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Acknowledgements

What a journey it was. Although not unlike a common story of a
Ph.D. student, I feel priviledged to have experienced all this. Moments
of joy, despair, and excitement. Misty morning arrival in Petroskoi
station in a Russian night train, winter sun in freezing Mekrijärvi,
Mediterranean heat in La Manga, noisy streets of Bucharest. Many
meetings and discussions with friends and colleagues. These years have
been both the most rewarding and the most challenging times of my
life, and leave me with a long list of people I am thankful to.

I wish to express my gratitude to everyone at the Department of
Mathematics and Statistics, it has been a pleasure to work with you all.
I am especially grateful to my advisor, professor Stefan Geiss, without
whom none of this would have happened. It is hard to find words to
describe how much I appreciate all the help and stream of ideas he
gave me, and his ability to spot my mistakes with a sharp eye. I also
wish to thank Christel Geiss for being my co-advisor and for helping
me whenever needed, Anni Toivola for sharing the experience of Ph.D.
studies and providing a constant supply of chocolate, Kevin Wildrick
for advice with language (all mistakes I added after his proofreading!)
and occasionally math as well, and Antti Viholainen for friendship and
company for coffee breaks. Also, Tuula Bl̊afield, Eira Henriksson, and
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Introduction

1. Overview

In this thesis we find optimal estimates for the error E|g(X)−g(X̂)|p
in terms of moments of X − X̂, where X and X̂ are random variables,
and the function g satisfies minimal regularity assumptions. These re-
sults, of theoretical interest as such, have natural applications in option
pricing and discretization of backward stochastic differential equations.
In particular, our results justify the use of the multilevel Monte Carlo
method in the case of options with irregular payoff, e.g. the binary op-
tion, and make it possible to approximate backward stochastic differen-
tial equations with irregular payoff function in the terminal condition.

In the following sections we explain this in more detail. Throughout
this introduction we take a fixed terminal time T > 0, and suppose that
(Wt)t∈[0,T ] is a standard one-dimensional Brownian motion defined on
a complete filtered probability space (Ω,F ,P, (Ft)t∈[0,T ]), where the
filtration is the augmentation of the natural filtration of W , and F =
FT .

2. Stochastic Differential Equations

The theory of stochastic differential equations (SDEs) dates back to
the 1940’s and the work of K. Itô, related to the study of diffusion
processes. In the last decades, SDEs have become a common mod-
elling tool in various fields including mathematical finance, physics,
and population biology. We consider the Itô SDE{

dXt = σ(t,Xt) dWt + b(t,Xt) dt, t ∈ [0, T ],

X0 = x0,
(2.1)

with x0 ∈ R and continuous coefficients σ, b : [0, T ] × R → R. A
process X : [0, T ]×R→ R is called a strong solution of the SDE (2.1),
if X is continuous and adapted, X0 = x0 and X satisfies the integral
equation

Xt = X0 +

∫ t

0

σ(s,Xs) dWs +

∫ t

0

b(s,Xs) ds

for all t ∈ [0, T ], almost surely. If the coefficients σ and b satisfy
Lipschitz and linear growth assumptions in the state variable, then
there exists a unique strong solution X of the SDE (2.1). We advise the
reader to look for further information in the wide literature concerning
the theory of SDEs. See e.g. [20], [22], [28], and [29].
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3. Options and Option Pricing

In mathematical finance, stochastic differential equations are an es-
sential tool in modelling stock prices and, consequently, appear in op-
tion pricing. Suppose that a price of a share is given by (Xt)t∈[0,T ],
a solution of the SDE (2.1), and XT is the price of the share at the
time T . The term ’option’ commonly refers to a contract that gives its
holder the right, but not the obligation, to buy or sell a particular as-
set, e.g. a share, at an agreed time and price. Some ’exotic’ options do
not necessarily involve buying or selling the underlying asset, but can
be more complex financial derivatives. We consider European options,
which can be exercised only at the maturity time T , and the profit
gained by the holder is given by g(XT ), where g is called the payoff
function.

