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Abstract

This work belongs to the field of statistics for marked spatial point patterns. Such data contain
locations of objects in a 2- or 3-dimensional space and their properties. These elements are
called points and marks, respectively. An example is trees in a forest area with the diameter
at breast height as a measurement for each tree. Point processes are models for points. Their
theory is well-developed and useful model constructions are available. Adding the marks to
point pattern data leads to new mathematical and statistical problems.

A practically and theoretically interesting problem is marked point patterns where the statistical
properties of marks depend locally on point intensity. Such dependence can be observed e.g. in
plant ecology and materials science: the plants can be systematically smaller in areas with high
plant density than with low plant density, for example, because of competition of resources,
or the size of particles may vary along the density of particles in some material. The present
knowledge of intensity-dependent constructions does not cover the needs of applications and,
hence, new marked point process models and model fitting techniques are needed.

This work concentrates on statistical models and methods for marked point patterns with
intensity-dependent real-valued or qualitative marks. In the first group of models, the mark
distribution is defined conditional on the local intensity. The main novelty of the new models
is that they allow both the mean and the variance of the mark distribution to depend on the
local intensity. These models are used for analysing a tropical rainforest data set. Secondly,
a procedure that uses independent mark-dependent thinning is suggested to create models
with dependence between the marks and the intensity. Theoretical mark characteristics are
derived for both models. Thirdly, a modelling approach is proposed for set-marked data where
two different point densities are expected in a set and in its complement and the marks are
indicators of the set. These marks are intensity-dependent by construction. This model is used
to analyse pine saplings growing in an area which is heterogeneous due to soil treatment. In
addition, as a fourth example of intensity-dependently marked point processes, a mathematical
characterization of the Bitterlich plot is given. This plot is a point pattern of trees born through
sampling which is proportional to the size of a tree, widely used in forestry.

The new models allow detailed modelling of intensity-dependence and are applicable to other
applications as well. Importantly, methods for statistical inference are suggested for condition-
ally defined and set-marked models. The main inferential approach is Bayesian, where Markov
chain Monte Carlo (MCMC) methods are used in posterior computation. The methods are
demonstrated through simulation studies before applying them to real data.

The work has been conducted at the Department of Mathematics and Statistics, University of
Jyväskylä, and as a part of the project “Dependent geostatistical marking of spatial Cox point
processes” of the Academy of Finland. The work has connection to an international research
project “Spatial Analysis of Tropical Forest Biodiversity” coordinated by the University of York
in Great Britain.

Keywords : Bayesian modelling, Bitterlich sampling, density-dependence, Gaussian excursion
set, log Gaussian Cox process, mark-dependent thinning, marked point process, MCMC, pine
saplings, random set marked Cox process, tropical rainforest.
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Chapter 1

Introduction

This work develops models and methods for statistical analysis of marked point patterns where
the marks are allowed to depend on the local point density. Besides constructing new models,
the emphasis is in the theoretical characteristics of the new models and in Bayesian inference.
Algorithms, that use Markov chain Monte Carlo simulation, are developed for the new density-
dependently marked models in order to be able to simulate the posterior distribution of the
unknowns. The new methods are applied both to simulated and real data. Two applications
in forest science have been a driving force behind the work.

Spatial point patterns are collections of objects distributed randomly in a (subset of) mul-
tidimensional real space Rd, d ≥ 2. Point process statistics aims to analyse the random
structure of such patterns, see e.g. Cressie (1993), Diggle (2003), Illian et al. (2008), Møller
and Waagepetersen (2004), Ripley (1981), Ripley (1988), Stoyan et al. (1995) and Stoyan and
Stoyan (1994). Often the points are provided with measured (random) quantities, called marks,
that give extra information on the phenomenon. The marks can be very general, but often the
observed marks are real-valued or qualitative measurements made at the point locations. Such
marks can either be a quality of an object, for example its size, or they can represent some
property of the environment such as soil type. These kind of marks are of interest in this work.
In the mathematical model, a mark can be considered as an extra coordinate to the point
location, but because the marks are observed only at point locations, the role of points and
marks is different. Therefore, the marks are separated from points in the statistical model.

There are many possible causalities and spatial structures in marked point patterns. The
location information can even be a nuisance the interest being only in phenomena seen through
the marks, or the point locations can be of main interest for which the marks provide extra
information, for example in the form of the point type. In some applications, the points and
marks are closely coupled, in which case their mutual interactions are of interest. An important
example is the density-dependence of marks. The theory of point processes is well-developed,
but advances in modelling marked point patterns are still needed for understanding those kind
of patterns more accurately, see e.g. Illian et al. (2008) and Stoyan et al. (1995).

A marked point process Nm = {[xi; m(xi)]}, where xi stands for a point location and the mark
m(xi) is a random variable attached to xi, describes how the marks and points are distributed
in a space. The corresponding unmarked point process N = {xi} is often of interest of its own,
but in this study, the focus is in marks and in their relationship to points. A marking model
may describe how the marks are born given the points or how the marked points have been
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generated. The simplest marked point process model is the independently marked (or randomly
labelled) point process (see e.g. Illian et al., 2008). In independent marking, the mark for each
point xi ∈ N is drawn from a probability distribution independently of the other marks and
independently of N . Another simple model for qualitative marks is the random superposition
model : the point process is assumed to be a superposition of independent subprocesses N{j }
consisting of points with mark j. The analysis of the marks of a marked point pattern often
starts by testing whether the marks can be considered independent of each other or not, see
e.g. Illian et al. (2008, p. 460). If the marks are independent, then methods developed for
independent data can be used in the statistical analysis of the marks.

More general models are needed, if the marks are spatially correlated. If the marks are in-
dependent of the points, they may be described through geostatistical marking (Mase, 1996;
Schlather et al., 2004; Illian et al., 2008) where the marks are drawn from a random field {U(s)}
being independent of the point process N : the marks are

m(xi) = U(xi) for xi ∈ N.

These marks are allowed to be correlated, but they are independent of N by construction. The
independence of marks from the points can be tested as suggested by Schlather et al. (2004),
Guan (2006) and Illian et al. (2008, p. 460). Following Mase (1996), the point process can be
interpreted as a sampling design for the random field {U(s)} in geostatistical marking: the
marks are a representative sample from {U(s)}. Thus, properties of {U(s)} can be deduced
from the marks using standard techniques for geostatistical data, see e.g. Chilès and Delfiner
(1999), Cressie (1993), Lantuéjoul (2002) and Wackernagel (1998). Likewise, the points can
be analysed separately from marks. Therefore, the assumption of the independence between
points and marks simplifies the statistical analysis.

The independence of points and marks may not hold in an application under investigation. For
example, plants can tend to be small in areas of high plant density because of competition of
resources, or they can be large because of good soil properties. Thus, more flexible marked
point process models are needed.

1.1 Constructions of intensity-dependent marks

Conditional marking

One of the objectives of this work is to construct flexible marked point process models Nm =
{[xi; m(xi)]}. The main construction starts from an unmarked point process N = {xi} and
provides each point xi ∈ N by a real-valued mark m(xi). This procedure is called marking.
This kind of marking models are conditional: they define the distribution of marks given the
points. Modelling the marks conditional on points is natural particularly for data where the
birth of the points precedes the marks to be investigated, and the point configuration affects
these marks. The focus is in intensity-dependent markings which means that the distribution
of marks is affected by the local point density.

A step forward from independent and geostatistical marking is intensity-dependent marking
suggested by Ho and Stoyan (2008), Menezes (2005) and Myllymäki (2006) for the stationary
log Gaussian Cox process. The leading measure of the log Gaussian Cox process is a random
intensity Λ(s) = exp(Z(s)), s ∈ Rd, where {Z(s)} is a (stationary) Gaussian random field
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(Møller et al., 1998; Møller and Waagepetersen, 2004). In these markings, the mean of the
conditional mark distribution of m(xi) given Λ(xi) is a function of Λ(xi) and the marks are
conditionally independent given the intensity {Λ(s)}. In particular, the marking suggested by
Ho and Stoyan (2008) is

m(xi) = a + bΛ(xi) + ε(xi) for xi ∈ N, (1.1)

where ε(xi) is a Gaussian random error. The marking suggested in Myllymäki (2006) is similar
regression type marking where the intensity-dependence of marks is modelled through {Z(s)},
that is {log(Λ(s))}: the marks are

m(xi) = a + bZ(xi) + ε(xi) for xi ∈ N. (1.2)

The model introduced by Menezes (2005) differs from the above two markings in the sense that
it has been developed for preferential sampling in geostatistics: In geostatistics, it is commonly
believed that the point process for sample points does not depend on the data process. However,
a prior scientific knowledge of the spatial variable of interest or reasons of cost can lead to the
gathering of samples in areas that are believed critical, or where the spatial variable of interest
obtains its largest values, for example. Menezes (2005) introduces a parametric stochastic
model for such situations. The objective is to use the (fitted) model in spatial prediction of a
Gaussian random field {Z(s)}. The sample points of the model are assumed to be generated
by the intensity Λ(s) = exp(c + dZ(s)) and the marks are a noisy version of {Z(s)}:

m(xi) = Z(xi) + ε(xi) for xi ∈ N. (1.3)

This model is close to (1.2), but the interpretation is different.

The markings of Ho and Stoyan (2008), Menezes (2005) and Myllymäki (2006) allow the marks
to be correlated and dependent on N . The log Gaussian Cox process as a point process
model is a natural choice for two reasons. First, intensity-dependent marking presumes the
existence of local variation in the point density, and thus, only clustered or heterogeneous
point process models are relevant. Second, the log Gaussian Cox process is a flexible model
with nice theoretical properties (Møller et al., 1998; Møller and Waagepetersen, 2004). The
suggested markings are useful models that allow the marks to be small (large) in areas of high
(low) point density, but they are not able to describe patterns where the variation of marks
depends on the local intensity as well: in areas with high point density, in addition to being
smaller, the marks may also tend to vary less than in areas with low point density, or vice
versa. Consequently, there is a need for more flexible intensity-dependent markings, that allow
also conditional heteroscedasticity of marks.

We extend the family of intensity-dependently marked processes by conditionally heteroscedastic
intensity-dependent markings. Our new markings are for the log Gaussian Cox process as the
previous intensity-dependent marking models by Ho and Stoyan (2008) and Menezes (2005).
The first two models are heteroscedastic extensions to the model of Ho and Stoyan (2008) whose
regression type marking (1.1) can be rewritten as the conditional mark distribution

m(xi)|Λ(xi) ∼ N(a + bΛ(xi), d
2) for xi ∈ N

with constant variance d2. We further introduce conditional exponential and conditional gamma
distribution for marks. Generally, the new conditionally independent markings are of the form

m(xi)|Λ(xi) ∼ Fm|Λ(·|Λ(xi)) for xi ∈ N, (1.4)
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where Fm|Λ is a parametric conditional distribution of the mark m(xi) at (fixed) xi ∈ N given
the intensity Λ(xi). In the models specifically discussed in this work, the mean and variance
of the conditional mark distribution of m(xi) given Λ(xi) are defined as a function of Λ(xi).
These models allow detailed modelling of intensity-dependence including heteroscedasticity.

The construction which relies on conditional independence of marks given the intensity creates
a correlation structure to marks. In this work, theoretical first- and second-order mark char-
acteristics, such as mark correlation and mark variogram function (see e.g. Schlather, 2001a;
Illian et al., 2008), are derived for the new conditional markings. The first-order characteris-
tics, mean mark and mark variance, describe the marks irrespective of point locations. The
second-order characteristics are functional measures of dependence between the marks, or of
dependence between the marks and points. These help in model identification, interpretation,
fitting and also in evaluating the goodness-of-fit.

After completing this thesis, we have been informed about a forthcoming paper Diggle et al.
(2009).

Thinning

As an alternative to conditional marking, a possibility for creating intensity-dependent marks
is to use point process transformations such as thinning (see e.g. Illian et al., 2008). Many point
processes can be obtained by applying thinning to a simpler model. For example, if location-
dependent p(x)-thinning, where a point at x is deleted with probability 1− p(x) independently
of deletion of the other points (Illian et al., 2008, p. 365), is applied to a homogeneous Poisson
process, it results in an inhomogeneous Poisson process. If the thinning function is random
and thinning is independent, then the obtained process is a Cox process. Similar strategy
is here used to create new marked point processes from a simpler one. We suggest the use
of mark-dependent thinning to simpler marked point processes in order to create dependence
between the intensity and marks. Our first thinned model applies independent mark-dependent
thinning to a geostatistically marked point process. Interestingly, the two simple procedures,
geostatistical marking and independent thinning, when applied sequentially to a base point
process, are able to create dependence between the marks and points. Theoretical formulas are
here derived for the first- and second-order characteristics of the thinned model with a general
mark-dependent thinning function.

Thinning procedures can also be dependent such as in Matérn inhibition point processes
(Matérn, 1960, 1986; Illian et al., 2008). Dependent thinnings may be more realistic for some
applications, but independent thinnings are useful because of their simplicity and because they
may allow analytical calculations of process characteristics to be tractable. Therefore, inde-
pendent mark-dependent thinning is regarded as a reasonable starting point for creating new
marked point process models through thinning.

Bitterlich sampling

In some practical problems, thinning may be specifically defined. Such a forestry-specific prob-
lem is Bitterlich sampling, which is a widely used technique in practical forestry. In Bitterlich
sampling, an investigator selects trees to a sample plot (called Bitterlich plot or angle count
plot) using a simple optical instrument called relascope. The relascope allows the observer,
standing at a sample point, to deduce whether an angle subtended by a tree is larger than 2α,
where α is an angle fixed in advance. This selection is based on a simple geometric rule: if the
distance from the observer to a tree is smaller than m/(2 sin α), where m is the diameter of
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the tree at breast height (dbh), then the tree belongs to the Bitterlich plot (see Figure 8.1).
The popularity of the Bitterlich sampling is due to the fact that, assuming the cross-sections
of the trees to be circular, the number of trees in a Bitterlich plot multiplied by sin2 α is an
unbiased estimator of the basal area per unit area of forest, see e.g. Ripley (1981) and Illian
et al. (2008). Most of the theoretical work concerning Bitterlich sampling studies the properties
of this estimator such as its efficiency compared to plot sampling, see e.g. Holgate (1967) and
Penttinen (1988). In this work, the Bitterlich sampling is viewed as mark-dependent thinning
of a (stationary) marked point process Nb,m: A forest is described by Nb,m = {[yj; m(yj)]},
where yj stands for a location of a tree and m(yj) for its dbh. The Bitterlich plot is consid-
ered to be a realisation of a marked point process that is obtained by applying the relascope
thinning to Nb,m at a random location. We call this new marked point process point-centred
Bitterlich point process. Obviously, the relascope thinning is mark-dependent, because a large
tree of Nb,m is retained at a larger distance from the sample point than a small tree. One
reason, why this thinning is interesting from the point of view marked point process models,
is that the obtained process is an example of a centred marked point process defined relative
to the sample point. Further, in the created process the marks are intensity-dependent. This
can be seen from the theoretical characteristics that are derived for the point-centred Bitterlich
point process. The contribution of our approach to the Bitterlich sampling is that it provides
mathematical characterization of the Bitterlich plot: it describes what the Bitterlich plot looks
like.

Applying relascope thinning to Nb,m at a set of random locations allows us to construct a
stationary marked point process, which we call (stationary) Bitterlich point process. In this
constuction, a point [yj; mj] of Nb,m is retained if its distance at least from one of the sample
points is less than mj/(2 sin α). This process is stationary if the sample points are distributed
according to a stationary point process, but there is variation in the local intensity function
and mark distribution defined relative to the sample points. We consider the case where the
sample points are distributed according to a homogeneous Poisson process. This corresponds to
uniform random sampling. The resulting model is a further example of a marked point process
where the marks depend locally on the intensity.

Set-marking

Besides the log Gaussian Cox process, another Cox point process is employed in this work. It
is the random set generated Cox process with random intensity

Λ(s) = λ11(s ∈ Θ) + λ21(s /∈ Θ), s ∈ Rd,

where Θ is a random closed set in Rd and 1(·) stands for the indicator function. That is, the
random intensity of this process is defined by Θ such that different point intensities, λ1 and λ2,
appear in the two phases formed by Θ and its complement, Θc. The point pattern is observed
as a set of point coordinates in a bounded region W ⊂ Rd. For this particular model, it is useful
to observe additionally the information on the phase of the location of each point. In practice,
this kind of information may often be economical to collect. A marked point process, called
random set marked Cox process, is obtained with so-called set-marks (Penttinen and Niemi,
2007): the mark m(xi) obtains the value 1 if xi ∈ Θ, and m(xi) = 2 if xi ∈ Θc. The interest in
the random set marked Cox process lies in the two intensities, λ1 and λ2, and in the properties
of Θ. If λ1 6= λ2, the marks are not a representative sample from the random set, and hence
they cannot be directly used for deducing properties of the random set. These marks are an
example of intensity-dependent qualitative marks.
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Penttinen and Niemi (2007) mentions the germ-grain model (see e.g. Stoyan et al., 1995) as a
possible model for the random set, but their modelling approach does not demand specification
of the random set model. We suggest the use of Gaussian excursion sets as a parametric model
for the random set. More precisely, a stationary Gaussian random field {Z(s) : s ∈ Rd} with
continuous sample paths is generated, and the random closed set is defined as

Θ = {s ∈ Rd : Z(s) ≥ l}, (1.5)

where l is a (given) threshold level, see e.g. Lantuéjoul (2002, p. 205). The mean and covariance
function of {Z(s)} together with the threshold level l define properties of the random set. The
resulting set-marked model is called Gaussian excursion set generated Cox process with set-
marking. This model is supposed to be a flexible and parsimonious model to be applied to
set-marked data. The flexibility of the Gaussian excursion set is supposed to be an advantage
over the germ-grain model.

Also the set-marked process can be obtained through independent mark-dependent thinning:
Assume λ1 > λ2 without loss of generality, and let N1 be a homogeneous Poisson process
in Rd with intensity λ1. A realisation of the random set marked Cox process is a result of
independent thinning applied to N1 such that the thinning probability is 0 if m(x) = 1, and
λ2/λ1 if m(x) = 2. Moreover, the set-marks could be specified conditional on the intensity, but
this characterization is not especially important for this model. It is more reasonable to think
that the random set defines both the intensity and the marks.

1.2 Inference for the intensity-dependent marks

The use of intensity-dependently marked point processes in data analysis is a recent topic.
Model fitting has not been considered in the seminal paper Ho and Stoyan (2008) and previous
statistical modelling of marked point patterns concentrates on the analysis of points and marks
separately. Some suggestions for model fitting for intensity-dependently marked Cox processes
are made by Ho (2006) and Menezes (2005). Ho (2006) fits the log Gaussian Cox process
with marking (1.1) or (1.3) to a data set using least squares method applied to second-order
characteristics of points and marks, and Menezes (2005) considers estimation allowing so-called
length-bias, see Menezes (2005, p. 182). A further example of modelling intensity-dependent
marks is Penttinen and Niemi (2007) where an estimation method is suggested for random set
marked Cox processes. This method is based on second-order characteristics of point processes.

These existing model fitting techniques are useful at an early stage of data analysis. However,
the minimum contrast estimation or least squares method, although being a widely applicable
and computationally easy approach for parameter estimation (see e.g. Diggle, 1979; Diggle,
2003, p. 86; Illian et al., 2008, p. 451), is criticized because it is based on some user-specified
choices, see e.g. Cressie (1993, p. 666) and Guan (2006). Moreover, as regards the random set
marked Cox process, the method of Penttinen and Niemi (2007) can be sensitive to the esti-
mation of the Ripley’s K-function. It would also be preferable to obtain some idea about the
uncertainties of the parameter estimates, which these methods do not yield as such; an applica-
tion of parametric bootstrap would help. In this work, we suggest the use of Bayesian methods
for statistical inference for the intensity-dependently marked log Gaussian Cox processes and
for the random set marked Cox process. A great advantage of the Bayesian method is that it
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allows to estimate the parameters of a model simultaneously. It also provides uncertainties for
the parameters in terms of the posterior interval or standard deviation of the marginal poste-
rior distributions. In addition, the latent structures of the models are naturally handled in the
hierarchical Bayesian setting, and the information in data is utilized more efficiently than in
those estimation methods based only on second-order characteristics. An overview on the use
of Bayesian computing in point process statistics can be found in Møller and Waagepetersen
(2004).

For the intensity-dependently marked log Gaussian Cox processes, we propose an empirical
Bayesian approach where the Markov chain Monte Carlo (MCMC) method is used in the
simulation of the posterior distribution of the intensity and the parameters of the marking
equation (1.4). In this hierarchical Bayesian model, the intensity and marking form the top
level; at the bottom level is the (parametric) model for the intensity. The priors for the
marking parameters are set according to the marking model, and according to our model
choice, the prior distribution of the intensity is log Gaussian. The model parameters of this
intensity are hyperparameters of the intensity-dependently marked Cox process model, and
they are to be estimated from the point data in our modelling approach. Assuming the log
Gaussian Cox process model, those hyperparameters are the mean and parameters of the chosen
covariance function of the Gaussian random field {Z(s)} that generates the intensity through
Λ(s) = exp(Z(s)). For estimation of the mean and covariance parameters, one can employ the
minimum contrast method (Møller et al., 1998; Møller and Waagepetersen, 2004; Illian et al.,
2008; Guan and Sherman, 2007), approximative likelihood method (Tanaka et al., 2008; see
also Illian et al., 2008), composite likelihood method (Guan, 2006) or Bayesian method (Møller
and Waagepetersen, 2004).

The parameters of the prior distribution of the intensity affect the values of the intensity and the
mark parameters, of course, but since the intensity itself contains a lot of variation, the effect of
fixing those hyperpriors is supposed to be quite small. The estimation of the hyperparameters
from the point data allows stable estimation of the intensity and marking parameters.

In the MCMC simulation, the conditional likelihood of the intensity-dependently marked log
Gaussian Cox process given {Z(s)} (or {Λ(s)}) is employed. This likelihood depends on the
whole process {Z(s)}, not only on the process at the points xi ∈ N where the conditional mark
distribution (1.4) is defined. The points xi depend on {Z(s)}, and thus, {Z(xi) : xi ∈ N} is
not a representative sample from {Z(s)} and cannot be used for deducing properties of {Z(s)}
directly. Therefore, it is not enough to have {Z(xi) : xi ∈ N} in the set of unknowns in the
MCMC simulation: In the implementation, the Gaussian random field {Z(s)} is approximated
by a discrete Gaussian random field defined on a partition of the observation window W into
a disjoint rectangular sets of equal size. The values of {Z(s)} are simulated both at the centre
points of those sets, being independent of {Z(s)}, and at the points xi ∈ N . Therefore, the
algorithm produces also a prediction for the intensity surface in W as a posterior mean of
the simulated values of the intensity Λ(s) = exp(Z(s)) at the centre points which form a grid
in W. For this prediction the mark information is utilized, too, which is an extension to the
method presented by Møller et al. (1998) for intensity estimation. In our MCMC simulation,
Metropolis-Hastings algorithm is utilized in updating variables.

For our second case, Gaussian excursion set generated Cox processes with set-marking, we adopt
a fully Bayesian method for inferring the parameters of the model and estimating the random
set. The Gaussian excursion set is chosen as a parametric model for the random set since it is
supposed to be a flexible model, suitable to be used as a prior model in the Bayesian approach.
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Thus, also this model includes a latent Gaussian random field {Z(s)}. Here it generates the
Gaussian excursion set, our random set, see (1.5). Gaussian excursion sets have also earlier
been used as a hidden structure in spatial statistics in De Oliveira (2000) where prediction of
the random set from sampled points is considered. The sampled points are independent of the
random closed set (or Gaussian random field) and thus, the obtained marked point process
{[xi; m(xi)]} is geostatistically marked in the terminology of Schlather et al. (2004), see also
Mase (1996). The situation in the random set marked Cox process is different. The observations
are points of the process and hence not independent of the underlying random closed set; the
marking is intensity-dependent. This is an additional complexity in model fitting, and hence,
the Bayesian modelling considered here is a contribution to the statistical methodology for
marked point patterns.

As in the inference for the intensity-dependently marked log Gaussian Cox processes, the Gaus-
sian random field must be discretized in implementation. The random field {Z(s)} is considered
at the points xi of the random set generated Cox process and at s1, . . . , sk forming a grid G
covering the observation window W . The values of {Z(s)} on G are again needed in the ap-
proximation of the conditional likelihood given {Z(s)}, which also in the case of this marked
point process depends on the whole process {Z(s)}. Therefore, the unknowns of the set-marked
model to be simulated in the MCMC algorithm are Z = (Z(x1), . . . , Z(xn), Z(s1), . . . , Z(sk))

′,
where n is the number of observed points, the intensities λ1 and λ2, and the parameters of
{Z(s)} (or Z). Because of confounding of parameters, the threshold level is fixed at l = 0.

The stationary Gaussian random field {Z(s)} is completely characterized by its mean µZ and
covariance function CZ(r). As previous studies discuss, see De Oliveira (2000) and Diggle et al.
(1998), it is probably not possible to deduce the form of the covariance function from the point
pattern data. Therefore, a suitable parametrized covariance function is chosen. We use the
Matérn family of covariance functions. The chosen covariance function defines the covariance
matrix of the prior distribution of Z, which is a (n + k)-dimensional normal distribution (with
mean µZ). We suggest prior distributions for the other parameters and hyperparameters, and
use Metropolis-Hastings steps then to update the variables in the MCMC algorithm. The
algorithm as such is slow mainly since the updating of a parameter of the covariance function
CZ(r) demands an inversion of the covariance matrix of Z. Discretization of the covariance
parameter is proposed, which leads to great improvement in computation time. The Bayesian
estimation results in posterior distribution for all the unknowns. A prediction for the random
set can be obtained from the simulated values of Z at G.
Bayesian algorithms are suggested for statistical reasoning on two Cox processes with intensity-
dependent marks or set-marks. For both models quite extensive simulation experiments are
performed in order to demonstrate the models and the functionality of the posterior computa-
tion, and further, the methods are applied to real data.

1.3 Applications

This work is motivated by two data sets. In the first one, the locations of trees of the species
Trichilia tuberculata are observed in an area of a tropical rainforest together with the measured
diameters at breast height, see Figure 3.6. In this data set, the trees tend to be small in areas
with high tree density, whilst in areas with low density both large and small trees are abun-
dant. The conditionally heteroscedastic intensity-dependent markings are developed keeping
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this application in mind, and the markings are used for analysing this data set. The modelling
gives information on the interactions between the conspecific trees, which is one aspect of the
forest structure.

