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INTRODUCTION

The Markov chain Monte Carlo (MCMC) stochastic integration method,
in particular the Metropolis-Hastings algorithm [17, 23], applies very gen-
erally in practical problems. The algorithm involves, however, a very com-
plicated and delicate parameter: the proposal distribution. The choice of
the proposal distribution strongly affects the efficiency of the method, and
therefore determines its practical value. It may be difficult to come up
with a good proposal, especially in high dimensions. Often, the proposal
is a result of several trial runs and hours of manual work.

This work deals with adaptive MCMC algorithms, aiming to learn the
proposal distribution automatically during the simulation. That is, the
proposal distribution is tuned based on the simulated history of the chain.
The goal is to end up with a good proposal ensuring efficient simulation.
There have been a number of previous attempts to make the Metropolis-
Hastings algorithm include some sort of adaptivity [36]. Most of the previ-
ous approaches have suffered from complicated constructions and limited
applicability. This work focuses on a so called non-Markovian adaptation
within MCMC [14], which has attracted increasing popularity in the re-
cent years.

Such non-Markovian algorithms are typically quite easy to formulate
and implement in practice. Their analysis, however, is not as straight-
forward as traditional (non-adaptive) algorithms. There are even exam-
ples of intuitively ‘reasonable’ non-Markovian adaptation schemes that
are invalid in the sense that the computed averages do not converge to
the correct value [29]. There have been substantial theoretical advances
in this field after the seminal work [14], with different types of arguments
[1, 2, 5, 6, 29]. This work focuses on relaxing assumptions on the algo-
rithms used for adaptation, in particular allowing unconstrained, fully
adaptive mechanisms. There is a strong emphasis on finding conditions
to ensure the ergodicity of some adaptive MCMC algorithms that are ver-
ifiable in practical applications.

The rest of the introductory part is organised as follows. Section 1 intro-
duces the MCMC method, and in particular the random walk Metropolis
algorithm, which plays a central role in this work. Section 2 formulates a
fairly general framework for adaptive MCMC and describes two generally
applicable algorithms, that are analysed in detail in the included articles.
Section 3 outlines the previous ergodicity results for adaptive MCMC in
the literature, and summarises the main contributions of this work. Sec-
tion 4 contains some concluding discussion on the main results and on
some future research directions, and Section 5 gives a summary of the in-
cluded articles.



6 INTRODUCTION

1. MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) is a family of methods to construct
a (typically time-homogeneous)Markov chain (Xn)n≥1 evolving in the Eu-

clidean space Rd such that

1

n

n

∑
k=1

f (Xk)
n→∞−−−→

∫

Rd
f (x)π(x)dx almost surely, (1)

where f : Rd → R is a Borel-measurable function of interest and π : Rd →
[0,∞) is a probability density.1

Section 1.1 starts by introducing some basic concepts of Markov chains
and the related notations. Section 1.2 continues with the celebrated Metro-
polis-Hastings algorithm, originating from the seminal 1953 physics article
by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller [23], later gener-
alised by Hastings [17]. The random walk Metropolis algorithm [23] is
discussed in more detail, as it plays the central role in the rest of this work.
Section 1.3 gives some conditions that ensure a strong law of large numbers
(1) holds. Section 1.4 introduces a stronger concept of geometric ergodicity,
that guarantees a certain ‘mixing speed’ for the chain. Geometric ergod-
icity is a key concept in the analysis of the adaptive MCMC algorithms
introduced in Section 2.

1.1. Markov Chains. Let X ⊂ Rd be a Borel set, and denote by B(X) the
Borel subsets of X. The X-valued random variables X1, X2, . . . , Xn form a
Markov chain, if

P (Xn ∈ A | X1, . . . ,Xn−1) = P (Xn ∈ A | Xn−1)

almost surely for all A ∈ B(X) [34, Chapter VIII]. The Markov chains on
X are determined by so called transition kernels [24, 26].

Definition 1.1. A mapping P : X × B(X) → [0, 1] is a transition kernel2,
given that P(x, · ) is a probability measure on X for each x ∈ X and P( · , A)
is measurable for every A ∈ B(X).

In particular, suppose that µ is a probability measure on X, and let
(Pn)n≥2 be transition kernels. There is a unique probability measure P

defined on (X∞,B(X∞)) such that P(X1 ∈ A) = µ(A) for any A ∈ B(X),
and for n ≥ 2

P(X1 ∈ A1, . . . ,Xn ∈ An) =
∫

A1

µ(dx1)
∫

A2

P2(x1, dx2) · · ·
∫

An

Pn(xn−1, dxn)

1TheMCMCmethods also apply in a more general state space setting. The introductory

part of this work is written considering Rd for expository reasons, and because the main

contribution of this work lies in analysing practical algorithms evolving on Rd.
2Also known as transition probability kernel, Markov transition kernel or transition

probability.
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for all A1, . . . , An ∈ B(X) [26]. It holds that

P (Xn ∈ A | X1, . . . ,Xn−1) = P (Xn ∈ A | Xn−1) = Pn(Xn−1, A)

almost surely for all n ≥ 2 and A ∈ B(X). Often, the initial variable is
chosen so that X1 ≡ x1 ∈ X, corresponding to the initial measure µ(A) =1A(x1) where 1A denotes the characteristic function of the set A defined
as 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. The chain is homogeneous if
there is a transition kernel P such that Pn = P for all n ≥ 2.

Let f : X → R be a Borel measurable function and µ any probabil-
ity measure on X. The transition kernel P maps µ to another probabil-
ity measure µP(A) :=

∫

X
µ(dx)P(x, A). If f is integrable with respect

to µ the notation µ( f ) :=
∫

X
µ(dx) f (x) is used. Likewise, if f is in-

tegrable with respect to each P(x, · ), then P maps f to a new function
P f (x) :=

∫

X
P(x, dy) f (y). Moreover, a transition kernel maps any transi-

tion kernel to a transition kernel, so one may define inductively

Pn(x, A) =
∫

X

P(x, dy)Pn−1(y, A)

for n ≥ 2. If the chain is homogeneous one has P (Xm+n ∈ A | Xm) =
Pn(Xm, A) almost surely for any n,m ≥ 1.

Suppose V : X → [1,∞) is a measurable function. The V-total variation
norm for any finite signed measure µ is defined as

‖µ‖V := sup
f :| f |≤V

µ( f )

where the supremum is taken over all measurable f . The special case V ≡
1 induces the total variation norm

‖µ‖ := ‖µ‖1 = sup
A∈B(X)

µ(A) − inf
A∈B(X)

µ(A).

For a function f , the V-norm is defined through

‖ f‖V := sup
x∈X

| f (x)|
V(x)

.

1.2. Metropolis-Hastings Algorithms. Let us consider first the algorith-
mic construction of the Metropolis-Hastings process. Suppose that q :

Rd × Rd → [0,∞) is a proposal density, that is, it is Borel measurable and

defines a probability density q(x, · ) for each x ∈ Rd. Let X1 ≡ x1 where

x1 ∈ Rd is an arbitrary starting point within the support of the target distri-
bution π, that is, π(x1) > 0. For n = 2, 3, . . ., iterate the following steps:

(M1) simulate Yn ∼ q(Xn−1, · ), and
(M2) with probability α(Xn−1,Yn) the proposal is accepted and Xn = Yn;

otherwise the proposal is rejected and Xn = Xn−1.
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The notation Y ∼ q(x, · ) above is read that Y follows, independently, the
distribution with the density q(x, · ). That is, Yn follows, conditional on
Xn−1, the distribution with the density q(Xn−1, · ). The acceptance proba-
bility α is defined as the Metropolis-Hastings ratio

α(x, y) :=







min

{

1,
π(y)

π(x)

q(y, x)

q(x, y)

}

, if π(x)q(x, y) > 0 and

1, otherwise.
(2)

Observe that, given π(x1) > 0, the latter case is never encountered, almost
surely, and P(π(Xn) > 0) = 1 for all n ≥ 1.

