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JYVÄSKYLÄ
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Introdu
tionIn this thesis we literally live on the edge. More pre
isely, we visit the sameedge many times but we 
limb along di�erent paths, survey the view fromdi�erent angles, and ask weather or not the view looks similar and in whatsense similar. We also visit di�erent edges and ask, are these edges in somesense in
luded in the same 
lass.In the language of mathemati
s, we 
onsider a 
ertain equivalen
e ofboundaries of an abstra
t spa
e determined by two di�erent metri
s. Thegoal of this thesis is to answer a very simple question: When is the originalboundary of a metri
 spa
e homeomorphi
 to the Gromov boundary of thesame spa
e? In this dissertation one �nds both topologi
al and analyti

riteria for the boundaries to be homeomorphi
 to a given metri
 spa
e.Motivation for this problem arises from the papers [BHK℄ and [HenK℄.In this thesis we 
onsider many di�erent metri
s, and for 
larity, theusual metri
 notations will have an additional subs
ript that refers to themetri
 in use.1 What is a Gromov boundary?Before we 
an understand the homeomorphi
 equivalen
e of Gromov andoriginal boundaries, we need to understand the 
on
ept of a Gromov bound-ary.1.1 The unit dis
We start with a simple setting: the unit dis
 B2 = B2(0, 1) ⊂ R2 equippedwith the hyperboli
 metri
 h. For x, y ∈ B2 the hyperboli
 distan
e h is
h(x, y) = inf

γxy

∫

γxy

2
1 − |z|2 |dz|, (1.1)where γxy ⊂ B2 is a 
urve joining points x and y, and |dz| is the Eu
lideanlength element. The hyperboli
 spa
e (B2, h) is a geodesi
 spa
e � thatis, every pair of points x and y 
an be joined with a 
urve in B2 whosehyperboli
 length is exa
tly the hyperboli
 distan
e between the endpoints.We denote by [x, y] su
h a 
urve, 
alled a geodesi
. In the Eu
lidean sense,hyperboli
 geodesi
s are Eu
lidean line segments along radii or subar
s of
ir
les that are orthogonal to the boundary 
ir
le S1 = ∂B2, see Figure 1.This metri
 spa
e, (B2, h), is a Gromov hyperboli
 spa
e. Thus it is δ-hyperboli
 for some δ ≥ 0. This means that hyperboli
 triangles are δ-thin� that is, for all triples of geodesi
s [x, y], [y, z], [z, x] every point in [x, y]is within distan
e δ from [y, z] ∪ [z, x]. In fa
t, here we 
an 
ompute that

δ = log(
√

2 + 1). 5
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Figure 1: Example of hyperboli
 geodesi
s [a, b] and [x, y], geodesi
 rays [u, ξ]and [v, ξ] representing ξ, and a geodesi
 line [ξ, η]Does the metri
 spa
e (B2, h) have any kind of �boundary�? It is naturalto think that the Eu
lidean boundary S1 of B2 is also the boundary in thehyperboli
 sense, but is it, and does (B2, h) even have a boundary? We 
aneasily verify that the hyperboli
 length of any radius of B2 is in�nite, andtherefore (B2, h) is unbounded.A geodesi
 ray in (B2, h) is an isometri
 image of the interval [0,∞) ⊂ R .Two geodesi
 rays are equivalent if their Hausdor� distan
e in (B2, h) is �nite� that is, both rays have �nite neighbourhoods su
h that the other ray is
ontained in the neighbourhood of the other ray. The Gromov boundary
∂GB2 is the set of all equivalen
e 
lasses of geodesi
 rays, and we say thata geodesi
 ray ends at ξ ∈ ∂GB2 if it represents the point ξ, see Figure 1.For ea
h x ∈ B2 and ξ ∈ ∂GB2 there is a geodesi
 ray [x, ξ] issuing from xand ending at ξ. Similarly, for every pair of points ξ, η ∈ ∂GB2 there is ageodesi
 line [ξ, η] from ξ to η that is an isometri
 image of (−∞,∞) endingat ξ and η in the obvious sense ([BrHa, �III.H Lemma 3.1 and Lemma 3.2℄,see also Figure 1). Clearly, the boundaries ∂GB2 and S1 
an be identi�ed assets. That is, there exists an identity map S1 → ∂GB2 that is a bije
tion,at least.In order to study this identity map in more detail, we need a metri
on ∂GB2 . It is 
lear how to measure Eu
lidean distan
es on S1, but thehyperboli
 metri
 h does not extend to the boundary ∂GB2 . This is whywe next give an alternate de�nition for the Gromov boundary whi
h at thesame time de�nes a metri
 on the Gromov boundary.The Gromov boundary ∂GB2 
an be de�ned as the set of equivalen
e6




lasses of sequen
es (xn) ⊂ B2 whi
h tend to in�nity in the sense that
lim

n,m→∞
(xn|xm)w = ∞,where

(x|y)w =
1
2
{h(w, x) + h(w, y) − h(x, y)} (1.2)is the Gromov produ
t between points x, y ∈ B2 with respe
t to a base point

w ∈ B2 . Two sequen
es (xn), (yn) ⊂ B2, tending to in�nity, are equivalentif
lim

n→∞
(xn|yn)w = ∞.The 
hoi
e of the base point w does not a�e
t the Gromov boundary ∂GB2as a set.The Gromov produ
t (1.2) extends to the Gromov boundary ∂GB2 in anatural way. From the geometri
 point of view, the Gromov produ
t has thefollowing property:

