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1. Introduction

This thesis examines fractal properties of sets and measures. The origin of
fractal mathematics goes back to the early works of Cantor [4]. He showed that a
nonempty perfect subset of the real line is uncountable. At that time, fractal type
behavior were seen in many examples, which, however, were considered to be only
pathological counterexamples for some property. For example, the Weierstrass
function is an example of a continuous and nondifferentiable function. The later
development of geometric measure theory gave the necessary tools for studying
these kinds of objects. A nice overview for the beginning of fractal mathematics
can be found in the book of Edgar [5].

Mainly because of Mandelbrot’s intuition [12], fractals started to be seen as
models of real world phenomena instead of pathological examples. Although there
is no generally accepted definition for the term “fractal”, the fundamental idea
behind this notion is self-similarity: small pieces of a set appear to be similar to the
whole set. The mathematical class of (strictly) self-similar sets was introduced by
Hutchinson [9]. The idea goes back to Moran [15] who studied similar constructions
but without mappings. A mapping f : Rd → Rd is called a similitude if there is
s > 0, the ratio of f , such that |f(x) − f(y)| = s|x − y| whenever x, y ∈ Rd. If
the ratios of the similitude mappings f1, . . . , fk are all strictly less than one, then
a nonempty compact set E ⊂ Rd is called self-similar provided that it satisfies

E = f1(E) ∪ · · · ∪ fk(E).

Then E =
⋃k
i,j=1 fi ◦ fj(E) =

⋃k
h,i,j=1 fh ◦ fi ◦ fj(E) and so on, showing that a

self-similar set E consists of smaller and smaller pieces which are geometrically
similar to E.

The self-similar sets provide a natural starting point for various generalizations.
One possibility is to look at self-affine sets which are defined using affine mappings
in place of similitudes. As a phenomenon, self-affinity often occurs in nature
and this is one reason for the large interest in their mathematical properties.
Another possibility to generalize self-similar sets is to break the rigidity of iterated
function systems and look at nested classes of sets allowing more flexibility for the
sizes and shapes of the offsprings. These kind of constructions are termed Moran
constructions.

The main objective of this dissertation is to study different separation conditions
on various Moran constructions in order to specify circumstances under which the
dimension of a generalized self-similar set can be determined. Inseparably, there
is the question whether the constructed set carries a natural measure. Hausdorff
measures are the traditional candidates for such measures: in ideal situations, they
serve as suitable substitutes for the natural volume function given by the Lebesgue
measure on a Euclidean space. Thus we study mainly the Hausdorff dimension
and give results concerning the positivity and finiteness of the Hausdorff measure
of the constructed set in the appropriate dimension. Our main tool is a simplified
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version of the so-called thermodynamic formalism, which associates the concept of
pressure with the dimension of a dynamically constructed set.

By the fundamental result of Schief [17], the open set condition and the positivity
of the t-dimensional Hausdorff measure are equivalent on self-similar sets, where
t is the zero of the topological pressure. In [A, Corollary 3.10] and [C, Theorem
4.9], we prove an analogous result for a class of Moran constructions. We also
remark that [C, Theorem 4.9] gives a positive answer to the question of Balogh
and Rohner [1, Remark 6.2].

In [B] we define and study, applying symbolic dynamics, certain dynamically
defined subsets of a self-affine set (without assuming any separation conditions)
and show that for a typical sub-self-affine set, the Hausdorff and the Minkowski
dimensions coincide and their common value is the zero of an appropriate topo-
logical pressure (provided that the affine mappings used in the construction have
suitably small contracting ratios). See [B, Theorem 5.2] in particular. This gives
a partial positive answer to the question of Falconer [8].

As a final step, adapting the theory developed for Moran constructions, we
construct in [C, Theorem 5.4] sets that give an answer to the open questions
proposed by Balogh, Tyson, and Warhurst [2, Remarks 4.9 and 4.10] concerning
the comparison of the Riemannian and sub-Riemannian Hausdorff dimension in
Carnot groups.

2. Setting and basic notions

We use the following notation: Let I be a finite set with cardinality κ := #I ≥ 2.
Put I∗ =

⋃∞
n=1 I

n and I∞ = IN. For each i ∈ I∗, there is n ∈ N such that
i = (i1, . . . , in) ∈ In. We call this n the length of i and we set |i| = n. The
length of elements in I∞ is infinite. Moreover, if i ∈ I∗ and j ∈ I∗ ∪ I∞, then by
the notation ij we mean the element obtained by juxtaposing the terms of i and
j. For i ∈ I∗, we call the set [i] := {ij : j ∈ I∞} a cylinder set of level |i|. If
j ∈ I∗ ∪ I∞ and 1 ≤ n < |j|, we define j|n to be the unique element i ∈ In for
which j ∈ [i]. If j ∈ I∗ and n ≥ |j| then j|n = j. We also set i− = i||i|−1. We
say that the elements i, j ∈ I∗ are incomparable if [i] ∩ [j] = ∅.