Inmathematical terms, the variables (Xn)n≥1 in theMetropolis-Hastings
algorithm form a time-homogeneous Markov chain with initial state x1 ∈
X := supp(π) := {x ∈ Rd : π(x) > 0} and having the following transition
kernel Mq

Mq(x, A) := 1A(x)

(

1−
∫

Rd
α(x, y)q(x, y)dy

)

+
∫

A
α(x, y)q(x, y)dy. (3)

As observed above, P(Xn ∈ X) = 1 for all n ≥ 1, and therefore one can
assume that Xn are X-valued, without loss of generality. The notation π is
used also for the probability measure defined by π(A) :=

∫

A π(x)dx.
This work deals mostlywith symmetrically defined q. In particular, sup-

pose (by slight abuse of notation) that q is a symmetric probability density

on Rd, and let q(x, y) = q(y, x) = q(y− x) for all x and y. This construction
is often referred to as the random walk Metropolis algorithm, as the original
formulation [23] was of this form. In this case, the acceptance probability
reduces to α(x, y) := min{1,π(y)/π(x)} for all π(x) > 0.

1.3. Validity of RandomWalkMetropolis. The analysis on the behaviour
of Metropolis-Hastings algorithms rely on the theory of the general state-
space Markov chains; see, for example the monographs by Nummelin [26]
andMeyn and Tweedie [24]. Due to the special structure of theMetropolis-
Hastings kernel, the density π is automatically invariant under Mq, that is,
πP = π, since by definition

π(x)α(x, y)q(x, y) = π(y)α(y, x)q(y, x)

for all x and y in Rd.
Some additional assumptions are, however, required on the proposal

density q. A homogeneous Markov chain on X with a transition kernel P
is π-irreducible if for any x ∈ X and A ⊂ B(X) with π(A) > 0 there is an
integer n = n(x, A) ≥ 1 such that Pn(x, A) > 0.

For example, consider a randomwalk Metropolis algorithmwith a com-
pactly supported proposal q and let R > 0 be sufficiently large so that

supp(q) is contained in the ball B(0, R) := {x ∈ Rd : |x| ≤ R}. Consider a
target distribution π with a support supp(π) = A ∪ B where A and B are
disjoint. If the distance dist(A, B) := inf{|x − y| : x ∈ A, y ∈ B} > R, the
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algorithm is ‘trapped’ on the set where it is started. For example, if x1 ∈ A,
then P(Xn ∈ A) = 1 for all n ≥ 1. This chain is reducible.

Essentially, excluding the above case, a strong law of large numbers al-
ways holds for the random walk Metropolis algorithm.

Theorem 1.2. Assume that q is a symmetric probability density bounded away
from zero on compact sets. Then, for a function f satisfying π(| f |) < ∞, the
strong law of large numbers (1) holds for the random walk Metropolis chain with
the transition kernel Mq.

Proof. Let us check that Mq is irreducible, with n ≡ 1. Fix x ∈ X and
A ∈ B(X) such that π(A) > 0. Let β > 0 be sufficiently small so that the
set B := {y ∈ A : π(y) ≥ β} ⊂ A has a positive Lebesgue measure. Now,

Mq(x, A) ≥
∫

A
min

{

1,
π(y)

π(x)

}

q(y− x)dy

≥ min

{

1,
β

π(x)

}

∫

B
q(y− x)dy > 0.

Corollary 2 of Tierney [35] implies that the chain is Harris recurrent,
Theorem 17.0.1(i) of Meyn and Tweedie [24] yields the strong law of large
numbers (1). �

Theorem 1.2 serves as an example how minimal assumptions ensure
the ergodicity of the random walk Metropolis sampler. See, for example,
Nummelin [27] for other practically motivated assumptions ensuring the
ergodicity of various Metropolis-Hastings chains.

1.4. Geometric Ergodicity of Random Walk Metropolis. The strong law
of large numbers (1) holds very generally for a random walk Metropolis
algorithm, as exemplified in Theorem 1.2. In practice, one is also interested
on the properties of the sample average In := n−1 ∑

n
k=1 f (Xk), with some

finite n ≥ 1. For example, one could ask whether a central limit theorem
holds, that is,

√
nIn converges in distribution to a Gaussian limit.

A common condition implying the central limit theorem, that can also
be verified in practical situations, is the geometric ergodicity. This section
summarises some necessary and sufficient conditions for the geometric er-
godicity of random walk Metropolis chain. These results play also a cen-
tral role in the analysis of the adaptive MCMC algorithms, as discussed in
Section 3.

Definition 1.3. AMarkov chain with transition kernel P on X is said to be

(i) ergodic, if ‖Pn(x, · ) − π( · )‖ → 0 as n → ∞ for all x ∈ X.
(ii) geometrically ergodic if there is a function V : X → [1,∞) such that

‖Pn(x, · ) − π( · )‖V ≤ RV(x)ρn

for all n ≥ 1, where R < ∞ and ρ ∈ (0, 1) are constants.
(iii) uniformly ergodic if it is geometrically ergodic with V ≡ 1.
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Uniform ergodicity is the strongest form of ergodicity. An ergodic chain
evolving on a finite state space X is always uniformly ergodic. It is easy
to see that a random walk Metropolis chain can be uniformly ergodic only
if the support of π (the space X) is bounded. When the support X is un-
bounded, the chain cannot be uniformly ergodic, but it can be geometri-
cally ergodic.

In recent years, different conditions ensuring the geometric ergodicity of
random walk Metropolis chains has been proposed [18, 22, 31]. In particu-

lar, the geometric ergodicity of the chain in Rd seems to be tightly related
on the decay rate of the tails of the target distribution and the regularity of
the tail contours [18].

Assumption 1.4. The target density π is supported on Rd and is continu-
ously differentiable. The tails of π are super-exponentially decaying and
have regular contours, that is,

lim
|x|→∞

x

|x| · ∇ logπ(x) = −∞ and (4)

lim sup
|x|→∞

x

|x| ·
∇π(x)

|∇π(x)| < 0, (5)

respectively.

Theorem 1.5. Suppose the proposal density q is bounded away from zero in some
neighbourhood of the origin, that is, there exist δq > 0 and ǫq > 0 such that
q(z) ≥ ǫq for all |x| ≤ δq. If the target distribution satisfies Assumption 1.4, then
the random walk Metropolis chain with the transition kernel Mq is geometrically
ergodic.