An important example in this thesis is a binary call option with a
strike price K > 0, i.e. an option that gives its holder a fixed amount
of cash, say 1 euro, if the price of the share XT exceeds K at time T ,
and otherwise gives nothing. The payoff is then

g(x) =

{
1, x ≥ K,

0, x < K,

which is not continuous at the point of the strike price K.
It is natural to ask for a fair price of such an option. At time T

the price should obviously be g(XT ), as the value XT is known. At
any time 0 ≤ t ≤ T , a natural price would be EQ(g(XT ) | Ft), the
conditional expectation of the payoff given the information known at
time t, with respect to an equivalent martingale measure Q. This can
be written as a solution of a certain PDE according to Feynman–Kac
theory. In particular, at time t = 0 the price should be EQg(XT ). To
compute this, we can also use Monte Carlo methods. However, as the
SDE (2.1) often can not be solved explicitly, and thus the distribution
of XT is not available, we need to find numerical approximations for
XT .

4. Approximation of SDEs

A natural way to approximate XT is to take a partition 0 = t0 <
ti < · · · < tn = T of the interval [0, T ], and call it π with mesh size
|π| = max0≤i≤n−1(ti+1 − ti). Then we construct an approximation Xπ

T

of XT by using simulated values of the driving Brownian motion and
the information given by the coefficients σ and b of the SDE (2.1) at
the points of the partition π. We look for a numerical scheme Xπ

T that
converges to XT under a certain convergence criterion, as the mesh
size goes to zero. However, there is no uniquely optimal way to do the
construction, as the nature of the approximation problem affects the
choice of the convergence criterion. Two most common criteria are the
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strong and the weak convergence. In the following, we consider the

standard Lp–spaces equipped with the norm ||·||p = (E| · |p)1/p.
We say that an approximation Xπ

T converges strongly to XT in Lp
with order γ > 0, if there exists a constant Cp > 0 such that

||XT −Xπ
T ||p ≤ Cp|π|γ

for all mesh sizes |π|. We say that Xπ
T converges weakly to XT with

order γ > 0, if, for any g in a class C of test functions, there exists a
constant C(g) > 0 such that

|Eg(XT )−Eg(Xπ
T )| ≤ C(g)|π|γ

for all mesh sizes |π|. For the time being, we choose C to be the class
of all polynomials.

The essential difference in the criteria is that the strong convergence
requires us to generate a pathwise approximation of the solution XT ,
whereas for the weak convergence it is enough to approximate the dis-
tribution of XT .

The simplest example of a numerical scheme is the Euler scheme,
sometimes called Euler-Maruyama scheme. It is a generalization of the
deterministic Euler scheme and was first introduced by G. Maruyama
[23] in 1953. Let us first fix a partition π of the interval [0, T ]. Then
we define the Euler scheme at t = 0 to be XE

0 = x0, and recursively for
i = 0, . . . , n− 1 we define

XE
ti+1

= XE
ti

+ σ(ti, X
E
ti

)(Wti+1
−Wti) + b(ti, X

E
ti

)(ti+1 − ti).

This gives a random variable XE
T approximating XT . The Euler scheme

has strong order 1/2, given that the coefficients of the SDE are Hölder
continuous with an exponent α ≥ 1/2 with respect to the time variable,
and weak order 1, under additional regularity assumptions on the co-
efficients. Sometimes the order can be improved in a subclass of SDEs.
For example, we can reach strong order 1 for SDEs with additive noise,
i.e., SDEs such that the diffusion coefficient σ does not depend on the
state variable x.

We can find numerical schemes with higher convergence rates than
the Euler scheme, at the cost of simplicity of the scheme. A method to
generate such schemes is to add higher order terms of the Itô-Taylor
expansion to the approximation. Adding the second order term gives
the Milstein scheme, introduced by Milstein [24], which still has weak
order 1, but the strong order is improved to 1. Further improvements
are possible, although the higher order schemes have less practical value
as they tend to contain multiple stochastic integrals that are difficult
to simulate.

An important aspect of weak convergence is to consider enlarging
the function class C in the definition. A common choice of C is poly-
nomials, possibly with some additional regularity properties. In appli-
cations, such as option pricing, we often encounter a situation where
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we need to compute the quantity Eg(XT ) with a function g that is
irregular or exceeds polynomial growth. We would then like to know
whether the weak error still converges to zero, and whether the rate γ
is affected. In the case of the Euler scheme, much work has been done,
e.g. in [30, 3, 17], to prove that the order γ = 1 is unchanged with quite
mild assumptions on the function g, but on the other hand, stronger as-
sumptions on the SDE. In [3] the result is proved for bounded and mea-
surable functions g, under hypoellipticity assumption on the SDE. In
[17] this is extended to measurable functions with exponential growth,
with ellipticity assumption on the SDE.