The second data consist of locations of pine saplings growing in a forest area that has been
recently clear-cut, see Figure 3.8. In this area, before planting and natural seeding, the soil
has been mounded removing mechanically the vegetation and a part of turf in patches. The
treatment has formed a blotchy soil structure. The density of saplings is expected to be higher
in treated patches than in the area outside patches because of better germination of naturally
distributed seeds or because of cultivation. The Gaussian excursion set generated Cox process
is a candidate for a statistical model for the saplings: It is reasonable to assume that the
treated area is random, and thus it may be modelled by a random set. Because early-stage
competition of trees is often negligible, it is reasonable to model the sapling locations in the
treated and untreated areas by two Poisson processes with different intensities. Therefore, the
random set generated Cox process is supposed to be especially suitable model for these pine
saplings. Further, in addition to the locations of saplings, the soil type, treated or not treated,
is observed at the location of each sapling. This information is economically collected in the
field inventory. Data on pine saplings are modelled in this work using the Gaussian excursion
set generated Cox process model with set-marking. The modelling allows to evaluate the forest
regeneration intensities and it also gives other information on the data.

1.4 Articles

Two articles origin from this thesis. Chapter 9 is based on the article
Myllymäki, M. and Penttinen, A. (2009). Bayesian inference for Gaussian excursion
set generated Cox processes with set-marking. Accepted for publication in Statistics
& Computing. DOI: 10.1007/s11222-009-9123-1.

Parts of the text of this article and Figures 3.8, 9.4, 9.5, 9.8 and 9.10 are used here with kind
permission from Springer Science + Business Media. The conditionally heteroscedastic marking
models and the Bayesian inference for these models will be published in

Myllymäki, M. and Penttinen, A. (2009). Conditionally heteroscedastic intensity-
dependent marking of log Gaussian Cox processes. Accepted for publication in
Statistica Neerlandica.

Articles from the works of Chapters 7 and 8 are under construction.

1.5 Organization of the thesis

The thesis is arranged as follows. Preliminaries of marked point processes and mark character-
istics are given in Chapter 2. Cox processes as well as independent and geostatistical marking
are also recalled. Example data are explained and illustrated in Chapter 3. In Chapter 4,
the regression type intensity-dependent marking strategies are discussed. New conditionally
heteroscedastic markings are introduced in Chapter 5, and in Chapter 6, statistical inference is
considered for conditionally marked Cox processes. Two marking strategies based on thinning
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are presented in Chapters 7 and 8. Chapter 9 is for Bayesian inference for Gaussian excur-
sion set generated Cox processes with set-marking. The models, their inference and possible
extensions are discussed in the corresponding chapters.
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Chapter 2

Preliminaries for marked point processes

2.1 Characteristics of marks and points

Spatial marked point processes Nm = {[xi; m(xi)]} are models for collections of randomly
distributed points in (a subset W of) Rd provided with measured quantities called marks. The
corresponding (unmarked) point process is denoted by N = {xi} and it describes the locations
of objects, whereas the mark m(xi), denoted by mi for short, is a random variable attached to
the point xi of N . The marks can be very general: the marks are assumed to be elements of
a so-called Polish space, see e.g. Stoyan et al. (1995) and Daley and Vere-Jones (2003). Often
observed marks are real-valued or qualitative measurements, which kind of marks are considered
in this work.

In this work, we assume that N is a stationary and isotropic simple locally finite point process.
Stationarity and isotropy mean that N + s = {xi + s} and rN = {rxi} have the same distri-
bution as N for any s ∈ Rd and for any (Euclidean) rotation r around the origin, respectively.
Simplicity means that multiple points are not allowed, and local finiteness that each bounded
subset of Rd contains only a finite number of points of N . Further, Nm = {[xi; m(xi)]} is as-
sumed to be a stationary and isotropic simple locally finite marked point process meaning that
the translated process {[xi + s; m(xi)]} and the rotated process {[rxi; m(xi)]} have the same
distribution as Nm. Note that the marks are kept untouched in the translation and rotation.
Simplicity and local finiteness also concern the points.

One type of construction of marked point processes takes the distribution of points and then,
conditional on points, specifies the marks. The strategy that transforms an unmarked point
process N to a marked point process Nm by providing each point xi of N with a random variable
m(xi) is called marking. Two well-known examples are independent marking and geostatistical
marking. In independent marking, the mark for each point xi is drawn from a probability
distribution independently of other marks and N . This model is often used as a reference
model. In geostatistical marking (Mase, 1996; Schlather et al., 2004; Illian et al., 2008), the
marks are drawn from a (stationary) random field {U(s)} which is independent of N :

m(xi) = U(xi) for xi ∈ N.

This marking is able to generate correlated marks, but the marks are independent of N by
construction.
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There are various first- and second-order characteristics that describe the properties of marked
point processes, see e.g. Stoyan and Stoyan (1994), Stoyan et al. (1995), Schlather (2001a),
Schlather et al. (2004) and Illian et al. (2008). Their empirical counterparts are applied in
empirical data analysis, model identification, model fitting, evaluation of goodness-of-fit and in
model interpretation. The mark characteristics have a special nature since the marks are only
observed at xi ∈ N . They are conditional quantities (in the Palm sense, see e.g. Stoyan et al.,
1995): Let Ex and varx stand for the conditional expectation and variance, respectively, given
that there is a point of N at the location x. Further let Exy refer to the conditional expectation
given there are two points of N at the locations x and y. Because of stationarity and isotropy,
it suffices to consider expectations Eo and Eor with ‖r‖ = r.

The first-order characteristics are the intensity λ, which tells the mean number of points of
N per unit volume, and the mark distribution that describes the marks irrespective of point
locations. Often the mean and variance of quantitative marks are of interest. Definitions are
recalled in the following for real-valued marks: For any Borel sets B in Rd and L in R, let
Nm(B × L) stand for the number of points in B with mark in L. The corresponding mean
number of points satisfies

E[Nm(B × L)] = λνd(B)M(L), (2.1)

where νd denotes the d-dimensional Lebesgue measure and M is called mark distribution, see
e.g. Stoyan et al. (1995). For real-valued marks, M is described by the mark distribution
function FM , FM(m) = M((−∞,m]) for −∞ < m < ∞, and assuming a mark probability
density function fm(m) exist, it holds

FM(m) =

∫ m

−∞
fm(m)dm. (2.2)

The mean mark is

µm = Eo(m(o)) =

∫ ∞

−∞
mM(dm) =

∫ ∞

−∞
mfm(m)dm, (2.3)

and the mark variance

σ2
m = varo(m(o)) =

∫ ∞

−∞
(m− µm)2M(dm) =

∫ ∞

−∞
(m− µm)2fm(m)dm.

The second-order characteristics can be classified to those concerning only points and to mark
characteristics. The second-order characteristics for points that is used here is the pair-
correlation, which is defined through

g(r) =
ρ(2)(r)

λ2
for r > 0, (2.4)

where ρ(2)(r) is the second-order product density of a stationary and isotropic process. For a
stationary and isotropic process the product density ρ(2)(o, r) depends only on r = ‖o − r‖,
and it is written ρ(2)(r). In other words, ρ(2) is the density of the factorial moment measure
α(2): Assume that α(2) is locally finite and absolutely continuous with respect to the Lebesgue
measure in R2d. Then for Borel sets B1 and B2 in Rd

α(2)(B1 ×B2) = E

( ∑6=

x1,x2∈ N

1B1(x1)1B2(x2)

)
=

∫

B1

∫

B2

ρ(2)(x1, x2)dx1dx2, (2.5)
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where
∑ 6= denotes that the summation is only over distinct points x1, x2 ∈ N , see e.g. Stoyan

et al. (1995), Stoyan and Stoyan (1994) or Illian et al. (2008). Intuitively, ρ(2)(o, r) do dr is the
probability that two infinitesimal disjoint regions of volumes do and dr both contain exactly
one point of N .

In this work the following second-order mark characteristics, summarized in Table 2.1, are
exploited. For comparison, the characteristics for an independently and geostatistically marked
point process are recalled. In the latter marking, the marks are determined by a random field
{U(s)} with mean µU , variance σ2

U , covariance function CU(r) and variogram γU(r).

Table 2.1: Mark characteristics.

mark characteristic definition for r > 0 independent geostatistical
marking marking

Stoyan’s κmm: κmm(r) = Eor{m(o)m(r)} µ2
m µ2

U + CU(r)
Stoyan’s kmm: kmm(r) = κmm(r)/µ2

m 1 1 + CU(r)/µ2
U

E(r)-function: E(r) = Eor{m(o)} µm µU

V (r)-function: V (r) = Eor{[m(o)− E(r)]2} σ2
m σ2

U

mark covariance function: Cm(r) = κmm(r)− (E(r))2 0 CU(r)
mark correlation function: ρm(r) = [κmm(r)− (E(r))2]/V (r) 0 CU(r)/σ2

U

mark variogram: γm(r) = 1
2
Eor{[m(o)−m(r)]2} σ2

m γU(r)

The characteristics of Table 2.1 are of the form κf (r) = Eor{f(m(o),m(r))}, ‖r‖ = r > 0, with
or without scaling, see e.g. Illian et al. (2008) or Schlather (2001a). The expectations are with
respect to the two-point mark distribution Mx1,x2(dm1, dm2), which is the joint distribution
of the marks m1 = m(x1) and m2 = m(x2) on condition (in the Palm sense) that there exist
points of N at x1 and x2. Mathematical arguments for the existence of this distribution can
be found in Stoyan et al. (1995, p. 114). Because the process is assumed to be stationary and
isotropic, the mark distribution Mx1,x2 depends on the points x1 and x2 only through their
distance r = ‖x1 − x2‖, and it can be written Mr. More technically,

κf (r) =
ρ

(2)
f (r)

ρ(2)(r)
, for r > 0, ρ(2)(r) > 0, (2.6)

where ρ
(2)
f (r) is the density (assuming it exists) of the factorial moment measure α

(2)
f defined

by

α
(2)
f (B1 ×B2) = E


 ∑6=

[x1; m1], [x2; m2]∈ Nm

f(m1,m2)1B1(x1)1B2(xn)


 . (2.7)

The function κf (r) is often scaled by dividing it by a factor

cf =

∫ ∫
f(m1, m2)M(dm1)M(dm2), (2.8)
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which leads to the f -mark correlation function

kf (r) =
κf (r)

cf

for r > 0. (2.9)

The functions kmm(r) and γm(r) are functional measures of dependence (or association) be-
tween marks, and further, the functions Cm(r) and ρm(r) correspond to the classical definitions
of covariance and correlation, respectively. Instead, E(r) and V (r) are characteristics for de-
pendence between marks and points, see Schlather (2001a) and Schlather et al. (2004). They
are the conditional expectation and variance of a mark given that there is a further point at
the distance r apart. Note that for a geostatistically marked point process these quantities are
constant. This can be used to test the hypothesis of geostatistical marking, see Schlather et al.
(2004). Guan (2006) gives further tools for studying independence of marks and points, see also
Illian et al. (2008). Further, note that the mark variogram γm(r) coincides with the geostatisti-
cal variogram only in specific situations such as independent and geostatistical marking, which
is considered by Wälder and Stoyan (1996) and Stoyan and Wälder (2000), see also Illian et al.
(2008). Schlather (2001a) extends the characteristics of Table 2.1 to include the case r = 0 by
defining kmm(0) = Eo[(m(o))2]/µ2

m, E(0) = µm, V (0) = σ2
m and γm(0) = 0.

The empirical counterparts of the characteristics of Table 2.1 are called mark summaries. Let
W ⊂ Rd be an observation window. An estimator of κf (r) is (Schlather, 2001a)

κ̂f (r) =





1

n

∑
x∈N

f(m(x),m(x)), if r = 0,

∑6=
[x;m(x)],[y;m(y)]∈Nm

f(m(x),m(y))1W (x)1W (y)1Nr(x, y)/νd(Wx ∩Wy)∑ 6=
x,y∈N 1W (x)1W (y)1Nr(x, y)/νd(Wx ∩Wy)

, if r > 0.

(2.10)
where δ > 0 is a suitably small number, Wx = W + x = {s + x : s ∈ W} and

Nr = {(xi, xj) : r − δ < ‖xi − xj‖ ≤ r + δ, i, j = 1., . . . , n, i 6= j}.

That is, Nr consists of all pairs of points being the distance r± δ apart. In (2.10) 1Nr(x, y) can
be replaced by a kernel function K(r − ‖x− y‖). The estimator (2.10) is used in this work.

For independent and geostatistical marking, the mark characteristics of Table 2.1 do not depend
on the characteristics of N . Instead, for the intensity-dependently marked models considered
in this work, the points and marks are closely coupled, and therefore, the mark characteristics
also depend on the distributional properties of points.

2.2 Point process models

Many of the marking models presented in the following chapters apply the class of Cox processes
as point process models. It is a widely used point process class for aggregated or clustered point
patterns, see e.g. Møller and Waagepetersen (2004) and Illian et al. (2008). A Cox process is
defined by a random intensity function {Λ(s) : s ∈ Rd}: given a realisation Λ(s) = λ(s),
s ∈ Rd, the points follow an inhomogeneous Poisson process having λ(s) as the intensity
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function. Stationarity implies that λ = E(Λ(s)) is constant, but the point intensity in its
realisations is defined by Λ(s) = λ(s).

In this work, two different Cox processes are applied. These are the log Gaussian Cox process
(Møller et al., 1998; Møller andWaagepetersen, 2004) and the random set generated Cox process
(Penttinen and Niemi, 2007; Illian et al., 2008). Particularly, the new approach of this work for
the random set generated Cox process suggests that the random set is a Gaussian excursion set
generated by a stationary Gaussian random field. Therefore, both of the Cox process models
employ a real-valued (stationary) Gaussian random field.

It is assumed that {Z(s) : s ∈ Rd} is a real-valued Gaussian random field which is characterized
by the mean function

µZ(s) = E[Z(s)],

s ∈ Rd, and the (positive definite) covariance function

CZ(s1, s2) = E[Z(s1)− µZ(s1)][Z(s2)− µZ(s2)],

s1, s2 ∈ Rd. Its finite-dimensional distributions P(Z(s1) ∈ F1, . . . , Z(sn) ∈ Fn) are Gaussian
for all n ≥ 1, all s1, . . . , sn ∈ Rd and all Borel sets F1, . . . , Fn ⊆ Rd, see e.g. Adler (1981).
A Gaussian random field is stationary if and only if µZ(s) ≡ µZ and CZ(s1, s2) depends only
on s1 − s2 for all s, s1 and s2 ∈ Rd. Then it is written CZ(s1, s2) = CZ(s1 − s2). Moreover,
the random field {Z(s)} is stationary and isotropic if, in addition, CZ(s1 − s2) depends on
r = ‖s1− s2‖ only. In what follows, the isotropic covariance function is denoted by CZ(r). The
mean of the stationary Gaussian random field {Z(s)} is denoted by µZ , and the variance by
σ2

Z . It is assumed E|Z(s)|2 < ∞ for all s ∈ Rd, see e.g. Adler (1981, p. 23).

Log Gaussian Cox process

Most of the marking strategies of this work are for the log Gaussian Cox process, which is
generated by a real-valued Gaussian random field {Z(s) : s ∈ Rd} through

Λ(s) = exp(Z(s)) for s ∈ Rd,

see Møller et al. (1998), Møller and Waagepetersen (2004) and Illian et al. (2008). The log
Gaussian Cox process is completely characterized by {Z(s)}, which is here assumed to be a
stationary and isotropic Gaussian random field with mean µZ , variance σ2

Z and (valid) covari-
ance function CZ(r). Assuming the stationarity and isotropy, the intensity of the log Gaussian
Cox process is

λ = exp{µZ + σ2
Z/2} (2.11)

and the pair-correlation
g(r) = exp{CZ(r)} for r > 0.

These formulas appear in the mark characteristics of intensity-dependently marked log Gaussian
Cox processes.

Random set generated Cox process

A stationary and isotropic random closed set in Rd is a stochastic process whose realisations
are closed subsets of Rd, see e.g. Stoyan et al. (1995) and Lantuéjoul (2002). The random
set divides the space Rd into two phases, Θ and Θc, the complement of Θ. The random set
generated Cox process is, conditional on Θ, a union of two independent Poisson processes, one
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in Θ and another in Θc with intensities λ1 ≥ 0 and λ2 ≥ 0, respectively. It is a Cox process
with the random intensity function

Λ(s) = λ11(s ∈ Θ) + λ21(s /∈ Θ) , s ∈ Rd, (2.12)

where 1(·) stands for the indicator function. All properties of the random set generated Cox
process are inherited from the random set, the intensities λ1 and λ2 and conditionally indepen-
dent and uniform scattering of points. If λ1 = λ2 = λ, then the Poisson process with intensity
λ is obtained. Hence of interest is in general the case λ1 6= λ2. The process is introduced in
Penttinen and Niemi (2007) and a special case (with λ2 = 0), called interrupted point process,
in Stoyan (1979).

The random set generated Cox process is considered in Chapter 9 with a Gaussian excursion set
as a model for the random set, and with set-marking. The Gaussian excursion set is supposed
to be a flexible and parsimonious model for the random set: all the distributional properties of
the set are inherited from a Gaussian random field and a fixed threshold level. The set-marks
are defined by

m(xi) = 2− 1(xi ∈ Θ).

This marking leads to a marked point process N = {xi; m(xi)} called random set marked Cox
process by Penttinen and Niemi (2007).
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Chapter 3

Example data and scientific problems

3.1 A Norway spruce forest

A data set from a Norway spruce (sometimes called Norwegian spruce) forest in a natural
forest stand in Saxonia, Germany, is shown in Figure 3.1. The data set is available in R library
spatstat (Baddeley and Turner, 2005), see also e.g. Illian et al. (2008, p. 405). The data set
consist of locations of trees in a 56 m × 38 m -plot and diameters of the trees at breast height.
The diameter at breast height (dbh) is the diameter of a tree at the height of 1.3 m above the
ground level.

Mark summaries (see Table 2.1) calculated from the marked point pattern of the spruce trees
are shown in Figure 3.2. These summaries do not give clear evidence against independent (or
geostatistical) marking. Further tests can be performed for testing independent or geostatistical
marking, see Illian et al. (2008, p. 460), who conclude that the marking may be considered
independent.

The Norway spruce forest data set is shown here as an example of data where independent
(or geostatistical) marking may be a valid marking strategy. When the marks and points
can be considered independent, they can be analysed separately using standard techniques for
point patterns and for independent or geostatistical data, see e.g. Chilès and Delfiner (1999),
Lantuéjoul (2002) and Cressie (1993). The independence of marks and points makes the analysis
easier, but it may not hold in practice as the examples of Sections 3.2 and 3.3 show.

3.2 Data from a tropical rainforest

Figure 3.3 presents a marked point pattern of the species Trichilia tuberculata in a tropical
rainforest. The data origins from a 50 ha Forest Dynamics Plot in 1990 at Barro Colorado
Island, Panama, see Hubbell and Foster (1983), Condit et al. (1996) and Condit (1998). The
rainforest plot contains tens of species and thousands of trees. All trees with dbh ≥ 10 mm
have been measured. Precisely, there are 316 species and 244059 trees in the plot measured in
1990. One has to start with a single species analysis, which gives important information on one
aspect of the forest structure. In the data set of Figure 3.3, the points are locations of trees
and the marks are diameters at breast height. This pattern consisting only of conspecific trees
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Figure 3.1: A Norway spruce forest. Each point corresponds to a location of a tree and the
diameter of a circle is proportional to the diameter of the tree at breast height.
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Figure 3.2: The mark summaries (dots) calculated from the marked point pattern of Norway
spruce trees of Figure 3.1.

is extensive as its own and can not be modelled by means of stationary processes. There is
variation in the intensity of points over the region, and elevation and slope maps are available,
too, see Figure 3.5.

For analysing the data set one can proceed by investigating large-scale or small-scale properties.
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Figure 3.3: A marked point pattern of T. tuberculata. The diameter of a circle is proportional
to the diameter of the tree at breast height.

If the interest is in the large-scale behaviour, then only long-range point or mark fluctuations and
their dependencies on covariates are relevant. The small-scale variation, including dependencies
between (individual) points and marks, can be studied by marked point process methods applied
to approximately homogeneous sampled parts of the data. The short-range interactions of
points might also be studied by means of summary characteristics for inhomogeneous patterns,
see e.g. Illian et al. (2008, p. 279) and references there.

The large scale variation of points and marks may be illustrated by the means of regionalised
fields. The point-sum measure

IR(s) =
∑

[xi; m(xi)]∈Nm

1b(s,R)(xi), s ∈ W ⊆ Rd,

calculates the number of trees in a circle with fixed radius R. If the point-sum measure is scaled
by the the volume of the intersection of b(s, R) and the observation window W , it is a simple
estimator of the intensity of the point pattern. The mark-sum measure (Stoyan, 1984)

SR(s) =
∑

[xi; m(xi)]∈Nm

m(xi)1b(s,R)(xi), s ∈ W ⊆ Rd,

counts the sum of marks in a circle b(s,R). The mark-sum measure may also be scaled by the
volume of the intersection of b(s,R) and W , but different scaling may be applied as well: the
so-called normalized mark-sum measure is

S∗R(s) =
SR(s)

IR(s)
for IR(s) > 0, s ∈ W ⊆ Rd.
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It describes the spatial variation of marks.

These regionalised fields have been calculated for the T. tuberculata data of Figure 3.3 with
R = 50 m using the edge correction, where the measures are divided by the area of the
intersection of b(s,R) and the observation window W , see Figure 3.4. The point-sum measure
indicates heavy concentration of trees on the top right of the image, which is the area with
the highest elevation. The mark-sum measure is more uniformly distributed over the area,
but still there is a noticeable concentration in the region with high elevation. The normalized
mark-sum field calculated for T. tuberculata indicates that the large trees are on the top left
and the bottom right parts of the study area. These are regions where the tree density is quite
low. This could be considered as a kind of density-dependence of marks at large scale.

The large-scale properties and dependence on covariates may further be studied by geostatistical
methods or one can also proceed in terms of inhomogeneous spatial point processes (ignoring
the marks), see e.g. Waagepetersen (2008) and Waagepetersen and Guan (2007). In order
to study the short-range interaction of points and marks, a number of (nearly) homogeneous
subplots may be chosen and methods for stationary patterns may then be applied to these.
Here a subplot is chosen such that it is relatively homogeneous with respect to elevation and
slope, see Figure 3.5. In this subregion, [200, 400]× [100, 300], the elevation varies between 140
m and 144 m (above the sea level) and the slope is small. The marked point pattern is shown in
Figure 3.6. In addition, the dbh-marks are plotted against the estimated local tree density at
the tree locations, which reveals an interesting feature in the data: there is dependence between
the tree density and dbh. Further, E(r)- and V (r)-functions estimated from the marked point
pattern are shown in Figure 3.7 together with the histogram of marks. Since the summaries
are definitely not constants in r, independent or geostatistical marking is not an option here.

This work aims at constructing stationary marked point process models that are able to explain
the small-scale behaviour of the data set of Figure 3.6. Indeed, the data set is modelled by the
new intensity-dependent marking models in Section 6.5. Similar modelling could be applied to
other subregions of the T. tuberculata data and the obtained estimates considered in relation
to covariates.

3.3 Pine saplings growing in treated soil

The two marked point patterns of pine saplings, shown in Figure 3.8, origin from a study
conducted by the Finnish Forest Research Institute, Suonenjoki Research Unit. The saplings
grow in a forest area where, after clear-cutting, the soil surface has been treated mechanically
by removing the vegetation and part of turf in patches. This treatment, that has been done
before planting and natural seeding, has created a blotchy soil structure that divides the soil
into two parts: treated and untreated. The coordinates of each sapling have been measured
and, in addition, for each sapling it is known whether its location is in treated soil or untreated.
In other words, the observations consist of the sapling locations xi and set-marks m(xi) where
the set is defined by the treated patches. The marks can be coded such that m(xi) obtains the
value 1 if the sapling at xi is in treated soil, and 2 if xi belongs to untreated soil.

The interest is in the effect of the pre-regeneration soil treatment to the sapling density. The
density is expected to be higher in patches because the treated soil is subject to planting, and
because it is supposed to provide better conditions for germination of naturally distributed
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seeds and for growth of saplings. The origin of saplings, planted or naturally born, is omitted
here: the total intensities, in treated and untreated parts, are of interest. If the area fraction p
of treated soil in an observation window W was known, the intensities could be estimated by
n1/(p|W |) and n2/((1− p)|W |), where |W | is the area of the observation window W , n1 is the
number of saplings with m(xi) = 1 and n2 the number of saplings with m(xi) = 2. However,
only information on the soil structure is at the sapling locations xi. Since the observations
m(xi) depend on the soil structure, properties of the soil structure cannot be deduced directly
from these observations. This is due to expecting two different intensities, one in treated and
another in untreated part of the soil. Consequently, more advanced methods are needed for
analysis of these data sets.

The data are modelled in Chapter 9 by the means of Gaussian excursion set generated Cox
processes. The fully Bayesian analysis gives estimates (with uncertainties) for the intensities
and also describes the treated area in the form of the area fraction and covariance properties.
In addition, a prediction for the treated area is given.
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Figure 3.4: The point-sum measure {I50(s)} (at the top), mark-sum measure {S50(s)} (in the
middle) and normalized mark-sum measure {S∗50(s)} (at the bottom) for the T. tuberculata data
set of Figure 3.3. Dark colour corresponds to a high value of a random field.
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Figure 3.5: Elevation (upper) and slope (lower) maps with the box indicating the location of
the plot of Figure 3.6. Dark color corresponds to a high value of elevation/slope.
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Figure 3.7: The E(r) and V (r) summaries calculated from the marked point pattern of
T. tuberculata of Figure 3.6 and the histogram of the marks (diameters of trees at breast
height in mm).
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Chapter 4

Conditional intensity-dependent
regression marking of log Gaussian Cox
processes

In the simplest marking strategy, independent marking, which is often used as a reference
model, and in more general geostatistical marking (Mase, 1996; Schlather et al., 2004; Illian
et al., 2008) the point process N does not affect the distributional properties of the marks.
An important situation where these markings are not valid strategies is the case where the
point density affects the marks, called density-dependence in plant ecology. For example, in a
forest, trees may be systematically small in regions of high tree density because of competition
of nutrients and light, or systematically large because of good soil properties.

A step forward is intensity-dependent marking suggested by Ho and Stoyan (2008), Menezes
(2005) and Myllymäki (2006) for the stationary log Gaussian Cox process generated by a
random intensity {Λ(s)}. In these markings, the mean of the conditional mark distribution of
m(xi) given Λ(xi) is a function of Λ(xi) and the marks are conditionally independent given the
intensity {Λ(s)}. In this construction, the marks are allowed to be marginally correlated and the
marking depends on N . The log Gaussian Cox process as a point process model is a natural
choice for two reasons. First, intensity-dependent marking presumes the existence of local
variation in the point intensity, and thus, only clustered or heterogeneous point process models
are relevant. Second, the log Gaussian Cox process is a flexible model with nice theoretical
properties, see Møller et al. (1998) and Møller and Waagepetersen (2004).

