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JYVÄSKYLÄ
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Kevin Wildrick, Thomas Zürcher, Anni Toivola and the Chinese group, Guo Zhang, Renjin
Jiang and Changyu Guo, for their kind help. I also would like to thank Tuula Bl̊afield,
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Introduction

1. Sobolev extension and imbedding

In this introduction, we always let n ≥ 2 unless we specify it, and Ω ⊂ Rn be a domain,
namely, a connected open subset. Let X(Ω) and Y (Ω) be function spaces defined on Ω.
Then Ω is called an X-extension domain if X(Ω) = X(Rn)|Ω with equivalent norms, where
X(Rn)|Ω ≡ {u|Ω : u ∈ X(Rn)} and for all v ∈ X(Rn)|Ω, ‖v‖X(Rn)|Ω ≡ inf ‖u‖X(Rn) with
the infimum taken over all u ∈ X(Rn) such that u|Ω = v. Also Ω is said to support
an imbedding from X(Ω) to Y (Ω) if X(Ω) is a subset of Y (Ω) and for all u ∈ X(Ω),
‖u‖Y (Ω) ≤ C‖u‖X(Ω) with a constant C independent of u. For several other geometric
notions of domains appearing below, such as John domain, uniform domain and so on, see
Appendix.

For p ∈ [1, ∞], we always denote the homogeneous first order Sobolev space by Ẇ 1, p(Ω).
Namely, Ẇ 1, p(Ω) is the set of all measurable functions u satisfying ∇u ∈ Lp(Ω), where
∇u is the distributional gradient of u. Actually, it easily follows that u ∈ Lp

loc (Ω) for
each u ∈ Ẇ 1, p(Ω). For u ∈ Ẇ 1, p(Ω), its norm is defined by ‖u‖Ẇ 1, p(Ω) ≡ ‖∇u‖Lp(Ω).

Define the inhomogeneous Sobolev space W 1, p(Ω) ≡ Ẇ 1, p(Ω) ∩ Lp(Ω) with ‖u‖W 1, p(Ω) ≡
‖u‖Lp(Ω) + ‖u‖Ẇ 1, p(Ω) for every u ∈ W 1, p(Ω).

It is well-known that the possibility of W 1, p-extension for a domain depends not only
on its geometric structure but also on the exponent p. Indeed, a domain having smooth
boundary is a W 1, p-extension domain for all p ∈ [1, ∞], while the planar domain B(0, 1)\
{(x, 0) : x ≥ 0} is not a W 1, p-extension domain for any p ∈ [1, ∞]. Moreover, Maz’ya
[19] constructed a planar Jordan domain Ω such that it is a W 1, p-extension domain for
all p ∈ [1, 2) but not a W 1, p-extension domain for any p ∈ [2, ∞], while R2 \ Ω is a
W 1, p-extension domain exactly when p ∈ (2, ∞]. Motivated by this, for each q ∈ (1, 2),
Romanov [22] constructed a planar domain Gq, whose boundary contains a curve generated
by a certain Cantor set, such that Gq is a W 1, p-extension domain if and only if p ∈ [1, q).
As an extension of this, we [KYZ-1] simplify the construction of [22] and establish the
following conclusion.

Theorem 1. For each q ∈ (1, 2), there exists a Jordan domain Gq ⊂ R2 such that Gq is a
W 1, p-extension domain if and only if p ∈ [1, q), and R2 \Gq is a W 1, s-extension domain
if and only if s ∈ (q/(q − 1), ∞].

A remarkable result regarding Sobolev extension domains was established by Jones [15].
He proved that a uniform domain is always a W 1, p-extension domain for all p ∈ [1, ∞].
Conversely, it was proved by Vodop’janov, Gol’dštěın and Latfullin [32] that a simply
connected planar W 1, 2-extension domain is a uniform domain; see also [15, 9]. Moreover,
let Ω be a W 1, n-extension domain. Then Gehring and Martio [7] proved that Ω has the
locally linear connectivity (for short, LLC) property, and if Ω is also quasiconformally
equivalent to a uniform domain, then it is a uniform domain; see also [16, 8, 9, 10, 32].

On the other hand, for α ∈ (0, 1], let loc Lipα(Ω) denote the (semi) local Lipschitz
space of order α on Ω as in [6]. Notice that W 1,∞(Ω) = loc Lip1(Ω); see [6, 18]. Then
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Gehring and Martio [6] proved that for α ∈ (0, 1], Ω is a weak α-cigar domain if and only
if it is a loc Lipα-extension domain. In particular, Ω is a W 1,∞-extension domain if and
only if it is a weak 1-cigar domain (namely, it is quasiconvex).