Defining

|i− j| =

{
2−min{k−1:i|k 6=j|k}, i 6= j

0, i = j

whenever i, j ∈ I∞, the couple (I∞, | · |) is a compact metric space. We call
(I∞, | · |) a symbol space and an element i = (i1, i2, . . .) ∈ I∞ a symbol. If there is
no danger of misunderstanding, let us also call an element i ∈ I∗ a symbol. Define
the left shift σ by setting

σ(i1, i2, . . .) = (i2, i3, . . .).
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It is easy to see that σ is a continous transformation on the symbol space. By the
notation σ(i1, . . . , in), we mean the symbol (i2, . . . , in) ∈ In−1. Observe that to be
precise in our definitions, we need an “empty symbol”, that is, a symbol with zero
length.

Definition 2.1. Let M be a metric space. A collection {Xi : i ∈ I∗} of compact
subsets of M is a weakly controlled Moran construction (WCMC) provided that
there exist a constantD ≥ 1 so that for every i, j ∈ I∗ the following four conditions
hold:

(W1) Xi ⊂ Xi− ,
(W2) maxi∈In diam(Xi) < D−1 for some n ∈ N,
(W3) diam(Xij) ≤ D diam(Xi) diam(Xj),
(W4) diam(Xi) ≥ D−1 diam(Xi−).

WCMC is a generalization of the notion termed controlled Moran construction
(CMC) in [A]. In the definition of a controlled Moran construction we likewise
use compact sets and require that (W1) and (W2) are satisfied, but instead of
conditions (W3) and (W4) we assume the following stronger condition:

(C1) for every i, j ∈ I∗ we have

D−1 ≤
diam(Xij)

diam(Xi) diam(Xj)
≤ D.

We define a projection mapping π : I∞ → X by the relation

{π(i)} =
∞⋂
n=1

Xi|n

for i ∈ I∞. It is clear that π is continuous. The compact set E = π(I∞) is called
the limit set (of the WCMC).

Now assume that the metric space M is complete and that for each i ∈ I there
is a contractive injection fi : M → M . By the contractivity of a function f we
mean that there is a constant 0 < s < 1 such that |f(x)−fy)| ≤ s|x−y| whenever
x, y ∈ M . The collection {fi : i ∈ I} is then called an iterated function system
(IFS). As shown in [9, §3], an elegant application of the Banach fixed point theorem
implies the existence of a unique compact and nonempty set E ⊂ X for which

E =
⋃
i∈I

fi(E).

Such a set E is called an invariant set (for the corresponding IFS).
Given an IFS {fi : i ∈ I}, we set fi = fi1 ◦ · · · ◦ fin for each i = (i1, . . . , in) ∈ In

and n ∈ N. We are interested in situations where the set collection {fi(F ) : i ∈ I∗}
is a WCMC for some F ⊂M . Let us call an IFS weakly tractable if there exists a
compact set F ⊂M and a constant C > 0 such that the collection {fi(F ) : i ∈ I∗}
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is a WCMC and for each i ∈ I∗ we have

|fi(x)− fi(y)| ≤ C diam
(
fi(F )

)
|x− y|

whenever x, y ∈ F . If the collection {fi(F )}i∈I∗ can be chosen to be a CMC, we
call the weakly tractable IFS simply tractable.

The basic example of a weakly tractable (but not necessarily tractable) IFS on
a Euclidean space is the affine IFS. By definition, an IFS {fi : Rd → Rd}i∈I affine
if for each i ∈ I there is a non-singular contracting linear transformation Ti and
a translation vector ai such that fi = Ti + ai. The invariant set E of an affine
IFS is called self-affine. Observe that the composed mappings fi are also affine:
fi = Ti + ai where Ti = Ti1 ◦ · · · ◦ Ti|i| and ai ∈ Rd. We say that Ti is the

linear part of fi. The image Ti(B) of the closed unit ball B = B(0, 1) ⊂ Rd is a
d-dimensional ellipsoid. The lengths of the principal semiaxes of this ellipsoid are
the singular values of Ti. Equivalently, the singular values, denoted henceforth
by α1(Ti), . . . , αd(Ti), are the square roots of the eigenvalues of T ∗

i Ti, where T ∗
i is

the transpose of Ti. We adopt the usual convention that α1(Ti) ≥ α2(Ti) ≥ · · · ≥
αd(Ti). Note that α1(Ti) is the operator norm of Ti, which is more commonly
denoted by ‖Ti‖. For 0 ≤ t < d, we set