∣

∣(x|y)w − disth(w, [x, y])
∣

∣ ≤ 8δ (1.3)for any pair of points x, y ∈ B2 ∪∂GB2 and any hyperboli
 geodesi
 [x, y]between the points.Now the fun
tion dw : ∂GB2 ×∂GB2 → R,

dw(ξ, η) = exp{−(ξ|η)w}, (1.4)where w ∈ B2 is the base point, de�nes a metri
. Taking the geometri
 prop-erty (1.3) of the Gromov produ
t into a

ount we obtain, up to a 
onstant,a good approximation for the metri
 dw :

dw(ξ, η) ≈ exp{− disth(w, [ξ, η])}, ξ, η ∈ ∂GB2 . (1.5)Again, the 
hoi
e of the base point w is irrelevant be
ause metri
s withdi�erent base points, dw and dw′ , are bi�Lips
hitz equivalent.Considering the metri
 dw from the geometri
 point of view (1.5) it is easyto believe that the boundaries ∂GB2 and S1 are homeomorphi
. A
tually, itis easy to verify that the boundaries are even bi�Lips
hitz equivalent. Thus
dw(ξ, η) ≈ |ξ − η| (1.6)for ea
h ξ, η ∈ ∂GB2 .

7



1.2 A general metri
 spa
eThe unit dis
 B2 is a simple spe
ial 
ase and easy to understand. One
an generalize these 
on
epts to a more general metri
 spa
e (Ω, d). We�rst generalize the 
on
ept of the hyperboli
 metri
 h to the quasihyperboli
metri
 kd derived from the metri
 d.Let (Ω, d) be a lo
ally 
ompa
t, re
ti�ably 
onne
ted and non�
ompletemetri
 spa
e. The boundary ∂dΩ of Ω is ∂dΩ = Ω \Ω, where Ω is the metri

ompletion of Ω. The boundary ∂dΩ is nonempty, and for z ∈ Ω we denote
d(z) = distd(z, ∂dΩ) = inf{d(z, x) : x ∈ ∂dΩ}. (1.7)The quasihyperboli
 metri
 kd in Ω is de�ned to be

kd(x, y) = inf
γxy

∫

γxy

ds

d(z)
, x, y ∈ Ω, (1.8)where the in�mum is taken over all re
ti�able 
urves γxy joining points xand y in Ω, and ds is the length element with respe
t to the metri
 d. Therelation between the hyperboli
 metri
 h and the quasihyperboli
 metri
 kdin the unit dis
 B2 is kd(x, y) ≤ h(x, y) ≤ 2kd(x, y).There is also a third natural metri
 in Ω, denoted by ℓd(x, y) and de�nedas the in�mum of the lengths (in the original d-metri
) of all 
urves joiningpoints x and y in Ω. If Ω is a domain in Rn, and d is the Eu
lidean metri
restri
ted to Ω, then ℓ = ℓd is the Eu
lidean path metri
.Bonk, Heinonen and Koskela proved in [BHK, Proposition 2.8℄ that ifthe identity map (Ω, d) → (Ω, ℓd) is a homeomorphism, then it is also ahomeomorphism (Ω, d) → (Ω, kd) and (Ω, kd) is 
omplete. Furthermore, asa 
omplete lo
ally 
ompa
t length spa
e, (Ω, kd) is geodesi
 and proper (i.e.
losed balls are 
ompa
t), 
f. [BrHa, �I.3℄. From now on, depending on the
ontext, [x, y] denotes a hyperboli
 or a quasihyperboli
 geodesi
 between xand y.When (Ω, kd) is geodesi
, the de�nition of the Gromov hyperboli
ity ofthe spa
e (Ω, kd) is given using triangles exa
tly as des
ribed in se
tion 1.1for (B2, h). If (Ω, kd) is a geodesi
 and proper Gromov hyperboli
 spa
e, wede�ne the Gromov boundary ∂GΩ similarly as in the hyperboli
 
ase (B2, h),using geodesi
 rays. Also the Gromov produ
t (1.2), its geometri
 property(1.3) and the de�nition of the Gromov boundary ∂GΩ through it are similar.By 
ontrast (
f. (1.4)), the fun
tion dw : ∂GΩ × ∂GΩ → R,

dw(ξ, η) = exp{−(ξ|η)w}, (1.9)where w ∈ Ω is a base point, does not, in general, de�ne a metri
 be
ause(1.9) does not ne
essarily satisfy the triangle inequality. However, there is a
onstant ǫ(δ) > 0 su
h that for 0 < ǫ < ǫ(δ) one �nds a metri
 dw,ǫ on ∂GΩsatisfying
1
2

exp{−ǫ(ξ|η)w} ≤ dw,ǫ(ξ, η) ≤ exp{−ǫ(ξ|η)w} (1.10)8



for ξ, η ∈ ∂GΩ. Combining (1.3), (1.9) and (1.10), we obtain, similarly to(1.5),
dw,ǫ(ξ, η) ≈ exp{−ǫdistkd