In the markings by Ho and Stoyan (2008), Menezes (2005) and Myllymäki (2006), the corre-
lation structure of marks is inherited from the Gaussian random field that generates the Cox
process. Here an extension is presented to the model considered already in Myllymäki (2006).
The extension model uses a further (independent) Gaussian random field to model the addi-
tional correlation of marks that is not due to the intensity. This construction allows the range
of correlation of marks to differ from the range of correlation of points. It could be applied also
for the other models. Unfortunately, in statistical modelling, it is probably difficult to separate
the effect of the intensity and of the external Gaussian random field.

The extended model and its properties are presented in Section 4.1. Thereafter, in Sections
4.2 and 4.3, the other two models are recalled and their properties are given based on Ho and
Stoyan (2008) and Menezes (2005).
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4.1 Log-intensity marked Cox process

Let N = {xi} be a log Gaussian Cox process in W ⊆ Rd (see Section 2.2). The marks of the
log-intensity marked Cox process are constructed by

m(xi) = α + βZ(xi) + U(xi) for xi ∈ N, (4.1)

where α and β are model parameters and U(xi) is a Gaussian random error with mean 0 and
variance σ2

U being independent of {Z(s)}. This construction is conditional on {Z(xi) : xi ∈ N}.
An extension is obtained if U(xi)s origin from {U(s)}, which is a zero-mean motion-invariant
Gaussian random field independent of {Z(s)}. The random field {U(s)} is allowed to be
correlated. Its covariance function is CU(r) and the variance σ2

U . An interesting feature of this
extension is that it combines two sources of variation into the marking: the spatial correlation
structure of the marks is inherited from the random fields {Z(s)} and {U(s)}. The intensity-
dependence of marks is modelled through {Z(s)}, and {U(s)} is a geostatistical component.
Heuristically, if the marks are explained by the intensity-generated process (β 6= 0), then the
residuals U(xi) = m(xi)−α−βZ(xi) may still contain autocorrelation. This is modelled using
an external (and independent) random field. This random field {U(s)} can be interpreted as
the influence of unobserved variables affecting the marks but not the intensity. In the following,
the extension, where U(xi)s in (4.1) origin from {U(s)}, is considered.
Note that if β = 0, then (4.1) leads to a geostatistically marked point process {[xi; U(xi)]}. If
β < 0, then the marks are small in regions of high point density, while positive β yields large
marks in regions with high intensity.

The formal calculation of mean of α + βZ(xi) + U(xi) would yield α + βµZ , but this is not
the true mean mark while the marks are only observed at xi ∈ N which locations depend on
{Z(s)}. The mean mark is

µm = α + βµZ + βσ2
Z .

In fact, for this marking it is possible to derive the whole mark distribution: the (Palm)
distribution of a mark m(xi) on condition xi ∈ N is the normal distribution

m(xi) ∼ N(α + βµZ + βσ2
Z , β2σ2

Z + σ2
U) for xi ∈ N. (4.2)

The proof of (4.2) can be found in Appendix A. Therefore, the mark variance is σ2
m = β2σ2

Z+σ2
U .

That is, the dependence of marks on N affects the mean mark but not the mark variance.

The n-point mark distribution of the log-intensity marked Cox process is also analytically
tractable for n ≥ 2. The most important distribution is probably the two-point mark distri-
bution. Recall that it is the distribution of marks m(x1) and m(x2) on condition that there
are points of N at x1 and x2 and these are a distance r apart. Some of the second-order
characteristics, that are derived below, can be obtained directly from the two-point mark dis-
tribution. Similarly n-point mark distribution of n marks m(x1), . . . , m(xn) is conditional on n
points x1, . . . , xn being particular distances ‖xi − xj‖, i, j = 1, . . . , n, apart. For example, the
three-point mark distribution is conditional on the triangular configuration of the locations of
three points of N . The n-point distribution is here given in the general form for n marks. The
two-point mark distribution is obtained as a particular case with n = 2.

Let {V (s)} stand for a random field that is obtained by V (s) = α + βZ(s) + U(s) for s ∈ W .
Its mean is

µV = α + βµZ
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and covariance function
CV (r) = β2CZ(r) + CU(r) .

The (Palm) distribution of n marks m(x) := (m(x1), . . . , m(xn))′ on condition x1, . . . , xn ∈ N ,
called n-point mark distribution, is the n-dimensional normal distribution

m(x) ∼ Nn(1µV + βdiag(ΣZ(x))1, ΣV (x)), (4.3)

where 1 = (1, 1, . . . , 1)′ is n × 1 -vector, diag(ΣZ(x)) is the diagonal matrix of the variances
of (Z(x1), . . . , Z(xn))′ and ΣV (x) the n × n -covariance matrix of (V (x1), . . . , V (xn))′. The
proof of (4.3) is given in Appendix A. Note that the expected value of each mark m(xi),
xi ∈ N , is µV + βσ2

Z , but the values of marks at points x1, . . . , xn are also affected by the point
configuration and the correlation structure determined by CV (r). Recall that the covariance
matrix of V (x1), . . . , V (xn) (or Z(x1), . . . , Z(xn)) is determined by the covariance function of
the corresponding random field and the distances ‖xi−xj‖, i, j = 1, . . . , n: the element (i, j) of
the covariance matrix ΣV (x), where i denotes the row and j the column of the matrix, is equal
to CV (‖xi − xj‖) for all i, j = 1, . . . , n.

The characteristics E(r) and V (r), suggested by Schlather et al. (2004) to test geostatistical
marking, can also be determined for the log-intensity marked Cox process. They are

E(r) = α + β(µZ + σ2
Z + CZ(r)) = µm + βCZ(r) (4.4)

and
V (r) = CV (0) = β2σ2

Z + σ2
U , (4.5)

see Appendix A. Thus, E(r) depends on the distance r, but V (r) does not. Recall, that these
are characteristics of a mark given that there is a further point of the process at the distance
r apart. The result (4.3) gives that the covariance between m(x1) and m(x2) at points x1 and
x2 being a distance r apart is CV (r). Thus, Stoyan’s κmm(r)-function is

κmm(r) = Eor[m(o)m(r)]

= Eor{[m(o)− E(r)][m(r)− E(r)]}+ [E(r)]2

= CV (r) + (µm + βCZ(r))2 for r > 0,

and Stoyan’s kmm(r)-function

kmm(r) =
CV (r) + (µm + βCZ(r))2

µ2
m

for r > 0,

and
kmm(0) =

Eo[(m(o))2]

µ2
m

=
σ2

m + µ2
m

µ2
m

= 1 +
β2σ2

Z + σ2
U

(α + βµZ + βσ2
Z)2

.

The mark covariance and mark correlation are Cm(r) = CV (r) and ρm(r) = CV (r)/σ2
V and,

from the formulas in Table 2.1, it can be deduced that the mark variogram is

γm(r) = V (r)− Cm(r) for r > 0,

that is
γm(r) = β2σ2

Z + σ2
U − β2CZ(r)− CU(r) for r > 0. (4.6)

Since the mark characteristics of Table 2.1 are known for the log-intensity marked Cox process,
they can be used in model interpretation, model fitting and testing the goodness-of-fit.
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Example 4.1. One realisation of a log Gaussian Cox process is simulated in a window of size
200× 200 using the following Gaussian random field parameters: the mean is µZ = 4.0 and the
exponential covariance function

CZ(r; θ) = σ2
Ze−r/φZ

with σ2
Z = 1.5 and φZ = 6.0. The realisation is shown in Figure 4.1. The simulation of the

Gaussian random field is performed using the function GaussRF in the R library RandomFields,
see Schlather (2001b), and the random field is simulated on a grid with 200× 200 cells.
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Figure 4.1: The point pattern with 1523 points on the right is a realisation of the log Gaussian
Cox process with intensity {Λ(s)} (in the middle), which has been generated by the realisation
of the Gaussian random field {Z(s)} (on the left). Dark color corresponds to a high value of a
random field.

The log Gaussian Cox process N = {xi} is marked by the marking model

m(xi) = 20− 10Z(xi) + U(xi) for xi ∈ N,

where U(xi) ∼ N(0, 10) are independent. A realisation is shown in Figure 4.2. Further, mark
summaries calculated from the realisation are shown in Figure 4.3 with their theoretical coun-
terparts. The function mpp.characteristics in R library MarkedPointProcess has been used
to calculate the summaries, see Schlather et al. (2004). Here no edge correction is used. For
comparison, the mark variogram has been calculated also with translation edge correction, but
the estimates do not differ much from the ones obtained with no edge correction. Several simu-
lation experiments (not presented here) show that there is great variation in mark summaries,
especially in V (r), calculated from realisations of the model with given parameters.
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Figure 4.2: A realisation of the log-intensity marked Cox process of Example 4.1. On the left :
The simulated marked point pattern. The diameter of a circle is proportional to the size of the
mark. On the right : The histogram of the marks.
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Figure 4.3: Mark summaries (dots) calculated from the realisation of the log-intensity marked
Cox process of Figure 4.2 and their theoretical counterparts (solid lines) with parameters used
in simulation. Dashed (horizontal) lines in the figures of kmm(r), Cm(r) and ρm(r) correspond
to the case with no dependence.
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4.2 Intensity-marked Cox process

Ho and Stoyan (2008) considers an intensity-marked Cox process, in which point density and
mark sizes are closely coupled. The log Gaussian Cox process is considered as a model for the
point locations and the marks are provided by

m(xi) = a + bΛ(xi) + ε(xi) for xi ∈ N, (4.7)

where a and b are model parameters and ε(xi) is a Gaussian random error with mean 0 and
variance τ 2 being independent of {Λ(s)}. The dependence between marks and points affects
mark characteristics. The following characteristics are derived for the intensity-marked Cox
process in Ho and Stoyan (2008):

• the mean mark µm = a + bλ exp(σ2
Z)

• the second moment of marks µm2 = a2 + b2λ2 exp(3σ2
Z) + τ 2 + 2abλ exp(σ2

Z) and, conse-
quently, the mark variance σ2

m = τ 2 + b2λ2e2σ2
Z

(
eσ2

Z − 1
)

• Stoyan’s kmm(r)-function

kmm(r) =





a2 + 2abλeσ2
Z+CZ(r) + b2λ2e2σ2

Z+3CZ(r)

(a + bλeσ2
Z )2

, for r > 0,

a2 + 2abλeσ2
Z + b2λ2e3σ2

Z + τ 2

(a + bλeσ2
Z )2

, for r = 0.

• E(r)-function

E(r) =

{
a + bλeσ2

Z+CZ(r), for r > 0,

a + bλeσ2
Z , for r = 0.

• mark variogram

γ(r) =





b2λ2e2σ2
Z+2CZ(r)

(
eσ2

Z − eCZ(r)
)

+ τ 2, for r > 0,

0, for r = 0.

The intensity-marked Cox process model is very similar to the log-intensity marked Cox process.
In intensity-marked Cox process, the point process is directly marked by the intensity {Λ(s)}
(of a log Gaussian Cox process), whereas {log(Λ(s))} is used to generate the marks in the
log-intensity marked Cox process.

The variance of the random field {Z(s)} affects the shape of the mark distribution of the
intensity-marked Cox process. If the variance is small, the distribution is almost symmetric,
whereas large variance yields a distribution that is positively skew (longer right tail) with b > 0
and negatively skew with b < 0.
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4.3 Geostatistical model for preferential sampling

Menezes (2005) develops a model for geostatistical sampling where the sampling design depends
on an observed random field. The sampling points and the values of the observed random field
can be considered as a marked point pattern, but the interest is in fact in the random field,
which can be observed wherever the investigator’s objective is to study its properties.

The model for point locations is a log Gaussian Cox process N = {xi} with the intensity

Λ(s) = exp{c + dZ(s)},

where c and d are real-valued parameters and {Z(s)} is a Gaussian random field with mean µZ ,
variance σ2

Z and covariance function CZ(r) as before. The intensity and the pair-correlation
of this log Gaussian Cox process are λ = exp{c + dµZ + d2σ2

Z/2} and g(r) = exp{d2CZ(r)}
for r > 0, respectively (Ho and Stoyan, 2008). The case d = 0 corresponds to a homogeneous
Poisson process with intensity exp(c). The marks are defined by

m(xi) = Z(xi) + ε(xi) for xi ∈ N, (4.8)

where ε(xi) is a Gaussian random error with mean 0 and variance τ 2 being independent of
{Z(s)}. The marks (4.8) can be considered as a noisy version of the underlying random field
{Z(s)} that is of interest. The model is called geostatistical model for preferential sampling
(GMPF).

Clearly, the marks are not in general independent of the underlying point process and this is
seen through the mark characteristics, which are studied in Ho and Stoyan (2008). The model
has the following mark characteristics:

• the mean mark µm = µZ + dσ2
Z

• the second moment of marks µm2 = σ2
Z + (µZ + dσ2

Z)2 + τ 2 and, consequently, the mark
variance σ2

m = σ2
Z + τ 2

• Stoyan’s kmm(r)-function

kmm(r) =





CZ(r) + [µZ + dσ2
Z + dCZ(r)]2

(µZ + dσ2
Z)2

, for r > 0,

σ2
Z + (µZ + dσ2

Z)2 + τ 2

(µZ + dσ2
Z)2

, for r = 0.

• E(r)-function

E(r) =

{
µZ + dσ2

Z + dCZ(r), for r > 0,

µZ + dσ2
Z , for r = 0.

• mark variogram

γ(r) =

{
σ2

Z + τ 2 − CZ(r), for r > 0,

0, for r = 0.
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The marking (4.8) equals the marking of the log-intensity marked Cox process up to
parametrization with respect to the intensity of the point process. Indeed, the marking (4.8)
can be rewritten as

m(xi) = − c

d
+

1

d
log(Λ(xi)) + ε(xi) for xi ∈ N.

Thus c and d correspond to −α/β and 1/β in the marking (4.1), respectively. The intensity
is provided by a Gaussian random field in both processes: since {Z(s)} is Gaussian random
field, so is {c + dZ(s)}. However, the fact that in the geostatistical model the interest is in the
random field {Z(s)} distinguishes it from the log-intensity marked Cox process.

The parametrization is a matter of interpretation of the model. The GMPF has been developed
to investigate the random field {Z(s)} that corresponds to some geostatistical variable, such
as soil fertility, which can be measured over the whole investigated area. The fact, that the
value of the variable can be obtained wherever the investigator likes to have it, distinguishes
a regionalised variable from an usual marked point pattern, where the value of a mark can
be measured only at predefined locations. However, the soil fertility can be considered to be
measured through the height of specific trees, for example, and is then only observed at tree
locations.

The parameter d in (4.8) identifies the degree of preferability in sampling. The sampling loca-
tions, if taken from areas where {Z(s)} is expected to present larger values, can be considered
as a realisation of a point process with a positive value of d. On the contrary, negative d means
negative association between {Z(s)} and the intensity of sampling locations (points). In geo-
statistical way of thinking, this means that more sampling locations are collected in areas where
{Z(s)} is expected to get smaller values. In analysing marked point patterns, d > 0 means that
marks are larger in areas with high point density, whereas negative d yields negative association
between mark size and intensity. Thus, d in GMPF can be interpreted similarly as β in the
log-intensity marked Cox process or b in the intensity-marked Cox process.
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Chapter 5

Conditionally heteroscedastic
intensity-dependent marking of log
Gaussian Cox processes

The intensity-marked point processes of Ho and Stoyan (2008), Menezes (2005) and Myllymäki
(2006), recalled in Chapter 4, are models for marked point patterns where the mark size depends
locally on the point density. However, these models assume that the variance of the conditional
mark distribution does not depend on the point intensity, which can be a severe restriction as
in the following example.

Figure 3.6 presents a marked point pattern of the species T. tuberculata in a tropical rainforest.
The marks, which are the diameters of trees at breast height (dbh), are plotted against the
estimated local tree density at the tree locations: the trees are small when the intensity is high
whilst in low intensities both large and small trees are abundant. This means that not only
the mean but also the variance of a mark depends on the local intensity, which calls for new
conditionally heteroscedastic marking models.

The new heteroscedastic marking schemes introduced in this chapter use the (stationary) log
Gaussian Cox process as an unmarked point process model as the markings in Chapter 4.
The new markings are extensions to the ones in Ho and Stoyan (2008) whose regression type
marking model (4.7) can be rewritten as the conditional mark distribution

m(xi)|Λ(xi) ∼ N(a + bΛ(xi), d
2) (5.1)

with constant variance d2. Our first two generalisations are heteroscedastic modifications of
this model. As a third model the gamma family of distributions is suggested, including the
exponential model

m(xi)|Λ(xi) ∼ Exp
(

1

a + b/Λ(xi)

)
.

Generally, the new markings are of the form

m(xi)|Λ(xi) ∼ Fm|Λ(·|Λ(xi)) for xi ∈ N, (5.2)

where Fm|Λ is a parametric conditional distribution of a mark m(xi) at (fixed) xi ∈ N given
the intensity Λ(xi). These models allow detailed modelling of intensity-dependence including
heteroscedasticity.
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Mean mark, mark variance and various mark correlations, see Table 2.1, are derived for the
new models. These characteristics can be applied in model selection, fitting, interpretation
and in assessing the goodness-of-fit, see Chapter 6. The models are here further illustrated
by simulated examples showing the curves for the mark characteristics as well. The obtained
marked point patterns are used as synthetic data sets in Section 6.2.3.

5.1 Gaussian intensity-marked Cox process

Let N = {xi} be a log Gaussian Cox process in W ⊆ Rd and construct the marks by

m(xi)|Λ(xi) ∼ N
(
a + bΛ(xi), c

2Λ(xi) + d2
)

for xi ∈ N. (5.3)

The marking (5.3) with positive parameters a, b, c2 and d2 creates a (conditional) mark distri-
bution with increasing mean and variance along the intensity. The model is a modification of
the intensity-marked Cox process considered by Ho and Stoyan (2008), the marking of which
equals (5.3) with c = 0.

A model (distribution) similar to (5.3) is called Generalized Normal Variance-Mean Model by
Tjetjep and Seneta (2006). Note that Λ(xi) is a positive random variable.

The parameter c does not affect the mean mark µm, E(r) and kmm(r), for r > 0, and these
are the same for the markings (4.7) and (5.3), see Section 4.2, Ho and Stoyan (2008) and Illian
et al. (2008). Instead, there is an increase in the mark variance due to the term c2Λ(xi) in
(5.3):

σ2
m = b2λ2e2σ2

Z

(
eσ2

Z − 1
)

+ c2λeσ2
Z + d2

and
κmm(0) = a2 + 2abλeσ2

Z + b2λ2e3σ2
Z + c2λeσ2

Z + d2,

where λ and σ2
Z are parameters of the log Gaussian Cox process, see Appendix A. The second-

order characteristics V (r) and γm(r) also change. For the marking (5.3), these are

V (r) = d2 + c2λeσ2
Z+CZ(r) + b2λ2e2σ2

Z+2CZ(r)
(
eσ2

Z − 1
)

for r > 0

and
γm(r) = d2 + c2λe2σ2

Z+CZ(r) + b2λ2e2σ2
Z+2CZ(r)

(
eσ2

Z − eCZ(r)
)

for r > 0,

where CZ(r) is the covariance function of the Gaussian random field {Z(s)}. The mark char-
acteristics E(r), V (r), κmm(r) and γm(r) are derived using the equation

Eor{f(m(o),m(r))} =
E[f(m(o),m(r))Λ(o)Λ(r)]

E[Λ(o)Λ(r)]

=
E{Λ(o)Λ(r)E[f(m(o),m(r))|Λ(o), Λ(r)]}

E[Λ(o)Λ(r)]
,

(5.4)

see Ho and Stoyan (2008) and Appendix A. In fact, for the calculation of these mark char-
acteristics only the conditional mean Eo[m(o)|Λ(o)] and variance varo[m(o)|Λ(o)] need to be
specified for the model, not the whole conditional mark distribution. For calculation of (5.4)
expectations of the form E[eX ] and E[et1X+t2Y ], where X and Y are Gaussian random variables
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and t1, t2 constants, are needed. These are easily obtained by the formulas of the moment
generating functions of the 1- and 2-dimensional normal distributions, respectively.

Negative dependence between the marks and the (local) intensity is also of interest. The first
chance is to set b < 0 in (5.1) or in (5.3). For the model with marking (5.3), the conditional
mark variance is larger in areas with high intensity and with ’small’ mean mark (if c 6= 0) and,
if CZ(r) is a decreasing function, then V (r) is decreasing regardless of the sign of b. Having the
log Gaussian Cox process as a model for point locations, the resulting mark distribution tends
to be negatively skew (longer left tail) if b < 0.

An example for which the markings (5.1) and (5.3) are not appropriate is the marked point
pattern of T. tuberculata in Figure 3.6: the empirical E(r) and V (r) both increase along r and
the mark distribution is positively skew, see Figure 3.7. A possible marking which leads to
such characteristics has the conditional mean mark and mark variance linearly dependent on
1/Λ(xi). The marking

m(xi)|Λ(xi) ∼ N

(
a + b

1

Λ(xi)
, c2 1

Λ(xi)
+ d2

)
for xi ∈ N (5.5)

with a, b, c2, d2 > 0 produces a (conditional) mark distribution with decreasing mean and vari-
ance along the increase in the intensity. If c = 0, only the conditional mean of marks depends
on the intensity, and if b = 0, only the variance.

The mean mark and mark variance are now

µm = a +
b

λ
and σ2

m = b2e−2µZ

(
1− e−σ2

Z

)
+

c2

λ
+ d2, (5.6)

see Appendix A. Assuming that CZ(r) is a decreasing function, the characteristics

E(r) = a +
b

λ
e−CZ(r) for r > 0

and
V (r) = d2 +

c2

λ
e−CZ(r) +

b2

λ2

(
eσ2

Z − 1
)

e−2CZ(r) for r > 0

increase along r. Stoyan’s kmm(r)-function is

kmm(r) =





a2 +
(

2ab
λ

+ b2

λ2

)
e−CZ(r)

(
a + b

λ

)2 , for r > 0,

1 +
b2e−2µZ

(
1− e−σ2

Z

)
+ c2

λ
+ d2

(
a + b

λ

)2 , for r = 0.

It indicates that at short inter-point distances the marks tend to be small. The mark variogram

γm(r) = d2 +

(
c2

λ
− b2

λ2

)
e−CZ(r) +

b2

λ2
eσ2

Z−2CZ(r) for r > 0 (5.7)

also points out positive association of the marks at short interpoint distances. These formulas
are derived in Appendix A.

The marking (5.5) allows one to obtain second-order characteristics, especially the E(r)- and
V (r)-functions, which are in agreement with their empirical counterparts of T. tuberculata.

36



Example 5.1. The log Gaussian Cox process N = {xi} of the Example 4.1 is marked by the
marking model

m(xi)|Λ(xi) ∼ N(20 + 0.2/Λ(xi), 0.5
2/Λ(xi) + 22).

A realisation is shown in Figure 5.1, and in Figure 5.2, the mark summaries estimated from
the realisation are plotted with their theoretical counterparts.

There is much variation in realisations of the conditionally heteroscedastic intensity-dependent
models, and therefore, the empirical summaries calculated from realisations may differ even
quite a lot from the theoretical characteristics. The shape of the mark summaries stays the
same, but the level they reach varies among realisations. Note that the underlying Cox process
realisation affects the marks.
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Figure 5.1: A realisation of the Gaussian intensity-marked Cox processes of Example 5.1. On
the left : The simulated marked point pattern. The diameter of a circle is proportional to the
size of the mark. On the right : The histogram of the marks.

5.2 Gamma intensity-marked Cox process

In our applications, the model assumption

Exi
[m(xi)|Λ(xi)] = a + b/Λ(xi)

seems to be reasonable. A further idea is to construct the marks according to

m(xi)|Λ(xi) ∼ Exp
(

1

a + b/Λ(xi)

)
for xi ∈ N (5.8)

resulting in the conditional mark variance

varxi
[m(xi)|Λ(xi)] = (a + b/Λ(xi))

2.
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Figure 5.2: Mark summaries (dots) calculated from the realisation of the Gaussian intensity-
marked Cox process of Figure 5.1 and their theoretical counterparts (solid lines) with param-
eters used in simulation. Dashed (horizontal) lines in the figures of kmm(r), Cm(r) and ρm(r)
correspond to the case with no dependence.

Since the exponential distribution is a special case of the gamma distribution with the shape
parameter α = 1, the gamma model with (fixed) shape parameter α is considered in the
following.

Let N = {xi} be a log Gaussian Cox process in W ⊆ Rd and

m(xi)|Λ(xi) ∼ Gamma (α, β) for xi ∈ N (5.9)

with the shape parameter α > 0 and the rate parameter β = 1/(a + b/Λ(xi)). Consequently,
the conditional mean mark and mark variance of a mark m(xi) at xi ∈ N given Λ(xi) are α/β
and α/β2, respectively. Thus, both of these depend on the intensity if b 6= 0. Of interest here
is the case b > 0. (Positive dependence between the marks and intensity can be studied by the
model with β = 1/(a + bΛ(xi)), for example.) Note also that β needs to be positive, which is
definitely satisfied if a > 0 and b > 0.

The intensity-dependence of the marks can be deduced from the mark characteristics. The
mean mark and the mark variance of the mark (5.9) are

µm = α

(
a +

b

λ

)
and σ2

m = α

(
a2 +

2ab

λ
+ b2e−2µZ

)
+ α2b2e−2µZ

(
1− e−σ2

Z

)
.
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Further,

E(r) = α

(
a +

b

λ
e−CZ(r)

)
for r > 0,

V (r) = α

(
a2 +

2ab

λ
e−CZ(r) +

b2

λ2
eσ2

Z−2CZ(r)

)
+ α2 b2

λ2
e−2CZ(r)

(
eσ2

Z − 1
)

for r > 0,

kmm(r) =





a2 +
(

2ab
λ

+ b2

λ2

)
e−CZ(r)

(
a + b

λ

)2 , for r > 0,

1 +
α

(
a2 + 2ab

λ
+ b2e−2µZ

)
+ α2b2e−2µZ

(
1− e−σ2

Z

)

α2
(
a + b

λ

)2 , for r = 0

and

γm(r) = α

(
a2 +

2ab

λ
e−CZ(r) +

b2

λ2
eσ2

Z−2CZ(r)

)
+ α2 b2

λ2
e−CZ(r)

(
eσ2

Z−CZ(r) − 1
)

for r > 0,

see Appendix A. The characteristics of the marking (5.8) are obtained by selecting α = 1.