Proof. Theorem 4.3 of Jarner and Hansen [18]. �

Theorem 1.5 is based on establishing a so called geometric drift of the
function V := [supz π(z)]γπ−γ(x) toward a compact small set D. Pre-
cisely, it is shown that there exist constants λ, δ ∈ (0, 1) and b < ∞, and a
probability measure ν concentrated on D such that

MqV(x) ≤ λV(x) + b1D(x) and

Mq(x, A) ≥ 1D(x)δν(A)

for all x ∈ Rd and all Borel sets A ⊂ Rd. This condition implies that the
chain is geometrically ergodic with the same function V and some con-
stants M < ∞ and ρ ∈ (0, 1) that depend only (and explicitly) on the
constants λ, b and δ [8, 25].

The conditions of Theorem 1.5 are quite close to optimal. Particularly, if
the probability of rejection is not bounded away from one, or if the tails of
π are heavier than exponential, the chain cannot be geometrically ergodic.
More precisely,
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Theorem 1.6. Suppose that Mq is π-irreducible Metropolis kernel on the space
X = supp(π) and that

ess sup
x∈X

Mq(x, {x}) = 1.

Then, Mq is not geometrically ergodic.

Proof. Theorem 5.1 of Roberts and Tweedie [31]. �

Theorem 1.7. Suppose the proposal density is spherically symmetric, q(z) =
q(|z|), satisfying

∫

Rd |z|q(z)dz < ∞. Then, if Mq is geometrically ergodic, there
exists a s > 0 such that

∫

Rd
es|x|π(x)dx < ∞.

Proof. Corollary 3.4 of Jarner and Hansen [18], �

As Theorems 1.6 and 1.7 show, certain Metropolis chains cannot be geo-
metrically ergodic. Recent advances establish bounds

‖Pn(x, · ) − π( · )‖V ≤ r(x, n)

with a rate function r(x, n) decaying at some sub-geometric rate as n → ∞

[11, 19, 20]. The current results have, however, somewhat limited appli-
cability, due to conditions that are either restrictive or hard to verify in
practice.

2. ADAPTIVE MARKOV CHAIN MONTE CARLO ALGORITHMS

As already mentioned in the introduction, ‘adaptivity’ has appeared in
different meanings in the context of MCMC [13, 36]. Following the ter-
minology of Tierney and Mira [36], the ‘adaptive MCMC’ algorithms con-
sidered here are continuous and infinite-horizon. That is, the adaptation
takes place continuously during the simulation, and the whole simulated
history is used for adaptation.

Section 2.1 starts by formulating a general framework for such adaptive
MCMC algorithms, inspired by Robbins-Monro stochastic approximation
[28]. Sections 2.2 and 2.3 introduce the two algorithms, the Adaptive Me-
tropolis (AM) and the Adaptive Scaling Metropolis (ASM), that are anal-
ysed in detail in Sections 3.4 and 3.5, respectively. Section 2.4 outlines some
other proposed algorithms that are closely related to the AM and the ASM
algorithms.

2.1. General Adaptive MCMC Framework. The adaptive MCMC frame-
work introduced here is similar to the Robbins-Monro stochastic approx-
imation proposed by Andrieu and Robert [2]. In what follows, the adap-

tation space S is a subset of RdS for some integer dS ≥ 1, and {Ps}s∈S is a

family of ergodic Markov transition kernels on X := supp(π) ⊂ Rd with
the unique invariant density π.
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To unify notations, let us consider the following new formal definition.
First of all, let d′ ≥ 0 be an integer and define the extended state space X̃ :=

X × Rd′ , with the convention that X̃ = X if d′ = 0. Consider the collection
of transition kernels {P̃s}s∈S on X̃ such that each P̃s is an extension of Ps in
the following sense.

Definition 2.1. The transition kernel P̃ on X × Rd′ is an extension of the
transition kernel P on X, if

P̃((x, z), A× B) = P̃(x, A× B) and (6)

P̃(x, A× R
d′) = P(x, A) (7)

for all x ∈ X, z ∈ Rd′ , s ∈ S, A ∈ B(X) and B ∈ B(Rd′).

Observe that each one of the extended transition kernels P̃s is er-
godic with πs :=

∫

Rd π(x)P̃s(x, · )dx as the unique invariant measure.

Moreover, the marginal of πs is always π, that is, πs(A × Rd′) =
∫

Rd π(x)Ps(x, A)dx = π(A) for all s ∈ S.
Having defined the extended transition kernels, the adaptation is as-

sumed to have the following form, which is slightly more general than the
definitions given in the included articles. The process starts at some fixed
points X1 ≡ x1 ∈ X and S1 ≡ s1 ∈ S, and the variables (Xn,Zn, Sn)n≥2 are
defined recursively through

(Xn+1,Zn+1) ∼ P̃Sn(Xn, · ) and (8)

Sn+1 = Sn + ηn+1H(Sn,Xn+1,Zn+1) (9)

where (ηn)n≥2 is a sequence of constant non-negative step sizes decaying

to zero and H : S × X × Rd′ → RdS is a measurable adaptation function.
In an ideal situation, stochastic approximation algorithms implement-

ing recursion (9) seek s∗, the unique root of the mean field h : S → RdS ,
defined as

h(s) :=
∫

Rd
H(s, x, z)πs(dx× dz).

In the context of adaptive MCMC, however, the mean field h may be com-
plicated and may even have multiple roots. Many practical algorithms can
be formulated in this framework; examples of adaptation functions H and
the corresponding mean field functions h are given below.

Remark 2.2. Observe that the above defined sequence (Xn,Zn, Sn)n≥2

forms, in fact, an inhomogeneousMarkov chain. For this reason, some au-
thors call this type of adaptationMarkovian [29], which is a possible source
of confusion. The term ‘non-Markovian’ employed here refers to the chain
(Xn)n≥1, which is not Markov.

Remark 2.3. There are various results on the convergence of several ‘stochas-
tic approximation’ algorithms, with different assumptions; see for example
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the monographs [10, 21]. For example, if (Xn+1,Zn+1) in (9) were indepen-
dent draws from πs, the parameters Sn+1 would indeed converge to s∗

with some natural assumptions. Unfortunately, these classical results are
mostly inappropriate for adaptive MCMC, as (Xn)n≥2 and (Zn)n≥2 typi-
cally have a complicated dependence on (Sn)n≥1. In this work, the main
concern is that the averages involving (Xn)n≥1 converge. For this, it is
primarily important to establish the stability of Sn, not necessary the con-
vergence. The theoretical aspects of the adaptation are discussed in more
detail in Section 3.

2.2. Adaptive Metropolis. The Adaptive Metropolis (AM) algorithm due
to Haario, Saksman and Tamminen [14] was the first adaptive MCMC al-

gorithm of this kind. Suppose X1 ≡ x1 ∈ X and let C1 ≡ c1 ∈ Rd×d

be positive definite. The variables (Xn)n≥2 are then defined recursively
through

Xn+1 ∼ MqCn
(Xn, · )

whereMqc is theMetropolis kernel (3) with a zero-mean Gaussian proposal

density qc with covariance matrix θ2c + ǫI, where the constant θ > 0 is a
scaling factor and ǫ > 0 is a small constant multiplier of the identity matrix

I ∈ Rd×d. The original algorithm was based on the unbiased covariance

estimate Cn of the history of the chain Xn defined for n ≥ 2 through3

Cn :=
1

n− 1

n

∑
k=1

(Xk − Xn)(Xk − Xn)
T

where Xn stands for the average of X1, . . . ,Xn.