ϕt(Ti) = α1(Ti) · · ·αl(Ti)αl+1(Ti)
t−l, (2.1)

where l is the unique integer such that l ≤ t < l + 1. For completeness, we let

ϕt(Ti) = |det(Ti)|t/d for t ≥ d. The function t 7→ ϕt(Ti) defined on nonnegative
reals is then called the singular value function of the linear transform Ti.

To see that an affine IFS {fi}i∈I is weakly tractable, choose a constant R > 0 so
large that the ball F := B(0, R

2
) ⊂ Rd contains fi(F ) as a subset with every i ∈ I.

Then we have diam(fi(F )) = Rα1(Ti) and thus

|fi(x)− fi(y)| = |Ti(x− y)| ≤ α1(Ti)|x− y| = R−1 diam(fi(F ))|x− y|

for any x, y ∈ Rd and i ∈ I∗. Also notice that

diam(fi(F )) = R‖Tij ◦ T−1
j ‖ ≤ R‖Tij‖‖T−1

j ‖ ≤ max
k∈I

‖T−1
k ‖ diam(fij(F ))

for each i ∈ I∗ and j ∈ I.
Finally, we introduce a principal class of tractable IFSs in a general metric space

M . We say that the IFS is semiconformal if the corresponding invariant set has
positive diameter and there are constants D ≥ 1 and 0 < si ≤ si < 1, i ∈ I∗,
such that si ≤ Dsi and

sid(x, y) ≤ d(fi(x), fi(y)) ≤ sid(x, y) (2.2)

for any x, y ∈ M and i ∈ I∗. If we can choose si = si for each i ∈ I (implying
that the mappings of the IFS are contractive similitudes), we call the invariant
set self-similar. Note that in this special case we can choose (and assume that)
si = si = Πn

k=1sik for each i = (i1, . . . , in) ∈ In with n ∈ N.
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In the Euclidean setting, we get a standard semiconformal IFS by choosing each
fi to be a contractive C1+ε conformal mapping defined on an open set Ω ⊂ Rd,
provided that the mappings do not share a common fixed point and there exists a
closed and nonempty X ⊂ Ω satisfying⋃

i∈I

fi(X) ⊂ X.

In this case we say that the restrictions of the mappings fi to X form a conformal
IFS. It can be deduced from the well known bounded distortion principle that each
conformal IFS is semiconformal. See, for example, [13, Remark 2.3]. Observe that
the converse does not necessarily hold. For example, the semiconformal IFS con-
structed in [11, Example 2.1] is not conformal. Moreover, there are many metric
spaces with no usable differentiable structure to be linked with the metric (and
hence having no direct analogue of a conformal mapping) but for which semicon-
formal IFSs make perfect sense. For an easy example, consider the snowflaked
Euclidean spaces (Rd, ds) where 0 < s < 1 and d(x, y) = |x − y|s for x, y ∈ Rd.
On these spaces, an IFS is semiconformal if and only if it is semiconformal with
respect to the standard Euclidean metric.

We call a CMC {Xi}i∈I∗ semiconformal if the relative positions of the construc-
tion pieces vary within uniform bounds, by which we mean that there exists a
constant C∗ ≥ 1 such that

dist(Xhi, Xhj)

diam(Xh)
≤ C∗dist(Xki, Xkj)

diam(Xk)

for all h, i, j, k ∈ I∗. It is obvious that if E is a self-similar set determined by a
similitude IFS {fi}i∈I , then {fi(E)}i∈I∗ is a semiconformal CMC with C∗ = 1.
More importantly, we have the following result.

Lemma 2.2 ([A, Lemma 5.2]). If {fi : i ∈ I} is a semiconformal IFS and a
compact set A with positive diameter satisfies fi(A) ⊂ A for every i ∈ I then
{fi(A) : i ∈ I∗} is a semiconformal CMC. In particular, a semiconformal IFS is
tractable.

We get most of our results concerning the semiconformal IFSs by studying the
metric features of the corresponding semiconformal Moran constructions.

3. Pressure

Assume that ψ(i) > 0 for each i ∈ I∗. We say that these numbers are submul-
tiplicative weights if the following two assumptions are satisfied:

(S1) ψ(ij) ≤ ψ(i)ψ(j) for all i, j ∈ I∗,
(S2) maxi∈In ψ(i) → 0 as n→∞.