The above theoretical characteristics show that the gamma intensity-marking, together with
the log Gaussian Cox process, is able to generate marked point patterns with clusters of points
having small marks, but simultaneously allow large variation for the marks. These charac-
teristics are particularly useful tools in the preliminary analysis of data. They help in model
selection for the analysis of real data.

Example 5.2. The log Gaussian Cox process N = {xi} of the Example 4.1 is marked by the
marking model

m(xi)|Λ(xi) ∼ Exp(1/(30 + 0.8/Λ(xi)),

see Figures 5.3 and 5.4. The correlation between marks is quite weak in this realisation when
measured by the correlation function ρm(r), whereas E(r)- and V (r)-functions indicate clear
dependence between marks and points. For comparison, a realisation of the gamma intensity-
marked Cox process is simulated with the same β = 1/(30 + 0.8/Λ(xi)), and with shape
parameter α = 0.5, see Figures 5.5 and 5.6. There is much variation in the mark summaries of
realisations of exponential and gamma intensity-marked Cox processes.
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Figure 5.3: A realisation of the exponential intensity-marked Cox process of Example 5.2. On
the left : The simulated marked point pattern. The diameter of a circle is proportional to the
size of the mark. On the right : The histogram of the marks.
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Figure 5.4: Mark summaries (dots) calculated from the realisation of the exponential intensity-
marked Cox process of Figure 5.3 and their theoretical counterparts (solid lines) with param-
eters used in simulation. Dashed (horizontal) lines in the figures of kmm(r), Cm(r) and ρm(r)
correspond to the case with no dependence.
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Figure 5.5: A realisation of the gamma intensity-marked Cox process of Example 5.2. On the
left : The simulated marked point pattern. The diameter of a circle is proportional to the size
of the mark. On the right : The histogram of the marks.
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Figure 5.6: Mark summaries (dots) calculated from the realisation of the gamma intensity-
marked Cox process of Figure 5.5 and their theoretical counterparts (solid lines) with param-
eters used in simulation. Dashed (horizontal) lines in the figures of kmm(r), Cm(r) and ρm(r)
correspond to the case with no dependence.
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Chapter 6

Statistical inference for conditionally
marked Cox point processes

The likelihood of the conditionally marked Cox point process of Chapters 4 and 5 is of the form

E

{
n∏

i=1

[
Λ(xi)fm|Λ(m(xi)|Λ(xi))

]
e−

∫
W Λ(s)ds

}
,

where the expectation is over the distribution of {Λ(s)} and fm|Λ(m(xi)|Λ(xi)) is the paramet-
ric density of the conditional mark distribution of the mark m(xi) at xi ∈ N given the intensity
Λ(xi). This likelihood is analytically intractable. We start the development of model fitting
techniques from simple practical procedures for preliminary analysis of data, before the sugges-
tion of a more advanced Bayesian method. Our focus is in estimation of the mark distribution
defined conditional on the intensity.

A simple idea for parameter estimation is to fit a non-linear regression model to the marks
after conditioning by the empirical intensity function and the point locations. An obvious
drawback of conditional fitting is that it may be sensitive to the smoothing level used in the
(non-parametric) intensity estimation. A point process model is not specified in this model
fitting. Our second idea is to base the inference on the second-order properties of the marked
point process. The minimum contrast method (Diggle, 1979), called also a ’least squares’
method, is used in a new context of log Gaussian Cox processes with intensity-dependent
marks. This estimation is preceded by the estimation of the mean and the covariance function
of the Gaussian random field generating the log Gaussian Cox process.

The minimum contrast method is a computationally easy approach, but it has been criticized,
because it is based on some user-specified choices (see e.g. Cressie, 1993, p. 666 and Guan,
2006). Moreover, the two simple methods condition either by the empirical intensity function
or directly by the estimated mean and covariance function of the log Gaussian Cox process.
Since the marks are defined conditional on the intensity, the intensity should be estimated.
Simultaneous estimation of intensity and marking would be more efficient than the sequential
one, because under the assumption of intensity-dependence also the marks contain information
on the intensity. We suggest to estimate the conditionally marked models using an empiri-
cal Bayesian approach where the Markov chain Monte Carlo (MCMC) methods are used in
posterior simulation of the intensity and the parameters of the marking simultaneously. The
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prior distribution of the intensity is assumed to be log Gaussian, the parameters of which are
estimated using the point data.

All of the methods are presented, but we recommend the use of the Bayesian method in the
final analysis of data. We also perform an extensive simulation study for the Bayesian method.
The methods based on moments and minimum contrast estimation serve specifically as tools
in empirical data analysis and in model identification. These methods are demonstrated for a
few specific markings.

Model fitting has not been considered in the seminal paper Ho and Stoyan (2008) of intensity-
marked Cox processes. However, Menezes (2005) considers estimation of parameters of the
geostatistical model for preferential sampling allowing so-called length-bias, see Menezes (2005,
p. 182), and Ho (2006) analysis a data set with the geostatistical model and the intensity-
marked Cox process using a least squares method for CZ(r) and kmm(r) or kmm(r) and γm(r),
see Ho (2006, p. 83).

The rest of this chapter is organized as follows. Two estimators based on simple estimation
of the intensity are presented in Section 6.1. In particular, an adaptive kernel estimation of
the intensity, that uses also mark information, is introduced for the log-intensity marked Cox
process. Section 6.2 considers the minimum contrast estimation, which is exploited for the
log-intensity marked, Gaussian intensity-marked and gamma intensity-marked Cox processes.
Section 6.3 introduces the (empirical) Bayesian method which is the main result of this chapter.
Simulations studies for this method are performed in Section 6.4. Finally, the new models are
applied to the marked point pattern from a tropical rainforest in Section 6.5. Section 6.6 is for
discussion.

6.1 Empirical data analysis on marking

The simplest estimation method for the intensity-marked models estimates first the intensity
Λ(xi), xi ∈ N , and then considers the estimation of the marking parameters as a regression
type problem. Of course, the estimation of the intensity is a non-trivial estimation problem of
its own, but using a simple estimate for the intensity and studying its relationship to the marks
may provide valuable information in the beginning of the analysis of real data.

The two methods presented in Section 6.1.2 are indeed meant to be used in preliminary analysis
and they may be sensitive to the estimated intensity. We put the moment-based method a bit
forward for the log-intensity marked Cox process and propose an adaptive kernel estimation
method for the intensity which uses also mark information. Empirical evidence suggests that
this method is competitive over the simple estimation of the intensity.

6.1.1 Kernel estimation of the intensity function

A kernel estimator of the intensity at location s ∈ Rd with kernel K is defined by

Λ̂K(s) =
1

hd

n∑
i=1

K

(
s− xi

h

)
, (6.1)
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where h is the bandwidth (or window width or smoothing parameter), see e.g. Silverman (1986)
and Scott (1992). A kernel used here is the Epanechnikov kernel

K(u) =





1

2bd

(d + 2)(1− ‖u‖2), if ‖u‖2 ≤ 1,

0, otherwise,
(6.2)

where bd is the volume of the d-dimensional unit ball (b2 = π) and ‖u‖ = ‖(s − xi)/h‖ is the
distance of two points in Rd scaled by h.

Kernel estimators smooth the surface and the chosen bandwidth h can affect the results re-
markably. Diggle (2003) and Stoyan and Stoyan (1994), for example, consider the choice of a
suitable bandwidth. However, a ’suitably chosen’ h may smooth the surface too much in areas
with high intensity and too little in areas with low intensity. To solve the problem of smoothing
adaptive kernel estimators have been developed. An idea to deal with long tailed intensities
is to use a broader kernel in regions with low intensity than in regions with high intensity.
Referring to Scott (1992), there are two types of adaptive kernel estimates: either a bandwidth
changes for each estimation point s ∈ W or for each xi ∈ N . The latter case is recalled here.

An obvious practical problem is to decide whether an observation is in a region of low or high
intensity. The adaptive kernel approach presented in Silverman (1986, p. 100) uses a two-stage
procedure to solve this problem. The general idea is to first find a pilot estimate of the intensity,
Λ̂P (s), which satisfies Λ̂P (xi) > 0 for all xi ∈ N . Then the local bandwidth factors wi can be
defined by

wi =

{
Λ̂P (xi)

g

}−ξ

,

where g is the geometric mean of the Λ̂P (xi) calculated through

log(g) =
1

n

n∑
i=1

log(Λ̂P (xi)),

and 0 ≤ ξ ≤ 1 is a sensitivity parameter. The larger the power ξ is, the more sensitive the
method will be to variations in the pilot density. The value ξ = 0 corresponds to the fixed
bandwidth kernel approach since all wi will then equal 1. Silverman (1986) recommends to use
the value ξ = 1/2. An adaptive kernel estimator of the intensity can be defined by

Λ̂A(s) =
1

hd

n∑
i=1

1

wd
i

K

(
s− xi

hwi

)
, (6.3)

where h is the bandwidth, which is scaled for each xi ∈ N by wi, and the kernel K in (6.2) can
be used, for example.

6.1.2 Moment-based estimators and conditional likelihood for the
marks

Assume Λ(xi), xi ∈ N , is known. Then the following estimation methods, called Method 1
and 2, can be used. The moment-based estimator operates with the conditional mean of the
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marks and the conditional likelihood method with the conditional mark distribution. Because
the intensity is in practise unknown, an estimate obtained e.g. through kernel method must be
used in the following equations instead of Λ(xi).

Method 1: Moment-based estimators

Assume a parametric formula is set for Exi
[m(xi)|Λ(xi)]. Then simple curve fitting can be done

by minimizing the square sum
∑

[xi; m(xi)]∈Nm

(m(xi)− Exi
[m(xi)|Λ(xi)])

2 (6.4)

or, alternatively, the weighted square sum

∑

[xi; m(xi)]∈Nm

1

Λ(xi)
(m(xi)− Exi

[m(xi)|Λ(xi)])
2 (6.5)

with respect to parameters in Exi
[m(xi)|Λ(xi)].

Method 2: Conditional likelihood for the marks

Assume that the marking is specified through a mark distribution which depends on the in-
tensity Λ(xi) and the marks are assumed to be conditionally independent given {Λ(s)}. Let
fm|Λ(m(xi)|Λ(xi)) stand for the parametric density of the conditional mark distribution of the
mark m(xi) at (fixed) xi ∈ N given the intensity Λ(xi). Then the conditional log likelihood for
the marks given {xi} and Λ(xi), xi ∈ N , is

∑

[xi; m(xi)]∈Nm

log fm|Λ(m(xi)|Λ(xi)) . (6.6)

Its maximization leads to parameter estimates.

6.1.3 Application to the log-intensity marked Cox process

In this section, Methods 1 and 2 (see Section 6.1.2) are illustrated for the marking

m(xi)|Λ(xi) ∼ N(20− 10 log(Λ(xi)), 10), (6.7)

see (4.1). First, estimates Λ̂(xi), xi ∈ N , are obtained by (6.1) with Epanechnikov kernel (6.2)
and bandwidth h = 10. These estimates are then used to obtain estimates for the marking
parameters α (true value 20) and β (true value −10) using Methods 1 and 2. The estimates
are shown in Table 6.1.

It is obvious that the estimates are not very good, even though Method 1b provides surprisingly
good point estimates for this particular simulation experiment. The variance σ2

U might be
estimated from the residuals for Methods 1a and 1b. The problem arises because the simple
kernel estimation can not produce such large variation (or range) in the intensity that the
log Gaussian Cox process in fact has. In the following, a new adaptive kernel estimation
method is described. This method utilizes the mark information in estimation by assuming
Exi

[m(xi)|Λ(xi)] = α + β log(Λ(xi)).
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Table 6.1: Estimates for the mark parameters of the log-intensity marked Cox process.

α̂ β̂ σ̂2
U

Method 1a: minimize (6.4) 14.72 -11.15 -
Method 1b: minimize (6.5) 19.46 -9.61 -
Method 2: conditional ML 14.74 -11.14 89.39
Value used in simulation 20.00 -10.00 10.00

Mark adapted kernel estimation

The adaptive kernel estimator of the intensity (6.3) is based only on the point data. Since mark
information is available, it can be utilized as well. The use of mark information in estimation of
the intensity is particularly interesting for intensity-dependently marked point processes, since
in these models the marks and intensity are closely coupled. The following algorithm introduces
a new adaptive kernel estimator. It assumes Exi

[m(xi)|Λ(xi)] = α + β log(Λ(xi)), where α and
β are the parameters to be estimated. The estimation is sensitive to this assumption, and
therefore, it should not be used for model selection.

Algorithm 6.1. (mark adapted kernel estimation)

1. Find a (pilot) estimate of the intensity, Λ̂0(s), which satisfies Λ̂0(xi) > 0 for all xi ∈ N .

2. Estimate the parameters α and β by minimizing (6.4) with Λ = Λ̂0. Let α̂0 and β̂0 stand
for the obtained estimates.

3. Calculate new estimates for the intensity at locations xi ∈ N by

Λ̂1(xi) = exp

(
m(xi)− α̂0

β̂0

)
. (6.8)

4. Calculate the local bandwidth factors wi by

wi =

{
Λ̂1(xi)

g

}−ξ

, (6.9)

where g is the geometric mean of the Λ̂1(xi) and 0 ≤ ξ ≤ 1 is a sensitivity parameter.

5. Calculate new intensity estimates Λ̂A,m(xi) for all xi ∈ N using the weights (6.9) in the
adaptive kernel estimator (6.3) and the Epanechnikov kernel (6.2), for example.

6. Estimate the parameters α and β by minimizing (6.4) with Λ̂A,m(xi), xi ∈ N . Let α̂1 and
β̂1 stand for the new estimates.

7. Iterate steps 3-6, if required.
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If estimates for α and β are calculated by minimizing (6.5) (instead of (6.4)), then (6.8) in
Algorithm 6.1 must be replaced by

Λ̂1(xi) = exp

(
Λ̂0(xi) · m(xi)− α̂0

β̂0

)
.

For other purposes than here, Λ̂A,m(s) may be calculated at any s ∈ W ⊆ Rd.

Often the estimates Λ̂0(xi) are obtained by simple kernel estimation with fixed bandwidth h.
Indeed, here the estimates obtained by Method 1a (see Table 6.1) are used as α̂0 and β̂0. These
estimates are further used in (6.8) to obtain new intensity estimates Λ1(xi), which are then
used as pilot estimates in adaptive kernel estimation. The idea is, that Λ1(xi) are expected to
provide more variation to the weights (6.9) than Λ̂0(xi).

The estimates of α and β are expected to stabilise after a few iterations of Algorithm 6.1. In
fact, referring to Scott (1992) and Silverman (1986), using a nonadaptive pilot estimate for
the intensity in adaptive kernel estimation should be adequate and the adaptive kernel method
is insensitive to the fine detail of the pilot estimate. Accordingly, one iteration (steps 1 − 6)
should be enough. This seems to be relevant for estimation of the intensity and the parameters
α and β.

The procedure described above is applied to the simulated data. First, in addition to intensity
estimates Λ̂(xi) obtained by (6.1), the adaptive kernel estimates Λ̂A(xi) (without mark informa-
tion) are calculated through (6.3) with the Epanechnikov kernel and the pilot estimates Λ̂(xi).
Methods 1a and 1b are employed both with Λ̂(xi) and Λ̂A(xi) yielding estimates (α̂0, β̂0) and
(α̂A, β̂A), respectively, see Table 6.2. Further, Algorithm 6.1 is executed with k = 1, . . . , 10
iterations. This gives estimates (α̂k, β̂k) for k = 1, . . . , 10. The estimates for k = 1, 5, 10 are
shown in Table 6.2.

Table 6.2: Estimates for the parameters α and β of the log-intensity marked Cox process.

α̂0 β̂0 α̂A β̂A α̂1 β̂1 α̂5 β̂5 α̂10 β̂10

Method 1a 14.25 -11.15 23.09 -7.89 20.06 -8.90 22.26 -8.03 22.30 -8.01
Method 1b 19.46 -9.61 33.09 -5.06 17.89 -10.17 17.93 -10.15 17.93 -10.15

Estimates α̂0 and β̂0 obtained by Method 1b (minimize (6.5)) are close to the ones used in
simulation, whereas estimates α̂A and β̂A are not satisfactory. Algorithm 6.1 instead seems to
lead to reasonable estimates. The estimates obtained by Method 1b stay the same after four
iterations and the estimates obtained by Method 1a (minimize (6.4)) are also approximately
the same (up to one decimal) after five iterations. Method 1b compared to Method 1a seems
to produce slightly better results in this particular case. Of course, this simulation study is
very limited and not clear conclusions can be drawn. However, Figure 6.1 clearly points out
the improvement made in the estimation of the intensity, which was the main purpose of the
adaptive method. It is clear that Λ̂1(xi) is closer to the ’true’ intensity Λ(xi) than Λ̂(xi) or
Λ̂A(xi). The adaptive kernel estimation, which uses also mark information, performs well in
the estimation of the high intensity values where the other kernel estimations are not so good.
For k = 5, 10 iterations the relationship between Λ̂k(xi) and m(xi) is even closer to that of
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Λ(xi) and m(xi), but this improvement does not seem to have a strong effect on the estimates
of α and β anymore. The use of mark information decreases also correlation in the residuals
m(xi) − α̂t − β̂t log(Λ̂t(xi)), where α̂t and β̂t are the estimates obtained using Λ̂t(xi). The
variance σ2

U could be estimated from these residuals.
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Figure 6.1: The marks m(xi) of the realisation of the log-intensity marked Cox process plotted
against the estimated intensities Λ̂(xi), Λ̂A(xi), Λ̂1(xi), Λ̂5(xi) and Λ̂10(xi) and the true intensity
Λ(xi), xi ∈ N .

6.2 Minimum contrast estimation

The minimum contrast estimation is a general procedure, see e.g. Diggle (1979), Diggle (1981),
Møller et al. (1998), Diggle (2003, p. 86) and Illian et al. (2008, p. 451). It is also applicable
for marked point processes. The idea is to minimize a discrepancy measure between a chosen
(functional) theoretical characteristic S(r; θ) and its empirical version Ŝ(r) with respect to the
unknown parameter vector θ. The minimization leads to an estimate for θ. It is demanded,
that either a formula for S(r; θ) is known up to the model parameters or it can be obtained
through simulation. Here the method is suggested to be applied in two steps to conditionally
marked log Gaussian Cox processes.

More precisely, the suggested two-step method, called Method 3 in what follows, estimates first
the parameters of the log Gaussian Cox process, and then the parameters of the marking equa-
tion conditional on the estimated log Gaussian Cox process. In the first step, the log Gaussian
Cox process is estimated using existing methods: in this study the minimum contrast method
(Møller et al., 1998; Møller and Waagepetersen, 2004; Illian et al., 2008) and an approximative
likelihood method (Tanaka et al., 2008; see also Illian et al., 2008) are employed. The second
step uses the minimum contrast method applied to the mark variogram.
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One could apply the minimum contrast method to some other mark characteristic (see Table
2.1), but the choice of the mark variogram was made based on the following arguments: Ac-
cording to Schlather et al. (2004), there may be two different models with the same Stoyan’s
kmm(r)-function even if their Cm(r)-functions differ. Therefore, Cm(r) should be preferred to
kmm(r). However, γm(r) = V (r) − Cm(r) and also in geostatistics the covariance parameters
are often estimated by fitting a variogram model instead of the covariance function. Of course,
further studies would be necessary to justify the goodness of this choice. For us, the model
fitting using the suggested minimum contrast method serves as a tool in identifying a suitable
model for data. Then one can proceed with more advanced analysis using the Bayesian method
introduced in Section 6.3.

The following section recalls the minimum contrast estimation for log Gaussian Cox processes
and discusses also other estimation methods presented for log Gaussian Cox processes. Sec-
tion 6.2.2 introduces the estimation of the marking parameters using the minimum contrast
estimation and Section 6.2.3 modifies the method for the particular markings.

6.2.1 Estimation of log Gaussian Cox processes

For the estimation of the parameters of a log Gaussian Cox process, Møller et al. (1998) rec-
ommends the use of a minimum contrast estimation applied to the covariance function CZ(r)
(see also Illian et al., 2008): If ĈZ(·) is a non-parametric estimator of the covariance function
and CZ(r; θ) a parametric model for the covariance function, then minimize

∫ a0

ε

{
ĈZ(r)η − CZ(r; θ)η

}2

dr (6.10)

with respect to the parameter vector θ, including the variance σ2
Z , using values 0 ≤ ε < a0 and

η > 0 specified by the user. In computation, the integral (6.10) is approximated by a Riemann
sum. Further, the intensity is estimated by

λ̂ =
n

νd(W )
, (6.11)

where n is the number of points in an observation window W ⊂ Rd and νd(W ) is the volume
of W . An estimate for the mean of the random field {Z(s)} is obtained thereafter by

µ̂Z = log(λ̂)− σ̂2
Z

2
, (6.12)

where σ̂2
Z is the minimum contrast estimator of the variance.

It is also possible to use L(r)-function (or another cumulative characteristic) in parameter
estimation. Guan and Sherman (2007) studies the minimum contrast estimation in terms of
Ripley’s K-function. In our simulation experiments, following the recommendation in Illian
et al. (2008, p. 451), we use the (non-cumulative) g(r)-function (or CZ(r)).

There are other competitive alternatives for the estimation of the log Gaussian Cox process. One
can use composite likelihood method (Guan, 2006), approximative maximum likelihood method
(Tanaka et al., 2008; see also Illian et al., 2008) or Bayesian method (Møller and Waagepetersen,
2004). In this work, the focus is in the estimation of the conditional mark distribution, and
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thereby, the minimum contrast method, being a computationally easy approach, is applied to
the log Gaussian Cox process. We also utilise the approximative maximum likelihood method
in Section 6.2.3. In this estimation, the strategy explained in Tanaka et al. (2008) and Illian
et al. (2008, p. 448) is used to estimate the parameters of CZ(r; θ), and thereafter, estimates
for λ and µZ are obtained from (6.11) and (6.12), respectively.

6.2.2 Minimum contrast estimation applied to the mark variogram

The parameters of the marking equations are estimated by minimizing the integral
∫ a0

ε

{γ̂m(r)η − γm(r; θM)η}2 dr (6.13)

with respect to the mark parameter vector θM . Here the empirical variogram γ̂m(r) is compared
with its (parametric) theoretical counterpart γm(r; θM) known up to the marking parameters,
and 0 ≤ ε < a0 and η > 0 are again values specified by the user. The parameters of the
log Gaussian Cox process in γm(r; θM) are considered fixed (known) and, especially, CZ(r) is
approximated either by a non-parametric estimate ĈZ(r) or by a parametric estimate CZ(r; θ̂).
The latter is, for example, the exponential covariance function CZ(r; θ) = σ2

Z exp{−r/φZ} with
estimates of θ = (σ2

Z , φZ) plugged in, but this choice depends on the data to be analysed.

6.2.3 A simulation experiment

A simulation experiment is here performed for illustrating the parameter estimation methods
of Sections 6.1.2 and 6.2.2. Particularly, the objective is to clarify how the Method 3, that is
the minimum contrast method based on (6.13), can be implemented for specific markings. For
comparison, also Methods 1 and 2 (see Section 6.1.2) are applied to simulated data. A more
comprehensive simulation study for conditionally marked models is performed in Section 6.4.

One realisation of a log Gaussian Cox process N = {xi} is simulated in a window of size
200×200 in Example 4.1. Further, in Examples 4.1, 5.1 and 5.2, the point process is marked
by the following marking models from 1 to 4:

m(1)(xi)|Λ(xi) ∼ Exp(1/(30 + 0.8/Λ(xi)))

m(2)(xi)|Λ(xi) ∼ Gamma(0.5, 1/(30 + 0.8/Λ(xi)))

m(3)(xi)|Λ(xi) ∼ N(20 + 0.2/Λ(xi), 0.5
2/Λ(xi) + 22)

m(4)(xi)|Λ(xi) ∼ N(20− 10 log(Λ(xi)), 10).

The obtained marked point patterns are used as synthetic data sets.

First a log Gaussian Cox process is fitted to the simulated data. The exponential covari-
ance function is fitted by means of the minimum contrast method (for short MinC) using the
argument range (0.25, 25.00) and η = 1/2 as in Møller et al. (1998). These estimates and, ad-
ditionally, those obtained by the approximative maximum likelihood method (for short AML)
are shown in Table 6.3. These estimates are very similar, but differ slightly from the ones used
in simulation. The estimates affect the estimation of the mark parameters by Method 3.
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Table 6.3: Estimation results for the log Gaussian Cox process simulation.

σ̂2
Z φ̂Z µ̂Z λ̂

MinC 1.35 7.20 -3.94 0.038
AML 1.32 7.48 -3.93 0.038
Value used in simulation 1.50 6.00 -4.00 0.039

The estimates Λ̂(xi) for xi ∈ N are obtained by (6.1) with Epanechnikov kernel and bandwidth
10. These are used in the estimation by Methods 1 and 2 and in the cusp-point method for
Marking 3 (explained below). Note that Method 1 is especially considered for Marking 4 in
Section 6.1.3.

Marking 1. The parameters a and b of the exponential intensity-marked Cox process are
estimated by minimizing (6.13) with α = 1, ε = 0.25, a0 = 30 and η = 1. Minimization is
performed both with the parameters of the log Gaussian Cox process (for short LGCP) obtained
by the minimum contrast method and by the approximative maximum likelihood, and both
with ĈZ(r) and CZ(r; θ̂). In this experiment, CZ(r; θ̂) is very close to ĈZ(r) and, consequently,
all the estimates are almost the same. Changing η = 1 to η = 1/2 does not affect the estimates
much in this case. The estimates of Methods 2, 1a and 1b are obtained by maximizing (6.6)
and by minimizing (6.4) and (6.5), respectively (all with α = 1). All the estimates are shown
in Table 6.4.

Table 6.4: Estimates for the mark parameters of the exponential marking.

â b̂ Model for Estimation
points method

Method 1a: minimize (6.4) 29.67 0.97 -
Method 1b: minimize (6.5) 26.48 1.05 -
Method 2: conditional ML 30.86 0.91 -
Method 3a: MinC with ĈZ(r) 33.21 0.79 LGCP MinC
Method 3b: MinC with CZ(r; θ̂) 32.33 0.80 LGCP MinC
Method 3c: MinC with ĈZ(r) 33.18 0.80 LGCP AML
Method 3d: MinC with CZ(r; θ̂) 32.14 0.83 LGCP AML
Value used in simulation 30.00 0.80

Theoretical mark characteristics with estimated parameters have been compared visually by
plotting them with their empirical counterparts. The estimation based on the mark variogram
(Method 1) seems to give the best fit with respect to mark characteristics of Table 2.1. Note
that Methods 1a and 1b (and 2, not shown in the figure) do not utilize CZ(r, θ̂) in estimation.