Many of these results as well as a comprehensive discussion about
approximation of SDEs can be found in [22]. See also [21] and [27] for
a more compact presentation and a survey of the development of the
field.

5. Monte Carlo Methods for SDEs

We can approximate the expected value of the payoff, Eg(XT ), using
the classical Monte Carlo method, i.e. we define an estimator

Ŷn =
1

n

n∑
i=1

g(XE
T (i)),

where we have n independent samples XE
T (1), . . . , XE

T (n) of XE
T . Then

the error of the method splits into two parts,

Eg(XT )− Ŷn = E[g(XT )− g(XE
T )] +Eg(XE

T )− Ŷn.
The first part is the discretization error caused by the Euler scheme,
and can be estimated using the weak convergence results. The second
part is the statistical error of the Monte Carlo method, and it converges
to zero by the strong law of large numbers. A common error measure
to use, combining both sources of error above, is the mean square error

MSE(Ŷn) = E(Eg(XT )− Ŷn)2.

To measure the efficiency of an algorithm, we use the notion of compu-

tational complexity, C(Ŷn), which is the number of units of computer

time the algorithm Ŷn needs to achieve a given precision. We may con-
sider one unit of computer time to be the time needed to complete a
certain computational operation, e.g. simulation of an increment of the
Brownian motion. This time depends on the system resources avail-
able. However, the computational complexity expressed in abstract
time units gives a worst-case estimate that can be applied in any given
system. For the classical Monte Carlo estimator, Duffie and Glynn [8]

have showed that, if we require MSE(Ŷn) < ε2, then there exists c > 0

such that the computational complexity of Ŷn satisfies C(Ŷn) ≤ cε−3.
The efficiency of the classical Monte Carlo method can be signifi-

cantly improved using the multilevel Monte Carlo method. The idea
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is due to Heinrich [18], who approximates parameter dependent inte-
grals in high dimensions. In 2008, Giles [14] introduced the multilevel
method in option pricing to compute the expected value of the payoff
more efficiently. Take M ≥ 2 and L ≥ 0, and let hl = T/M l, 0 ≤ l ≤ L,

be a sequence of timesteps. We denote by XE,hl
T the Euler scheme re-

lated to the partition of the interval [0, T ] using the timestep hl. The

classical method is to write the Monte Carlo estimator of Eg(XE,hL
T ).

Instead, we write the telescoping sum

Eg(XE,hL
T ) = Eg(XE,h0

T ) +
L∑
l=1

E[g(XE,hl
T )− g(X

E,hl−1

T )].

We estimate Eg(XE,h0

T ) with a Monte Carlo estimator Ŷ0 with N0 in-
dependent samples, i.e.

Ŷ0 =
1

N0

N0∑
i=1

g(XE,h0

T (i)), (5.1)

and we estimate each of the summands E[g(XE,hl
T )−g(X

E,hl−1

T )] with a

Monte Carlo estimator Ŷl with Nl independent samples of a Brownian
motion path, i.e.

Ŷl =
1

Nl

Nl∑
i=1

[g(XE,hl
T (i))− g(X

E,hl−1

T (i))]. (5.2)

In each simulation in Ŷl, we use the simulated Brownian motion path
with step size hl to compute the path with step size hl−1 by summing
up the additional increments of the finer partition. This provides sim-

ulations of both XE,hl
T and X

E,hl−1

T from the same simulation of the

Brownian motion path. By construction, the estimators Ŷl are inde-
pendent. Then we approximate Eg(XT ) by the combined estimator

Ŷ =
L∑
l=0

Ŷl

and get the following, slightly more general, result:

Theorem 1 ([14, Theorem 3.1]). If there exist independent estimators

Ŷl based on Nl Monte Carlo samples, and positive constants α ≥ 1/2,
β, c1, c2, c3 such that