When p ∈ (n, ∞), some geometric criteria have been established for a domain to
support a W 1, p-extension or an imbedding from W 1, p(Ω) to C1−n/p(Ω) (for short, W 1, p-
imbedding). Indeed, a W 1, p-extension domain Ω always supports a W 1, p-imbedding; con-
versely, as proved by Koskela [17], a W 1, p-imbedding domain is a W 1, q-extension domain
for all q ∈ (p, ∞). Moreover, let α ∈ (0, 1), p = (n− α)/(1− α) and Ω be a weak α-cigar
domain. Then it was proved by Buckley and Koskela [3] that Ω supports a Ẇ 1, q-imbedding
for all q ∈ [p, ∞); and by Koskela [17] that Ω supports a W 1, q-extension for all q ∈ (p, ∞),
which was further improved by Shvartsman [28] to all q ∈ (p∗, ∞) with some p∗ ∈ (n, p).
Conversely, with the additional assumption that Ω has the slice property, Buckley and
Koskela [3] proved that if Ω supports a Ẇ 1, p-imbedding, then it is a weak α-cigar domain.
In [4], the slice property was further reduced to some weak slice properties.

When p ∈ [1, n], some geometric criteria were also established in [1, 2, 3] for a bounded
domain to support a (pn/(n − p), p)-Sobolev-Poincaré imbedding for p ∈ [1, n) or a
Trudinger imbedding for p = n. More precisely, Bojarski [1] proved that a John do-
main always supports a (pn/(n − p), p)-Sobolev-Poincaré imbedding for all p ∈ [1, n).
Smith and Stegenga [29] proved that a weak carrot domain always supports the Trudinger
imbedding. Conversely, let Ω be a bounded simply connected planar domain, or a bounded
domain satisfying an additional separation property when p ∈ [1, n) and a slice property
when p = n. Then Buckley and Koskela [2, 3] proved that if Ω supports a (pn/(n− p), p)-
Sobolev-Poincaré imbedding for some/all p ∈ [1, n), then it is a John domain, and if Ω
supports the Trudinger imbedding, then it is a weak carrot domain.

2. HajÃlasz and HajÃlasz-Sobolev spaces

It was noticed by HajÃlasz [11] that the simple pointwise inequality

|u(x)− u(y)| ≤ |x− y|s[g(x) + g(y)] (1)

can be used to characterize Sobolev functions u when s = 1. More generally, for s ∈ (0, 1]
and measurable function u, denote by Ds(u) the collection of all nonnegative measurable
functions g such that (1) holds for all x, y ∈ Ω \ E, where E ⊂ Ω with |E| = 0. We also
denote by Ds

ball (u) the collection of all nonnegative measurable functions g such that (1)
holds for all x, y ∈ Ω \ E (with |E| = 0) satisfying |x− y| < 1

2 dist (x, ∂Ω).

Definition 1. Let s ∈ (0, 1] and p ∈ (0, ∞].
(i) The homogeneous HajÃlasz space Ṁ s, p(Ω) is the space of all measurable functions u

such that
‖u‖Ṁs, p(Ω) ≡ inf

g∈Ds(u)
‖g‖Lp(Ω) < ∞,

(ii) The Sobolev-type HajÃlasz space Ṁ s, p
ball (Ω) is the space of all measurable functions u

such that
‖u‖Ṁs, p

ball (Ω) ≡ inf
g∈Ds

ball (u)
‖g‖Lp(Ω) < ∞.
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Moreover, we set M s, p(Ω) ≡ Lp(Ω)∩Ṁ s, p(Ω) with ‖u‖Ms, p(Ω) ≡ ‖u‖Ṁs, p(Ω) +‖u‖Lp(Ω)

for all u ∈ M s, p(Ω), and similarly define M s, p
ball (Ω).