Assume further that for each fixed t > 0 we are given submultiplicative weights
ψt(i), i ∈ I∗, and ψ0(i) = c0 > 0 for each i ∈ I∗. Then we call the indexed
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collection ψ = {ψt(i) : i ∈ I∗}t≥0 a submultiplicative scheme provided that there
furthermore exist constants 0 < a ≤ a < 1 ≤ b such that

b−δa|i|δψt(i) ≤ ψt+δ(i) ≤ bδa|i|δψt(i) (3.1)

for all t, δ ≥ 0 and i ∈ I∗. See also [10, §2]. We define the pressure of a submulti-
plicative scheme ψ to be the function Pψ : [0,∞) → R given by

Pψ(t) = lim
n→∞

1
n

log
∑
i∈In

ψt(i) = inf
n∈N

1
n

log
∑
i∈In

ψt(i).

The limit appearing above exists and satisfies the latter equality by the standard
theory of subadditive sequences. Condition (3.1) implies that

0 < −δ log a ≤ Pψ(t)− Pψ(t+ δ) ≤ −δ log a

for t ≥ 0 and δ > 0, indicating that Pψ is Lipschitz continuous and strictly
decreasing with limt→∞ Pψ(t) = −∞. In particular, noting that Pψ(0) = c0 > 0,
the pressure has a unique zero P−1

ψ (0) > 0.
For a WCMC (or a CMC) {Xi}i∈I∗ we define the topological pressure P by

choosing ψt(i) = D diam(Xi)
t for i ∈ I∗ in the definition of Pψ(t) above, with

D as in (W2)–(W4). The constant D can obviously be replaced by any other
constant, so we have

P (t) = lim
n→∞

1
n

log
∑
i∈In

diam(Xi)
t

for all t ≥ 0. A simple application of Hölder’s inequality shows that the topological
pressure is a convex function. Note that (W4) is an essential condition for the
continuity of P at 0 and for bounding the topological pressure from below. Without
(W4) it may happen that P (t) = −∞ for all t > 0 (see [C, Remark 2.4]).

In the CMC case, the topological pressure is very closely linked with the growth
rate of the sum

∑
i∈In diam(Xi)

t as n→∞.

Lemma 3.1 ([A, Lemma 2.1]). Given a CMC, we have

D−tenP (t) ≤
∑
i∈In

diam(Xi)
t ≤ DtenP (t)

for all n ∈ N and t ≥ 0.

Now assume that {Ti+ai : i ∈ I} is an affine IFS on Rd with associated singular
value functions ϕ(Ti), i ∈ I∗, as defined in (2.1). According to [19, Corollary
V.1.1] and [7, Lemma 2.1], we have

ϕt(Tij) ≤ ϕt(Ti)ϕ
t(Tj)

for all t ≥ 0 and i, j ∈ I∗. Furthermore, by taking a = mini∈I αd(Ti) and a =
maxi∈I α1(Ti) we get

ϕt(Ti)a
δ|i| ≤ ϕt+δ(Ti) ≤ ϕt(Ti)a

δ|i|
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for all t, δ ≥ 0 and i ∈ I∗. Thus {ϕt(Ti)}t≥0 is a submultiplicative scheme. We
denote the corresponding pressure by Pϕ, so that

Pϕ(t) = lim
n→∞

1
n

log
∑
i∈In

ϕt(Ti).

Recalling the definition of the singular value function, the following lemma is
easy to believe.

Lemma 3.2 ([B, Lemma 2.1]). Given an affine IFS, the pressure Pϕ is convex on
the connected components of [0,∞) \ {1, . . . , d}.

Lastly, we note that for a semiconformal IFS, the pressure is naturally defined
as the topological pressure for the corresponding CMC, see Lemma 2.2.

4. Measures on the symbol space and derivative of the pressure

We denote the collection of all Borel probability measures on I∞ by M(I∞).
We set Mσ(I

∞) = {µ ∈ M(I∞) : µ is σ-invariant}, where the σ-invariance of µ
means that µ([i]) = µ

(
σ−1([i])

)
=

∑
i∈I µ([ii]) for all i ∈ I∗. Observe that if

µ ∈ Mσ(I
∞), then µ(A) = µ

(
σ−1(A)

)
for all Borel sets A ⊂ I∞ by [3, Theorem

5.4]. Furthermore, we set Eσ(I∞) = {µ ∈ Mσ(I
∞) : µ is ergodic}, where the

ergodicity of µ means that µ(A) = 0 or µ(A) = 1 for every Borel set A ⊂ I∞ with
A = σ−1(A). Recall from [20, Theorem 6.10] that the set Mσ(I

∞) is compact and
convex with ergodic measures as its extreme points.