(i)
∣∣∣E[g(XT )− g(XE,hl

T )]
∣∣∣ ≤ c1h

α
l ,

(ii) EŶl =

{
Eg(XE,h0

T ), l = 0,

E[g(XE,hl
T )− g(X

E,hl−1

T )], l > 0,
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(iii) V ar(Ŷl) ≤ c2N
−1
l hβl , and

(iv) C(Ŷl) ≤ c3Nlh
−1
l ,

then there exists a positive constant c4 such that for any ε < e−1, there

are values L and Nl for which the multilevel estimator Ŷ satisfies

MSE(Ŷ ) ≤ ε2

with computational complexity

C(Ŷ ) ≤


c4ε
−2, β > 1,

c4ε
−2(log ε)2, β = 1,

c4ε
−2−(1−β)/α, 0 < β < 1.

If the function g is Lipschitz and the coefficients σ and b of the
SDE (2.1) satisfy certain regularity properties, then using the classical
convergence results of the Euler scheme it is easy to show that the esti-
mators (5.1) and (5.2) satisfy the assumptions of Theorem 1 with α = 1
and β = 1. For a non-Lipschitz g, we can still use weak convergence
results to determine the parameter α, and get that α = 1 for a large
class of functions as discussed in Section 4. However, the condition (iii)
for the parameter β reduces to

V ar
(
g(XE,hl

T )− g(X
E,hl−1

T )
)

≤

(√
V ar

(
g(XE,hl

T )− g(XE
T )
)

+

√
V ar

(
g(X

E,hl−1

T )− g(XE
T )
))2

≤
(√

E|g(XE,hl
T )− g(XE

T )|2 +

√
E|g(X

E,hl−1

T )− g(XE
T )|2

)2

.

Therefore we need an estimate for the error E|g(XE
T ) − g(XE,hl

T )|2, a
question to which this thesis provides answers.

For further reading about Monte Carlo methods for SDEs, see [15].
The survey paper [25] offers an overview of results concerning the mul-
tilevel method.

6. Backward Stochastic Differential Equations

The theory of backward stochastic differential equations (BSDEs)
originates in the stochastic optimal control theory from the 70’s [5, 19].
If X is a solution of the forward equation (2.1), then the backward
equation is

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, 0 ≤ t ≤ T.

A solution of a BSDE is a pair (Yt, Zt)t∈[0,T ] of adapted processes satis-
fying the backward equation, see [26]. BSDEs are extensively studied
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for example in stochastic finance [9], and there is a need of numerical
schemes to solve BSDEs and of theoretical investigations of discretiza-
tion schemes and their convergence rates.

The discretization error splits into the error of the forward and the
backward approximation. The error of the forward approximation is
of the form ||g(XT )− g(Xπ

T )||p, where Xπ is a forward approximation
of the diffusion X, e.g. the Euler scheme. The function g is usually
assumed to be Lipschitz, see [6, 31] and the references therein. The
results of this thesis open a way to consider functions g, which are not
Lipschitz.

Moreover, inequalities involving
∣∣∣∣∣∣g(XT )− g(X̃T )

∣∣∣∣∣∣
p

are used in [11]

to determine the Lp-variation of the solution of the BSDE. The Lp-
variation is mainly responsible for the convergence properties of the
approximation schemes for the backward component. Results in this
direction are also presented in [16].

7. Relation to fractional smoothness

The approximation problem considered in this thesis is related to the
fractional smoothness of the indicator function χ[K,∞), with K ∈ R.
Suppose we have a probability space (Ω,F ,P). Then we can define
the fractional smoothness, with respect to 2 ≤ p <∞ and a given class

of random variables {X, X̂ : Ω→ R}, to be the largest possible power
βp > 0 in the inequality

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ Cp

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp
p
. (7.1)

For example, for the class of Gaussian random variables we have the
following:

Theorem 2 ([13, p. 12]). Suppose that X, X̂ ∼ N(0, 1) and (X, X̂) is
a Gaussian random vector. Then, for all K ∈ R and p ≥ 2, we have

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ Cp

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣
p
.

The statement of Theorem 2 is equivalent to the knowledge of the
fractional smoothness of the indicator function in terms of Malliavin
Besov spaces by [12]. However, if we generalize this by adjusting the

class {X, X̂} of random variables, we come up with a new concept of
fractional smoothness that leads us outside the conventional Malliavin
Besov setting.