(w, [ξ, η])}, (1.11)whenever 0 < ǫ < ǫ(δ) and ξ, η ∈ ∂GΩ. Noti
e that the 
hoi
es of the basepoint w and 0 < ǫ < ǫ(δ) are irrelevant, be
ause metri
s dw,ǫ and dw′,ǫ′ areequivalent. In fa
t, the metri
s are equivalent in the following way:
dw,ǫ(ξ, η) ≈ dw′,ǫ′(ξ, η)

ǫ

ǫ′ (1.12)for all ξ, η ∈ ∂GΩ. The Gromov boundary equipped with this metri
 dw,ǫ isalways 
ompa
t (
f. [Bo℄ and [GhHa℄).Going ba
k to the 
ase of the unit dis
 (B2, h) and equipping the Gromovboundary ∂GB2 with the metri
 dw,ǫ for 0 < ǫ < 1 we observe that theboundaries S1 and ∂GB2 are not bi-Lips
hitz anymore (
f. inequality (1.6)).Instead, we �nd that
dw,ǫ(ξ, η) ≈ |ξ − η|ǫ (1.13)for all ξ, η ∈ ∂GB2 .1.3 Equivalen
e of Gromov and original boundariesWhen we study a more general Eu
lidean metri
 spa
e than B2, inequal-ity (1.13) is not ne
essarily true. However, Bonk, Heinonen and Koskelaproved in [BHK, Theorem 1.11℄ that for a 
ertain 
lass of Eu
lidean spa
esthe boundaries are quasisymmetri
. That is, for some homeomorphism

f : [0,∞) → [0,∞) and for all triples of distin
t points ξ, η, ζ we have
dw,ǫ(ζ, ξ)
dw,ǫ(ζ, η)

≤ f
( |ζ − ξ|
|ζ − η|

)

. (1.14)In parti
ular, they proved that a bounded domain in Rn is uniform if andonly if it is both Gromov hyperboli
 with respe
t to the quasihyperboli
metri
 and its Eu
lidean boundary is quasisymmetri
ally equivalent to theGromov boundary. Here by the uniformity of a metri
 spa
e (Ω, d) we meanthat Ω is quasi�
onvex (inequality (1.15)) and satis�es the twisted 
one 
on-dition (inequality (1.16)). That is, for some D ≥ 1 every pair points x, y ∈ Ω
an be joined with a 
urve γxy in Ω su
h thatlengthd(γxy) ≤ Dd(x, y), (1.15)and for every a ∈ γxy

min{lengthd(γxy(x, a)), lengthd(γxy(a, y))} ≤ Dd(a), (1.16)where γxy(x, a) is the sub
urve of γxy from x to a and γxy(a, y) is the restof the 
urve. 9



Now the question is, how mu
h 
an we relax the assumptions on thedomain Ω ⊂ Rn so that the Eu
lidean boundary and the Gromov boundaryare still homeomorphi
? More generally, 
an one do something like this alsoin more general metri
 spa
es? We 
ontinue with a 
ouple of instru
tiveexamples.The upper half plane is uniform, but the quasihyperboli
 geodesi
 ray
[w,∞), where w is any point in the upper half plane, 
annot be identi�edwith any point in the Eu
lidean boundary R×{0} of the half plane.The unit dis
 ex
luding the radius B2 \([0, 1] × {0}) equipped with theEu
lidean metri
 is not uniform and one Eu
lidean boundary point on theradius may de�ne two distin
t points on the Gromov boundary, see Figure 2.Again, the Eu
lidean and the Gromov boundaries 
annot be identi�ed evenas sets. However, if we 
hange the Eu
lidean metri
 to the Eu
lidean pathmetri
 ℓ, the boundary de�ned by the metri
 ℓ and the Gromov boundaryare even quasisymmetri
 (this fa
t follows from the proof of [BHK, Theo-rem 1.11℄). Thus in attempting to answer our question it is better to 
onsiderbounded quasi�
onvex metri
 spa
es (see the de�nition in (1.15)).