One can check that (Cn)n≥2 and (Xn)n≥2 can be computed recursively
by

Xn+1 =
n

n + 1
Xn +

1

n + 1
Xn+1 and (10)

Cn+1 =
n− 1

n
Cn +

1

n + 1
(Xn+1 − Xn)(Xn+1 − Xn)

T. (11)

This algorithm does not, strictly speaking, fit into the stochastic approxi-
mation framework of Section 2.1, but would require a sequence of adap-
tation functions (Hn)n≥1. In this work, the following slight modification
proposed by Andrieu and Robert [2] is considered.

Define S = Rd × Cd, where Cd ⊂ Rd×d stands for the symmetric and
positive definite matrices, and let Sn := (Mn,Cn) with M1 ≡ x1 and C1 ≡
c1 where c1 ∈ Cd. Let qs = q(m,c) = qc stand for a zero-mean Gaussian

density with the covariance matrix θ2c + ǫI for some ǫ ≥ 0. Define P̃s =

3In the original setting, the initial covariance s1 was employed during the whole burn-in
period. The burn-in is not considered here, as it does not affect the asymptotical behaviour
of the algorithm.
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Ps = Mqs as the Metropolis kernel (3) with the proposal density qs. Then,
set

Mn+1 := Mn + ηn+1(Xn+1 − Mn) and (12)

Cn+1 := Cn + ηn+1

(

(Xn+1 − Mn)(Xn+1 − Mn)
T − Cn

)

. (13)

This corresponds to the stochastic approximation scheme with the adapta-
tion function

HAM(s, x) = HAM

(

(m, c), x
)

:=

[

x−m
(x−m)(x−m)T − c

]

.

If the weights are defined to be ηn := n−1 and the same (Xn)n≥1 are used in

recursions (10)–(13), Mn = Xn for all n ≥ 1, and the value of Cn+1 obtained
from recursion (13) compared with the original (11) differs by an order of
n−2|Cn|.

Suppose that the target density π has finite second moments. One can
compute the mean field

hAM(s) = hAM(m, c) =

[

mπ −m
cπ − c + (mπ −m)(mπ −m)T

]

having a unique root at [mπ , cπ ]T, the mean and covariance of π, respec-
tively. Therefore, the AM algorithm seeks the true covariance cπ of the
target distribution π. Section 3.4 gives conditions ensuring the ergodicity
of the AM algorithm, and implying that Cn indeed converges to cπ .

2.3. Adaptive Scaling Metropolis. It is well-known for practitioners that
the mean acceptance probability of a random walk Metropolis algorithms
should not be too low or too high in general. Indeed, in the case of a spher-
ically symmetric multivariate Gaussian target, Gelman, Gilks and Roberts
observed that in certain sense optimal acceptance probability is approxi-
mately 0.44 in dimension one and declines to 0.234 as the dimension in-
creases [12, 32]. This ‘0.234 rule’ has then been verified to hold also with
some other target distributions [33], but it may not always be optimal [9].

Gilks, Roberts and Sahu [13] proposed over a decade ago an adaptive
MCMC scheme that tries to find a scale admitting certain mean acceptance
probability. Their approach was based on adaptation upon certain regen-
eration times, which may occur rarely and may be difficult to identify in
practice. Andrieu and Robert [2] proposed the same approach using con-
tinuous MCMC adaptation, and different variations have then been pro-
posed by several authors [3, 5, 6, 30].

Let us formulate the adaptive scaling Metropolis (ASM) algorithm con-
sidered here, following Atchadé and Fort [5] and Andrieu and Thoms [3].
Let S1 ≡ s1 ∈ S = R and X1 ≡ x1 ∈ X, and recursively for n = 1, 2, . . .

(S1) simulate Yn+1 = Xn + eSnWn+1 withWn+1 ∼ q,
(S2) with probability αn+1 := α(Xn,Yn+1) the proposal is accepted and

Xn+1 = Yn+1; otherwise Xn+1 = Xn, and
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(S3) set Sn+1 = Sn + ηn+1(αn+1 − α∗).

where q is a symmetric probability density in Rd and the constant α∗ ∈
(0, 1) is the desired mean acceptance probability, for example α∗ = 0.234.
The steps (S1) and (S2) above can be written using the Metropolis kernel
as Xn+1 ∼ PSn(Xn, · ) by defining the proposal densities {qs}s∈R through

qs(z) := e−dsq(e−sz). For example, if q is a zero-mean Gaussian density
with identity covariance, then qs has the covariance e2s I.

This algorithm fits the stochastic approximation framework by extend-
ing the state space to X̃ := X ×R and considering the following extension
of Mqs :

P̃s
(

x, A× B) :=
∫

A
1B

(

α(x, y)
)

α(x, y)qs(x, y)dy

+ 1A(x)
∫

Rd
1B

(

α(x, y)
)(

1− α(x, y)
)

qs(x, y)dy.

That is, Zn = αn(Xn−1,Yn) for all n ≥ 2. In this case, one may write
HASM

(

s, (x, α̃)
)

= α̃ − α∗, and the mean field equals h(s) = A(s) − α∗,
with

A(s) =
∫

R

α̃πs(R
d × dα̃) =

∫

Rd

∫

Rd
α(x, y)qs(x, y)dyπ(x)dx

since one can write πs(Rd × B) =
∫

Rd π(x)
[ ∫

Rd 1B

(

α(x, y)
)

qs(x, y)dy
]

dx
for any B ∈ B(R).

One can show that the mean acceptance rate A(s) → 0 if s → ∞ and
A(s) → 1 if s → −∞. Therefore, for any α∗ ∈ (0, 1), there is a ‘negative
drift’ when Sn is large and ‘positive drift’ when Sn is small, and one can
expect a stable behaviour on (Sn)n≥1. Section 3.5 shows that the ASM algo-
rithm has the correct ergodic properties when α∗ ∈ (0, 1/2) and the target
distribution satisfies certain smoothness and tail decay conditions.

Remark 2.4. There are results that show the convergence of Sn toward s∗

such that h(s∗) = 0, that is, A(s∗) = α∗, in the case of a (modified) ASM
algorithm [6]. The mean field h may not, however, have a unique root,
and it may be difficult in general to check the uniqueness in practice [16,
Section 4.4].

2.4. Some Related Algorithms. The two algorithms described above, the
AM and the ASM, can be naturally combined [3, 5, 6]. Define Sn :=
(Mn,Cn, Tn) where Mn and Cn are the AM mean and covariance as de-
fined as in Section 2.2 and Tn corresponds to the ASM scaling Sn defined
in Section 2.3. That is, define {P̃s}s∈S as in Section 2.3 and the adaptation
function

HAM+ASM

(

(m, c, t), (x, α̃)
)

=





x−m
(x−m)(x−m)T − c

α̃ − α∗



 .
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Then, define the proposal distribution qs = q(m,c,t) as a zero-mean Gauss-

ian with covariance e2tc. The stability and ergodicity results on the ASM
algorithm described in Section 3.5 apply also for the analysis of this algo-
rithm.

