth condition

~—

d(w)

kg(w,x) < gb(%), (4.3)

where ¢: (0,00) — (0,00) is an increasing function and w is a fixed base
point in a metric space (€2,d), cf. [HenK]. It is more convenient to write

d(w)
dz) < ———~——, 4.4
)= G gl ) 4
and let us assume that the function ¢ satisfies
i _} —~ < 00. (4.5)
= o710

Condition (4.5) is sufficient for the original boundary and the Gromov bound-
ary to be homeomorphic in a rather general setting. This is the content of
our main theorem in [3].

Theorem 4.1. [3, Theorem 1.1| Let (2,d) be a locally compact, and non—
complete quasi—convex space. Assume that (2, kg) is Gromov hyperbolic and
that the Gehring-Hayman theorem holds in (2,d). Let w € Q be a base
point and suppose that the quasihyperbolic metric kq satisfies (4.3) and (4.5).
Under these assumptions, the identity map id: (0, dy.e) — (0482, d) is a
homeomorphism, and, moreover, 0;5) is compact.

5 Final remarks

Even though we have now given two partial answers to our problem which
considered, when is the original boundary of a metric space homeomorphic to
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the Gromov boundary of the same space, there are still some parts missing
in the theory. When is the quasihyperbolic metric space (€2, ky) Gromov
hyperbolic? Is the Gehring-Hayman theorem always true in (€2, d) if (€2, kq)
is Gromov hyperbolic? What are the minimal assumptions on (€2, d) so that
geometric characterizations of Gromov hyperbolicity can be done as in [BB|?

The Gehring-Hayman theorem for conformal deformations also raises
further questions. We already stated in the introduction of [1] that the
Gehring-Hayman theorem is a central tool in many papers, especially in
[Herl] and [Her2]. We expect that Theorem 2.2 will allow one to relax the
assumption of “bounded geometry” and thus extend large parts of the papers
[Herl] and [Her2|] to a much more general setting.

In conclusion, this field is not totally studied and there is place for further
research.
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