HajÃlasz(-Sobolev) spaces are closely related to Sobolev spaces. Indeed, as proved by
HajÃlasz [11] and Koskela and Saksman [18], Ẇ 1, p(Ω) = Ṁ1, p

ball (Ω) for p ∈ (1, ∞]. Moreover,
for all p ∈ (1, ∞), it was proved by HajÃlasz, Koskela and Tuominen [13] that Ω is a W 1, p-
extension domain if and only if it is regular and W 1, p(Ω) = M1, p(Ω), while Ω is regular if
and only if Ω is an M1, p-extension domain. With the aid of a metric measure space version
of this (see [13]), one further concludes that for s ∈ (0, 1] and p ∈ (1, ∞), Ω is regular if
and only if Ω is an M s, p-extension domain; and Ω is an M s, p

ball -extension domain if and only
if Ω is regular and M s, p

ball (Ω) = M s, p(Ω); see [Z-2, Lemma 4.1]. So, for a regular domain Ω,
the possibility of W 1, p-extension or M s, p

ball -extension is equivalent to W 1, p(Ω) = M1, p(Ω)
or M s, p

ball (Ω) = M s, p(Ω), respectively.
On the other hand, HajÃlasz-Sobolev spaces are closely related to Hardy-Sobolev spaces

and Triebel-Lizorkin spaces. More precisely, when s = 1, it was proved by Koskela and
Saksman [18] that Ḣ1, p(Ω) = Ṁ1, p

ball (Ω) for p ∈ (n/(n + 1), 1], where Ḣ1, p(Ω) denotes
the Hardy-Sobolev space as in [21]. Recall that Ẇ 1, p(Rn) = Ḟ 1

p, 2(Rn) for p ∈ (1, ∞] and
Ḣ1, p(Rn) = Ḟ 1

p, 2(Rn) for p ∈ (0, 1]; see [30]. Then as a corollary of this and [11, 18], we
have that Ṁ1, p

ball (R
n) = Ḟ 1

p, 2(Rn) for all p ∈ (n/(n + 1), ∞]. Here and in what follows,
Ḟ s

p, q(Rn) with s ∈ R and p, q ∈ (0, ∞] denotes the homogeneous Triebel-Lizorkin spaces
as in [30]. Moreover, when s ∈ (0, 1), as observed by Yang [33], Ṁ s, p

ball (R
n) = Ḟ s

p,∞(Rn) for
p ∈ (1, ∞]; we also recall that DeVore and Sharpley [5] characterized Ḟ s

p,∞(Rn) via a kind
of fractional sharp maximal function. In [KYZ-2], with the aid of grand Littlewood-Paley
functions, we further extend the equivalence in [33] to p ∈ (n/(n + s), ∞] as follows.

Theorem 2. If s ∈ (0, 1) and p ∈ (n/(n + s), ∞], then Ṁ s, p
ball (R

n) = Ḟ s
p,∞(Rn).

Motivated by Theorem 2, it is natural to inquire if Ḟ s
p, q(Rn) with full scales can be

characterized in a pointwise manner. To some extent, this is the case as showed in [KYZ-3];
see Section 5 below for an introduction.

Moreover, observe that by Theorem 2, Ω is an Ṁ s, p
ball -extension domain if and only

if Ṁ s, p
ball (Ω) = Ḟ s

p,∞(Rn)|Ω. This further motivated us to study the geometric structure
of Ṁ s, p

ball -extension domains in [Z-1, Z-2]; see Sections 3 and 4 below for an introduc-
tion. Recall that it is an interesting subject to establish some intrinsic characterizations
of Ḟ s

p, q(Rn)|Ω, the restriction of the Triebel-Lizorkin space Ḟ s
p, q(Rn) on the domain Ω; see

[23, 24, 30, 31] for more discussions. In particular, some intrinsic characterizations of the
restriction of Triebel-Lizorkin spaces to Lipschitz domains were established by Rychkov
[23, 24] and Triebel [31], to uniform domains by Seeger [25], and to regular sets of Rn by
Shvartsman [26].

3. HajÃlasz-Sobolev extension and imbedding

In [Z-2], we establish the following geometric criteria for a bounded domain to sup-
port an Ṁ s, p

ball -extension with s ∈ (0, 1] and p ∈ [n/s, ∞] or support an imbedding from
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Ṁ s, p
ball (Ω) to Ṁ

s−n/p,∞
ball (Ω) with s ∈ (0, 1] and p ∈ (n/s, ∞] (for short, Ṁ s, p

ball -imbedding).
These generalize the corresponding results of [15, 6, 3, 28] as mentioned in Section 1.

Theorem 3. If Ω ⊂ Rn is a bounded Ṁ
s, n/s
ball -extension domain for some s ∈ (0, 1], then

Ω has the LLC property.