Andrieu and Thoms [3] have proposed a ‘Rao-Blackwellised’ AM al-
gorithm. In the general framework of Section 2.1, the definition Sn =
(Mn,Cn), Zn+1 = (Xn,Yn+1) (with a suitable definition of P̃s) and the adap-
tation function

HRBAM

(

(m, c), (x, x−, y)
)

=

[

α(x−, y)y + [1− α(x−, y)]x− −m
α(x−, y)(y−m)(y−m)T + [1− α(x−, y)](x− −m)(x− −m)T − c

]

yields this algorithm. In words, one uses a combination of the proposed
value Yn+1 and the previous state Xn in the update, weighted by the accep-
tance probability, instead of the current state Xn+1. This interesting modi-
fication corresponds to a one step Rao-Blackwellisation, but it is unknown
whether this algorithm has benefits, in general, compared to the original
AM algorithm [3].

3. ERGODICITY OF ADAPTIVE MCMC

This chapter summarises the main contributions of this work. Section
3.1 starts by discussing a so called simultaneous geometric ergodicity con-
dition. It is very commonly usedwhen verifying the ergodicity of adaptive
MCMC in practice. Section 3.2 continues by a short overview of the pre-
vious ergodicity results in the literature, especially regarding the AM and
ASM algorithms.

The first main contribution in the article [A] is a general sequential trun-
cation approach within adaptive MCMC, described in Section 3.3. This
sequential truncation approach is employed in all the included articles
[A]–[C] to establish ergodicity results for the unconstrained AM and ASM
algorithms. These results are summarised in Sections 3.4 and 3.5.

3.1. Simultaneous Geometric Ergodicity. Most of the current practically
verifiable ergodicity results on adaptive MCMC rely on ‘uniform’ proper-
ties of the Metropolis-Hastings kernels Ps with respect to the adaptation
parameter s ∈ S [1, 5, 6, 29]. In the case of the AM and ASM algorithms,
one commonly assumes the following simultaneous geometric drift and
minorisation conditions.

Assumption 3.1. There exist a set D ∈ B(Rd), a function V : Rd → [1,∞),
constants δ,λ ∈ (0, 1) and b < ∞, and a probability measure ν concen-
trated on D such that

PsV(x) ≤ λV(x) + 1D(x)b and (14)

Ps(x, A) ≥ 1D(x)δν(A) (15)
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for all x ∈ Rd, s ∈ S and A ∈ B(Rd).

As already mentioned in Section 1.4, under Assumption 3.1, there are
constants ρ ∈ (0, 1) and R < ∞ depending only on δ, λ and b such that

‖Pn
s (x, · ) − π( · )‖V ≤ RV(x)ρn

holds for all x ∈ Rd and s ∈ S.
Assumption 3.1 can be shown to hold under practically verifiable condi-

tions. For example, Andrieu and Moulines [1] show, modifying the proof
of Jarner and Hansen [18] the following.

Proposition 3.2. Suppose the target distribution π satisfies Assumption 1.4 and
that the proposal distributions qs are zero-mean Gaussian with covariance s, and

let 0 < a ≤ b < ∞ be constants. Let Ka,b ⊂ Rd×d stand for the positive definite
matrices s with all eigenvalues λ1(s), . . . ,λd(s) ∈ (a, b). Then, Assumption 3.1
holds for the Metropolis kernels {Mqs}s∈Ka,b

.

In fact, the result of Andrieu andMoulines is more general allowing one
to employ also non-Gaussian proposal distributions. As discussed in Sec-
tion 1.4, the conditions on the target distribution are quite close to optimal.

It may be also worthmentioning that the bound [a, b] on the eigenvalues
of s in Proposition 3.2 is necessary.

Proposition 3.3. Let qs and Ka,b be defined as in Proposition 3.2, and assume
that a = 0 or b = ∞. Then, Assumption 3.1 cannot hold for {Mqs}s∈Ka,b

.

Proof. Denote Ps = MqsI and suppose Assumption 3.1 holds for all s ∈ S =
R+, the positive real numbers. The set D must have a positive π-measure,

since (14) implies that for all x ∈ Rd there is a positive integer n ≥ 1 such
that Pn

s (x,D) > 0 [e.g. 24, Theorem 11.3.4].
Suppose for a moment that D is bounded and let R < ∞ stand for the

diameter of D. Observe next that the probability measure ν satisfying (15)
must be absolutely continuous with respect to the Lebesgue measure. For
if not, then there is a Lebesgue null set A ∈ B(X) such that ν(A) > 0.
But then, for every x ∈ D, it must hold Ps(x, A) = Ps(x, {x} ∩ A) since
the remainder of Ps is absolutely continuous. Therefore, Ps(x, {x} ∩ A) ≥
δν(A) > 0, implying that A = D, which is a contradiction. Therefore, for
all x ∈ D there is a r > 0 such that

ν(D) − 1

2
≤ ν

(

D \ B(x, r)
)

≤ δ−1Ps
(

x,D \ B(x, r)
)

≤ δ−1
∫

r≤|y|≤R
qsI(y)dy → 0

if s → ∞ or s → 0. Therefore, ν(D) ≤ 1/2, which is a contradiction.
Finally, it is easy to see that an unbounded D cannot satisfy (15) for any

s > 0 and δ > 0. �
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3.2. Overview of Previous Ergodicity Results. The seminal article [14] es-
tablished the correct ergodicity properties of the AM algorithm, when the
target density π is bounded and compactly supported. A strong law of
large numbers was shown to hold for bounded functions (on the support
of π). The assumptions on the target distribution implied the uniform er-
godicity of the Metropolis samplers, and also implied that the covariance
estimator was naturally bounded. The proof was based on deterministic
estimates and so called mixingales; see, for example, [15, Theorem 2.21].

Atchadé and Rosenthal [6] extended the original mixingale proof [14]
and applied it to show a strong law of large numbers for (a version of)
the ASM algorithm, assuming simultaneous geometric ergodicity such as
described above in Section 3.1. Their result yields the ergodicity of a trun-
cated version of the ASM algorithm. For example, suppose−∞ < a ≤ b <

∞ are constants and replace (9) with

Sn+1 = max
{

a, min
{

b, Sn + ηn+1HASM(Sn,Xn+1,Zn+1)
}}

. (16)

It is obvious that the constants a and b above need to be chosen with care,
so that Sn can get such values that admit good mean acceptance rates.

Andrieu, Moulines and Priouret [1, 4] considered a Robbins-Monro sto-
chastic approximation adaptation similar the one formulated in Section
2.1. They applied a martingale approximation based on the Poisson equa-
tion and showed that, under certain conditions, the stochastic approxima-
tion process converges. Moreover, in the case of convergence, they showed
that a central limit theorem holds. They applied the technique to prove the
convergence and the correct ergodicity of the AM algorithm in the sequen-
tial reprojection framework. For example, suppose (an)n≥1 and (bn)n≥1 are
positive sequences decaying to zero and increasing to infinity, respectively.
Start to run the AM algorithm of Section 2.2 with the proposal qc having a
covariance θ2c. Continue until the adaptation ‘skips outside’ [a1, b1]. Then,
essentially restart the algorithm and change the truncation set to [a2, b2].
More precisely, introduce two counters initialised to κ = ξ = 1. Instead of
(8) and (9), compute

X̃n+1 ∼ PSn(Xn, · ) and (17)

(M̃n+1, C̃n+1) = S̃n+1 = Sn + ηκ+ξHAM(Sn,Xn+1). (18)

Then, if |M̃n+1| ≤ bκ and all eigenvalues λ1(C̃n+1), . . . ,λd(C̃n+1) ∈ [aκ , bκ ],
set Sn+1 = S̃n+1, Xn+1 = X̃n+1 and increment the counter ξ by one. Oth-
erwise, reinitialise Sn+1 = S1, Xn+1 = X1 and ξ = 1, and increment the
truncation set counter κ by one.