ξ

[x, ξ]

[y, ξ]

x

y

B2 \([0, 1] × {0})

Figure 2: One Eu
lidean boundary point de�nes two distin
t Gromov bound-ary pointsBoundedness and quasi
onvexity of a metri
 spa
e are not enough toguarantee that the two di�erent boundaries are homeomorphi
. Indeed, let
Ω = (0, 1) × (0, 1) \

∞
⋃

j=1

({ 1
2j

× [0,
1
2
]
}) (1.17)be as pi
tured in Figure 3 and let us equip Ω with the Eu
lidean path metri


ℓ. In order that the boundaries ∂ℓΩ and ∂GΩ be homeomorphi
, the boundary
∂ℓΩ should be 
ompa
t. It is 
losed and bounded but not, however, 
ompa
t.Indeed, let (xj) ⊂ ∂ℓΩ be the sequen
e of the �midpoints�,

xj =
( 3

2j+2
, 0

)

.10



This sequen
e does not have a 
onvergent subsequen
e be
ause
ℓ(xj , xj+1) ≥ 1for every j ∈ N .

(0, 1

2
)

Ω

Figure 3: A bounded quasi�
onvex domain Ω with ∂ℓΩ not 
ompa
tAll the above�mentioned spa
es equipped with the quasihyperboli
 met-ri
 really are Gromov hyperboli
 spa
es. It is not always the 
ase thatan abstra
t quasihyperboli
 metri
 spa
e is Gromov hyperboli
, and this issomething we have to take 
are of, when we are studying Gromov bound-aries. In [BB℄, Balogh and Bu
kley studied geometri
 
hara
terizations ofGromov hyperboli
ity of bounded domains in Rn equipped with the quasi-hyperboli
 metri
. They dis
overed that a bounded domain in Rn equippedwith the Eu
lidean path metri
 satis�es the Gehring�Hayman theorem ifthe domain is Gromov hyperboli
 in the quasihyperboli
 metri
. Thus itis natural to study spa
es that satisfy the Gehring�Hayman theorem. Thisproperty has turned out to be a 
entral tool for proving theorems related toGromov hyperboli
 spa
es (e.g. [BHK℄).2 The Gehring�Hayman theoremLet us take a brief look at the Gehring�Hayman theorem and its history.2.1 The unit dis
Given x, y ∈ B2, the hyperboli
 geodesi
 [x, y] is, in the Eu
lidean sense,essentially the shortest 
urve joining x to y in B2 . More pre
isely,length([x, y]) ≤ π

2
length(γxy),whenever γxy is a 
urve joining points x and y in B2 . Gehring and Haymanproved in [GH℄ that hyperboli
 geodesi
s are also essentially the shortest
urves in any 
onformal image of the unit dis
. They proved the followingtheorem 11



Theorem 2.1. [GH, Theorem 2℄ If f : B2 → Ω ⊂ C is a 
onformal mapping,and [u, v] is a hyperboli
 geodesi
 and γuv is any other 
urve joining the points
u, v ∈ Ω, then length([u, v]) ≤ C length(γuv),where C ≥ 1 is an absolute 
onstant.Be
ause hyperboli
 geodesi
s are, by de�nition, 
onformally invariant,Theorem 2.1 says thatlength(f([x, y])) ≤ C length(f(γxy)),where x = f−1(u) and y = f−1(v). Furthermore, be
ause f is a 
onformalmapping, Theorem 2.1 really says that

∫

[x,y]
|f ′(z)| |dz| ≤ C

∫

γxy

|f ′(z)| |dz| (2.1)for every x and y in B2 . Hen
e, in the unit dis
, a hyperboli
 geodesi
 isessentially the shortest 
urve also with respe
t to the density ρ(z) = |f ′(z)|,in the sense of the deformed metri
 dρ, where
dρ(x, y) = inf

γxy

∫

γxy

ρ(z) |dz| (2.2)and the in�mum is taken over all 
urves γxy in B2 with endpoints x and y.2.2 A general metri
 spa
eThe Gehring�Hayman theorem has been studied quite a bit. See for instan
e[HeiN℄ and [HeiR℄. Also in [BKR℄ Bonk, Koskela and Rohde generalized theGehring�Hayman inequality (2.1) to 
onformal deformations of the unit ballBn, n ≥ 2, and they found the 
riti
al properties of |f ′(z)| in inequality (2.1)that appear to be essential for su
h a generalization.The density ρ(z) = |f ′(z)|, where f : B2 → Ω is a 
onformal mapping,satis�es a Harna
k inequality (with the 
onstant e12, 
f. [Po, p. 10℄)
e−12ρ(x) ≤ ρ(z) ≤ e12ρ(x)for all z ∈ B(x, (1−|x|)/2) and all x ∈ B2 . Balls B(x, (1−|x|)/2) are 
alledWhitney type balls. The density ρ(z) = |f ′(z)| also satis�es the area growthestimate (with the 
onstant π),
∫

Bρ(x,r)
ρ2(z) dA(z) ≤ πr2for all x ∈ B2, where Bρ(x, r) refers to the ball with 
entre x and radius rin the metri
 dρ, see the de�nition in expression (2.2).12



These two properties of the density ρ are the 
riti
al ones, and Bonk,Koskela and Rohde put this into a more abstra
t form: If a 
ontinuousfun
tion ρ : Bn → (0,∞) satis�es a Harna
k inequality with a 
onstant
A ≥ 1,