Marking 2. Assuming the shape parameter α to be known, the gamma intensity-marked Cox
process is estimated in the same way as the exponential model with the difference that now
α = 0.5. These estimates are shown in Table 6.5. The estimation results have again been
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Figure 6.2: Mark summaries (dots) calculated from the realisation of the exponential intensity-
marked Cox process of Figure 5.3 and their theoretical counterparts with estimated parameters
â, b̂ and CZ(r; θ̂). The thick solid line corresponds to Method 3b, the thin solid line to Method
3a, the dashed line to Method 1a and the dotted line to Method 1b.

compared visually in terms of the second-order mark characteristics of Table 2.1, and Method
3 (a, b, c, d) seems to give the best fit in this experiment, see Figure 6.3.

Table 6.5: Estimates for the mark parameters of the gamma marking with fixed α = 0.5.

â b̂ Model for Estimation
points method

Method 1a: minimize (6.4) 31.71 0.84 -
Method 1b: minimize (6.5) 41.20 0.60 -
Method 2: conditional ML 24.63 1.21 -
Method 3a: MinC with ĈZ(r) 30.24 0.70 LGCP MinC
Method 3b: MinC with CZ(r; θ̂) 28.93 0.73 LGCP MinC
Method 3c: MinC with ĈZ(r) 30.19 0.71 LGCP AML
Method 3d: MinC with CZ(r; θ̂) 28.81 0.75 LGCP AML
Value used in simulation 30.00 0.80

Marking 3. For the marking (5.5), direct optimization of the integral (6.13) is problematic
and, in addition, the model parameter a does not exist in the equation. A more stable solution,
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Figure 6.3: Mark summaries (dots) calculated from the realisation of the gamma intensity-
marked Cox process of Figure 5.5 (α = 0.5) and their theoretical counterparts with estimated
parameters â, b̂ and CZ(r; θ̂). The thick solid line corresponds to Method 3b, the thin solid line
to Method 3a, the dashed line to Method 1a and the dotted line to Method 1b.

and also an estimate for a, is achieved by first estimating the parameters a and d2 as the mean
and variance of the marks in regions with high intensity. The point locations in high intensity
can be determined by a cusp-point method: Calculate the mean and the variance of the marks
in Hh = {[xi; m(xi)] ∈ Nm : Λ̂(xi) ≥ h} for several values of h. Then, choose a cusp-point
h = h0 for which the mean and variance are approximately constant for values h ≥ h0. The
mean and variance of marks in Hh0 yield the estimates. Here h0 = 0.25 gives the following
estimates for a and d (value used in simulation are given in parentheses): â = 20.32 (20.00)
and d̂ = 1.87 (2.00).

Considering d̂2 as a fixed value for d2 (and â for a), the parameters b and c are estimated by
minimizing (6.13) with ε = 0.25, a0 = 30 and η = 1/2 (Method 3). Further, the conditional
maximum likelihood method (Method 2) is applied. In principle, this method can be used for
the marking (5.5) as such to obtain estimates for a, b, c and d if good estimates for Λ(xi),
xi ∈ N , exist. However, it seems, according to our limited experience, that better estimates
are obtained if the estimates â and d̂ obtained by the cusp-point method are used and (6.6)
is maximized with fixed a and d to obtain estimates for b and c. This is a consequence of
sensitivity to the obtained values of intensity. The estimates of b and c obtained by Methods 2
and 3 are shown in Table 6.6.

Again mark summaries have been compared visually with their theoretical counterparts of Table
2.1. With respect to these characteristics, Method 3 seems to give the best estimates for b and
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c, see Figure 6.4. However, with this simulated data, the estimates closest to the ones used in
simulation are obtained by Method 2.

Table 6.6: Estimates for the parameters b and c of the Gaussian marking.

b̂ ĉ Model for Estimation
points method

Method 2: conditional ML 0.19 0.51 -
Method 3a: MinC with ĈZ(r) 0.20 0.76 LGCP MinC
Method 3b: MinC with CZ(r; θ̂) 0.21 0.69 LGCP MinC
Method 3c: MinC with ĈZ(r) 0.21 0.78 LGCP AML
Method 3d: MinC with CZ(r; θ̂) 0.22 0.70 LGCP AML
Value used in simulation 0.20 0.50
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Figure 6.4: Mark summaries (dots) calculated from the realisation of the Gaussian intensity-
marked Cox process of Figure 5.1 and their theoretical counterparts with estimated parameters
â, b̂, ĉ, d̂ and CZ(r; θ̂). The thick solid line corresponds to Method 3b, the thin solid line to
Method 3a and the dashed line to Method 2.

Similar estimation procedure may be considered for the Gaussian intensity-marked Cox process
(5.3), but the parameters a and d2 must be estimated as the mean and variance of the marks
in the regions with low intensity.
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Marking 4. The parameters of Marking 4 to be estimated are α, β and σ2
U . The mark

variogram (4.6) for this model with uncorrelated errors is

γm(r; θM) = β2σ2
Z + σ2

U − β2CZ(r) for r > 0

and, therefore, the parameters β and σ2
U can be estimated by Method 3. In addition, the

parameter α must be estimated. This estimation can be conducted through the mean mark
or the E(r)-function, for example. The former uses first-order information, whereas the latter
utilizes the second-order distributional property of marks. That is, the mean mark is estimated
by

µ̂m =
1

n

n∑
i=1

m(xi),

and the obtained estimate is then placed into the formula µm = α + βµZ + βσ2
Z . Then

α̂ = µ̂m − β̂(µ̂Z + σ̂2
Z) (6.14)

is obtained. Alternatively, an estimate for α is obtained by minimizing∫ a0

ε

{
Ê(r)η − E(r; α)η

}2

dr (6.15)

where 0 ≤ ε < a0 and η > 0 are parameters specified by the user and E(r; α) = α + β̂(µ̂Z −
σ̂2

Z + C̃Z(r)), where C̃Z(r) = ĈZ(r) or C̃Z(r) = CZ(r; θ̂).
The integral (6.13) with ε = 0.25, a0 = 30 and η = 1 is minimized. These estimates are shown
in Table 6.7. The estimate β̂ = −10.50 is further used in estimation of α by (6.14) and (6.15).
Since µ̂m = 45.89, (6.14) gives α̂ = 18.65, and minimization of (6.15) yields estimates α̂ = 18.98
and α̂ = 18.46 with C̃Z(r) = ĈZ(r) and C̃Z(r) = CZ(r; θ̂), respectively. (The true value used
in simulation is α = 20.) The fit with respect to mark characteristics is shown for parameter
values β̂ = −10.50, σ̂2

U = 16.03 (obtained by Method 3b) and α̂ = 18.46 in Figure 6.5.

Table 6.7: Estimates for the parameters β and σ2
U of the log-intensity marked Cox process.

β̂ σ̂2
U Model for Estimation

points method

Method 3a: MinC with ĈZ(r) -10.50 15.87 LGCP MinC
Method 3b: MinC with CZ(r; θ̂) -10.50 16.03 LGCP MinC
Method 3c: MinC with ĈZ(r) -10.50 19.45 LGCP AML
Method 3d: MinC with CZ(r; θ̂) -10.60 17.94 LGCP AML
Value used in simulation -10.00 10.00

6.3 Bayesian modelling

Assume that a realisation of an intensity-dependently marked log Gaussian Cox process,
{[xi; m(xi)]; i = 1, . . . , n}, denoted by [X, M ], is observed in a window W ⊂ R2. (A gener-
alization to Rd can be obtained straightforwardly.) The objective is to fit the model to the
observed data [X, M ], the interest being especially in the marking.
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Figure 6.5: Mark summaries (dots) calculated from the realisation of the log-intensity marked
Cox process of Figure 4.2 and their theoretical counterparts (solid lines) with estimated pa-
rameters α̂ = 18.46, β̂ = −10.50, σ̂2

U = 16.03 and CZ(r; θ̂) (θ̂ obtained by MinC).

In the marking models of Sections 4 and 5, the marks depend on the underlying (Cox) point
process though its (random) intensity {Λ(s)}. This intensity is assumed to be log Gaussian,
that is Λ(s) = exp(Z(s)), and it is characterized by the mean and the covariance function of the
Gaussian random field {Z(s)}. The mean and the covariance property affect the values of the
intensity, of course, but the intensity itself contains large variation. Taking this into account,
we suggest an empirical Bayesian estimation method where the mean and the parameters of
covariance function are estimated from the point data. These parameters are hyperparameters
of the conditionally marked log Gaussian Cox model. Markov chain Monte Carlo (MCMC)
methods are then used for posterior simulation of the intensity and the marking parameters.
The mean and covariance parameters of {Z(s)}, that is the parameters of a log Gaussian Cox
process, can be estimated using one of the known methods, see Section 6.2.1 and references
there.

We experimented with a fully Bayesian method for the intensity-dependently marked log Gaus-
sian Cox process, but this approach seems to be unstable. Møller and Waagepetersen (2002,
p. 53), Møller and Waagepetersen (2003, p. 168) and Møller and Waagepetersen (2004) report
disadvantages also in the estimation of the (non-marked) log Gaussian Cox process. The marked
model may be over-parametrized due to the covariance parameter controlling the smoothness
of the random field and due to the range parameter. This leads to unstable posterior MCMC
computation. The problem is bypassed by estimating the covariance function from point data,
which essentially leads to an empirical Bayesian procedure.
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Conditional on {Z(s)} or {Λ(s)}, the likelihood of the log Gaussian Cox process is the one of
an inhomogeneous Poisson process,

p({xi : i = 1, . . . , n}|{Λ(s)}) =

[
n∏

i=1

Λ(xi)

]
exp

{
−

∫

W

Λ(s)ds

}
, (6.16)

see e.g. Daley and Vere-Jones (2003). The conditional likelihood for the conditionally marked
log Gaussian Cox process is

p([X,M ]| θM , {Z(s)}) =

[
n∏

i=1

[
Λ(xi)fm|Λ(m(xi)|Λ(xi))

]
]

exp

{
−

∫

W

Λ(s)ds

}
, (6.17)

where Λ(s) = exp(Z(s)), fm|Λ(m(xi)|Λ(xi)) is the parametric density of the conditional mark
distribution of the mark m(xi) at xi ∈ N given the intensity Λ(xi), and θM is the parameter
vector of this density.

The prior for the marking parameters θM must be set according to the marking model and the
application; some alternatives are presented in Sections 6.4 and 6.5. The prior distribution of
{Λ(s)} is determined by the model choice, which here implies that Λ(s) = exp(Z(s)) for s ∈ W ,
where {Z(s)} is a Gaussian random field with mean µZ and covariance function CZ(r).

In an empirical Bayesian approach, µZ and CZ(r) are estimated from the point data using
one of the well-known methods mentioned above. The estimation of CZ(r) provides, that a
suitable parametrized covariance function CZ(r) is chosen: in our simulation experiments and
the rainforest application the Matérn covariance function

CZ(r) = σ2
Z · 21−νΓ(ν)−1(r/φZ)νKν(r/φZ) for r > 0, ν > 0, (6.18)

where Kν is the modified Bessel function, is employed. It defines a generic class of Gaussian
random field models, where the parameter ν controls the roughness of the realisations of random
fields. Other parameters are the variance σ2

Z and the scale parameter φZ . The latter controls
the range of correlation. These parameters are estimated from the point data.

In the implementation, {Z(s)} is approximated by a discrete Gaussian random field defined
on a partition of W into disjoint rectangular sets of equal size A, called pixels, with centre
points s1, . . . , sk forming a grid G on W . The values of {Z(s)} on G are needed in the MCMC
simulation for approximating the integral

∫
W

Λ(s)ds in the likelihood (6.17):

∫

W

Λ(s)ds =

∫

W

eZ(s)ds ≈ A

k∑
i=1

eZ(sj). (6.19)

Because the marks depend on the intensity through Λ(xi), i = 1, . . . , n, the Gaussian random
field is also considered at the points xi in the MCMC simulation. Note that the values Z(xi) at
the observed points xi are not used in (6.19), because {Z(xi) : i = 1, . . . , n} is not an unbiased
sample of {Z(s)}. Therefore, let Z = (Z(x1), . . . , Z(xn), Z(s1), . . . , Z(sk)). This vector Z
replaces {Z(s)} in posterior simulation. The prior distribution of Z, denoted hereafter by
p(Z), is the (n + k)-dimensional normal distribution with mean µZ and covariance matrix ΣZ

defined by CZ(r) and the distances between the locations x1, . . . , xn, s1, . . . , sk. The parameters
of Z are fixed, hence the covariance matrix is fixed over simulations, too.
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The latent vector Z is included in the set of unknowns and its values will be updated in the
MCMC runs. Therefore, the posterior to be simulated is

p(θM , Z|[X, M ]) ∝ p(θM)p(Z)p([X, M ]| θM , Z) .

We update the parameters in the order θM , Z, where each value of θM and Z is updated one by
one using Metropolis-Hastings steps. This requires specification of the proposal distributions for
θM and Z(·)s. Thereafter, the acceptance probabilities can be easily calculated. Alternatively,
the Langevin-Hastings algorithm (see e.g. Møller et al., 1998, Møller and Waagepetersen, 2004)
or block-updates (Rue and Held, 2005) could be used for updating the values of Z. These may
lead to faster algorithms.

The Bayesian estimation results in the posterior distribution for the unknowns. In our im-
plementation, the values of the marking parameters are stored, whilst Z(xi) and Z(sj) are
recorded for examination only with two different values of i and j sampled from {1, 2, . . . , n}
and {1, 2, . . . , k}, respectively.
Because the intensity surface is usually assumed to be smooth and the marks depend on {Λ(s)}
only at xi, i = 1, . . . , n, we conclude that the grid G may not need to be very dense. However,
if the objective is to predict the unobserved Gaussian random field or the intensity process,
a dense grid is recommended. In this sense, our empirical Bayesian approach extends the
method presented by Møller et al. (1998, p. 472) by using information also about marks in the
calculation of the posterior distribution of the intensity field. An approximation of the intensity
surface can be obtained as the posterior mean of exp(Z(sj)), j = 1, . . . , k, from the posterior
simulation.

6.4 A simulation study

Six realisations of a log Gaussian Cox process are simulated in a window W of size [0, 200] ×
[0, 200] using variable parameter combinations. These point processes are further marked using
different intensity-dependent marking models with varying parameters. The obtained marked
point patterns are used as synthetic data sets and their parameters are estimated using the
empirical Bayesian approach of Section 6.3 to demonstrate the functionality of posterior com-
putation.

We consider a Gaussian random field {Z(s)} with mean µZ = −4.5 and Matérn covariance
function (6.18) with variance σ2

Z = 1 and values ν = 0.5, 1.0, 1.5 of the roughness parameter.
In addition, the values φZ = 5 and φZ = 10 are addressed to the scale parameter φZ in (6.18).
The expected number of points in each point process is 733. The point processes are marked by
the marking models (5.8) and (5.5). We consider the parameter values a = 30 and b = 0.5, 1.0,
totally 12 marked point patterns, for the exponential marking (5.8). For the Gaussian marking
(5.5), the following parameter values are considered: a = 30, b = 0.2, 0.5, c2 = 0.25, 1.0 and
d2 = 16. This study design leads to 24 different Gaussian intensity-marked processes.

Assuming that Nm is observed, the parameters of the intensity-marked log Gaussian Cox pro-
cesses are estimated using the method described in Section 6.3. First, the parameters σ2

Z and
φZ are estimated from the point data using the minimum contrast method: the equation (6.10)
is minimized with ε = 0.5, a0 = 30, η = 1 and fixed ν (which is assumed known) and an
estimate for µZ is obtained thereafter by (6.12). The estimated mean and covariance function
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are then used in the prior distribution of Z. Second, the intensity and the mark parameters are
estimated using the Bayesian approach. For evaluating the sensitivity of the proposed method
to the parameters of the log Gaussian Cox process, the (fully) Bayesian analysis for estimat-
ing a and b is performed also with the (known) true mean and covariance of Z. That is, the
parameter values (µZ , σ2

Z , φZ) used in simulation enter the prior of Z.

The prior distributions for θM are set according to the marking model. We consider the following
prior distributions for the exponential marking (5.8): a ∼ N(30, 1002), b ∼ Gamma(Ab, Bb), a
and b independent. The values Ab = 0.0625, 0.25 and Bb = 0.125, 0.25 are used corresponding
to b = 0.5, 1.0, respectively. By this prior choice, the parameter b is restricted to be positive
(but a is not). For the Gaussian marking (5.5), the following prior distributions are considered:
a ∼ N(30, 102), b ∼ Gamma(Ab, Bb), c2 ∼ Unif(0, 3) and d2 ∼ Gamma(16, 1), where the values
Ab = 0.04, 0.25 and Bb = 0.2, 0.5 are used corresponding to b = 0.2, 0.5, respectively. It is
assumed that a, b, c2 and d2 are independent a priori.

The proposal distributions must be specified. Let a, b, c2, d2 and Z be the current values in
the MCMC chains and let ∗ refer to the proposal. The following proposal distributions are
considered for the exponential model:

a∗ ∼ N(a, σ2
aq),

b∗ ∼ Unif(max(0, b− δb), b + δb),

Z∗(·) ∼ N(Z(·), σ2),

where σaq = 5.0, δb = 0.3, and σ = 1.5, 1.1, 0.7 corresponding to ν = 0.5, 1.0, 1.5, respectively.
In addition, we use the proposal distributions

c2∗ ∼ Unif(max(0, c2 − δc), c
2 + δc),

d2∗ ∼ Unif(max(0, d2 − δd), d
2 + δd)

for the Gaussian marking (5.5). The following parameter values are used in the proposal
distributions for the Gaussian marking: σaq = 1, δb = 0.05, δd = 6.0, δc = 0.2, 0.5 corresponding
to c2 = 0.25, 1.00, and σ = 1.5, 1.1, 0.7 corresponding to ν = 0.5, 1.0, 1.5, respectively. For
approximating the integral in the likelihood (6.17), the process {Z(s)} is considered on G. We
employ 20× 20 and 40× 40 grids.

The MCMC algorithm is run for 50,000 iterations in each case, except for the Gaussian random
field model with ν = 1.5 and φZ = 10 a total of 100,000 iterations is performed. According to
our experimenting, the convergence of the MCMC algorithm becomes slower the smoother the
random field is. Initial values of a and b for the exponential marking are simulated from the
uniform distributions on the intervals (5, 50) and (0.1, 2), respectively, and for the Gaussian
marking, the initial values of a, b, c2 and d2 are simulated from their corresponding prior distri-
butions. The initial values of Z are simulated from the normal distribution with mean µZ and
covariance matrix ΣZ determined by the covariance model. These simulations of the Gaussian
random field are performed using the function GaussRF in the R library RandomFields, see
Schlather (2001b). The marginal posterior distributions of the marking parameters are de-
scribed by means of their means and standard deviations. These descriptions calculated from
the last 20,000 iterations are shown for the exponential marking in Tables 6.8 and 6.9 and for
the Gaussian marking in Table 6.10. The results obtained using the 20 × 20 grid are omitted
for the Gaussian marking.
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Table 6.8: Results for the exponential marking with a 40× 40 grid. Posterior means (standard
deviations) for the marking parameters a and b. The third column shows the parameter values
used in the prior of Z (first line: estimated; second line: values used in simulation). The value
a = 30 is used in the simulation.

µZ , σ2
Z , φZ â b̂

ν = 0.5 b = 0.5 -4.34, 0.90, 4.67 30.19 (2.95) 0.63 (0.09)
-4.50, 1.00, 5.00 31.18 (3.02) 0.59 (0.09)

b = 1.0 -4.34, 0.90, 4.67 36.35 (4.20) 0.92 (0.13)
-4.50, 1.00, 5.00 38.31 (4.06) 0.83 (0.13)

b = 0.5 -4.44, 0.81, 12.46 28.46 (3.03) 0.46 (0.08)
-4.50, 1.00, 10.00 29.84 (2.91) 0.44 (0.07)

b = 1.0 -4.44, 0.81, 12.46 31.92 (4.26) 1.06 (0.13)
-4.50, 1.00, 10.00 34.91 (4.13) 1.02 (0.13)

ν = 1.0 b = 0.5 -4.54, 0.90, 5.70 35.80 (3.28) 0.36 (0.07)
-4.50, 1.00, 5.00 35.92 (3.17) 0.37 (0.07)

b = 1.0 -4.54, 0.90, 5.70 39.40 (4.56) 0.74 (0.11)
-4.50, 1.00, 5.00 40.52 (4.58) 0.72 (0.11)

b = 0.5 -4.76, 0.74, 8.28 30.37 (4.76) 0.55 (0.09)
-4.50, 1.00, 10.00 32.06 (4.86) 0.51 (0.09)

b = 1.0 -4.76, 0.74, 8.28 20.91 (7.30) 1.14 (0.16)
-4.50, 1.00, 10.00 24.18 (6.82) 1.18 (0.16)

ν = 1.5 b = 0.5 -4.36, 0.83, 5.67 32.05 (2.83) 0.48 (0.07)
-4.50, 1.00, 5.00 32.23 (2.87) 0.49 (0.08)

b = 1.0 -4.36, 0.83, 5.67 27.22 (3.78) 0.97 (0.11)
-4.50, 1.00, 5.00 29.14 (3.51) 0.97 (0.12)

b = 0.5 -4.38, 0.82, 7.83 33.20 (2.65) 0.28 (0.05)
-4.50, 1.00, 10.00 31.93 (3.04) 0.30 (0.06)

b = 1.0 -4.38, 0.82, 7.83 28.28 (3.98) 0.91 (0.10)
-4.50, 1.00, 10.00 29.40 (3.76) 0.75 (0.08)

Table 6.9: Results for the exponential marking with a 20× 20 grid. Posterior means (standard
deviations) for the marking parameters a and b. The third column shows the parameter values
used in the prior of Z (first line: estimated; second line: values used in simulation). The value
a = 30 is used in the simulation.

µZ , σ2
Z , φZ â b̂

ν = 0.5 b = 0.5 -4.34, 0.90, 4.67 33.99 (2.76) 0.82 (0.13)
-4.50, 1.00, 5.00 35.24 (2.70) 0.79 (0.12)

b = 1.0 -4.34, 0.90, 4.67 41.85 (3.56) 1.18 (0.17)
-4.50, 1.00, 5.00 43.70 (3.54) 1.12 (0.17)

b = 0.5 -4.44, 0.81, 12.46 32.22 (2.73) 0.50 (0.09)
-4.50, 1.00, 10.00 34.17 (2.57) 0.52 (0.09)

b = 1.0 -4.44, 0.81, 12.46 38.73 (3.92) 1.23 (0.16)
-4.50, 1.00, 10.00 43.26 (3.87) 1.28 (0.18)

ν = 1.0 b = 0.5 -4.54, 0.90, 5.70 38.06 (2.92) 0.40 (0.08)
-4.50, 1.00, 5.00 39.95 (2.84) 0.39 (0.08)

b = 1.0 -4.54, 0.90, 5.70 45.17 (4.05) 0.76 (0.12)
-4.50, 1.00, 5.00 46.76 (3.83) 0.80 (0.13)

b = 0.5 -4.76, 0.74, 8.28 31.73 (4.66) 0.57 (0.10)
-4.50, 1.00, 10.00 33.16 (4.51) 0.56 (0.09)

b = 1.0 -4.76, 0.74, 8.28 28.87 (6.10) 1.14 (0.15)
-4.50, 1.00, 10.00 28.80 (5.99) 1.18 (0.15)

ν = 1.5 b = 0.5 -4.36, 0.83, 5.67 32.92 (2.72) 0.53 (0.08)
-4.50, 1.00, 5.00 34.96 (2.56) 0.50 (0.08)

b = 1.0 -4.36, 0.83, 5.67 31.28 (3.50) 0.99 (0.12)
-4.50, 1.00, 5.00 36.07 (3.20) 0.95 (0.12)

b = 0.5 -4.38, 0.82, 7.83 32.36 (2.54) 0.36 (0.06)
-4.50, 1.00, 10.00 32.64 (2.60) 0.33 (0.06)

b = 1.0 -4.38, 0.82, 7.83 31.75 (3.86) 0.95 (0.12)
-4.50, 1.00, 10.00 30.46 (3.90) 0.91 (0.11)
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Table 6.10: Results for the Gaussian marking with a 40× 40 grid. Posterior means (standard
deviations) for the marking parameters a, b, c2 and d2. The third column shows the parameter
values used in the prior of Z (first line: estimated; second line: values used in simulation). The
values a = 30 and d2 = 16 are used in the simulation.