The reprojection approach has some benefits compared to the trunca-
tion to a fixed set such as (16). It is only required that within each trunca-
tion set, which are determined above by an and bn, the Metropolis kernels
satisfy certain uniform assumptions, including the geometric ergodicity
discussed in Section 3.1. Moreover, the AM covariance Cn may ultimately
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have any positive definite value; indeed, with certain assumptions, Cn con-
verges to the true covariance of π [1, 4]. On the other hand, each time the
adaptation ‘escapes’ from the current truncation set, the adaptation is es-
sentially reinitialised to its starting values. This procedure can make the
adaptation quite inefficient, if the reprojections occur frequently. There-
fore, the reprojection sets (the sequences (an)n≥1 and (bn)n≥1 above) need
to be chosen with care.

Roberts and Rosenthal [29] introduced another technique for establish-
ing the ergodicity of adaptive MCMC algorithms. Their framework, based
on coupling constructions, introduces quite weak assumptions. The tech-
nique, using mostly elementary arguments, also allows quite simple and
elegant proofs. As an example, they applied their technique and showed
the correct ergodicity and a weak law of large numbers for the AM algo-
rithm with the same assumptions as in the original work [14]. The general
assumptions, while weak, are quite implicit and therefore often difficult
to verify in practice. In the recent preprint [7], Bai, Roberts and Rosenthal
establish an ergodicity result on certain type of unconstrained AM algo-
rithm, which will be discussed in Section 3.4.

The recent advances in the theoretical side of adaptive MCMC include
the work of Atchadé and Fort [5], who consider some sub-geometric er-
godicity assumptions, which are weaker than the ones discussed in Sec-
tion 3.1. They use a different martingale approximation technique than
Andrieu and Moulines [1], and apply also coupling arguments. The au-
thors apply their result on an algorithm combining the AM and the ASM
algorithms as described in Section 2.4, but involving truncations both for
the scaling parameters as in (16) and for the AM mean and covariance.
As already mentioned in Section 1.4, the current techniques allow the sub-
geometric ergodicity to be verified in practice only in rare cases.

3.3. Sequential Truncation. The article [A] formulates a so called sequen-
tial truncation approach within adaptive MCMC. It is similar to the repro-
jection method of Andrieu and Moulines [1], but does not involve reini-
tialisations. It is shown that under certain conditions, a strong law of
large numbers and a central limit theorem hold for the sequential trun-
cation adaptation. These general results have interest in their own right.
In this work, they have a central role in analysing the unconstrained AM
and ASM algorithms, as discussed in Sections 3.4 and 3.5.

Let K1 ⊂ K2 ⊂ · · · ⊂ Kn ∈ B(S) be an increasing sequence of measur-
able subsets of the adaptation parameter space S, assume S̃1 ≡ s1 ∈ K1

and let X̃1 ≡ x1 ∈ X. The sequentially truncated process (X̃n, Z̃n, S̃n)n≥2 is
defined recursively through

(X̃n+1, Z̃n+1) ∼ P̃S̃n(X̃n, · ) and (19)

S̃n+1 = σn+1

(

S̃n, ηn+1H(S̃n, X̃n+1, Z̃n+1)
)

(20)
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where σn : S × RdS → S are defined as

σn(s, s
′) =

{

s + s′, if s + s′ ∈ Kn and

s, otherwise.

The truncation functions σn only ensure that S̃n ∈ Kn for all n ≥ 1. Other-
wise, the above defined process (X̃n, Z̃n, S̃n)n≥2 coincides with the process
(Xn,Zn, Sn)n≥2 following the general framework of Section 2.1. In fact, the
results in Sections 3.4 and 3.5 below are based on independent estimates
that guarantee that the unconstrained and the sequentially truncated adap-
tive MCMC processes coincide with a large probability.

Suppose that the adaptation algorithm has the above described form,
and the following assumptions are satisfied for some constants c ≥ 1 and
ǫ ≥ 0.

(A1) For each n ≥ 1, the simultaneous geometric drift and minorisation
conditions hold. In particular, there is a drift function V : X → [1,∞)
such that for all n ≥ 1 Assumption 3.1 holds for s ∈ Kn, with the
minorising set Dn and the minorisation measure νn. Furthermore,
the drift constants λn ∈ (0, 1) and bn ∈ (0,∞) are increasing, and the
minorisation constants δn ∈ (0, 1] are decreasing with respect to n,
and they are polynomially bounded so that

(1− λn)
−1 ∨ δ−1

n ∨ bn ≤ cnǫ.

(A2) For all n ≥ 1 and any r ∈ (0, 1], there is c′ = c′(r) ≥ 1 such that for
all s, s′ ∈ Kn,

‖Ps f − Ps′ f‖Vr ≤ c′nǫ ‖ f‖Vr |s− s′|.
(A3) There is a β ∈ [0, 1/2] such that for all n ≥ 1, s ∈ Kn, x ∈ X and

z ∈ Rd′

|H(s, x, z)| ≤ cnǫVβ(x).

Theorem 3.4. Assume (A1)–(A3) hold and let f be a function with ‖ f‖Vα < ∞

for some α ∈ (0, 1− β). Assume ǫ < κ−1
∗ [(1/2) ∧ (1− α − β)], where κ∗ ≥ 1

is an independent constant, and that ∑
∞
k=1 k

κ∗ǫ−1ηk < ∞. Then,

lim
n→∞

1

n

n

∑
k=1

f (X̃k) =
∫

f (x)π(x)dx almost surely.

Proof. Theorem 3.4 is a slight modification of Theorem 1 in [A]. In par-
ticular, (A3) is modified to include H with the additional argument z, but
as the bound in (A3) is independent of z, the proof of Theorem 1 in [A]
applies essentially without changes. �

In practice, the simultaneous geometric ergodicity in (A1) must be estab-
lished with specific constants. For this purpose, the article [A] introduces
the following decay condition, which is slightly more stringent than in As-
sumption 1.4.
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Assumption 3.5. Suppose that the target distribution π satisfies Assump-
tion 1.4. Moreover, for for some constant ρ > 1

lim
r→∞

sup
|x|≥r

x

|x|ρ · ∇ logπ(x) = −∞. (21)

Having Assumption 3.5, it is possible to establish the following ‘refine-
ment’ of Proposition 3.2, which only assumes a lower bound on the covari-
ance matrices.

Proposition 3.6. Suppose the target density π satisfies Assumption 3.5 and let
Ps = Mqs stand for the Metropolis kernel (3) with qs, the zero-mean Gaussian

density with covariance matrix s. Let a > 0 be a real number, and let Pa ⊂ Cd

stand for the symmetric and positive definite matrices with eigenvalues greater
than a.

There exist a compact set D ⊂ Rd, a probability measure ν on D and a constant

b ∈ [0,∞) such that for all s ∈ Pa, x ∈ Rd and A ∈ B(Rd)

PsV(x) ≤ λsV(x) + b1D(x) and

Ps(x, A) ≥ δs1D(x)ν(A)

where V(x) := [supz π(z)]1/2π−1/2(x) ≥ 1 and the constants λs, δs ∈ (0, 1)
satisfy the bound

(1− λs)
−1 ∨ δ−1

s ≤ c|det(s)|−1

for some constant c ≥ 1.