A−1ρ(x) ≤ ρ(z) ≤ Aρ(x) HI(A)for all z ∈ B(x, (1− |x|)/2) and all x ∈ Bn, and a Eu
lidean volume growth
ondition with a 
onstant B > 0,
∫

Bρ(x,r)
ρn dmn ≤ Brn VG(B)for all x ∈ Bn and all r > 0, where mn denotes n-dimensional Lebesguemeasure, then ρ is 
alled a 
onformal deformation. In [BKR, Theorem 3.1℄they proved that a hyperboli
 geodesi
 is essentially the shortest 
urve inthe unit ball Bn, also with respe
t to 
onformal deformations.Subsequently, Herron showed in [Her1℄ that Bn 
an be repla
ed with anyuniform metri
 measure spa
e (Ω, d, µ) with bounded geometry. We provedin [1℄ that one 
an relax the assumption of �bounded geometry� of a uniformmetri
 measure spa
e, and still a quasihyperboli
 geodesi
 is essentially theshortest 
urve with respe
t to 
onformal deformations.Theorem 2.2. [1, Theorem 1.1℄ Let Q > 1 and let (Ω, d, µ) be a non�
omplete uniform spa
e equipped with a measure that is Q-regular on balls ofWhitney type. If ρ : Ω → (0,∞) is a 
onformal deformation on Ω, then thereis a 
onstant C ≥ 1 that depends only on the data asso
iated with Ω and ρsu
h that

∫

[x,y]
ρ ds ≤ C

∫

γxy

ρ dswhenever [x, y] is a quasihyperboli
 geodesi
 and γxy is a 
urve joining x to
y in Ω.From now on the version of Gehring�Hayman theorem we are using inthe metri
 spa
e (Ω, d) says that for some C ≥ 1 and for all x, y ∈ Ω it holdsthat lengthd([x, y]) ≤ C lengthd(γxy) (2.3)whenever [x, y] is a quasihyperboli
 geodesi
 and γxy is a 
urve joining x to
y in Ω.3 Homeomorphi
 equivalen
e of Gromov and orig-inal boundaries: A topologi
al 
ondition3.1 Conformal deformations of the Eu
lidean unit ballLet us 
onsider the unit ball Bn equipped with a 
onformal metri
 dρ as ageneral metri
 spa
e. What is its original boundary and what is then the13



Gromov boundary? Are they homeomorphi
 and are they related to theEu
lidean boundary? For simpli
ity, the metri
 notations whi
h refer to themetri
 dρ will have just the additional subs
ript ρ.Suppose the density ρ is a 
onformal deformation su
h that Bn
ρ :=

(Bn, dρ) is bounded. The ρ-boundary ∂ρBn of Bn
ρ is ∂ρBn = Bn

ρ \ Bn
ρ ,where Bn

ρ is the metri
 
ompletion of Bn
ρ .The quasihyperboli
 metri
 spa
e (Bn, kρ) derived from the metri
 dρ is
omplete, proper and geodesi
. Bonk, Koskela and Rohde showed in [BKR,Proposition 6.2℄ that there is a 
onstant C ≥ 1 su
h that

C−1 ≤ ρ(x)(1 − |x|)
distρ(x, ∂ρBn)

≤ C for ea
h x ∈ Bn,and therefore the spa
es (Bn, h) and (Bn, kρ) are bi�Lips
hitz equivalent.Thus (Bn, kρ) is Gromov hyperboli
 (
f. [BrHa, �III.H℄). Furthermore, for theGromov boundaries (∂GBn, dw,ǫ) and (∂GBn
ρ , d′w,ǫ) we obtain by 
omparinginequalities (1.4), (1.10) and (1.2) that there are 
onstants C ≥ 1 and 0 <

α ≤ 1 su
h that
C−1d′w,ǫ(ξ, η)

1

α ≤ dw,ǫ(ξ, η) ≤ Cd′w,ǫ(ξ, η)αfor all ξ, η ∈ ∂GBn, where ǫ has been 
hosen su
h that dw,ǫ, d′w,ǫ are metri
s(remember also inequality (1.12)). In parti
ular, the Gromov boundaries arehomeomorphi
. We already know that the boundaries Sn−1 and ∂GBn arehomeomorphi
 (inequalities (1.6) and (1.13)) and hen
e the boundaries Sn−1and ∂GBn
ρ are homeomorphi
.But what about the boundaries ∂GBn

ρ and ∂ρBn? Let us go ba
k to oneof the previous examples to see that these boundaries are not always homeo-morphi
. Let ρ(z) = |f ′(z)|, where f : B2 → Ω is a 
onformal mapping ontothe simply 
onne
ted domain Ω in (1.17) and pi
tured in Figure 3. Whenthe metri
 ℓ in Ω is the Eu
lidean path metri
, we 
an identify (B2, dρ) with
(Ω, ℓ) and the boundary ∂ρB2 with ∂ℓΩ. We already dis
overed that theboundary ∂ℓΩ is not 
ompa
t and thus the boundary ∂ρB2 is not 
ompa
t.Hen
e, ∂ρB2 
annot be homeomorphi
 to S1 or to ∂GB2