If we were to choose the random variables X and X̂ freely, we could

take e.g. X ≡ K and X̂ = X − ε for ε > 0. Then, as ε→ 0, the right
hand side of Equation (7.1) would converge, whereas the left hand side

would not. Hence we need to restrict the possible choices of X and X̂
to avoid this. A minimal assumption is to say that one of the random
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variables, say X, has a bounded density with respect to the Lebesgue
measure. This gives optimal results in the following sense:

Theorem 3 ([1, Lemma 3.4, Theorem 2.4 (ii) and (iii)]).

(i) If X has a bounded density fX , then for all K ∈ R, all random

variables X̂, and all 0 < p <∞,

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ 3(sup fX)
p
p+1

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ p
p+1

p
.

(ii) The power p
p+1

of the Lp-norm is optimal, i.e. if p
p+1
≤ r <∞

and

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ C(X,K, p, r)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣r

p

for all random variables X and X̂ such that X has a bounded
density, then r = p

p+1
.

(iii) Let X be a random variable. If there exist p0 > 0 and BX > 0
such that

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ BX

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ p
p+1

p

for all p0 ≤ p < ∞, all K ∈ R and all random variables X̂,
then X has a bounded density.

By Theorem 3 we have defined a new weaker notion of fractional

smoothness in the sense of Equation (7.1). Choosing the class {X, X̂ :
X has a bounded density} results in the optimal power βp = p/(p+1),
which is strictly smaller than the power βp = 1 in the Gaussian case.

8. Results

8.1. General case. Let us first consider the setting of Section 7. We
assume throughout this section that X and X̂ are random variables
such that X has a bounded density fX , and for some 1 ≤ p < ∞,
C(p,X) > 0, and βp > 0, they satisfy

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ C(p,X)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp

p
(8.1)

for all K ∈ R. This is justified by Theorem 3, which gives us βp =
p/(p + 1) if no further assumptions are made. We denote the class
of functions of bounded variation on the real line by BV , defined in
detail in [1, Definition 2.1], and the variation of g ∈ BV by V (g). A
basic example is the payoff function of the binary option, g = χ[K,∞),
which has V (g) = 1. The information given in Equation (8.1) implies
an extension to functions of bounded variation, such that the rate βp
remains unchanged:
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Theorem 4 ([1, Theorem 2.4 (i) with general βp]). If g ∈ BV and
1 ≤ q <∞, then∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣q
q
≤ 3qV (g)qC(p,X)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp
p
.

We can further extend this by allowing the function g to have un-
bounded variation. This is based on the idea of compensating for the
variation of g by the tail probabilities of X and X̂.

Let µ be a set function defined on bounded Borel sets, such that the
restriction of µ to a compact set is a signed measure. We associate it
with the distribution function

gµ(x) =

{
µ([0, x)), for x > 0,

−µ([x, 0)), for x ≤ 0.

Then we can show that µ possesses a unique Jordan decomposition
µ = µ+ − µ− on the real line [2, Theorem 3.3], and therefore has a
unique total variation measure |µ| = µ+ + µ−.

Let us call a continuous function ϕ : R → R a bump function if
0 < ϕ(x) ≤ 1 for all x ∈ R, ϕ(0) = 1, and ϕ is increasing in (−∞, 0]
and decreasing in [0,∞). Given a bump function ϕ, we define BVϕ to
be the space of all functions gµ such that

||gµ||ϕ =

∫
R

ϕ(x) d|µ|(x) <∞.

We define the space BVϕ rigorously and show that it is a Banach space
in [2, Section 3].

We can also characterize the space BVϕ in a more intuitive and, in
some cases, more practical way. For a bump function ϕ, we consider
the class of all functions

g(x) =

{∫
[0,x)

1
ϕ
dν, for x > 0,

−
∫

[x,0)
1
ϕ
dν, for x ≤ 0,

where ν is a signed measure and [0, 0) = ∅. Then this class is identical
to BVϕ by [2, Theorem 5.1].

The idea is to exploit the decay of the function ϕ to compensate for

the variation of g. Let us take a bump function ϕX,X̂ that gives an
upper bound for the tail probabilities of X and X̂, i.e.

P(X ≥ K) ∨P(X̂ ≥ K) ≤ ϕX,X̂(K) for K > 0,

and

P(X ≤ K) ∨P(X̂ ≤ K) ≤ ϕX,X̂(K) for K ≤ 0.