Theorem 4. (i) Let α ∈ (0, 1) and Ω ⊂ Rn be a bounded weak α-cigar domain. Then
for all s ∈ (α, 1] and p ∈ [(n − α)/(s − α), ∞), Ω is an Ṁ s, p

ball -extension domain and,
especially, an Ṁ s, p

ball -imbedding domain.
(ii) Let s ∈ (0, 1], p ∈ (n/s, ∞) and α ∈ [(ps− n)/(p− 1), 1]. If Ω ⊂ Rn is a bounded

Ṁ s, p
ball -extension or Ṁ s, p

ball -imbedding domain, that has the slice property, then Ω is a weak
α-cigar domain.

Also, in the case p = ∞, observe that for every α ∈ (0, 1], Ṁα,∞(Ω) and Ṁα,∞
ball (Ω)

coincide with Lipα(Ω) and loc Lipα(Ω) as in [6], respectively. So, as proved by Gehring
and Martio [6], a bounded domain Ω is a weak α-cigar domain with α ∈ (0, 1] if and only
if it is an Ṁα,∞-extension domain, and if and only if it is an Ṁα,∞

ball -imbedding domain.
Moreover, let Ω be a bounded simply connected planar domain, or a bounded domain

that is quasiconformally equivalent to a uniform domain. Then it always has the slice
property (see [3]), and if it also satisfies the LLC property, then it is a uniform domain (see
[16]). So, as a corollary to Theorem 3, Theorem 4 and [6], we have the following conclusion,
which gives an intrinsic characterization of the restriction of the Triebel-Lizorkin space
Ḟ s

p,∞(Rn)|Ω for a class of domains Ω.

Corollary 1. Let Ω ⊂ Rn be a bounded simply connected planar domain, or a bounded
domain that is quasiconformally equivalent to a uniform domain.
(I) For every α ∈ (0, 1), the following are equivalent:

(i) Ω is a weak α-cigar domain;
(ii) Ḟ s

p,∞(Rn)|Ω = Ṁ s, p
ball (Ω) for some/all s ∈ [α, 1) and p = (n− α)/(s− α);

(iii) Ω is an Ṁ s, p
ball -extension domain for some/all s ∈ [α, 1] and p = (n− α)/(s− α);

(iv) Ω is an Ṁ s, p
ball -imbedding domain for some/all s ∈ [α, 1] and p = (n− α)/(s− α).

(II) The following are equivalent:
(i) Ω is a uniform domain;
(ii) Ω is an Ṁ

s, n/s
ball -extension domain for some/all s ∈ (0, 1];

(iii) Ḟ s
n/s,∞(Rn)|Ω = Ṁ

s, n/s
ball (Ω) for some/all s ∈ (0, 1).

4. Optimal global integrability of HajÃlasz-Sobolev functions

In [Z-1], for all s ∈ (0, 1], we establish some geometric criteria for a bounded domain
to support a (pn/(n−ps), p)s-HajÃlasz-Sobolev-Poincaré (for short, (pn/(n−ps), p)s-HSP)
imbedding when p ∈ (n/(n+s), n/s) or an s-HajÃlasz-Trudinger (for short, s-HT) imbedding
when p = n/s. These extend the corresponding results of [1, 2, 3, 29] as mentioned in
Section 1.
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We first recall that for p ∈ (n/(n + s), n/s), a bounded domain Ω is said to support
a (pn/(n − ps), p)s-HSP imbedding if there exists a constant C > 0 such that for all
u ∈ Ṁ s, p

ball (Ω),
‖u− uΩ‖Lpn/(n−ps)(Ω) ≤ C‖u‖Ṁs, p

ball (Ω),

where uΩ ≡ 1
|Ω|

∫
Ω u(z) dz. Similarly, Ω is said to support an s-HT imbedding if there exists

a constant C > 0 such that for all u ∈ Ṁ
s, n/s
ball (Ω),

‖u− uΩ‖φs(L)(Ω) ≤ C‖u‖
Ṁ

s, n/s
ball (Ω)

,

where φs(t) ≡ exp(tn/(n−s))− 1 and

‖u‖φs(L)(Ω) ≡ inf
{

t > 0,

∫

Ω
φs

( |u(x)|
t

)
dx ≤ 1

}
.

It should be pointed out that since Ṁ1, p
ball (Ω) = Ẇ 1, p(Ω) for all p ∈ (1, ∞), (pn/(n −

ps), p)1-HSP imbedding with p ∈ (1, n) coincides with the classical (pn/(n−p), p)-Sobolev-
Poincaré imbedding as in [3, (1.1)], and 1-HT imbedding coincides with the classical
Trudinger imbedding as in [3, (1.2)]. Moreover, an Ṁ s, p

ball -extension domain always sup-
ports a (pn/(n−ps), p)s-HSP imbedding when p ∈ (n/(n+s), n/s) and an s-HT imbedding
when p = n/s.