ρ .It seems that in order to show that ∂ρBn is homeomorphi
 to Sn−1,and thus to ∂GBn
ρ , we have to assume the 
ompa
tness of the boundary

∂ρBn . This turns out to be both ne
essary and su�
ient 
ondition, and thenext theorem (that is a 
onsequen
e of Theorem 3.3 below) shows that thefollowing 
onditions are equivalent:(i) (∂ρBn, dρ) is 
ompa
t(ii) (Bn ∪∂ρBn, dρ) is 
ompa
t(iii) The identity map id : (Bn, dρ) → (Bn, | · |) has a homeomorphi
extension to i : (Bn ∪∂ρBn, dρ) → (Bn ∪Sn−1, | · |).

(3.1)14



Theorem 3.1. Suppose that ρ : Bn → (0,∞) is a 
onformal deformation.Then the three 
onditions in (3.1) are equivalent.Combining this theorem with the previous dis
ussion we obtain a 
orol-lary:Corollary 3.2. Let ρ : Bn → (0,∞) be a 
onformal deformation. Then
∂ρBn is 
ompa
t if and only if the Gromov boundary ∂GBn

ρ is homeomorphi
to the ρ-boundary ∂ρBn .In the 
lassi
al situation Theorem 3.1 really says that a 
onformal map-ping f : B2 → Ω ⊂ C has a homeomorphi
 extension from B2 onto Ω∪ ∂ℓΩ,where Ω is equipped with the Eu
lidean path metri
 ℓ, if and only if theboundary ∂ℓΩ is 
ompa
t (
f. [Po℄).We 
an a
tually show that Theorem 3.1 holds in a more general setting,and this is the main theorem in the paper [2℄:Theorem 3.3. [2, Theorem 1.1℄ Suppose that ρ : Bn → (0,∞) is a densitythat satis�es either
∫

Bρ(x,r)
ρn dmn ≤ ϕ(r) for all x ∈ Bn and r > 0,where ϕ is an in
reasing homeomorphism of (0,∞) so that ϕ(r) = Brn| log r|n−1for some B > 0 and for every 0 < r < e−1, or both a Harna
k inequalityHI(A) and for some B > 0 it holds that

∫

Bρ(x,r)
ρn dmn ≤ Brn−ǫ for all x ∈ Bn and r > 0,where ǫ is su�
iently small, depending on the 
onstant in HI(A). Then thethree 
onditions in (3.1) are equivalent.In addition, when n = 2 these three 
onditions are also equivalent to(iv) Bn

ρ is bounded and ∂ρBn is lo
ally 
onne
ted.However, when n ≥ 3, there are examples where (iv) holds but none of(i,ii,iii) in (3.1) are true.We do not know, whether or not Corollary 3.2 holds in the setting inTheorem 3.3. Firstly, we do not know the pre
ise 
riteria for (Bn, kρ) tobe Gromov hyperboli
. For example, if ρ(z) = 1
1−|z| , then the metri
 spa
e

(Bn, dρ) is 
omplete and the boundary ∂ρBn is empty. In this 
ase we arenot able to de�ne the quasihyperboli
 metri
 kρ. If ρ(z) = 1 − |z|, then themetri
 spa
e (Bn, dρ) is bounded and it has a single boundary point. Further-more, (Bn, kρ) is Gromov hyperboli
 be
ause quasihyperboli
 triangles are
π-thin. By suitably gluing versions of the above densities one further obtainsan unbounded spa
e whose boundary is a singleton, and whose quasihyper-bolization is Gromov hyperboli
. Se
ondly, even though (Bn, kρ) is Gromovhyperboli
 in the setting of Theorem 3.3, we do not know, if the Gromovboundary ∂GBn

ρ is homeomorphi
 to Sn−1 .15



3.2 A general metri
 spa
eLet us prove a metri
 spa
e version of Theorem 3.1 (and Corollary 3.2).Theorem 3.4. Let (Ω, d) be lo
ally 
ompa
t, non�
omplete, bounded, andquasi�
onvex metri
 spa
e. Assume that (Ω, kd) is Gromov hyperboli
 andthat (Ω, d) satis�es the Gehring�Hayman theorem. Let w ∈ Ω be a base point.Then the following three 
onditions are equivalent:(i) (∂dΩ, d) is 
ompa
t(ii) (Ω ∪ ∂dΩ, d) is 
ompa
t(iii) The identity map id : (∂GΩ, dw,ǫ) → (∂dΩ, d) is a homeomorphism.Proof. The impli
ations (iii)⇒ (i) and (ii)⇒ (i) are 
lear be
ause (∂GΩ, dw,ǫ)is always 
ompa
t and ∂dΩ ⊂ Ω is 
losed. The impli
ation (i) ⇒ (ii) followsby adapting the proof of the same assertion for Theorem 3.3:Let {Aα}α∈I be a d-open 
over of the set Ω∪∂dΩ. Let J ⊂ I be a maximalindex set su
h that for every α ∈ J it holds that Aα ∩∂dΩ 6= ∅. Be
ause ∂dΩis 
ompa
t, there exists a �nite index set J ′ ⊂ J su
h that
∂dΩ ⊂