µZ , σ2
Z , φZ â b̂ ĉ2 d̂2

ν = 0.5 b = 0.25 c2 = 0.25 -4.34, 0.90, 4.67 29.94 (0.48) 0.26 (0.02) 0.48 (0.22) 14.63 (2.57)
-4.50, 1.00, 5.00 30.21 (0.44) 0.24 (0.02) 0.50 (0.19) 14.76 (2.36)

c2 = 1.00 -4.34, 0.90, 4.67 30.06 (0.48) 0.25 (0.02) 1.16 (0.21) 15.93 (2.74)
-4.50, 1.00, 5.00 30.35 (0.47) 0.24 (0.02) 1.18 (0.22) 16.14 (2.73)

b = 0.50 c2 = 0.25 -4.34, 0.90, 4.67 29.76 (0.54) 0.63 (0.03) 0.33 (0.28) 16.63 (2.40)
-4.50, 1.00, 5.00 30.37 (0.50) 0.60 (0.03) 0.39 (0.23) 17.08 (2.34)

c2 = 1.00 -4.34, 0.90, 4.67 30.73 (0.66) 0.59 (0.03) 1.08 (0.52) 21.06 (3.84)
-4.50, 1.00, 5.00 31.14 (0.70) 0.57 (0.03) 1.16 (0.46) 21.22 (3.45)

b = 0.25 c2 = 0.25 -4.44, 0.81, 12.46 29.68 (0.53) 0.19 (0.02) 0.33 (0.12) 15.66 (2.53)
-4.50, 1.00, 10.00 30.37 (0.41) 0.18 (0.01) 0.22 (0.12) 17.53 (2.34)

c2 = 1.00 -4.44, 0.81, 12.46 30.07 (0.59) 0.20 (0.02) 0.97 (0.17) 16.53 (3.20)
-4.50, 1.00, 10.00 30.76 (0.51) 0.18 (0.02) 0.89 (0.18) 18.42 (3.16)

b = 0.50 c2 = 0.25 -4.44, 0.81, 12.46 30.21 (0.73) 0.48 (0.03) 0.75 (0.22) 11.35 (2.43)
-4.50, 1.00, 10.00 31.80 (0.59) 0.45 (0.03) 0.54 (0.26) 13.58 (2.74)

c2 = 1.00 -4.44, 0.81, 12.46 30.79 (0.74) 0.46 (0.03) 1.73 (0.30) 14.56 (3.23)
-4.50, 1.00, 10.00 32.07 (0.63) 0.44 (0.03) 1.48 (0.31) 17.95 (3.57)

ν = 1.0 b = 0.25 c2 = 0.25 -4.54, 0.90, 5.70 29.90 (0.48) 0.19 (0.01) 0.24 (0.10) 17.19 (2.42)
-4.50, 1.00, 5.00 30.36 (0.46) 0.19 (0.01) 0.17 (0.10) 18.71 (2.23)

c2 = 1.00 -4.54, 0.90, 5.70 31.36 (0.52) 0.17 (0.01) 1.15 (0.17) 16.91 (3.19)
-4.50, 1.00, 5.00 31.72 (0.51) 0.16 (0.02) 1.13 (0.19) 18.48 (3.36)

b = 0.50 c2 = 0.25 -4.54, 0.90, 5.70 30.47 (0.58) 0.46 (0.03) 0.33 (0.17) 14.77 (2.57)
-4.50, 1.00, 5.00 31.05 (0.54) 0.48 (0.02) 0.19 (0.15) 16.20 (2.45)

c2 = 1.00 -4.54, 0.90, 5.70 30.26 (0.65) 0.46 (0.03) 0.93 (0.23) 15.94 (3.27)
-4.50, 1.00, 5.00 31.11 (0.61) 0.45 (0.02) 0.77 (0.24) 18.33 (3.32)

b = 0.25 c2 = 0.25 -4.76, 0.74, 8.28 30.65 (0.63) 0.19 (0.02) 0.28 (0.08) 13.86 (2.65)
-4.50, 1.00, 10.00 30.96 (0.54) 0.18 (0.01) 0.26 (0.08) 14.72 (2.65)

c2 = 1.00 -4.76, 0.74, 8.28 30.09 (1.05) 0.18 (0.02) 1.08 (0.18) 14.06 (3.14)
-4.50, 1.00, 10.00 30.36 (0.76) 0.18 (0.02) 1.08 (0.15) 14.11 (3.25)

b = 0.50 c2 = 0.25 -4.76, 0.74, 8.28 31.69 (0.86) 0.44 (0.02) 0.24 (0.13) 16.53 (3.15)
-4.50, 1.00, 10.00 32.36 (0.76) 0.43 (0.02) 0.55 (0.14) 13.88 (2.99)

c2 = 1.00 -4.76, 0.74, 8.28 29.13 (0.80) 0.49 (0.03) 0.84 (0.19) 15.08 (3.44)
-4.50, 1.00, 10.00 29.82 (1.03) 0.47 (0.03) 0.93 (0.21) 14.81 (3.39)

ν = 1.5 b = 0.25 c2 = 0.25 -4.36, 0.83, 5.67 29.93 (0.38) 0.23 (0.01) 0.44 (0.09) 13.08 (1.99)
-4.50, 1.00, 5.00 30.08 (0.49) 0.22 (0.02) 0.26 (0.09) 15.49 (2.17)

c2 = 1.00 -4.36, 0.83, 5.67 29.28 (0.49) 0.23 (0.01) 1.13 (0.16) 16.36 (3.09)
-4.50, 1.00, 5.00 30.40 (0.43) 0.20 (0.01) 1.11 (0.17) 18.66 (3.22)

b = 0.50 c2 = 0.25 -4.36, 0.83, 5.67 30.44 (0.56) 0.50 (0.03) 1.04 (0.18) 13.62 (2.74)
-4.50, 1.00, 5.00 31.45 (0.67) 0.47 (0.03) 0.86 (0.21) 14.84 (2.88)

c2 = 1.00 -4.36, 0.83, 5.67 28.80 (0.69) 0.54 (0.03) 1.35 (0.19) 12.92 (2.77)
-4.50, 1.00, 5.00 30.84 (0.60) 0.46 (0.03) 1.43 (0.22) 13.36 (2.71)

b = 0.25 c2 = 0.25 -4.38, 0.82, 7.83 30.23 (0.42) 0.17 (0.01) 0.33 (0.07) 12.29 (1.99)
-4.50, 1.00, 10.00 30.89 (0.36) 0.13 (0.01) 0.37 (0.06) 12.47 (1.90)

c2 = 1.00 -4.38, 0.82, 7.83 29.36 (0.46) 0.18 (0.01) 0.86 (0.12) 15.79 (2.90)
-4.50, 1.00, 10.00 29.89 (0.47) 0.16 (0.01) 0.91 (0.13) 16.82 (3.22)

b = 0.50 c2 = 0.25 -4.38, 0.82, 7.83 31.54 (0.41) 0.35 (0.01) 0.51 (0.07) 10.49 (1.74)
-4.50, 1.00, 10.00 29.88 (0.46) 0.37 (0.02) 0.39 (0.07) 11.25 (2.02)

c2 = 1.00 -4.38, 0.82, 7.83 30.11 (0.50) 0.42 (0.02) 1.03 (0.13) 14.60 (2.70)
-4.50, 1.00, 10.00 29.67 (0.56) 0.40 (0.01) 0.96 (0.13) 17.15 (3.14)

Some limited conclusions can be done for the exponential marking from results shown in Tables
6.8 and 6.9. The use of the 40 × 40 grid seems to provide slightly better results than the
20× 20 grid as expected. The posterior means obtained using the 40× 40 grid are around the
values used in the simulation. Even though the priors used for a and b are quite weak, the
estimation worked well. One should note, that the normal prior used for a does not restrict
the parameter a + b/Λ(xi) of the conditional exponential distribution to be positive. This did
not cause any problems in our simulation experiments, but for real data one might prefer a
distribution truncated to the positive values instead. Using the 20× 20 grid we obtain almost
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systematically larger posterior means for the parameters a and b in these simulation experiments
than using the denser grid. The 20×20 grid may here have slightly too few grid points to obtain
reliable results. We further applied the 80 × 80 grid to the first parameter combination (the
first two lines in Table 6.8) and obtained the following posterior means (standard deviations):
â = 28.90(3.03), b̂ = 0.60(0.09) for (µZ = −4.34, σ2

Z = 0.90, φZ = 4.67) and â = 29.99(2.99),
b̂ = 0.55(0.08) for (µZ = −4.50, σ2

Z = 1.00, φZ = 5.00), which is again an improvement
compared to the results obtained by the 40× 40 grid. In general, the number of grid points is
a compromise between the precision of the approximation and computational burden.

The parameters of the log Gaussian Cox process are another source affecting the posterior
distributions of the marking parameters. On the basis of our limited experimenting, the poste-
rior distributions obtained for the mark parameters do not seem to be very sensitive to small
differences in mean and covariance parameters of the random field. Further simulation studies
are necessary for studying this effect in more detail.

The prior of b was gamma distributed emphasizing small values of b. It is a question, can one
replace this by a more non-informative alternative. Therefore, we further experimented with
a uniform prior for b using the 40 × 40 grid. We obtained â = 30.12(2.92) and b̂ = 0.64(0.09)
for the first parameter combination (the first line in Table 6.8) using the prior b ∼ Unif(0, 3.0)
and the proposal b∗ ∼ Unif(max(0, b− 0.3), min(b + 0.3, 3.0)). All the other prior and proposal
distributions were kept the same as earlier. In this experiment, the posterior of b was not
sensitive to the prior of b.

The results gathered into Table 6.10 show that the Bayesian estimation works also reasonably
well for the Gaussian marking (5.5). Similarly as for the exponential marking, we observed
that larger number of points in G produced better results, and there was a tendency to obtain
larger posterior means for the marking parameters using the 20×20 grid than using the 40×40
grid. A bit problematic point in estimation seemed to be c2. We first used a gamma prior for
c2, which for c2 = 0.25 lead to a positively skew posterior distribution (longer right tail) having
an unreasonably small mean. We replaced the gamma prior by a uniform prior, and obtained
satisfactory results, which are shown in Table 6.10. For c2 = 1.00 the estimation worked in
both cases.

We also experimented with the Gaussian model changing d2 to be 64 and it seemed to work
equally well as with smaller d2 = 16. Further, we experimented with less restrictive priors
a ∼ N(30, 1002) and d2 ∼ Gamma(1.00, 0.0625). This seemed to work fine in most of our
simulations, but the above mentioned problem for the value c2 = 0.25 increased when the
gamma prior was used.

We are concerned of the convergence of the smoothest random field structure with ν = 1.5
and φZ = 10. The convergence of the MCMC algorithm seems obvious for other parameter
combinations, but for ν = 1.5 even 100,000 iterations may not suffice. Therefore, we performed
further runs of the algorithm (adjacent to the previous ones) with 200,000 iterations for the
cases with ν = 1.5 and φZ = 10 using the 40 × 40 grid. However, the results calculated from
the last 20,000 iterations of the longer runs were very close to the previous ones. Regardless,
we would not recommend the use of a very smooth random field structure unless such choice
is highly important for some particular applications.

For comparison, we further apply the minimum contrast estimation (see Section 6.2) and
the conditional maximum likelihood method (see Section 6.1) to the simulated exponential
intensity-marked Cox processes. The estimated parameters of the log Gaussian Cox process
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enter the minimization of (6.13). Further, the minimization is performed with the values used
in the simulation. In both cases, the integral (6.13) is minimized using ε = 0.5, a0 = 30, η = 1,
and both CZ(r) (called Method 3a) and CZ(r; θ̂) (called Method 3b), see Section 6.2.2. For
Method 2 the estimates Λ̂(xi) for xi ∈ N are obtained by (6.1) with Epanechnikov kernel and
bandwidth h = 10. The obtained point estimates are shown in Table 6.11.

A clear advantage of the Bayesian approach is that it enables the calculation of uncertainties
for the parameters in terms of the posterior standard deviation (or interval) of the marginal
posterior distributions. It also otherwise performs better than Methods 2 and 3 according
to our experimenting. The minimum contrast method may be sensitive to fine details in the
covariance function CZ(r) and to the user-specified parameters (ε, a0 and η), but the results of
Table 6.11 show that it, and also Method 2, are able to give suggestive estimates.

Table 6.11: Point estimates for the exponential marking by Method 3a (MinC with ĈZ(r)) and
3b (MinC with CZ(r; θ̂)) using ε = 0.5, a0 = 30 and η = 1 in (6.13), and by Method 2 (using
the Epanechnikov kernel with bandwidth h = 10 in kernel estimation of the intensity). The
third column shows the parameter values used in the prior of Z (first line: estimated; second
line: values used in simulation). The value a = 30 is used in the simulation.

µZ , σ2
Z , φZ Method 3a: (â, b̂) Method 3b: (â, b̂) Method 2: (â, b̂)

ν = 0.5 b = 0.5 -4.34, 0.90, 4.67 (38.48, 0.47) (38.48, 0.48) (38.48, 0.49)
-4.50, 1.00, 5.00 (34.17, 0.44) (34.11, 0.46)

b = 1.0 -4.34, 0.90, 4.67 (33.68, 0.76) (30.53, 0.80) (31.03, 1.15)
-4.50, 1.00, 5.00 (33.63, 0.65) (38.00, 0.64)

b = 0.5 -4.44, 0.81, 12.46 (23.28, 0.48) (22.18, 0.49) (27.93, 0.58)
-4.50, 1.00, 10.00 (23.21, 0.45) (26.83, 0.41)

b = 1.0 -4.44, 0.81, 12.46 (24.81, 1.15) (18.61, 1.21) (29.37, 1.39)
-4.50, 1.00, 10.00 (22.99, 1.07) (30.98, 1.01)

ν = 1.0 b = 0.5 -4.54, 0.90, 5.70 (45.86, 0.27) (47.23, 0.25) (34.71 0.50)
-4.50, 1.00, 5.00 (45.99, 0.28) (47.53, 0.25)

b = 1.0 -4.54, 0.90, 5.70 (43.68, 0.59) (48.38, 0.53) (40.32, 0.90)
-4.50, 1.00, 5.00 (43.75, 0.61) (48.96, 0.54)

b = 0.5 -4.76, 0.74, 8.28 (24.55, 0.60) (19.32, 0.64) (24.98, 0.92)
-4.50, 1.00, 10.00 (23.45, 0.77) (24.98, 0.89)

b = 1.0 -4.76, 0.74, 8.28 (47.75, 0.67) (44.04, 0.70) (23.42, 1.68)
-4.50, 1.00, 10.00 (47.71, 0.86) (58.14, 0.89)

ν = 1.5 b = 0.5 -4.36, 0.83, 5.67 (24.93, 0.66) (25.10, 0.65) (29.23, 0.76)
-4.50, 1.00, 5.00 (24.70, 0.57) (29.41, 0.52)

b = 1.0 -4.36, 0.83, 5.67 (33.41, 0.92) (34.28, 0.90) (25.83, 1.39)
-4.50, 1.00, 5.00 (33.05, 0.80) (40.55, 0.72)

b = 0.5 -4.38, 0.82, 7.83 (37.34, 0.27) (36.45, 0.29) (31.11, 0.50)
-4.50, 1.00, 10.00 (37.52, 0.24) (38.22, 0.28)

b = 1.0 -4.38, 0.82, 7.83 (38.14, 0.96) (35.92, 0.99) (32.50, 1.22)
-4.50, 1.00, 10.00 (37.89, 0.85) (43.29, 0.96)

6.5 Modelling the dbh of trees in a tropical rainforest data
set

The marked point pattern of Trichilia tuberculata, shown in Figure 3.6, is here studied by the
exponential intensity-marked Cox process. The model is fitted to the data using the (empirical)
Bayesian method and its goodness-of-fit is evaluated.

First, the parameters of the log Gaussian Cox process are estimated using the minimum contrast
method applied to the pair-correlation function. The Matérn covariance function (6.18) is fitted
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using the values ν = 0.25, 0.5, 1.0, 1.5, 2.0 to obtain estimates for σ2
Z and φZ . From these the

parameter combination ν = 0.5, σ2
Z = 0.72, φZ = 12.08 minimizes the integral (6.10), where

the argument range (0.50, 30.00) and η = 1 are used. Note that the Matérn covariance function
with ν = 0.5 corresponds to the exponential covariance function CZ(r) = σ2

Z exp(−r/φZ),
r > 0. Further, we obtain an estimate µZ = −4.30.

The non-parametric estimate ĈZ(r) and the fitted covariance function are plotted in Figure 6.6.
The goodness-of-fit of the log Gaussian Cox process is evaluated by means of two other functions,
the nearest neighbour distance distribution function D(r) and the spherical contact distribution
function H(r), see for example Stoyan et al. (1995) or Illian et al. (2008). The envelopes for
the D(r)- and H(r)-functions calculated from 99 simulations of the fitted model are shown
in Figure 6.6. The functions pcf, Fest and Gest in R library spatstat have been used in
estimation, see Baddeley and Turner (2005). These functions show that the fit is satisfactory,
and therefore we continue with the analysis for the marks. The estimated parameters will enter
the prior distribution of the intensity (or Z).
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Figure 6.6: Estimated covariance function (on the left), nearest neighbour distance distribu-
tion function (in the middle) and spherical contact distribution function (on the right) of the
T. tuberculata data set of Figure 3.6 (solid lines) with the envelopes (dashed lines) calculated
from 99 simulations of the log Gaussian Cox process. The dotted line on the right is the fitted
covariance function.

Next the marking model is fitted, which is of main interest. The range of the dbh is from 10 mm
to 575 mm in the data set. The trees smaller than 10 mm have not been measured. We take the
marks to be m(xi) = dbh(xi)− 10, where dbh(xi) is the dbh of the tree at xi, and assume that
these marks origin from (5.8). We set uniform priors for the marking parameters a and b: a ∼
Unif(0, 10.0) and b ∼ Unif(0, 3.0). These are weak priors which guarantee that a+ b/Λ(xi) > 0.
The mean µZ = −4.30 and the covariance function CZ(r) = 0.72 exp(−r/12.08) are used in
the prior distribution of the intensity. Further, we use the following proposal distributions:
a∗ ∼ Unif(max(0, a− 2.0), min(a + 2.0, 10.0)), b∗ ∼ Unif(max(0, b− 0.3), min(b + 0.3, 3.0)) and
Z∗(·) ∼ N(Z(·), 1.0). The 80 × 80 grid (corresponding to a 2.5 × 2.5 grid cell) is used for
approximating the integral in the likelihood (6.17). The dense grid is especially necessary for
performing accurate model assessment.

A total of 100,000 iterations of the MCMC algorithm is run for the data set. The initial values
are simulated from Unif(0, 10) and Unif(0, 3) for a and b, respectively, and Z is initialized as
explained in Section 6.4. The marginal posterior distributions of a and b are described through
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their means, standard deviations and 90% posterior intervals. These descriptions, omitting the
first 20,000 iterations as the burn-in, are given in Table 6.12. Further, the MCMC chains for a
and b are shown in Figure 6.7. We also performed two additional runs of the algorithm using
different initial values and these separate runs gave mutually consistent results.

Table 6.12: Results for the marked point pattern of T. tuberculata with marks m(xi) =
dbh(xi)− 10. Posterior means (standard deviations) and 90% posterior intervals for the model
parameters a and b of the exponential marking. The first two columns tell the estimates for
the parameters of the log Gaussian Cox process.

ν µZ , σ2
Z , φZ â b̂

0.5 -4.30, 0.72, 12.08 0.39 (0.39) 1.04 (0.06)
0.02, 1.16 0.94, 1.15
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Figure 6.7: The plots of traces and marginal posterior distributions for the parameters a (top)
and b (bottom) of the exponential marking fitted to the marked point pattern of T. tuberculata
with marks m(xi) = dbh(xi)−10. The marginal posterior distributions are described by scaled
histograms calculated omitting the 20,000 burn-in (dbh, diameter of tree at breast height).

Model assessment is performed utilizing predictive distributions. The algorithm is run forward
50,000 iterations, where every 1000th value of (a, b, Z) is stored. For each of the obtained 49
values of a, b and Z, a realisation of the intensity-marked Cox process is simulated: First,
an inhomogeneous Poisson process is simulated in an area of size 200 m × 200 m using the
intensity exp(Z(s)), s ∈ G. Let xs

1, . . . , x
s
n be the points of this realisation. Next we simulate

Z(xs
1), . . . , Z(xs

n) conditional on {Z(s) : s ∈ G}, and the marks thereafter by (5.8) using
Z(xs

1), . . . , Z(xs
n) and the corresponding values of a and b. The conditional simulation of the

values of Z is performed using the function CondSimu in R library RandomFields, see Schlather
(2001b). From the 49 simulated marked point patterns we calculate the characteristics E(r),
V (r), κmm(r) and γm(r) (using R library MarkedPointProcess, see Schlather et al., 2004) and
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construct the minimum and the maximum envelopes from these. These envelopes are shown
in Figure 6.8 together with the mark summaries calculated from the rainforest data set. These
characteristics show that the fitted intensity and marking can provide patterns that are in
agreement with the marked point pattern of T. tuberculata.
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Figure 6.8: Mark summaries (dots) calculated from the marked point pattern of T. tuberculata
with marks m(xi) = dbh(xi)− 10 and the envelopes (dashed lines) calculated from 49 marked
point patterns simulated from the predictive distribution (dbh, diameter of tree at breast
height).

The fitted model gives important information on interactions between the conspecific trees,
which is one aspect of the forest structure. First, the point pattern of the locations of trees
shows clustering, which is modelled by the log Gaussian Cox process. The scale parameter φZ

of the Matérn covariance function (6.18) is estimated to be 12.08, which means that the spatial
correlation vanishes (is less than 0.05) approximately for distances larger than 32 m. The fitted
exponential marking shows that the tree size (dbh) depends on the local tree density. One
possible explanation for the intensity-dependence is the seed dispersal. Further discussion on
intensity-dependence can be found e.g. in Condit et al. (1992).

6.6 Discussion on intensity-dependent markings

The new markings of Section 5 for Cox processes extend the class of known marked point
process models. In the new processes, the mark distribution varies along the intensity function,
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and especially, intensity-dependence of the (conditional) mark variance is allowed. This feature
is typical in forest science data, for example, and the new models are suitable for tree-wise
forest modelling.

The heteroscedastic marking models considered here are obtained through intensity-dependent
conditional mark variance. It should be noted that alternative constructions exist such as
mark transformations. For example, if log(m(xi)) = a + bΛ(xi) + ε(xi) for xi ∈ N , then
both the conditional mean and variance of m(xi) given Λ(xi) depend on Λ(xi). The conditional
specification of heteroscedasticity is more flexible, however. The choice of the mark distribution
(5.2) is general. We have introduced normal, exponential and gamma intensity-marking keeping
our application in mind.

We go beyond the seminal paper Ho and Stoyan (2008) and suggest the use of a Bayesian
estimation method for the intensity-dependent markings. The simultaneous estimation of the
intensity and marking parameters is supposed to be especially efficient, since under the assump-
tion of intensity-dependence also the marks contain information on the intensity.

In this work, the log Gaussian Cox process is used as the model for point patterns. We prefer
the use of the log Gaussian Cox process as a reasonable starting point at this early stage of
development of marking strategies because many of its properties are analytically tractable.
The point process model enters the estimation of the intensity and the marking parameters
in the prior distribution of the intensity. Other Cox processes, such as cluster process or
Poisson/gamma random field generated Cox process (Wolpert and Ickstadt, 1998), may be
used as well.

From the point of view of applications, we have been successful in capturing the density-
dependence which exists in the rainforest data. However, there is also a need for intensity-
marked processes which allow different ranges of correlation for marks and points.

Besides the conditional markings considered in the previous chapters, other constructions are
possible for creating intensity-dependent marks. For example, efficient use of point process
transformations and generating structures (see Illian et al., 2008) can lead to interesting mark-
ing models. Some alternatives are presented in Chapters 7 and 8 of this thesis. A further
generalisation is to consider bivariate (multivariate) markings along the current setup. This
would allow to study the dependence of the marks of a tree species on the intensity of other
species, for example.

When considering marking strategies, real-world data are essential sources of new ideas. For
unmarked point pattern models no generic model family exists although Gibbs and Cox pro-
cesses together form a flexible starting point. Accordingly, it is very unlikely to find a generic
model for marked point processes. Instead, to develop a general marking strategy may be
possible.
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Chapter 7

Independent mark-dependent thinning of
geostatistically marked point processes

The models of Chapters 4 and 5 start with a log Gaussian Cox point process and the marks
are drawn from a conditional distribution which depends on the local intensity of the Cox
process. These intensity-dependently marked log Gaussian Cox processes form a flexible model
family for modelling intensity-dependence of marks, but also alternative constructions exist
for creating marked point processes with intensity-dependent marks. One such construction is
introduced in this chapter. The construction consists of two elements: geostatistical marking of
an unmarked (stationary) point process and independent mark-dependent thinning. The two
elements both have clear roles in the construction. First, the geostatistical marking creates
dependence structure to the marks. Second, the mark-dependent thinning causes dependence
between the intensity and marks.

This chapter is of theoretical nature. Properties of the new model are derived and examples
of such processes are given. Especially, it is shown that the two simple mechanisms applied
sequentially are able to create dependence between the marks and the point process.

The rest of this chapter is organized as follows. The new model is explained in Section 7.1 and
results for its characteristics are given in Section 7.2. A simulation experiment is presented in
Section 7.3 and Section 7.4 is reserved for discussion.

7.1 Mark-dependently thinned process

Let Nb = {yj} stand for a stationary and isotropic (unmarked) point process in Rd. The
point process Nb, called hereafter the base process, is subject to geostatistical marking: Let
{U(s) : s ∈ R} be a real-valued stationary and isotropic second-order random field independent
of Nb. The points of Nb are provided with marks m(yj) = U(yj) resulting in a geostatistically
marked point process Nb,U = {[yj; m(yj)]}. These marks inherit the correlation structure from
{U(s)}.
Next a model for retention probabilities is introduced. The retention probability q(m) is a
function of the mark m. It is assumed to be a strictly monotonic function of m having values
in a subset of [0, 1]. The marked point process Nb,U undergoes independent mark-dependent
thinning: each point yj with mark m(yj) = U(yj) is removed with probability 1 − q(m(yj)).
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The removal of a point is independent of removals of other points. A new point process Nm =
{[xi; m(xi)]} is obtained with {xi} ⊆ {yj} and m(xi) = U(xi). Assuming stationarity and
isotropy of Nb and {U(s)}, Nm is a stationary and isotropic process as well. Since thinning is
mark-dependent and the marks are correlated, there will be dependence between the intensity
and the marks.

7.2 First- and second-order characteristics for the thinned
model

The important summary characteristics for the new marked point process are derived in this
section. These characteristics show that the new model is able to create correlated marks
that are not independent of the unmarked point process. First, the characteristics are given
for the process Nm obtained by applying a retention function q(m) to the geostatistically
marked stationary and isotropic process Nb,U . Then, the characteristics for the specific case
q(m) = exp(−am), m > 0, a > 0, are given in Section 7.2.2. Also a simple procedure to
estimate the parameters of the model with q(m) = exp(−am) is presented.

7.2.1 General retention probability function

Assume that Nb is a stationary and isotropic point process with intensity λb > 0, second-order
product density ρ

(2)
b (r) and pair-correlation function gb(r). Further, assume that {U(s)} is a

real-valued stationary and isotropic second-order random field with mean µU , variance σ2
U and

(valid) covariance function CU(r).

First-order characteristics

The intensity of Nm is
λ = λb E[q(U(o))] , (7.1)

and the mean mark
µm =

E[U(o) q(U(o))]

E[q(U(o))]
=

λb

λ
E[U(o) q(U(o))] . (7.2)

The proofs for (7.1) and (7.2) are applications of the Campbell theorem (Stoyan et al., 1995,
p. 103). Expressing the intensity of Nm in terms of the base process Nb conditioning by {U(s)},
using the Campbell theorem and stationarity, both of Nb and {U(s)}, the formula (7.1) is
obtained for the intensity:

λ = E


 ∑

[xi; mi]∈Nm

1[0,1]d(xi)


 = E


E


 ∑

yj∈Nb

1[0,1]d(yj)q(U(yj))
∣∣∣{U(s)}







= E
(

λb

∫
1[0,1]d(y)q(U(y))νd(dy)

)
= λb

∫
1[0,1]d(y)E[q(U(y))]νd(dy)

= λbE[q(U(o))]

∫
1[0,1]d(y)νd(dy) = λbE[q(U(o))] ,
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where νd is the d-dimensional Lebesgue-measure. The mean mark (7.2) is obtained through
the formulas (2.1), (2.2) and (2.3): Using the same arguments as above, the mean number of
points in a Borel set B ⊂ Rd with mark in L satisfies

E[Nm(B × L)] = E


 ∑

[xi; mi]∈Nm

1B(xi)1L(mi)




= E


E


 ∑

yj∈Nb

1B(yj)1L(U(yj))q(U(yj))
∣∣∣{U(s)}







= E
(

λb

∫

B

1L(U(y))q(U(y))νd(dy)

)

= λb

∫

B

E[1L(U(y))q(U(y))]νd(dy)

= λb νd(B)E[1L(U(o))q(U(o))] .