Theorem 5. (i) A John domain of Rn always supports a (pn/(n−ps), p)s-HSP imbedding
for all s ∈ (0, 1] and p ∈ (n/(n + s), n/s).

(ii) Assume that Ω ⊂ Rn is a bounded domain and satisfies the separation property. If
Ω supports a (pn/(n−ps), p)s-HSP imbedding for some s ∈ (0, 1] and p ∈ (n/(n+s), n/s),
then Ω is a John domain.

Theorem 6. (i) A weak carrot domain of Rn always supports an s-HT imbedding for all
s ∈ (0, 1].

(ii) Assume that Ω ⊂ Rn is a bounded domain and satisfies the slice property. If Ω
supports an s-HT imbedding for some s ∈ (0, 1], then Ω is a weak carrot domain.

Notice that, as proved in [2, 3], every simply connected planar domain or every domain
that is quasiconformally equivalent to a uniform domain satisfies the slice property and
the separation property. So, as a corollary to Theorems 5 and 6, we have the following
conclusion.

Corollary 2. Let Ω ⊂ Rn be a bounded simply connected planar domain or a bounded
domain that is quasiconformally equivalent to a uniform domain. Then

(i) Ω is a John domain if and only if it supports a (pn/(n−ps), p)s-HSP imbedding for
some/all s ∈ (0, 1] and p ∈ (n/(n + s), n/s);

(ii) Ω is a weak carrot domain if and only if it supports an s-HT imbedding for some/all
s ∈ (0, 1].
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5. HajÃlasz-Besov and HajÃlasz-Triebel-Lizorkin spaces

In [KYZ-3], we characterize, in terms of pointwise inequalities, the classical Besov spaces
Ḃs

p, q(Rn) and Triebel-Lizorkin space Ḟ s
p, q(Rn) for all s ∈ (0, 1) and p, q ∈ (n/(n + s), ∞].

More precisely, by developing the notion of the gradient of HajÃlasz [11], we introduce the
following fractional HajÃlasz gradient.

Definition 2. Let s ∈ (0, ∞), n ∈ N and u be a measurable function on Rn. A sequence
of nonnegative measurable functions, ~g ≡ {gk}k∈Z, is called a fractional s-HajÃlasz gradient
of u if there exists E ⊂ Rn with |E| = 0 such that for all k ∈ Z and x, y ∈ Rn \E satisfying
2−k−1 ≤ |x− y| < 2−k,

|u(x)− u(y)| ≤ |x− y|s[gk(x) + gk(y)].

Denote by Ds(u) the collection of all fractional s-HajÃlasz gradients of u.

Relying on this concept we now introduce counterparts of Besov and Triebel-Lizorkin
spaces. For simplicity, we only deal here with the case p ∈ (0, ∞); the remaining case p = ∞
is given in [KYZ-3]. In what follows, for p, q ∈ (0, ∞], we always write ‖{gj}j∈Z‖`q ≡
{∑j∈Z |gj |q}1/q when q < ∞ and ‖{gj}j∈Z‖`∞ ≡ supj∈Z |gj |,

‖{gj}j∈Z‖Lp(Rn, `q) ≡ ‖‖{gj}j∈Z‖`q‖Lp(Rn)

and
‖{gj}j∈Z‖`q(Lp(Rn)) ≡ ‖{‖gj‖Lp(Rn)}j∈Z‖`q .

Definition 3. Let n ∈ N, s, p ∈ (0,∞) and q ∈ (0, ∞].
(i) The homogeneous HajÃlasz-Triebel-Lizorkin space Ṁ s

p, q(Rn) is the space of all mea-
surable functions u such that

‖u‖Ṁs
p, q(Rn) ≡ inf

~g∈Ds(u)
‖~g‖Lp(Rn, `q) < ∞.

(ii) The homogeneous HajÃlasz-Besov space Ṅ s
p, q(Rn) is the space of all measurable func-

tions u such that
‖u‖Ṅs

p, q(Rn) ≡ inf
~g∈Ds(u)

‖~g‖`q(Lp(Rn)) < ∞.

Then we have the following results from [KYZ-3].