If µ ∈Mσ(I
∞), then we define the entropy of µ by setting

h(µ) = − lim
n→∞

1
n

∑
i∈In

µ([i]) log µ([i]).

Here we postulate 0 log 0 = limx→0+ x log x = 0 for convenience. In addition, if
{ψt(i) : i ∈ I∗}t≥0 is a submultiplicative scheme, then for every t ≥ 0 we define
the t-energy of µ by setting

Λt
ψ(µ) = lim

n→∞
1
n

∑
i∈In

µ([i]) logψt(i).

The existence of the above limits is guaranteed by [10, Lemmas 2.3 and 2.2].
Given a pressure Pψ corresponding to a submultiplicative scheme ψ, it follows

easily that

Pψ(t) ≥ h(µ) + Λt
ψ(µ)

for all µ ∈ Mσ(I
∞) and t ≥ 0. We call a measure µ ∈ Mσ(I

∞) a t-equilibrium
measure (for the scheme {ψt(i)}) if

Pψ(t) = h(µ) + Λt
ψ(µ).

The existence of an ergodic t-equilibrium measure is shown in [10, Theorem 4.1].
Observe also that the proof of [B, Theorem 3.3] easily generalizes into more general
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submultiplicative schemes than just the one we obtain from the singular value
function.

We call a measure µ ∈ Mσ(I
∞) a t-Gibbs measure (for the scheme {ψt(i)}) if

there exists a constant c ≥ 1 such that

c−1e−|i|Pψ(t)ψt(i) ≤ µ([i]) ≤ ce−|i|Pψ(t)ψt(i) (4.1)

for all i ∈ I∗. It follows immediately from the right-hand side inequality of (4.1)
that a t-Gibbs measure is always a t-equilibrium measure. Note that in some
situations it is more natural to call t-Gibbs measures t-semiconformal.

The following theorem shows that if a t-Gibbs measure is ergodic, then it is the
only t-equilibrium measure. Observe that in [B] the result is proved in the case
when the submultiplicative scheme is the one obtained from the singular value
function, but the same proof works in the general case.

Theorem 4.1 ([B, Theorem 3.6]). Suppose that {ψt(i) : i ∈ I∗}t≥0 is a sub-
multiplicative scheme. If t ≥ 0, c ≥ 1 and µ ∈ Mσ(I

∞) satisfies µ([i]) ≥
c−1e−|i|Pψ(t)ψt(i) for all i ∈ I∗, then any t-equilibrium measure is absolutely con-
tinuous with respect to µ. Moreover, if µ lies in the convex hull of a countable
family of ergodic t-equilibrium measures, then the closure of the convex hull is pre-
cisely the set of all t-equilibrium measures. In particular, if µ is itself an ergodic
t-equilibrium measure, then it is the only t-equilibrium measure.

In [B, Example 6.2], we show that a t-equilibrium measure is not necessarily
unique. The same example also shows that there exists a non-ergodic t-Gibbs
measure. In [B, Example 6.4], we show that if a t-equilibrium measure is unique,
it is not necessarily t-Gibbs.

We may construct a related measure M t
ψ by applying the familiar Carathéodory

method of producing Borel measures for various metric spaces. Given a submulti-
plicative scheme {ψt(i) : i ∈ I∗}t≥0 and A ⊂ I∞, we set

M t
ψ,n(A) = inf

{∑
i∈C

ψt(i) : C ⊂ I∗, A ⊂
⋃
i∈C

[i], |i| ≥ n

}
for all n ∈ N. Then we define

M t
ψ(A) = lim

n→∞
M t

ψ,n(A).

Theorem 4.2 ([C, Proposition 2.8]). Suppose that {ψt(i) : i ∈ I∗}t≥0 is a sub-
multiplicative scheme and t ≥ 0. Given A ⊂ I∞ with M t

ψ(A) > 0, there exists a
measure µ ∈M(I∞) so that 0 < µ(A) <∞ and

µ([i]) ≤ ψt(i)

for all i ∈ I∗.

In the WCMC case, with ψ as the associated topological pressure, we denote the
Borel measure M t

ψ by M t. In [C, Lemma 2.7], we show that M t(I∞) > 0 whenever
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P (t) ≥ 0. Observe that as we do not know whether the measure µ of Theorem 4.2
is σ-invariant, it is not necessarily a t-equilibrium measure. In the CMC case, the
situation is quite a bit more satisfactory.