Therefore, the mark distribution is

M(L) =
E[1L(U(o))q(U(o))]

E[q(U(o))]
=

λb

λ
E[1L(U(o))q(U(o))] .

and the mark probability density function

fm(m) =
q(m)fU(m)

E[q(U(o))]
=

λb

λ
q(m)fU(m) ,

where fU is the density function of U(o). Thus, the mean mark (7.2) follows.

The above derivations of the intensity and the mean mark are under the geostatistical marking.
Similar formulas can be derived for these characteristics under the case where the marking
of the base process is not specified. These apply the Campbell theorem (Stoyan et al., 1995,
p. 106) for marked point processes, see Section 8.2 and the proofs for the intensity and the mean
mark there.

Conditional on {U(s)}, the intensity of the thinned process is

λ(s) = λbq(U(s))

and the mark m(xi) = U(xi) for xi ∈ N . Vice versa, assuming q−1 exists,

m(x) = q−1

(
λ(x)

λb

)
.

Therefore, in realisations, the intensity and the marks are dependent.

The intensity-dependent markings of Chapters 4 and 5 are all for the log Gaussian Cox process
and they are defined conditional on the intensity. A similar expression can be obtained for the
model considered here if a Cox process is assumed. Suppose that Nb is a Cox process driven
by the random intensity function {Λb(s)}. As above, {U(s)} is a random field independent of
Nb and, therefore, the transformed random field {q(U(s))} is also independent of Nb. Then,
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conditional on {q(U(s))}, independent thinning of the points in Nb with retention probabilities
{q(U(s))} results in a Cox process. The intensity function of the obtained Cox process is

Λ(s) = Λb(s) q(U(s)),

see Møller and Waagepetersen (2004, p. 58). If also {Λb(s)} is fixed (that is {Λ(s)} is fixed),
then the relation between the marks and intensity can be obtained in the case q−1 exists:

m(x) = q−1

(
Λ(x)

Λb(x)

)

provided that Λb(x) > 0.

Second-order characteristics

The second-order behaviour of Nm is explained by the pair-correlation function

g(r) = gb(r)
E[q(U(o))q(U(r))]

[E(q(U(o)))]2
(7.3)

= gb(r)

{
1 +

cov(q(U(o)), q(U(r)))

[E(q(U(o)))]2

}

and the f -mark correlation function

kf (r) =
E[f(U(o), U(r)) q(U(o))q(U(r))]

E[q(U(o))q(U(r))]

/
cf , (7.4)

where cf is defined in (2.8). In order to obtain the formulas (7.3) and (7.4), the formulas for the
second-order product density ρ(2)(r) and the second-order f -product density ρ

(2)
f (r) are needed.

These are derived below. Thereafter, the rest follows from the definitions (2.4), (2.6) and (2.9).

The functions ρ(2)(r) and ρ
(2)
f (r) are the densities of the factorial moment measures α(2) and

α
(2)
f , see Chapter 2. Using the formula (14.20) in Stoyan and Stoyan (1994, p. 246) to the base

process, the following expressions are obtained for the factorial moment measures:

α(2)(B1 ×B2) = E


 ∑6=

[x1; m1],[x2; m2]∈Nm

1B1(x1)1B2(x2)




= E

[
E

( ∑6=

y1,y2∈Nb

1B1(y1)1B2(y2)q(U(y1))q(U(y2))
∣∣∣ {U(s)}

)]

= E
[∫ ∫

1B1(y1)1B2(y2)q(U(y1))q(U(y2))%
(2)
b (y1, y2)νd(dy1)νd(dy2)

]

=

∫

B1

∫

B2

%
(2)
b (y1, y2)E [q(U(y1))q(U(y2))] νd(dy1)νd(dy2)

71



and

α
(2)
f (B1 ×B2) = E


 ∑6=

[x1; m1],[x2; m2]∈Nm

1B1(x1)1B2(x2)f(m1,m2)




= E

[
E

( ∑6=

y1,y2∈Nb

1B1(y1)1B2(y2)f(U(y1), U(y2))q(U(y1))q(U(y2))
∣∣∣ {U(s)}

)]

= E
(∫

B1

∫

B2

f(U(y1), U(y2))q(U(y1))q(U(y2))%
(2)
b (y1, y2)νd(dy1)νd(dy2)

)

=

∫

B1

∫

B2

%
(2)
b (y1, y2)E[f(U(y1), U(y2))q(U(y1))q(U(y2))]νd(dy1)νd(dy2).

Therefore, assuming stationarity and isotropy,

ρ(2)(r) = ρ
(2)
b (r)E[q(U(o))q(U(r))] (7.5)

and
ρ

(2)
f (r) = ρ

(2)
b (r)E[f(U(o), U(r))q(U(o))q(U(r))] (7.6)

with ‖r‖ = r. The formulas again assume geostatistical marking. Further, note that thinning is
assumed to be independent: the probability that two points being at a distance r apart having
marks m1 and m2 are both retained is simply q(m1) · q(m2). The formulas could be derived
also in the case where neither geostatistical marking nor independent thinning is assumed, see
the derivations of α(2) and α

(2)
f in Section 8.2.

The mark characteristics of Table 2.1 for the thinned model can be obtained as direct conse-
quences from (7.4). For example,

kmm(r) =
E[U(o)U(r) q(U(o))q(U(r))]

E[q(U(o))q(U(r))]

/
µ2

m ,

E(r) =
E[U(o) q(U(o))q(U(r))]

E[q(U(o))q(U(r))]
, (7.7)

and
V (r) =

E[(U(o))2 q(U(o))q(U(r))]

E[q(U(o))q(U(r))]
− (E(r))2 , (7.8)

see Schlather (2001a) and Schlather et al. (2004). Interestingly, for the thinned model these
characteristics do not depend on the characteristics of Nb, which is due to the geostatistical
marking used in the construction of marks. Nevertheless, because of thinning, the functions
(7.7) and (7.8) may not be constant anymore as the example in Section 7.2.2 shows.

Note that if Nb is a Cox process, the result (7.4) and its corollaries can also be obtained using
the formula (5.4) (Ho and Stoyan, 2008).
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7.2.2 An exponential retention probability function

Consider the retaining probability q(m) = e−am, m > 0, a > 0. Then the following character-
istics are obtained:

λ = λb e−aµU+ 1
2
a2σ2

U

µm = µU − aσ2
U

g(r) = gb(r)e
a2CU (r)

E(r) = µU − aσ2
U − aCU(r)

V (r) = σ2
U

κmm(r) = CU(r) + (µU − aσ2
U − aCU(r))2

Cm(r) = CU(r)

ρm(r) = CU(r)/σ2
U

γm(r) = σ2
U − CU(r)

The proofs make use of E[e−aU(o)] = e−aµU+ 1
2
a2σ2

U and E[e−aU(o)−aU(r)] = e−2aµU+a2σ2
U+a2CU (r),

which are result of the use of the moment generating function of normally distributed variables,
and the following expressions obtained by calculation:

E[U(o)e−aU(o)−aU(r)] = (µU − aσ2
U − aCU(r))e−2aµU+a2σ2

U+a2

E[(U(o))2e−aU(o)−aU(r)] = [σ2
U + (µU − aσ2

U − aCU(r))2]e−2aµU+a2σ2
U+a2

E[U(o)U(r)e−aU(o)−aU(r)] = (CU(r) + (µU − aσ2
U − aCU(r))2)e−2aµU+a2σ2

U+a2

.

These lead to the characteristics applying the formulas (7.1), (7.2), (7.3) and (7.4) and the
relationships between the mark characteristics, see Table 2.1.

Maybe surprisingly, the above characteristics resemble the characteristics of the log-intensity
marked Cox process (see Section 4.1), although the construction differs. For example, the E(r)-
functions can have similar shape and V (r)-function is constant for both processes. However,
while the mark characteristics of the log-intensity marked Cox process depend on the random
field {Z(s)} that generates the points, the characteristics of the thinned model origin from
a geostatistical random field (and from thinning). The points and marks are very closely
coupled in the log-intensity marked Cox process, whilst the thinned model may for example
allow different ranges of correlation for the points and marks. Which of the models is more
reasonable depends on the application.

Assume that a marked point pattern origins from a mark-dependently thinned process with
the retention probability q(m) = e−am, m > 0, a > 0. The following estimation procedure is
the very first attempt to estimate the parameters of a mark-dependently thinned model. The
estimation is strongly model-based.

Since Cm(r) = CU(r), the covariance function CU(r) and its parameters can be estimated di-
rectly from the marks. Usually fitting of a covariance model is done through the variogram.
Therefore, estimates ĈU(r) and σ̂2

U (and for possible other covariance parameters) can be ob-
tained by estimating the empirical mark variogram and fitting a model to it. The mean mark
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µm is estimated as a mean of the marks, µ̂m =
∑n

i=1 m(xi)/n, and an estimate of a can be
obtained by minimizing the integral

∫ a0

ε

[
(Ê(r))η − (µ̂m − aĈU(r))η

]2

dr,

where Ê(r) and ĈU(r) = Ĉm(r) are summaries estimated from the marks and ε, a0 and η are
parameters specified by the user. Then the mean µU can be estimated by

µ̂U = µ̂m + âσ̂2
U .

Further, the intensity λb and the pair-correlation gb(r) of the point process Nb can be estimated
by

λ̂b = λ̂ exp(âµ̂U − 1

2
âσ̂2

U)

and
ĝb(r) = ĝ(r) exp(−â2ĈU(r)), (7.9)

where λ̂ and ĝ(r) are estimates for the intensity and pair-correlation of Nm, respectively. To
estimate the pair-correlation by (7.9), similar type of estimators should be used for ĝ(r) and
ĈU(r).

7.3 A simulation experiment

Let Nb be a Poisson process with intensity λb = 2.7 and {U(s)} a stationary and isotropic
Gaussian random field with mean µU = 6.0 and Gaussian covariance function

CU(r) = σ2
U exp(−(r/φU)2)

with σ2
U = 5.0 and φU = 1.0. The retaining probability function is q(m) = exp(−0.1m), m > 0.

Figure 7.1 shows a realisation simulated in a square of size [0, 10]× [0, 10].

The mark characteristics for this construction are given in Section 7.2.2. These theoretical char-
acteristics are plotted in Figure 7.2 together with the summaries calculated from the simulated
data. Theoretical characteristics show that the marks are correlated and are not independent
of the unmarked point pattern when CU(r) is not a constant function.

The results gathered in Table 7.1 are obtained employing the estimation procedure of Section
7.2.2. The Gaussian covariance (or variogram) model is fitted to the empirical mark variogram
in order to get estimates for σ2

U and φU . The theoretical mark characteristics with the estimated
parameters are also shown in Figure 7.2.

7.4 Discussion on the thinned process

Thinning is an operation that uses a specific rule to determine which points of a base process are
deleted. It is a tool to construct new processes from a known base process. Well-known exam-
ples of point processes obtained through independent thinning are the inhomogeneous Poisson
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Table 7.1: Estimation results for the mark-dependently thinned process with q(m) =
exp(−0.1m), m > 0.

σ2
U φU a µU λb

Estimates 5.20 1.06 0.08 6.01 2.70
Value used in simulation 5.00 1.00 0.10 6.00 2.70
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Figure 7.1: Realisations of the marked point processes Nb,U (on the left) and Nm (on the right)
and histograms of their marks.

process and the Cox process. The inhomogeneous Poisson process is obtained from a homoge-
neous Poisson process by applying an independent p(x)-thinning, where p(x) is a deterministic
function on Rd with 0 ≤ p(x) ≤ 1, see e.g. Illian et al. (2008, p. 365). For the Cox process
the thinning function is random. Similar strategy is here used for marked point processes: a
point process is subject to independent random thinning where thinning probabilities origin
from a geostatistical random field that generates the marks as well. Independent thinning is a
reasonable starting point because of its simplicity. For example, some characteristics may be
analytically tractable for models obtained through independent thinning.

Not all thinnings are independent. A well-known example of dependent thinning is Matérn
type II process (Matérn, 1960, 1986; Illian et al., 2008).
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Figure 7.2: Mark summaries (dots) calculated from the realisation of Nm of Figure 7.1 and the
corresponding theoretical characteristics with values used in simulation (solid lines) and with
the estimated parameters (dashed lines).

Geostatistical marking and mark-dependent thinning applied together are able to create marked
point processes with correlated marks which are not independent of the points. This new
construction is most reasonable if it is motivated by the mechanisms underlying the observed
data. Such data are an outcome of a dynamic process from the past to the present state. Often
a reasonable starting point may be a Poisson process, the intensity of which is then modulated
through the mark-dependent thinning.

The estimation of the thinned model may be based on its characteristics. Here such an estima-
tion procedure is suggested for the case where thinning is according to the retention function
q(m) = exp(−am),m > 0, a > 0. This is very much based on the model assumption and is
only the very first step in making inference for this kind of models.
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Chapter 8

Mathematical characterization of
Bitterlich forest: what is seen through a
relascope

The main objective of this chapter is to provide mathematical characterization for the Bitterlich
plot (or angle count plot or relascope plot) in terms of mark-dependent thinning. The Bitterlich
plot is formed by the trees seen from a (random) location in a forest through a relascope, which
is a simple optical instrument used to select the trees proportional to their diameter at a certain
height, often 1.3 m above the ground level called breast height.

The geometrical principle of the relascope is presented in Figure 8.1. If the distance between
the observer and a tree is less than m/(2 sin α), where m is the diameter of the tree at breast
height (dbh), then the observer sees this tree with an angle larger than 2α, where α is a fixed
angle. The relascope enables the observer to decide whether the angle subtended by a tree is
larger than 2α. All trees fulfilling this criteria belong to the Bitterlich plot; they are retained
in what is called relascope thinning.

ro

α
m 2

Figure 8.1: Geometrical principle of the relascope. The observer is at o and m is the diameter
of the tree (at breast height).

In this work, the forest is described by a planar stationary marked point process Nb,m =
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{[yj; m(yj)]}, where yj stands for the location of a tree and m(yj) is its dbh (in metres). The
Bitterlich plot is considered to be a realisation of a marked point process obtained by applying
the relascope thinning to Nb,m at a random location. A further objective is to create a new
stationary marked point process which has intensity-dependent marks: applying the relascope
thinning to Nb,m at a number of random locations such a process is obtained.

Selection of trees by means of the relascope, called Bitterlich sampling or angle count sampling,
is a technique developed for the estimation of the proportional (or mean) basal area of trees in
a forest stand or for realising PPS (probability proportional to size) sampling (Bitterlich, 1948).
In the terms of Nb,m, the proportional basal area is λbEoA, where λb is the intensity of Nb,m

and EoA = π
4
Eom

2 is the expected basal area of a tree. (It is assumed that the cross-sections
of trees are circular.) The popularity of Bitterlich sampling is based on the simple moment
formula

sin2 αET = λbEoA

for T defined as the number of trees in a Bitterlich plot, see e.g. Ripley (1981, p. 138) and
Illian et al. (2008, p. 308). The relascope factor sin2 α is a quantity of the relascope. Therefore,
since an unbiased estimator for the proportional basal area is obtained simply by sin2 α · T ,
Bitterlich sampling has become widely used in practical forest inventories, see e.g. Mandallaz
(2008), Tomppo (2006) and Gregoire and Valentine (2008). If, in addition to counting the
number of trees, the dbh of each tree in the Bitterlich plot has been measured, then it is
possible to estimate also other proportional quantities of the forest (or Nb,m) based on the
Bitterlich plot, see e.g. Mandallaz (2008). If the quantity is strongly correlated with the dbh,
then the (unbiased) estimator based on Bitterlich sampling is expected to be efficient.

Despite of the popularity of Bitterlich sampling not much theoretical research has been done
since Bitterlich (1948), see Penttinen (1988) and references there. The main objective has been
the precision of the estimators for the proportional basal area and the comparison of efficiency
between the uses of a Bitterlich plot and a sample plot of fixed size as an observation unit in
sampling, see e.g. Holgate (1967), Matérn (1969), Matérn (1972) and Penttinen (1988). Here a
new description of the Bitterlich plot is given from the point of view of marked point processes:
it is studied what the Bitterlich plot itself, as a marked point pattern, looks like.

Bitterlich sampling is fundamentally considered as mark-related thinning of the process Nb,m,
where the relascope defines the thinning rule. The emphasis is on the derivation of theoretical
characteristics for the obtained process called point-centred Bitterlich point process. Assuming
that Nb,m is isotropic, the point-centred Bitterlich point process is isotropic having the sample
point as its centre. Moreover, the marked process is an example of an isotropic centred marked
point process. Its characteristics are considered in relation to the sample point, and it is shown
that the mark distribution depends on the intensity function.

In addition, Bitterlich sampling is applied to Nb,m at a set of random locations distributed
according to a homogeneous Poisson process. This creates a new marked point process called
here stationary Bitterlich point process. The construction of the process from a stationary
marked point process Nb,m is a two-step procedure where sample points are generated in the
first step. Then, conditional on the generated sample points, deterministic thinning is applied
to Nb,m. Important characteristics are derived for this new process, too, and examples are given.
The characteristics for both new processes are mainly applications of Campbell theorems (see
e.g. Stoyan et al., 1995 or Stoyan and Stoyan, 1994).

A base process is subject to mark-dependent thinning both in Bitterlich point processes and
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in the process of Chapter 7. However, even if Nb,m would be assumed to be geostatistically
marked, the stationary Bitterlich point process is not a special case of the thinned model of
Chapter 7 as such.

The rest of this chapter is arranged as follows. The finite and stationary Bitterlich point
processes are studied in Sections 8.1 and 8.2, respectively. Section 8.3 is for examples and a
real data is subject to Bitterlich sampling in Section 8.4. Section 8.5 is for discussion.

8.1 Point-centred Bitterlich point process

Assume that Nb,m = {[yj; mj]} is a stationary marked point process in R2 with non-negative
real-valued marks. The process Nb,m is called the base process. No specific marking is assumed;
this is a difference between Nb,m and the base process Nb,U of Chapter 7. However, the models
introduced here are restricted to R2 and to non-negative marks. This is because the process
Nb,m describes a forest, trees with dbh-marks, and the thinning applies a geometric rule defined
by the relascope (see Figure 8.1). From the point of view of the application, it is assumed that
the cross-sections of trees are circular.

The intensity of the base process Nb,m is denoted by λb. It is the mean number of points per
unit area. Further, the mark distribution of the base process is denoted by M and the mark
distribution function and its density by FM and fm, respectively. In what follows, the distances
and dbh-marks are assumed to be in metres, and λb is the mean number of points per 1 m2.

Define a point-centred Bitterlich (marked) point process N ξ
m at ξ ∈ R2 as follows: a point

[yj; mj] of Nb,m belongs to N ξ
m if

|| yj − ξ|| ≤ mj

2 sin α
, (8.1)

where α is a fixed relascope angle and ξ ∈ R2 is a sample point. The base process is subject
to relascope thinning, where the retention/deletion of each point [yj; mj] ∈ Nb,m depends on
the distance from yj to the sample point ξ and on the dbh-mark mj at yj according to (8.1).
Each point [yj; mj] has a limiting distance for inclusion in N ξ

m: the point [yj; mj] belongs to
N ξ

m if ξ falls into the circle b(yj,mj/(2 sin α)). If the mark distribution function FM has a finite
support, i.e. FM(m0) = 1 for some m0 < ∞, then N ξ

m is finite (with probability one) because
Nb,m is assumed to be locally finite.

A realisation of N ξ
m is constructed by taking a realisation of Nb,m and applying the thinning

(retention) rule (8.1) to the points of Nb,m at a location ξ. The realisation can be considered as
the view seen from ξ through the relascope. It is called a Bitterlich plot (or angle count plot or
relascope plot or angle gauge plot) in forestry. In the following, first-order characteristics of N ξ

m

are derived relative to the sample point ξ, which is considered fixed. Because the base process
is assumed to be stationary, the o-centred process N o

m is considered without loss of generality.
Let N o stand for the corresponding unmarked point process.

Assuming that the base process is isotropic, the process N o is isotropic with respect to the sam-
ple point o. This centred point process (Daley and Vere-Jones, 2008, p. 466) is non-stationary,
but it is θ-stationary on R2 as defined by Byth (1981). Also the marked point process N o

m is
isotropic: the mark distribution is invariant under rotations around the origin o. The process
N o

m is called centred marked point process.
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The first-order behaviour of the unmarked process N o is defined by an intensity function λ(r),
r > 0, which yields the mean number of points in the sphere b(o, r) ⊂ R2 (e.g. Illian et al.,
2008, p. 114):

EN o(b(o, r)) =

∫ r

0

2πRλ(R)dR .

The value λ(r) is proportional to the point density at a location being the distance r apart
from o. It is the limit

λ(r) = lim
∆r↓0

EN o(b(o, r + ∆r/2)\b(o, r −∆r/2))

2πr∆r
.

Applying the Campbell theorem (Stoyan et al., 1995, p. 108) for marked point processes to Nb,m

and changing to polar coordinates, we obtain

EN o(b(o, r)) = E

( ∑
x∈No

1b(o,r)(x)

)
= E


 ∑

[y; m]∈Nb,m

1b(o,r)(y)1{m≥2|| y|| sin α}(m)




= λb

∫ ∫
1b(o,r)(y)1{m≥2|| y|| sin α}(m)M(dm)ν2(dy)

= λb

∫ π

0

∫ r

0

∫ ∞

0

1{m≥2R sin α}(m)M(dm)R dR dϕ

=

∫ r

0

λb

∫ ∞

0

1{m≥2R sin α}(m)M(dm) 2πR dR ,

and thus,
λ(r) = λb(1− FM(2 sin α · r)) = λbSM(2 sin α · r) for r > 0 , (8.2)

where SM(t) = 1− FM(t) is the survival function of the mark distribution of the base process
Nb,m. Recall that νd is the d-dimensional Lebesque measure (above d = 2). The intensity
function λ(r) depends on the distance r from o only, not on the direction. It is a decreasing
function in r: the intensity of points is higher close to o, while also small trees are observed at
short distances.

The mark density function of N o
m depends on the distance r from o, and it is defined for r > 0

by

fr(m) =
1{m≥2r sin α}(m)fm(m)∫∞
0

1{l≥2r sin α}(l)fm(l)dl
,

where fm(m) is the mark density function of the base process. The formula origins from the
fact that at the distance r from o only the points with mark m ≥ 2 sin α · r retain in thinning.
The distribution fr(m) can further be rewritten as

fr(m) =
1{m≥2r sin α}(m)fm(m)

1− FM(2 sin α · r) =
λb

λ(r)
1{m≥2r sin α}(m)fm(m) , (8.3)

where the equation (8.2) is utilized. From the formula (8.3) one can deduce the dependence
between the intensity λ(r) and the mark density fr(m). The corresponding cumulative mark
distribution is

Fr(m) =

∫ m

0
1{t≥2r sin α}(t)fm(t)dt∫∞

0
1{l≥2r sin α}(l)fm(l)dl

=
FM(m)− FM(2 sin α · r)

1− FM(2 sin α · r) = 1− λb

λ(r)
(1− FM(m)) ,
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for m ≥ 2r sin α and r > 0. The formula can also be expressed in terms of survival functions:
it is

Sr(m) =
SM(m)

SM(2 sin α · r) for m ≥ 2r sin α and r > 0.

It tells the proportion of points larger than m for a fixed distance r.

The mean mark at a distance r > 0 from o is

µm(r) =

∫ ∞

0

mfr(m)dm =
λb

λ(r)

∫ ∞

0

m1{m≥2r sin α}(m)fm(m)dm,

and the mark variance at a distance r > 0 can be written as

σ2
m(r) =

∫ ∞

0

m2fr(m)dm− (µm(r))2 =
λb

λ(r)

∫ ∞

0

m21{m≥2r sin α}(m)fm(m)dm− (µm(r))2 .

Intuitively, the mean mark µm(r) increases in r, but the mark variance σ2
m(r) decreases (if the

marks are bounded), because at short distances both small and large trees are observed and at
large distances only large trees.

8.2 Stationary Bitterlich point process

Assume that Nb,m = {[yj; mj]} is the base process as above with intensity λb, second-order prod-
uct density %b(r) and with non-negative real-valued marks. Let Ns = {ξk} be a homogeneous
Poisson process with intensity λs. It is called (Poisson) sampling process, and it corresponds to
uniform spatial sampling.

The base process Nb,m is subject to relascope thinning: those points yj with marks mj, which
are seen by means of the relascope of angle α from the sample points, are retained. Given Ns,
the condition for the retention of a point [yj; mj] ∈ Nb,m is

|| yj − ξk|| ≤ mj

2 sin α
for some ξk ∈ Ns. (8.4)

A new marked point process of the survived points, denoted by NB
m = {[xi; mi]}, is obtained.

It will be called Bitterlich (marked) point process.

A point yj with mark mj belongs to NB
m , if there is at least one sample point in the circle

b(yj,mj/(2 sin α)). Therefore, assuming the sample points are distributed according to the
homogeneous Poisson process of the intensity λs, the retention probability of a point with mark
m equals

q(m,α, λs) = 1− exp(−λsπm2/(4 sin2 α)) , (8.5)

the complement of the probability that there are no points of Ns in a circle with radius
m/(2 sin α). For brevity of notation, let Q(α, λs) stand for the mean retention probability,

Q(α, λs) =

∫ ∞

0

q(m,α, λs)M(dm) ,

where M is the mark distribution of the base process. Note that the Bitterlich point process
NB

m is not a result of independent mark-dependent thinning with thinning probability (8.5).
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8.2.1 First-order characteristics

The intensity of the stationary Bitterlich point process NB
m is

λ = λbQ(α, λs) , (8.6)

which formula is similar to the intensity (7.1) of the thinned process, see Section 7.2. The proof
of (8.6) is an application of the Campbell theorem (Stoyan et al., 1995, p. 108) to the marked
point process Nb,m:

λ = E


 ∑

[x; m]∈NB
m

1[0,1]2(x)


 = E


 ∑

[y; m]∈Nb,m

1[0,1]2(y)q(m,α, λs)




= λb

∫ ∫
1[0,1]2(y)q(m,α, λs)M(dm)ν2(dy) = λbQ(α, λs)

∫
1[0,1]2(y)ν2(dy)

= λbQ(α, λs) .

The first line in the formula is obtained by first taking the conditional expectation over the
sum given Nb,m, and then the expectation over Nb,m is to be taken. The Campbell theorem is
applied to the latter expectation.