Theorem 7. Let n ∈ N.
(i) If s ∈ (0, 1), p ∈ (n/(n+s), ∞) and q ∈ (n/(n+s), ∞], then Ṁ s

p, q(Rn) = Ḟ s
p, q(Rn).

(ii) If s ∈ (0, 1), p ∈ (n/(n + s), ∞) and q ∈ (0, ∞], then Ṅ s
p, q(Rn) = Ḃs

p, q(Rn).

The proof of Theorem 7 is based on a characterization of the Triebel-Lizorkin and Besov
spaces in terms of grand Littlewood-Paley functions [KYZ-2, KYZ-3]. In [KYZ-3], we also
give a metric measure space generalization of Theorem 7 and establish the quasiconformal
invariance of Ṁ s

n/s, q(Rn) for all s ∈ (0, 1), q ∈ (0, ∞] and n ≥ 2.
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Appendix

Let n ≥ 2 and Ω ⊂ Rn be a domain. See, for example, [15, 6, 1, 16, 2, 3], for the
following notions.

(I) Ω is a John domain with respect to x0 ∈ Ω and C > 0 if it is bounded and for every
x ∈ Ω, there exists a rectifiable curve γ : [0, T ] → Ω parametrized by arclength such that
γ(0) = x, γ(T ) = x0 and d(γ(t), Ω{) ≥ Ct.

(II) Ω is a weak carrot domain with respect to x0 ∈ Ω and C ≥ 1 if for all x ∈ Ω, there
exists a rectifiable curve γ ⊂ Ω joining x and x0 such that

∫

γ

1
d(z, Ω{)

≤ C log
(

C

d(x, Ω{)

)
.

(III) Ω is a weak α-cigar domain with α ∈ (0, 1] if there exists a positive constant C
such that for every pair of points x, y ∈ Ω, there exists a rectifiable curve γ ⊂ Ω joining x
and y, and satisfying ∫

γ
[d(z, Ω{)]α−1 |dz| ≤ C|x− y|α.

(IV) Ω is a uniform domain if there exists a positive constant C such that for all
x, y ∈ Ω, there exists a rectifiable curve γ : [0, T ] → Ω, parameterized by arclength, with
γ(0) = x and γ(T ) = y, and satisfying that T ≤ C|x− y| and

⋃

t∈[0, T ]

B

(
γ(t),

1
C

min{t, T − t}
)
⊂ Ω.

(V) Ω is linearly locally connected (for short, LLC) if there exists a constant b ∈ (0, 1]
such that for all z ∈ Rn and r > 0,
LLC(1) points in Ω ∩B(z, r) can be joined in Ω ∩B(z, r/b);
LLC(2) points in Ω \B(z, r) can be joined in Ω \B(z, br).

(VI) Ω is regular if there exist positive constants θ and C such that for all x ∈ Ω and
r ∈ (0, θ), |B(x, r) ∩ Ω| ≥ C|B(x, r)|.

(VII) Ω has a separation property with respect to x0 ∈ Ω and C > 1 if for every x ∈ Ω,
there exists a curve γ : [0, 1] → Ω with γ(0) = x, γ(1) = x0, and such that for each
t ∈ (0, 1], either γ([0, t]) ⊂ B ≡ B(γ(t), Cd(γ(t), Ω{)) or each y ∈ γ([0, t]) \ B belongs to
a different component of Ω \ ∂B than x0.

(VIII) Ω has a slice property with respect to C > 1 if for every pair of points x, y ∈ Ω,
there exists a rectifiable curve γ : [0, 1] → Ω with γ(0) = x and γ(1) = y, and pairwise
disjoint collection of open subsets {Si}j

i=0, j ≥ 0, of Ω such that
(i) x ∈ S0, y ∈ Sj and x and y are in different components of Ω \ Si for 0 < i < j;
(ii) if F ⊂⊂ Ω is a curve containing both x and y, and 0 < i < j, then diam (Si) ≤

C`(F ∩ Si);
(iii) for 0 ≤ t ≤ 1, B(γ(t), C−1d(γ(t), Ω{)) ⊂ ∪j

i=0Si;
(iv) if 0 ≤ i ≤ j, then diam Si ≤ Cd(z, Ω{) for all z ∈ γi ≡ γ ∩ Si; also, there exists

xi ∈ Si such that x0 = x, xj = y and B(xi, C−1d(xi, Ω{)) ⊂ Si.
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Internat. Math. Res. Notices 18 (1996), 881-901.

[4] S. M. Buckley and A. Stanoyevitch, Weak slice conditions and Hölder imbeddings, J.
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