Here a∨b = max{a, b}. Then we have the following convergence result:
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Theorem 5 ([2, Theorem 6.2]). Let 1 ≤ p ≤ ∞, 0 < θ < 1, and

consider the bump function ϕX,X̂ . If 1 ≤ q < ∞ and gµ ∈ BV
(ϕX,X̂)

θ
q
,

then∣∣∣∣∣∣gµ(X)− gµ(X̂)
∣∣∣∣∣∣q
q
≤ 2θ ||gµ||q

(ϕX,X̂)
θ
q
C(p,X)1−θ

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣(1−θ)βp
p

.

This is a natural extension of Theorem 4, which can intuitively be
considered as the case θ = 0 in Theorem 5. Namely, if we set ϕ ≡ 1,
then the condition g ∈ BVϕ implies g ∈ BV . The faster the decay of
the function ϕ is, the larger is the space BVϕ. We show in [2, Section

9] that the boundedness of X and X̂ in Lp for all 1 ≤ p < ∞ imply
that ϕ decays faster than any polynomial.

8.2. Application to SDEs and the Euler scheme. Our results for
the random variables X and X̂ can be directly applied to the approxi-
mation of solutions of SDEs. Suppose that X = XT , a solution of the
SDE (2.1) at the endpoint T , and X̂ is a numerical approximation of

XT . In particular we are interested in the Euler scheme, X̂ = XE
T ,

which converges in Lp with strong order 1/2, i.e., it satisfies∣∣∣∣XT −XE
T

∣∣∣∣
p
≤ Cp|π|1/2 (8.2)

with Cp ≤ eMp, see [2, Lemma 11.2].
An essential assumption in our results is that XT has a bounded

density. Apparently, no equivalent condition between the boundedness
of the density of XT and the properties of the coefficients σ and b of
the SDE (2.1) is known. Sufficient conditions, however, are available.
One is to assume that σ, b ∈ C∞b ([0, T ]×R) and the SDE is uniformly
elliptic [10, p. 263], but also a weaker condition concerning regularity
and integrability of the coefficients exists [7, Theorem 2]. See also [1,
Remark 4.1].

For XT with a bounded density and the Euler scheme, we get the
following convergence result using Theorems 3 and 4, the knowledge
about the upper bound for the constant Cp, and an optimization argu-
ment over the powers p:

Theorem 6 ([1, Theorem 5.4]). Let 1 ≤ q < ∞ and g ∈ BV . Then
there exist M > 0 and m ∈ (0, 1) such that for |π| < m we have∣∣∣∣g(XT )− g(XE

T )
∣∣∣∣q
q
≤ 3q(sup fXT ∨

√
sup fXT )V (g)q |π|

1
2
− 2+M

(− log|π|)1/3 .

Remark 7. In [1] we used an upper bound Cp ≤ eMp2 for the constant in
Equation (8.2). The dropping of the square, which is due to the optimal
constant in the Burkholder–Davis–Gundy inequality shown in [4], gives
a minor improvement to the power of the logarithm in Theorem 6.
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We can extend the result of Theorem 6 to a larger class of functions
using the approach described in the previous section. With the addi-
tional information given by the special case X = XT and X̂ = XE

T , we

get an explicit estimate for the decay of the bump function ϕXT ,X
E
T ,

which controls the tail probabilities of XT and XE
T .

Theorem 8 ([2, Theorem 11.4]). We can choose the function ϕXT ,X
E
T

in a way that ϕXT ,X
E
T ≤ ϕXTE , where ϕXTE is a function such that

(i) if the functions σ and b are bounded, i.e. |σ|, |b| < M , we have
for z0 = |x0|+MT that

ϕXTE (z) =

{
e−

(|z|−z0)2

2M2T if |z| > z0,

1 if |z| ≤ z0.

(ii) if the functions σ and b are Lipschitz, then there exist constants
M > 0 and z0 > 0 such that

ϕXTE (z) =

{
|z|−M log(1+|z|−z0) if |z| > z0,

1 if |z| ≤ z0.