Proposition 4.3 ([A, Proposition 3.2]). Given a CMC, there exists a unique er-
godic t-Gibbs measure µt for all t ≥ 0. In particular, if P (t) = 0, then there exists
a constant c ≥ 1 so that

c−1 diam(Xi)
t ≤ µt([i]) ≤ c diam(Xi)

t

for all i ∈ I∗.

The existence of a t-equilibrium measure allows us to study the differentiability
of the pressure. If the ergodic t-Gibbs measure exists, then we are able to determine
the derivative. Observe that we consider only the submultiplicative scheme given
by the singular value function.

Theorem 4.4 ([B, Lemma 4.2 and Theorem 4.4]). Given an affine IFS, the pres-
sure Pϕ is differentiable except for at most countably many points of (0, d). Fur-
thermore, if t ∈ (0, d) \ N and there exists a measure µ ∈ Eσ(I∞) so that µ([i]) ≥
c−1e−|i|Pϕ(t)ϕt(Ti) for all i ∈ I∗, where c ≥ 1 is a constant, then the derivative
P ′
ϕ(t) exists.

In [B, Example 6.5], we exhibit a non-differentiable pressure.

5. Separation conditions and dimension results

We will focus mainly on the Hausdorff dimension and measures of compact
sets. Let M be a separable metric space. Let 0 < s < ∞ and E ⊂ M . The
s-dimensional Hausdorff measure of E is defined as

Hs(E) := lim
δ↓0

inf

{ ∞∑
i=1

diam(Ai)
s : E ⊂

∞⋃
i=1

Ai and sup
i∈N

diam(Ai) ≤ δ

}
.

The 0-dimensional Hausdorff measure H0 is defined to be the counting measure.
The Hausdorff dimension of a set E ⊂M is dimH(E) := inf{s : Hs(E) = 0}. It is
a basic fact thatHt(E) = ∞ for 0 ≤ t < dimH(E) andHt(E) = 0 for t > dimH(E).

Another dimension we consider is the (upper) Minkowski dimension, which is
defined for E ⊂M as

dimM(E) = lim sup
r↓0

− logN(E, r)

log r
,

where N(E, r) = min
{
k ∈ N ∪ {∞} : A ⊂

⋃k
i=1B(xi, r)

}
. The basic relation

between these two dimensions is that dimM(E) ≥ dimH(E) for all E ⊂M .
In the following results, the main theme is to find how the pressure and/or the

separation conditions are related to the size (i.e. dimension or measure) of the
limit set or the invariant set.
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Proposition 5.1 ([C, Proposition 2.6]). Given a WCMC, if P (t) ≤ 0 for some
t ≥ 0, then dimM(E) ≤ t.

Recall that given an affine IFS, it follows from [7, Theorem 5.4] that Pϕ(t) ≤ 0
implies dimM(E) ≤ t.

Given contractive affine mappings fi = Ti + ai with linear parts Ti : Rd → Rd,
i ∈ I = {1, . . . , κ}, we call any nonempty compact set E ⊂ Rd satisfying

E ⊂
⋃
i∈I

fi(E) (5.1)

sub-self-affine. This gives a generalization of a self-affine set. Sub-self-affine sets
include many interesting examples, such as sub-self-similar sets, graph directed
self-affine sets, unions of self-affine sets, and topological boundaries of self-affine
sets. The general form of a sub-self-affine set E ⊂ Rd satisfying (5.1) is

E = EK,a = πa(K)

where K 6= ∅ is any compact subset of I∞ satisfying σ(K) ⊂ K, and the projection
πa : I∞ → Rd with a = (a1, . . . , aκ) is given by πa(i) =

∑∞
n=1 Ti|n−1ain for i ∈ I∞.

See [B, §2].

Theorem 5.2 ([B, Theorem 5.2]). Suppose T1, . . . , Tκ : Rd → Rd are invertible
linear mappings with ‖Ti‖ < 1

2
for each i ∈ I = {1, . . . , κ}, and K ⊂ I∞ is as in

the definition of EK,a. Then for some t ∈ [0, d] we have

dimH(EK,a) = dimM(EK,a) = t

for Hdκ-almost every a ∈ Rdκ.

Observe that [B, Theorem 5.2] also shows the existence of an invariant Borel
probability measure µ with spt(µ) ⊂ EK,a of full dimension. Moreover, we show
in [B] that there exists a natural pressure for sub-self-affine sets such that in the
situation of Theorem 5.2 above, the dimension of the sub-self-affine set is the zero
of this pressure for a typical choice of translation vectors a1, . . . , aκ.