⋃

α∈J ′

Aα.Now A := (Ω∪ ∂dΩ) \⋃

α∈J ′ Aα is d-
losed and A ⊂ Ω. Be
ause the identitymap (Ω, d) → (Ω, kd) is a homeomorphism, A is 
losed also in the senseof kd. Be
ause ∂dΩ is 
ompa
t and A is d-
losed, it holds that there exist
c > 0 su
h that d(z) ≥ c for every z ∈ A. Thus, be
ause (Ω, d) satis�esthe Gehring�Hayman theorem and it is quasi�
onvex and bounded, A is alsobounded in the sense of kd. Hen
e, there is x ∈ Ω and M > 0 su
h that

A ⊂ Bkd
(x,M),and be
ause of the properness of the spa
e (Ω, kd) the set A is 
ompa
t.Consequently, A is 
ompa
t in the metri
 d. Moreover, there is a �nite indexset I ′ ⊂ I so that

A ⊂
⋃

α∈I′

Aα,and hen
e we �nd a �nite index set I ′ ∪ J ′ su
h that
Ω ∪ ∂dΩ ⊂

⋃

α∈I′∪J ′

Aα.Therefore (Ω ∪ ∂dΩ, d) is 
ompa
t.The last step is to prove the impli
ation (ii) ⇒ (iii). We show only thatthe identity map id : (∂GΩ, dw,ǫ) → (∂dΩ, d) is well�de�ned be
ause the restof the proof follows dire
t from other results: The same arguments as in16



[3, Theorem 1.1℄ apply to prove that the map id is bije
tive and that id−1is 
ontinuous. Therefore, the well�known topologi
al result (see e.g. [Mu℄)implies that id−1 is a homeomorphism, hen
e id is as well.Thus let ξ ∈ ∂GΩ. Then there is a geodesi
 ray [w, ξ]. Let (xj) ⊂ [w, ξ]be a sequen
e su
h that kd(w, xj) → ∞, when j → ∞. Be
ause (Ω∪ ∂dΩ, d)is 
ompa
t, in the metri
 d the sequen
e (xj) has a 
onvergent subsequen
e
(xjk

)k. From the Gehring�Hayman theorem and quasi�
onvexity we obtainthat for every r > 0 there is Nr > 0 su
h that for ea
h p ≥ 1,

ℓd([xjk
, xjk+p

]) < r,whenever k > Nr. Thus the limit ξ′ := limj→∞ xj exists in the metri
 d andit has to be on the boundary ∂dΩ.Let [y, ξ] be another geodesi
 ray that represents the point ξ ∈ ∂GΩ. Inthe sense of d the ray [y, ξ] ends at the point ξ′′ ∈ ∂dΩ. Let us show that
ξ′ = ξ′′. Let u ∈ {w, y}, and let [u, ξ](t) be the image of t ∈ [0,∞) ⊂ R,where [u, ξ] : [0,∞) → Ω is a mapping parametrized by the ar
 length withrespe
t to the metri
 kd. Then be
ause the geodesi
 rays [w, ξ] and [y, ξ] areequivalent, there exists a 
onstant M > 0 su
h that

kd([w, ξ](t), [y, ξ](t)) < M for ea
h t ≥ 0(for details see the proof of [3, Theorem 1.1℄). Furthermore, by the elemen-tary inequality (see [GP, Lemma 2.1℄ and [BHK, Inequality (2.4)℄) it followsthat for ea
h t ≥ 0,

log
(

1 +
d([w, ξ](t), [y, ξ](t))

min{d([w, ξ](t)), d([y, ξ](t))}
)

≤ k([w, ξ](t), [y, ξ](t)) < M.Therefore be
ause d([w, ξ](t)) → 0 and d([y, ξ](t)) → 0, when t → ∞, itmust be that
d([w, ξ](t), [y, ξ](t)) → 0,when t → ∞, and thus ξ′ = ξ′′.4 Homeomorphi
 equivalen
e of Gromov and orig-inal boundaries: An analyti
 
onditionWe have given a partial, topologi
al answer to our question: �When is theoriginal boundary of a metri
 spa
e homeomorphi
 to the Gromov boundaryof the same spa
e?� We now turn to the analyti
 aspe
ts, following [3℄. Herethe starting point is also [BHK, Theorem 1.11℄ with the paper [HenK℄.Based on [BHK℄, a bounded domain in Rn is uniform if and only if it isGromov hyperboli
 in the quasihyperboli
 metri
 and its Eu
lidean boundary17



is quasisymmetri
ally equivalent to the Gromov boundary. It is also well�known that in a bounded uniform domain Ω ⊂ Rn the quasihyperboli
 metri

k satis�es a logarithmi
 growth 
ondition

k(w, x) ≤ C log
(d(w)

d(x)