Now we can apply Theorems 5 and 8 to get the following convergence
result:

Theorem 9 ([2, Corollary 10.2 for the Euler scheme]). Let 1 ≤ q <∞
and 0 < ε < 1/2. Then for θ = ε

1−ε , the function ϕXTE , and gµ ∈
BV“

ϕ
XT
E

” θ
q

there exists M > 0 such that

∣∣∣∣gµ(XT )− gµ(XE
T )
∣∣∣∣q
q
≤ 3

(
e
M
θ sup fXT

)1−2ε

||gµ||q“
ϕ
XT
E

” θ
q
|π|

1
2
−ε .

If the SDE (2.1) has bounded coefficients, then we can use Theo-
rem 8 to achieve a similar rate as in Theorem 6, improved according
to Remark 7, for functions of polynomial variation:

Theorem 10 ([2, Theorem 11.6]). Suppose that the coefficients σ and
b of the SDE (2.1) are bounded. Let g : R → R be a function with a
representation g = gµ such that there exists s ∈ {0, 1, 2, . . . } with∫

R

ϕd|µ| ≤
∫
R

ϕ(x)|x|s dx

for all bump functions ϕ. Then for any 1 ≤ q <∞ there exist M > 0
and m ∈ (0, 1) such that∣∣∣∣g(XT )− g(XE

T )
∣∣∣∣q
q
≤ 3 (sup fXT ∨ 1) |π|

1
2
− 2+M

(− log|π|)1/2

for |π| < m.
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In Theorems 6 and 10 we achieve a convergence rate that is asymp-
totically 1/2 as the mesh size decreases. Similarly in Theorem 9 we get
a rate arbitrarily close to 1/2. While it is not clear whether the rate
could be equal to 1/2, we can provide an example showing that rates
better than 1/2 are impossible:

Theorem 11 ([1, Theorem 7.2]). Let S be the geometric Brownian
motion and T = 1. Then there exists K0 > 0 such that

lim inf
n→∞

√
n sup
K≥K0

∣∣∣∣χ[K,∞)(S1)− χ[K,∞)(S
E
1 )
∣∣∣∣

1
> 0,

where SE1 is the equidistant Euler approximation of S1.

8.3. Application to the multilevel Monte Carlo method. The
results of Section 8.2 provide answers to the computation of the vari-
ance parameter β in the assumption (iii) of Theorem 1. For func-
tions g of bounded variation, the parameter β is asymptotically 1/2
by Theorem 6, and this implies the following result for the multilevel
Monte Carlo method and the Euler scheme.

Theorem 12 ([1, Theorem 6.1]). Let g ∈ BV and α ≥ 1/2. Suppose
that the assumptions (i),(ii), and (iv) of Theorem 1 hold, and 0 <
ε < min{

√
2c1, 1/e} =: ε0, with c1 > 0 taken from assumption (i).

Then there exists c̃4 > 0 such that the computational complexity of the

multilevel estimator Ŷ is given by

C(Ŷ ) ≤ c̃4ε
−2− 1

2α ,

and the mean square error of Ŷ has a bound

MSE(Ŷ ) ≤ ε2

2
+
ε2

2
Φ(ε),

where the function Φ : (0, ε0)→ (0,∞) satisfies, for all δ > 0,

lim
ε↘0

Φ(ε)εδ = 0.

The statement of Theorem 12 has a straightforward extension to the
function classes introduced in Section 8.1. This is formulated in [2,
Section 12].

9. Conclusion

We found optimal powers βp = p/(p + 1) in the estimate (8.1) for

the indicator functions, with general random variables X and X̂ such
that X has a bounded density. Then we generalized the estimate in
two steps: first for functions of bounded variation, and then for a new
space of functions with unbounded variation compensated by bump
functions.
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We applied the results to the solution of the one-dimensional SDE
(2.1) and its Euler approximation. We found that the Euler approxi-
mation converges to the solution in Lp with a strong order arbitrarily
close to 1/(2p).

We used the results for SDEs to show complexity estimates for the
multilevel Monte Carlo method using the Euler scheme. We showed
that for functions of bounded variation, the complexity of the multilevel
estimator is of order ε−2− 1

2α , whereas the mean square error satisfies
MSE ≤ ε2−δ(ε) with δ(ε) ↘ 0 as ε → 0 and 0 < ε < ε1, i.e. the MSE
is asymptotically ε2. In particular this holds for the payoff function of
the binary option.
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