Proof. Proposition 18 in [A]. �

Remark 3.7. Proposition 3.6 is extended for non-Gaussian proposal densi-
ties in Appendix B of the article [B]. In particular, Proposition 3.6 is verified
to hold with heavy-tailed multivariate Student distributions.

In order to establish a central limit theorem, one more condition is re-
quired to hold, with the same constants c ≥ 1 and ǫ ≥ 0 as in (A1)–(A3).

(A4) There is a β ∈ [0, 1/2] such that (A3) holds, and for all n ≥ 1, x ∈ X,

z ∈ Rd′ and s, s′ ∈ Kn,

|H(s, x, z) − H(s′, x, z)| ≤ cnǫ|s− s′|Vβ(x).

Theorem 3.8. Assume (A1)–(A4) hold. Let f be a function with ‖ f‖Vα < ∞

for some α ∈ (0, (1 − β)/2). Assume ǫ < κ−1
∗∗ [1/2∧ (1− 2α − β)] and

∑
∞
k=1 k

κ∗∗ǫ−1/2ηk < ∞, where κ∗∗ ≥ 1 is an independent constant. Further-
more, assume that S̃k converges a.s. to some constant limit s∞ in the interior of
KN for some index N < ∞. Then,

1√
n

n

∑
k=1

[

f (X̃k) − π( f )
] n→∞−−−→ N(0, σ2)

in distribution, where N(0, σ2) stands for the zero-mean Gaussian distribution
with the variance σ2 = σ2( f , s∞) < ∞.
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Proof. Theorem 3.8 is a simplified version of Theorem 7 in [A]. �

The assumption in Theorem 3.8 requiring that the adaptation parameter
S̃n converges may be difficult to check in practice. In the case of the AM
algorithm it can be verified to hold; see Section 3.4 below.

3.4. Ergodicity of the Unconstrained AM Algorithm. Consider the AM
algorithm as defined in Section 2.2. Throughout this section, it is assumed
that the tail of the adaptation weight sequence is defined as ηn := µnγ for
some constants µ ∈ (0, 1] and γ ∈ (1/2, 1].

There are some special cases that are considered separately. The arti-
cle [A] considers the AM algorithm as described in Section 2.2, having a
covariance lower bound induced by the factor ǫI.

Theorem 3.9. Let the proposal densities qc be zero-mean Gaussian with covari-
ance θ2c + ǫI, where θ > 0 and ǫ > 0 are constants. Suppose the target density

π satisfies Assumption 3.5. Then, for any measurable function f : Rd → R with

supx | f (x)|ξ π1/2(x) < ∞ for some constant ξ > 1,

1

n

n

∑
k=1

f (Xk)
n→∞−−−→ π( f ) (22)

almost surely. If, in addition, supx | f (x)|ξ π1/4
< ∞ and ηn := n−1, then

1√
n

n

∑
k=1

[ f (Xk) − π( f )]
n→∞−−−→ N(0, σ2) (23)

in distribution, where σ2 = σ2( f ) < ∞ is a constant.

Proof. Theorem 13 in [A]. �

Remark 3.10. If the conditions of Theorem 3.9 are satisfied, π(x) decays
faster than any exponential, and hence (22) and (23) hold for exponential
moments. In particular, they hold for power moments, that is, for f (x) =
|x|p for any p ≥ 0. Therefore, if ηn := n−1, the adaptation parameter
Sn → (mπ , cπ) where mπ and cπ are the mean and covariance of π.

The article [C] considers, in general, the case ǫ = 0. That is, the proposal
qc is a Gaussian density with the covariance θ2c, with eigenvalues having
no explicit lower bound. The first result involves an additional fixed pro-
posal component ensuring the stability.

Theorem 3.11. Let β ∈ (0, 1] and θ > 0 be constants and let qfix be a probability
density bounded away from zero in some neighbourhood of the origin. Assume the
proposal densities qc are defined as a mixture

qc(z) := βqfix(z) + (1− β)q̃c(z)

where q̃c denotes a zero-mean Gaussian density with covariance θ2c. Suppose also
that the target density π satisfies Assumption 3.5. Then, the strong law of large
number (22) and the central limit theorem (23) hold as stated in Theorem 3.9.



3. ERGODICITY OF ADAPTIVE MCMC 23

Proof. Theorem 31 in [C]. The proof is essentially based on Theorem 3.9
and an independent martingale argument implying that the fixed compo-
nent βqfix guarantees that the eigenvalues of Cn are bounded away from
zero. �

While omitting the parameter ǫ > 0, Theorem 3.11 includes two addi-
tional parameters: the mixing probability β ∈ (0, 1) and the fixed sym-
metric proposal distribution qfix. It has the advantage that the ‘worst case
scenario’ having ill-defined qfix only ‘wastes’ the fixed proportion β of sam-
ples, while Sn can take any positive definite value on adaptation.

An analogous result as in Theorem 3.11 was obtained by Bai, Roberts
and Rosenthal [7]. In particular, the authors show that if the target den-
sity π satisfies Assumption 1.4 and the fixed component qfix is a uniform
density on a centred ball B(0, R) having a large enough radius R > 0,
then the AM algorithm has the correct ergodic properties. Theorem 3.11 is,
however, obtained using a different technique, allowing less stringent as-
sumptions on qfix and ensuring a strong law of large numbers for possibly
unbounded functionals.

The article [C] contains also some results without this fixed compo-
nent. They are, however, significantly weaker, applying only for a one-
dimensional case.

Theorem 3.12. Assume d = 1, the proposal density qc is defined as a zero-mean
Gaussian with variance θ2c and logπ is uniformly continuous. Then, there is a
constant b > 0 such that lim infn→∞ Cn ≥ b.

Proof. Theorem 21 in [C]. �

In the article [C], Theorem 3.12 is also shown to imply a strong law of

large numbers for a Laplace target π(x) := (2b)−1e−b|x|. This result has
little direct practical relevance, but it is the first ergodicity result for such a
fully adaptive and unconstrained version of the AM algorithm.

In addition to results ensuring the correct ergodicity, the article [C] in-
cludes some analysis on the behaviour of the AM covariance, when the
algorithm is applied to an improper uniform target π ≡ constant > 0. In
this case, every proposal is accepted, and the algorithm forms an ‘adaptive
random walk’

Xn+1 = Xn + θC1/2
n Wn+1 (24)

where (Wn)n≥2 are independent standard Gaussian N(0, I) random vari-

ables. Fix a unit vector u ∈ Rd and consider the expectations

an := E
[

|uT(Xn − Mn−1)|2
]

and

bn := E
[

uTCnu
]

.

for n ≥ 1, with the convention that M0 ≡ X1. It is straightforward to show
that, in case of the ‘adaptive randomwalk’ (24), an and bn can be computed
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recursively through

an+1 = (1− ηn)
2an + θ2bn and

bn+1 = (1− ηn+1)bn + ηn+1an+1.

If θ < 1, numerical computations show that these sequences may decay
quite rapidly for a long time before starting to grow. Asymptotically, how-
ever, their behaviour can be characterised as given below.

Theorem 3.13. For all λ > 1 there is an index n0 ≥ m such that for all n ≥ n0
and k ≥ 1, the following bounds hold:

1

λ

(

θ
n+k

∑
j=n+1

√

ηj

)

≤ log

(

an+k

an

)

≤ λ

(

θ
n+k

∑
j=n+1

√

ηj

)

.