)

+ C ′ (4.1)where w is a �xed base point in Ω and 
onstants C ≥ 1 and C ′ < ∞ dependon the 
onstant of uniformity and the diameter of the domain (
f. [GM℄).Here d(x) is an abbreviation for the Eu
lidean distan
e from the point x tothe Eu
lidean boundary ∂Ω.However, this growth 
ondition (4.1) does not ne
essarily guarantee thatthe boundaries are quasisymmetri
. Indeed, let us 
onstru
t a simply 
on-ne
ted planar domain Ω for whi
h the quasihyperboli
 metri
 satis�es thegrowth 
ondition (4.1), but the boundary ∂ℓΩ in the Eu
lidean path metri
is not quasisymmetri
ally equivalent to the Gromov boundary ∂GΩ. To 
on-stru
t Ω, we �weld� the sequen
e of squares Qj = (aj − lj , aj)× (1, lj), where
aj = 1 − 2−j and lj = 2−j , j = 0, 1, 2, . . . , to the square (−1, 1)2 via theintervals (aj − lj/2− l2j , aj − lj/2 + l2j ) × {1}, j = 2, 3, 4, . . . , as in Figure 4.Let the origin be the base point. The quasihyperboli
 metri
 k satis�es the
ondition (4.1), but taking two boundary points from the �throat� of thesmall square and the third from the top middle of the same square showsthat the Gromov boundary 
annot be quasisymmetri
 to ∂ℓΩ. Nevertheless,the boundary ∂ℓΩ is homeomorphi
 to the Gromov boundary ∂GΩ, see [BP℄and [KOT℄.

(0, 0)

Qj

(aj , 1)

Ω

lj

Figure 4: Example of a domain Ω, whose boundary in the Eu
lidean pathmetri
 is not quasisymmetri
 to the Gromov boundary18



Moreover, not every growth 
ondition guarantees that the boundaries
an be identi�ed even as sets. For example, let
Ω = {(x, y) ∈ R2 : x ≥ −1, |y| < exp{−x}},and let the origin be the base point. Now the quasihyperboli
 metri
 ksatis�es the growth 
ondition

k(0, z) ≤ C
d(0)
d(z)

+ C (4.2)for some C ≥ 1, but the the ray [0,∞) 
annot be identi�ed with any pointin the Eu
lidean boundary ∂Ω.Thus, in order that the boundary ∂ℓΩ and the Gromov boundary ∂GΩbe homeomorphi
, we need a 
ondition stronger than (4.2). Suppose thatwe are given the growth 
ondition
kd(w, x) ≤ φ

(d(w)
d(x)

)

, (4.3)where φ : (0,∞) → (0,∞) is an in
reasing fun
tion and w is a �xed basepoint in a metri
 spa
e (Ω, d), 
f. [HenK℄. It is more 
onvenient to write
d(x) ≤ d(w)

φ−1(kd(w, x))
, (4.4)and let us assume that the fun
tion φ satis�es

∞
∑

j=1

1
φ−1(j)

< ∞. (4.5)Condition (4.5) is su�
ient for the original boundary and the Gromov bound-ary to be homeomorphi
 in a rather general setting. This is the 
ontent ofour main theorem in [3℄.Theorem 4.1. [3, Theorem 1.1℄ Let (Ω, d) be a lo
ally 
ompa
t, and non�
omplete quasi�
onvex spa
e. Assume that (Ω, kd) is Gromov hyperboli
 andthat the Gehring�Hayman theorem holds in (Ω, d). Let w ∈ Ω be a basepoint and suppose that the quasihyperboli
 metri
 kd satis�es (4.3) and (4.5).Under these assumptions, the identity map id : (∂GΩ, dw,ǫ) → (∂dΩ, d) is ahomeomorphism, and, moreover, ∂dΩ is 
ompa
t.5 Final remarksEven though we have now given two partial answers to our problem whi
h
onsidered, when is the original boundary of a metri
 spa
e homeomorphi
 to19



the Gromov boundary of the same spa
e, there are still some parts missingin the theory. When is the quasihyperboli
 metri
 spa
e (Ω, kd) Gromovhyperboli
? Is the Gehring�Hayman theorem always true in (Ω, d) if (Ω, kd)is Gromov hyperboli
? What are the minimal assumptions on (Ω, d) so thatgeometri
 
hara
terizations of Gromov hyperboli
ity 
an be done as in [BB℄?The Gehring�Hayman theorem for 
onformal deformations also raisesfurther questions. We already stated in the introdu
tion of [1℄ that theGehring�Hayman theorem is a 
entral tool in many papers, espe
ially in[Her1℄ and [Her2℄. We expe
t that Theorem 2.2 will allow one to relax theassumption of �bounded geometry� and thus extend large parts of the papers[Her1℄ and [Her2℄ to a mu
h more general setting.In 
on
lusion, this �eld is not totally studied and there is pla
e for furtherresear
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