Falconer [8] asked if dimH(E) = dimM(E) for all sub-self-similar sets E. The-
orem 5.2 gives a partial positive answer to this question. The question remains
open for sub-self-similar sets which do not satisfy the open set condition and are
constructed by using exceptional (in the sense of Theorem 5.2) translation vectors.

For a CMC (with E as the limit set), we have the following related result.

Theorem 5.3 ([A, Theorem 4.3]). If a CMC is semiconformal and t = dimH(E),
then dimM(E) = t and Ht(E) <∞.

Simple examples of self-affine carpets (see e.g. [6, Example 9.11]) show that in
the WCMC case dimH(E) < dimM(E) might happen. Observe that these kind of
carpets are typical examples of exceptional cases in Theorem 5.2. Given a WCMC,
it is also possible that Ht(E) = ∞ when t = dimH(E), see [C, Example 3.2] and
[B, Example 6.4].
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It is natural to expect more precise results if we know more about the relative
positions of the construction pieces. Given a WCMC, define for r > 0

Z(r) = {i ∈ I∗ : diam(Xi) ≤ r < diam(Xi−)}
and if in addition x ∈ E, set

Z(x, r) = {i ∈ Z(r) : Xi ∩B(x, r) 6= ∅}.
It is often useful to know the cardinality of the set Z(x, r). We say that a WCMC
satisfies the finite clustering property if supx∈E lim supr↓0 #Z(x, r) <∞. Moreover,
if supx∈E supr>0 #Z(x, r) <∞ then the WCMC is said to satisfy the uniform finite
clustering property.

Definition 5.4. We say that a WCMC {Xi : i ∈ I∗} satisfies the ball condition
if the following holds for some 0 < δ < 1: For each x ∈ E there is rx > 0 such
that, given any positive r < rx, we can find a collection {B(xi, δr) : i ∈ Z(x, r)}
of mutually disjoint balls with maxi∈Z(x,r) dist(xi, Xi) < r.

We note that the ball condition implies the finite clustering property if the
WCMC is defined on a doubling metric space, see [C, Remark 3.6(iv)]. Recall
that a metric space is doubling if there exists a constant N ∈ N such that every
ball B(x, 2r) can be covered with N balls of radius r. If the underlying doubling
space is connected, these two separation conditions are in fact equivalent. Since
connected spaces are uniformly perfect, this follows by the next proposition. Recall
that a metric space M is uniformly perfect if it contains at least two points and
there exists a constant C > 1 such that for each x ∈M and for each r > 0 the set
B(x, r) \B(x, r/C) is nonempty whenever the set M \B(x, r) is nonempty.

Proposition 5.5 ([C, Proposition 3.5]). Given a WCMC, if the underlying met-
ric space is doubling and uniformly perfect, then the finite clustering property is
satisfied if and only if the ball condition holds.

We will see that the ball condition is a natural replacement for the familiar open
set condition used in self-similar constructions. The following proposition together
with Proposition 5.1 shows that finite clustering is a sufficient condition to guaran-
tee dimH(E) = dimM(E) in the setting of weakly controlled Moran constructions.

Proposition 5.6 ([C, Proposition 3.1]). Assume that for a WCMC the finite clus-
tering property holds and P (t) = 0. Then Ht(E) > 0. Moreover, Ht(E) < ∞ if
and only if M t(I∞) <∞.

For certain controlled Moran constructions, we have a nice reverse implication of
Proposition 5.6. The following theorem generalizes a fundamental result of Schief
[17, Theorem 2.1] into a natural setting. For the purposes of this exposition, we
say that a CMC {Xi}i∈I∗ is tractable if with some C > 0 we have

dist(Xhi, Xhj) ≤ C diam(Xh) dist(Xi, Xj)
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for all h, i, j ∈ I∗. See [A, p. 80] for a more general definition of this notion. Most
notably, a tractable IFS defines a tractable CMC (see [A, Lemma 5.1]).

Theorem 5.7 ([A, Corollary 3.10]). For a tractable CMC, the following conditions
are equivalent:

(1) The finite clustering property.
(2) The uniform finite clustering property.
(3) Ht(E) > 0, when P (t) = 0.
(4) With t = P−1(0), there exist constants r0 > 0 and K ≥ 1 such that

K−1rt ≤ Ht|E
(
B(x, r)

)
≤ Krt

whenever x ∈ E and 0 < r < r0.