Proof. Theorem 1 in [C]. �

Remark 3.14. Theorem 3.13 applied to ηn := µn−γ implies the following
asymptotical growth rate, when (Xn)n≥2 follows the ‘adaptive random
walk’ recursion (24):

E
[

uTCnu
]

≃ exp

(

θ
√

µ

1− γ
2

n1−
γ
2

)

.

Particularly, in the original setting ηn := n−1, one has E
[

uTCnu
]

≃ e2θ
√
n.

Intuitively speaking, this shows how the AM algorithm behaves, when
it has a very small covariance parameter Cn compared to the true scale of a
sufficiently smooth target distribution. In that case, most of the proposals
are accepted, and it is expected that the covariance parameter Cn grows at
the above mentioned speed, until it reaches the scale of the target.

3.5. Ergodicity of the Unconstrained ASM Algorithm. The article [B] es-
tablishes a strong law of large numbers for the ASM algorithm of Section
2.3, without any constraints ormodifications. It relies on independentmar-
tingale arguments implying that the paths log Sn are bounded away from
zero, and have a controlled polynomial growth.

The additional assumption required by the lower bound is that the tail
contours of the target distribution must be uniformly smooth.

Definition 3.15. Suppose that {Ai}i∈I is a collection of sets Ai ⊂ Rd each
consisting of finitely many disjoint components that are closures of C1-
domains. Let ni(x) stand for the outer-pointing normal at x in the bound-
ary ∂Ai. Then, {Ai}i∈I have uniformly continuous normals if for all ǫ > 0
there is a δ > 0 such that for any i ∈ I it holds that |ni(x) − ni(y)| ≤ ǫ for
all x, y ∈ ∂Ai such that |x− y| ≤ δ.

This definition essentially states that the boundaries ∂Ai must be regular
enough to ensure that if one looks at ∂Ai at a small enough scale, it will
look locally almost like a plane.
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The two main results of [B] consider compactly supported targets and
targets having an unbounded support separately.

Theorem 3.16. Assume π has a compact support X ⊂ Rd and π is continuous,
bounded and bounded away from zero on X. Moreover, assume that the set X

has a uniformly continuous normal in the sense of Definition 3.15. Then, for any
0 < α∗

< 1/2 and a bounded measurable function f , the strong law of large
numbers (22) holds.

Proof. Theorem 2 in [B]. �

Theorem 3.17. Suppose π fulfils Assumption 3.5 and there is a t0 > 0 such that

the contour sets {Lt}0<t≤t0 where Lt := {x ∈ Rd : π(x) ≥ t} have uniformly
continuous normals in the sense of Definition 3.15. Then, for any 0 < α∗

< 1/2

and any measurable function f : Rd → R satisfying supx | f (x)|ξ π1/2(x) < ∞

for some constant ξ > 1, the strong law of large numbers (22) holds.

Proof. Theorem 4 in [B]. �

Remark 3.18. For many practical target densities satisfying Assumption 3.5
the tail contours are (essentially) scaled copies of each other, in which case
they have automatically uniformly continuous normals. This indicates that
Theorem 3.17 is practically a counterpart of Theorem 3.9 verifying the er-
godicity of the Adaptive Metropolis algorithm.

Remark 3.19. The ‘safe’ values for the desired acceptance rate stipulated
by Theorems 3.16 and 3.17 are α∗ ∈ (0, 1/2) including probably the most
commonly used values for a random walk Metropolis algorithms α∗ =
0.234 and α∗ = 0.44 as discussed in Section 2.3.

Remark 3.20. The results of article [B] extend also for the analysis of the
algorithm combining the AM and the ASM algorithms, as described in
Section 2.4. It is, however, required that the AM covariance parameter
Cn is constrained so that ratios of the eigenvalues of Cn are bounded; See
Remark 19 in the article [B].

4. DISCUSSION

Most theoretical results on adaptive MCMC in the literature prior to this
work were based on assumptions that typically require, either explicitly or
implicitly, one to modify a natural adaptation scheme by some additional
constraints. The constraint parameters may be difficult to choose in prac-
tice, and the algorithms are generally sensitive to these parameters. In the
worst case, poor choices can render the algorithms useless.

This work addressed the stability and ergodicity of two commonly ap-
plied adaptive MCMC algorithms without such constraints. The practical
implications of the results are twofold. First, the algorithms are shown
to be intrinsically stable under certain conditions, implying that they are
fairly ‘safe’ to apply in practice. Second, the unconstrained algorithms
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are more universal and ‘fully adaptive,’ applying for target distributions
with different scales and shapes, with less parameters to adjust before the
algorithm can be applied to some practical problem. In addition, the tech-
niques developed for the analysis may be applied also to other adaptive
MCMC algorithms.

Some of the present results have a limited applicability due to technical
assumptions. Many of the results are in a sense ‘preliminary’ as it is ex-
pected that many of the assumptions can be relaxed or made substantially
weaker in the future. One important issue is provided by the heavy-tailed
target distributions for which the Metropolis algorithms fail to be geomet-
rically ergodic. New tools are necessary to allow easy practical verification
of a suitable sub-geometric ergodicity condition. It is also important to
develop more general conditions to ensure the stability of other type of
adaptation schemes.

5. SUMMARY OF INCLUDED ARTICLES

Article [A]: On the ergodicity of the adaptiveMetropolis algorithm on un-
bounded domains. Sufficient conditions are considered to ensure the cor-
rect ergodicity of the Adaptive Metropolis (AM) algorithm for target dis-
tributions with a non-compact support. The conditions ensuring a strong
law of large numbers and a central limit theorem require that the tails of
the target density decay super-exponentially and have regular contours.
The result is based on the ergodicity of an auxiliary process that is sequen-
tially truncated to feasible adaptation sets, and independent estimates of
the growth rate of the AM chain and the corresponding geometric drift
constants.

The proof of the central limit theorem was omitted in the article that
was accepted for publication in the Annals of Applied Probability. The
extended preprint version containing the central limit theorem is included
in the dissertation.

Article [B]: On the stability and ergodicity of an adaptive scaling Me-
tropolis algorithm. The stability and ergodicity properties of an adaptive
random walk Metropolis algorithm are considered. Unlike the previously
proposed forms of this algorithm, the adapted scaling parameter is not
constrained within a predefined compact interval. This makes the algo-
rithmmore generally applicable and ‘automatic,’ with two parameters less
to be adjusted. A strong law of large numbers is shown to hold when the
target density is smooth enough and has either compact support or super-
exponentially decaying tails.

Article [C]: Can the adaptive Metropolis algorithm collapse without the
covariance lower bound? This article considers variants of the AM algo-
rithm that do not explicitly bound the eigenvalues of Sn away from zero.
The behaviour of Sn is studied in detail, indicating that the eigenvalues of
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Sn do not tend to collapse to zero in general. In dimension one, it is shown
that Sn is bounded away from zero if the logarithmic target density is uni-
formly continuous. For a modification of the AM algorithm including an
additional fixed component in the proposal distribution, the eigenvalues
of Sn are shown to stay away from zero with a practically non-restrictive
condition. This result implies a strong law of large numbers for super-
exponentially decaying target distributions with regular contours.
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