Note that although Theorem 5.7 is proved in [A] only in the Euclidean setting,
the arguments used in the proof are valid in a general metric space.

We say that an IFS satisfies an open set condition (OSC), if there exists a
nonempty open set U ⊂ Ω such that

fi(U) ⊂ U

for all i ∈ I and
fi(U) ∩ fj(U) = ∅

as i 6= j. Any such open set U is called feasible. Furthermore, if a feasible set
intersects E, then we say that the IFS satisfies a strong open set condition (SOSC).

At the first glance, it seems that for a semiconformal IFS the OSC is easier to
check than the ball condition. However, there are cases when it is much more
convenient to consider the ball condition rather than the OSC. See [A, Example
6.5]. Observe that by [17, Corollary 2.3] (or more generally [16, Corollary 1.2] or
[A, Proposition 5.6]) a feasible set in [A, Example 6.5] is quite intricate.

Proposition 5.8 ([A, Proposition 5.6]). If a semiconformal IFS in Rd satisfies
the OSC and dimH(E) = d, then the invariant set E is the closure of its interior.
Moreover, in this case any feasible open set is a subset of E.

We say that a semiconformal IFS is properly semiconformal if there is an essen-
tial open set W  M such that for each x ∈ W there is rx > 0 so that

B
(
fi(x), sir

)
⊂ fi

(
B(x, r)

)
for all x ∈ W , 0 < r ≤ rx, and i ∈ I∗. Here W is an essential open set if the
closure of W is the whole space M and W ∩ E 6= ∅. Observe that this condition
is automatically satisfied if M = Rd or the mappings of the IFS are bijective.

The following theorem summarizes the main implications shown for a semicon-
formal IFS. It also gives a positive answer to the question posed in [1, Remark 6.2].
Note that by the ball condition and the finite clustering property of a semicon-
formal IFS {fi}i∈I we mean the respective conditions for the semiconformal CMC
{fi(E)}i∈I∗ determined by the invariant set E.
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Theorem 5.9 ([C, Theorem 4.9]). For a properly semiconformal IFS in a complete
doubling metric space, the following are equivalent:

(1) The ball condition.
(2) The finite clustering property.
(3) The open set condition.
(4) The strong open set condition.
(5) Ht(E) > 0 for t = P−1(0).

In [C, Example 4.5], we show that the assumption of proper semiconformality is
essential. Namely, we exhibit a similitude IFS in a complete doubling metric space
satisfying the OSC, but which does not satisfy the SOSC nor the ball condition,
and P (dimH(E)) > 0. This example apparently gives a counterexample to [1,
Theorem 3.1] as the theorem is lacking the required assumption of bijectivity.

It remains an open question whether or not the strong open set condition and
the ball condition are equivalent for a semiconformal IFS defined in a complete
doubling metric space (without the assumption of proper semiconformality).

In a general complete metric space, the OSC ceases to imply any bounds for
the size of the invariant set. As shown in [18, Example 3.1], the invariant set of
a similitude IFS in a complete metric space might consist of a single point, even
when the OSC is satisfied. The SOSC, however, continues to be relevant. The
following result generalizes [14, Theorem 3.3] from a self-similar case to a more
general setting. See also [A, Proposition 4.9].

Proposition 5.10 ([C, Proposition 4.12]). If a semiconformal IFS {fi}i∈I defined
on a complete metric space satisfies the SOSC, then with respect to the invariant
set E we have dimH(E) = P−1(0) and

dimH

(
fi(E) ∩ fj(E)

)
< dimH(E)

whenever i⊥j.

We end this introduction by giving a natural topological prerequisite for the
validity of the dimension formula dimH(E) = P−1(0). Together with Proposition
5.10, the following result implies that the SOSC, unlike the OSC, well deserves to
be called a separation condition also in the general setting.

Proposition 5.11 ([C, Proposition 4.13]). Assume that E is the invariant set of
a semiconformal IFS {fi}i∈I such that P (dimH(E)) = 0. Then fi(E) ∩ fj(E) is
nowhere dense in E whenever i⊥j.
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89. KÄRKKÄINEN, SALME, Orientation analysis of stochastic fibre systems with an application to
paper research. (53 pp.) 2003

90. HEINONEN, JUHA, Geometric embeddings of metric spaces. (44 pp.) 2003
91. RAJALA, KAI, Mappings of finite distortion: Removable singularities. (23 pp.) 2003
92. FUTURE TRENDS IN GEOMETRIC FUNCTION THEORY. RNC WORKSHOP
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