The mark distribution of NB
m is obtained through the equation (2.1): The expected number of

points in a Borel set B ⊂ R2 with mark in L ⊂ [0,∞) satisfies

E[Nm(B × L)] = E


 ∑

[x; m]∈NB
m

1B(x)1L(m)


 = E


 ∑

[y; m]∈Nb,m

1B(y)1L(m)q(m,α, λs)




= λb

∫ ∫
1B(y)1L(m)q(m,α, λs)M(dm)ν2(dy) = λb

∫

B

E[1L(m)q(m,α, λs)]ν2(dy)

= λbν2(B)E[1L(m)q(m,α, λs)] ,

where again the Campbell theorem is used. It follows that the mark distribution of the Bitterlich
process NB

m is

MB(L) =
λb

λ
E[1L(m)q(m,α, λs)] =

E[1L(m)q(m,α, λs)]

Q(α, λs)

and, especially, the mark distribution function is

FB
M(m) =

λb

λ

∫ m

0

q(l, α, λs)fm(l)dl , (8.7)

where fm(m) is the mark probability density function of the base process. Thus, the mark
density function of the Bitterlich process is

fB
m(m) =

λb

λ
q(m,α, λs)fm(m)

and the mean mark

µB
m =

λb

λ

∫ ∞

0

mq(m,α, λs)fm(m)dm =
λb

λ
E[mq(m, α, λs)] .
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These results are closely connected to the results obtained for the thinned model of Section 7:
Consider a general retention probability q(m) instead of q(m,α, λs) and Rd instead of R2 in the
above formulas. Then the expressions for the thinned model will be obtained where the mark
distribution fm(m) corresponds to the distribution of U(o) under the geostatistical marking.

The intensity function and mark distribution can be considered locally with respect to the
sample points ξk of Ns: Let {ξk} be a fixed realisation of Ns. The local intensity function,
conditional on {ξk}, is

λ(s|{ξk}) = λb(1− FM(2 sin α ·min
k
{‖s− ξk‖})) for s ∈ R2. (8.8)

The formula (8.8) is due to that at s ∈ R2 the effect of the closest sample point matters: the
point [yj; mj] ∈ Nb,m is retained if mj ≥ 2 sin α · min

k
{‖yj − ξk‖}. The area of influence of a

sample point ξk ∈ Ns is described by its Voronoi polygon

Vk = {s : ‖s− ξk‖ ≤ ‖s− ξl‖ for l 6= k, ξl ∈ Ns}.
These polygons define a Voronoi tessellation in R2, see e.g. Okabe et al. (2000). This tessellation
tells the influence zone of each ξk. In the zone of ξk, the intensity is determined by (8.2) where
r is the distance to ξk. The Voronoi tessellation is useful in practical calculation of (8.8).

The conditional mark distribution function of the mark m at x ∈ NB
m is

Fx(m|{ξk}) = 1− λb

λ(x|{ξk})(1− FM(m)) for m ≥ 2 sin α ·min
k
{‖x− ξk‖} ,

and the corresponding mark density function is

fx(m|{ξk}) =
λb

λ(x|{ξk})1
{

m≥2 sin α·min
k
{‖x−ξk‖}

}(m)fm(m) .

These characteristics show that the marks of NB
m depend locally on the intensity.

8.2.2 Second-order characteristics

Assume the base process is both stationary and isotropic. Then the second-order product
densities %(2)(r) and %

(2)
f (r) of the Bitterlich point process Nm are

%(2)(r) = %
(2)
b (r)

∫ ∞

0

∫ ∞

0

q(m1,m2, r)Mr(dm1, dm2) (8.9)

and
%

(2)
f (r) = %

(2)
b (r)

∫ ∞

0

∫ ∞

0

q(m1,m2, r)f(m1,m2)Mr(dm1, dm2) , (8.10)

respectively, where
q(m1,m2, r) = 1− a− b + a b eλsγ(m1,m2,r) , (8.11)

where a = e−λsπ
m2

1
4 sin2 α , b = e−λsπ

m2
2

4 sin2 α and

γ(m1,m2, r) = ν2

(
b
(
o,

m1

2 sin α

) ⋂
b
(
r,

m2

2 sin α

))
, ‖r‖ = r, (8.12)
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and Mr is the two-point mark distribution of the base process Nb,m. The formula for (8.12) can
be found e.g. in Stoyan and Stoyan (1994, p. 365): it is the area of the intersection of two discs.
In other words, it is the set covariance of the two discs. The proofs of (8.9) and (8.10) follow.

The quantity (8.11) is the probability that two points of Nb,m with marks m1 and m2 being the
distance r apart are retained. Indeed, for a stationary and isotropic process this probability
depends only on the marks and the distance r. The formula (8.11) is obtained as the complement
of the probability that either [y1; m1] ∈ Nb,m or [y2; m2] ∈ Nb,m is removed, given that there
are two points of Nb,m, one at y1 and another at y2 for which ‖y1 − y2‖ = r. Note that (8.11)
depends on the sampling process through α and λs.

The probability (8.11) enters the formulas for the factorial moment measures α(2) and α
(2)
f ,

when the sums of these measures are again written in the terms of the base process. Further,
the formula

E


 ∑ 6=

[x1; m1], [x2; m2]∈ Nm

f(m1,m2)1B1(x1)1B2(xn)


 =

∫

B1

∫

B2

ρ
(2)
f (x1, x2)dx1dx2

=

∫

B1

∫

B2

∫ ∫
f(m1,m2)Mx1,x2(dm1, dm2)ρ

(2)(x1, x2)νd(dx1)νd(dx2),

where Nm is a marked point process in Rd, ρ(2) its second-order product density and Mx1,x2

its two-point mark distribution, is applied to the base process. The formula is due to formulas
in Stoyan and Stoyan (1994, p. 263), see also (2.7) and (2.6). The following expressions are
obtained for the factorial moment measures:

α(2)(B1 ×B2) = E


 ∑ 6=

[x1; m1],[x2; m2]∈NB
m

1B1(x1)1B2(x2)




= E


 ∑ 6=

[y1; m1],[y2; m2]∈Nb,m

1B1(y1)1B2(y2)q(m1,m2, r)




=

∫ ∫ ∫ ∫
1B1(y1)1B2(y2)q(m1,m2, r)Mr(dm1, dm2)%

(2)
b (y1, y2)ν2(dy1)ν2(dy2)

=

∫

B1

∫

B2

%
(2)
b (y1, y2)E [q(m1, m2, r)] ν2(dy1)ν2(dy2)

and

αf (B1 ×B2) = E


 ∑ 6=

[x1; m1],[x2; m2]∈NB
m

1B1(x1)1B2(x2)f(m1,m2)




= E


 ∑ 6=

[y1; m1],[y2; m2]∈Nb,m

1B1(y1)1B2(y2)q(m1,m2, r)f(m1, m2)




=

∫ ∫ ∫ ∫
1B1(y1)1B2(y2)q(m1,m2, r)f(m1,m2)Mr(dm1, dm2)%

(2)
b (y1, y2)ν2(dy1)ν2(dy2)

=

∫

B1

∫

B2

%
(2)
b (y1, y2)E[q(m1,m2, r)f(m1,m2)]ν2(dy1)ν2(dy2) ,
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where ‖y1 − y2‖ = r. Therefore, the densities (8.9) and (8.10) are obtained.

Direct consequences of (8.9) and (8.10) are, by definition, the pair-correlation function

g(r) =
gb(r)

∫∞
0

∫∞
0

q(m1,m2, r)Mr(dm1, dm2)

(Q(α, λs))2

where gb(r) is the pair-correlation function of the base process, and the f -mark correlation
function

kf (r) =

∫∞
0

∫∞
0

q(m1,m2, r)f(m1, m2)Mr(dm1, dm2)∫∞
0

∫∞
0

q(m1,m2, r)Mr(dm1, dm2)
,

from which follows, for example, that the E(r)-function is

E(r) =

∫ ∫
q(m1,m2, r)m1Mr(dm1, dm2)∫ ∫
q(m1,m2, r)Mr(dm1, dm2)

.

8.3 A simulation experiment

The stationary base process is assumed to be an independently marked Poisson process with
intensity λb = 0.05 and mark distribution Weibull(a = 2, b = 0.25). The mark distribution has
the density

f(m) =
(a

b

)(m

b

)a−1

exp
{
−

(m

b

)a}
, m ≥ 0,

and the mean mark of this distribution equals

E(m) = bΓ

(
1 +

1

a

)
.

A realisation is simulated in a rectangular window of size [0, 200] × [0, 200]. Consider this as
a forest example: the tree density is 500 trees per hectare and the mean diameter (dbh) is
approximately 0.22 m. The Weibull distribution is often used as a model for the dbh, see
e.g. Kilkki and Päivinen (1986).

Assume that the trees are selected using Bitterlich sampling with α = 0.01 rad (0.57 o). For
this relascope, each tree in the plot represents the basal area of size 1 m2 per a hectare: an
estimate for the proportional basal area per a hectare is simply the number of trees in the
plot. Consider first that the observer goes to a random location in the plot. Here the location
(81.78, 64.80) was obtained by simulation. The finite Bitterlich process seen at this sample
point by means of the relascope is shown in Figure 8.2 (in the middle). It has 27 points (trees).
The maximum of the marks is 0.68 m in this simulation, and therefore, the maximum distance
at which a tree can be seen by the relascope is 34.0 m.

The cumulative Weibull distribution is

F (m) = 1− exp
{
−

(m

b

)a}
, m ≥ 0 ,

and thus, here

λ(r) = λb exp

{
−

(
2r sin α

b

)a}
, r > 0 ,
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which is a decreasing function of r. The mark density function is

fr(m) =
(a

b

)(m

b

)a−1

exp

{
−ma − (2 sin α · r)a

ba

}
1{m≥2r sin α}(m) , r > 0 .

These functions are plotted in Figure 8.3. It shows how the intensity and the mark density
function change in r.

Consider next the case where the marked point process is sampled using a Poisson sampling
process Ns with intensity λs = 0.001. The sampling process is simulated in an extended window
[−34.0, 134.0]× [−34.0, 134.0], and the obtained Bitterlich point process Nm is shown in Figure
8.2 (right). The number of points is n = 578. The mean of original marks is 0.22 (range
(0.006, 0.68)), whilst the mean mark of the Bitterlich process is 0.31 (range (0.04, 0.68)). The
relascope thinning (8.4) retains points with large dbh-marks, see Figure 8.4.

The theoretical local intensity function (8.8) is calculated in a grid in the observation window
[0, 200] × [0, 200], and the intensity surface is shown in Figure 8.5 (left). The intensity is on
its highest close to the sample points. The intensity (8.8) is calculated also at each point
xi of the realisation of NB

m , and the marks of the realisation are plotted against these local
intensity values in Figure 8.5 (right): in areas with high point density the mean of the marks is
smaller and variance larger than in areas with low point density. Further, the mark summaries
(see Table 2.1) calculated from the realisation of NB

m are shown in Figure 8.6. Clearly, these
summaries are not constants in r.
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Figure 8.2: Realisations of the base process Nb,m (on the left), point-centred Bitterlich point
process N o

m (in the middle) and stationary Bitterlich point process NB
m (on the right). The

diameter of a circle is proportional to the mark.

8.4 Bitterlich sampling applied to a primeval forest

Consider now a real data from a Finnish forest. It is a marked point pattern of a primeval forest
in a window of size 50 m × 50 m, see Figure 8.7. The marks are the breast height diameters
(dbh) and their range is from 0.01 m to 0.49 m. Consider again that the Bitterlich sampling is
applied by a relascope with factor q = 1 (m2/ha), that is α = 0.01 rad. First, a sample point is
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Figure 8.3: The theoretical intensity function λ(r) (on the left) and mark density function
fr(m) (on the right) of the simulation experiment.
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Figure 8.4: The histogram of the marks of the realisation of Nb,m of Figure 8.2 (on the left), the
retaining probability (8.5) as a function of m (in the middle) and the histogram of the marks
of the realisation of NB

m of Figure 8.2 (on the right).

generated uniformly in the area. The point (21.41, 32.94) is obtained. This results in the finite
Bitterlich point pattern shown in the Figure 8.7. Second, the marked point pattern is subject
to relascope thinning according to the Poisson sampling process Ns with intensity λs = 0.0025.
The obtained Bitterlich point process is shown in Figure 8.7 as well, and the histograms of the
original and the Bitterlich point process are shown in Figure 8.8.

8.5 Discussion on the Bitterlich processes

We discuss two new marked point processes which are a result of mark-dependent thinning
defined by a relascope. First of all, we give a mathematical characterization for the Bitterlich
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Figure 8.6: The mark summaries calculated from the realisation of NB
m of Figure 8.2.

plot, which is widely met in practical forestry. The derived descriptions explain what kind of
pattern of trees is seen through the relascope.

The point-centred Bitterlich point process is an example of a finite point process which is
isotropic but not stationary. First-order characteristics of this process are derived here. Since
any isotropic process is θ-stationary, one might further study the second-order properties of
the point-centred Bitterlich point process using the approach suggested by Byth (1981) for θ-
stationary processes. The marked point-centred Bitterlich point process is also a real example
of centred marked point processes.
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Figure 8.8: The histogram of the diameters (dbh) of the primeval forest of Figure 8.7 (on the
left), the retaining probability (8.5) as a function of m (in the middle) and the histogram of
the diameters (dbh) retained in relascope thinning (on the right).

The stationary Bitterlich point process is an example of a stationary marked point process
where the marks depend locally on the intensity. The local intensity function of this process
is defined relative to the sampling process Ns. Extensions for this stationary process can be
obtained by replacing the Poisson sampling process Ns by another stationary process.
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Chapter 9

Bayesian inference for Gaussian excursion
set generated Cox processes with
set-marking

Assume N = {xi} is a random set generated Cox process in W ⊆ Rd with random intensity
function {Λ(s)}. This intensity is generated by a random closed set Θ in Rd as follows: Λ(s) =
λ1 if s ∈ Θ, and λ2 elsewhere, see Penttinen and Niemi (2007), Illian et al. (2008) and Section
2.2. This Cox process is a natural model for phenomena where the point intensity varies
between two (random) phases that partition Rd and, conditional on the phases, the points are
independently and uniformly distributed.

For a random set generated Cox process, the intensity is not observed, it is a latent structure in
the hierarchical model. In some applications, however, the phase at the location of every point
xi of the process can be recorded, which gives information on the underlying random set. An
example is the evaluation of forest regeneration outputs, where a random closed set is used as a
model for patches caused by the soil treatment, see Section 3.3: The locations xi of saplings are
measured in the field inventory, and in addition, the field data consist of observations whether
a sapling at xi belongs to a treated patch or not. This type of observation provides each point
xi ∈ N with a mark m(xi) such that m(xi) = 1 if xi ∈ Θ, and m(xi) = 2 if xi ∈ Θc, the
complement of Θ. As a result, a marked point process Nm = {[xi; m(xi)]}, called random set
marked Cox process, is obtained. This type of marking is called set-marking by Penttinen and
Niemi (2007).

The main objective here is to consider statistical modelling and inference for set-marked Cox
processes. The interest lies in the intensity parameters λ1 and λ2, describing the point intensities
in the two phases, and in the characteristics of Θ, such as area fraction relative to W or
covariance. Penttinen and Niemi (2007) suggests an estimation method based on second-order
characteristics of point processes (pair correlation function or Ripley’s K-function) but do not
indicate the uncertainties of the parameter estimates. Their moment-based method does not
assume any specific model for the random set.

The inferential approach of this study is fully Bayesian. Markov chain Monte Carlo (MCMC)
methods are used in posterior simulation of the hierarchical model. A parametric random set
generated Cox process model is adopted for the Bayesian inference. The random set is assumed
to be a Gaussian excursion set, or a truncated Gaussian random function in the geostatistical
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terminology, see e.g. Lantuéjoul (2002) and Adler (1981). The Gaussian excursion set is a
statistical model for the random closed set, suitable to be used as a prior model. Its flexibility
is supposed to be an advantage over some alternative constructions such as the germ-grain
model (see e.g. Stoyan et al., 1995). The Bayesian modelling gives posterior distributions for
the model parameters and allows estimation of the random set.

The new model is implemented and illustrated through simulated data sets. In addition, two
pine sapling data sets shown in Figure 3.8 are studied using the new model.

In an earlier study by De Oliveira (2000), a similar Bayesian model was suggested. The differ-
ence is, that De Oliveira (2000) employs geostatistical marking where the marks are independent
of the point process. Our model is more general allowing the point intensity to depend on the
random set. This is an additional complexity in model fitting.

The rest of this chapter is arranged in the following way. The model is explained in Section 9.1.
In Section 9.2, the Bayesian modelling of the Gaussian excursion set generated Cox process
with information on the phases is explained in full detail, and simulation experiments are given
in Section 9.3. Finally, Section 9.4 analyses two real-world data sets on forest research. Section
9.5 is for discussion.

9.1 Gaussian excursion set generated Cox process with set-
marking

9.1.1 Gaussian excursion set generated Cox process

A flexible parametric model for the random closed set is obtained by thresholding a Gaussian
random field {Z(s) : s ∈ Rd} by a fixed threshold level l as follows:

Θ = {s ∈ Rd : Z(s) ≥ l}. (9.1)

The random set (9.1) is called the l-level excursion set of {Z(s)} (Lantuéjoul, 2002, p. 205). If
the sample paths of {Z(s)} are continuous almost surely, then Θ is closed. The mean square
differentiability of a Gaussian random field is a sufficient condition for the sample paths to be
continuous almost surely, see e.g. Revuz and Yor (1991, p. 26). Another sufficient condition
can be found in Adler (1981, p. 62). Because µZ and l are linearly dependent, it is assumed
without loss of generality that l = 0. This choice is also made by De Oliveira (2000).

All the distributional properties of the random set Θ are inherited from the generating Gaussian
random field and the threshold level l = 0. In particular, if the Gaussian random field is
stationary then the generated random closed set is stationary. The same holds for isotropy.

Assume that {Z(s) : s ∈ Rd} is a stationary Gaussian random field with mean µZ , variance σ2
Z

and with a valid covariance function CZ(h), h ∈ Rd, fulfilling CZ(o) = σ2
Z for o ∈ Rd, ‖o‖ = 0.

Then, the area fraction p and the covariance function C(h) of the random set Θ are

p = P(o ∈ Θ) = P (Z(o) ≥ 0) = 1− Φ

(
−µZ

σZ

)
= Φ

(
µZ

σZ

)
(9.2)

and
C(h) = P(o ∈ Θ, h ∈ Θ) = P(Z(o) ≥ 0, Z(h) ≥ 0),
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respectively, where o, h ∈ Rd and Φ is the distribution function of the standard normal distri-
bution.
Assume that {Z(s)} is stationary and isotropic. Examples of positive definite covariance func-
tions CZ(r), r = ‖h‖, h ∈ Rd, can be found e.g. in Banerjee et al. (2004), Chilès and Delfiner
(1999) and Cressie (1993). These, with variance σ2

Z = 1, include the stable class covariance
function

CZ(r) = exp(−(βr)a) for r > 0, 0 < a ≤ 2 (9.3)
and the Matérn covariance function

CZ(r) = 21−aΓ(a)−1(βr)aKa(βr) for r > 0, a > 0, (9.4)

where Ka(r) is the modified Bessel function. The parameter a in (9.3) and (9.4) controls the
roughness of the realisations of the random field. The mean square differentiability of the
random field is obtained for the stable covariance function for a = 2 only, and for Matérn
covariance function for a > 1, see e.g. Stein (1999). The parameter β > 0 is the inverse scale
parameter that controls the range of correlation. If σ2

Z 6= 1, then the covariance function (9.3)
or (9.4) is multiplied by σ2

Z .
In the Gaussian excursion set generated Cox process, the points are distributed according to
the random intensity (2.12) generated by the Gaussian excursion set Θ = {s ∈ Rd : Z(s) ≥ 0}.
In addition to fixing the threshold level to l = 0, the standard deviation σZ =

√
CZ(0), being

a scaling factor of the random field, is confounded with µZ and is therefore fixed to σ2
Z = 1.

9.1.2 Set-marking

Consider a point pattern, where the observations consist of the point locations originating from
the random set generated Cox process and, in addition, of the knowledge whether a point
belongs to the random set Θ or not. The marked point process

Nm = {[xi; m(xi)]}, (9.5)

where marks are generated by m(xi) = 2−1(xi ∈ Θ), is called random set marked Cox process.
An example of set-marking is shown in Figure 9.1.
If the points were independent of the random set, the set-marks would be a representative
sample of the random field {2 − 1(s ∈ Θ) : s ∈ Rd}. If the interest is in the properties of
the random set as in De Oliveira (2000), then the points indeed often serve as sampling points
for the random set. This is a connection to mathematical morphology. The situation, where
the points depend on the random set, is obviously different and more difficult to handle. The
points of a random set generated Cox process depend on the random set, if λ1 6= λ2. Then, in
the marked process (9.5), the marks depend locally on the intensity.

9.2 Bayesian modelling

Assume the data {[xi; m(xi)], i = 1, . . . , n}, denoted by [X, M ], are observed in a window
W ⊂ R2 and let |W | stand for the area of W . The restriction to the two-dimensional space
is not essential: a generalization to Rd with d > 2 can be obtained straightforwardly. The
objective is to infer the model parameters from [X,M ], and to give a prediction for the random
set Θ. In what follows, the details and implementation of the Bayesian method are described.
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Figure 9.1: An example of set-marking. On the left : The random set (white area) and points of
a realisation of a random set generated Cox process. Black points are points within the random
set, white ones outside. On the right : The observed set-marked point pattern.

9.2.1 The likelihood for the set-marked process

Conditional on {Z(s)} (or Θ), the likelihood of the Gaussian excursion set generated Cox
process is the one of an inhomogeneous Poisson process, see (6.16), and it obtains the form

p({xi : i = 1, . . . , n}|λ1, λ2, {Z(s)}) =

=

[
n∏

i=1

λ
1(Z(xi)≥ 0)
1 λ

1(Z(xi)< 0)
2

]
exp

{
−

[
λ1

∫

W

1(Z(u) ≥ 0)du + λ2

∫

W

1(Z(u) < 0)du

]}
.

The likelihood for the set-marked point process can be written as

p([X,M ]|λ1, λ2, {Z(s)}) =

{
n∏

i=1

[1(Z(xi) ≥ 0)1(m(xi) = 1) + 1(Z(xi) < 0)1(m(xi) = 2)]

}

×
[

n∏
i=1

λ
1(m(xi)=1)
1 λ

1(m(xi)=2)
2

]
exp

{
−

[
λ1

∫

W

1(Z(u) ≥ 0)du + λ2

∫

W

1(Z(u) < 0)du

]}

=

{
n∏

i=1

[1(Z(xi) ≥ 0)1(m(xi) = 1) + 1(Z(xi) < 0)1(m(xi) = 2)]

}
λn1

1 λn2
2

× exp

{
−

[
λ1

∫

W

1(Z(u) ≥ 0)du + λ2

∫

W

1(Z(u) < 0)du

]}
,

(9.6)

where the first factor on the right is the condition: for all xi, i = 1, . . . , n, Z(xi) ≥ 0 if m(xi) = 1
and Z(xi) < 0 if m(xi) = 2. If this condition does not hold, then the likelihood is zero. The
shorthand notations n1 =

∑n
i=1 1(m(xi) = 1) and n2 =

∑n
i=1 1(m(xi) = 2) are employed.

9.2.2 Prior specification

Uniform priors are chosen for λ1 and λ2 such that λ1 ∼ Unif(0, λmax,1) and λ2 ∼ Unif(0, λmax,2),
where λmax,1 and λmax,2 are pre-specified hyperparameters. These uniform priors, denoted
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hereafter by p(λ1) and p(λ2), are quite uninformative unless they are strongly restricted by the
choices of λmax,1 and λmax,2.

According to our model choice, {Z(s)} is a Gaussian random field with mean µZ and covariance
function CZ(r). A suitable parametrized covariance function CZ(r) is chosen (see the discussion
in De Oliveira, 2000): in our forest science application (see Section 9.4) the Matérn covariance
function (9.4) with a = 1.5 is employed. This correlation function with fixed a = 1.5 has one
parameter, the inverse scale parameter β, which controls the range of correlation. Consequently,
the prior of {Z(s)} depends on the parameters β and µZ , and it is denoted by p({Z(s)}| β, µZ).
It is specifically dealt with in Section 9.2.3.

The hyperprior p(β) is chosen to be Gamma(aβ, bβ) with the pre-specified shape parameter aβ

and inverse scale parameter bβ. The normal distribution N(µµ, σ
2
µ) is used as the hyperprior

for µZ . These choices imply that p = Φ(µµ) a priori.

9.2.3 Implementation

Similarly as in Bayesian modelling for intensity-marked Cox processes, see Section 6.3, the ran-
dom field {Z(s)} must be discretized for computation and it is considered at a finite number of
locations. First, let Z(x1), Z(x2), . . . , Z(xn) be the values of the random field at x1, x2, . . . , xn,
the points of the observed point pattern. Second, the Gaussian random field {Z(s)} is aug-
mented with the points s1, s2, . . . , sk ∈ G. Here G is a grid covering the area W and being
independent of the observed locations. The augmentation with these grid points is needed for
approximating the integrals in the likelihood (9.6), and also in order to visualize the random
set.

Consequently, let us denote

Z = (Z(x1), Z(x2), . . . , Z(xn), Z(s1), Z(s2), . . . , Z(sk))
T .

In MCMC simulation, the vector Z replaces {Z(s)} in the likelihood (9.6). The integral∫
W

1(Z(u) ≥ 0)du in (9.6) is approximated by |W |pZ , where

pZ =
1

k

∑
sj∈G

1(Z(sj) ≥ 0). (9.7)

The approximation is obtained since s1, s2, . . . , sk can be regarded as sampling locations of
{Z(s)} in W . Note again, similar to (6.19), that the values Z(xi) at the observed points xi

are not used in (9.7), because {Z(xi) : i = 1, . . . , n} is not an unbiased sample of {Z(s)}.
In addition, the prior p({Z(s)}| β, µZ) is replaced by p(Z| β, µZ), which is the multinormal
distribution with mean µZ and the covariance matrix ΣZ determined by the covariance function
CZ(r) and the distances between locations x1, . . . , xn, s1, . . . , sk.

The latent vector Z is included in the set of unknowns. Its values will be updated in the MCMC
runs. The posterior is

p(λ1, λ2, β, µZ , Z|[X,M ]) ∝ p(λ1)p(λ2)p(β)p(µZ)p(Z| β, µZ)p([X,M ]|λ1, λ2, Z),

and the variables will be updated in the order

λ1, λ2, β, µZ , Z(x1), Z(x2), . . . , Z(xn), Z(s1), Z(s2), . . . , Z(sk). (9.8)
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Here each variable is updated one at a time, but more efficient block-updates could be used for
Z, see Rue and Held (2005). The updating is done using Metropolis-Hastings steps. Let the
notation (9.8) stand for the current values in the MCMC chain and ’∗’ refer to the proposal.
The following proposal distributions are considered:

λ∗1 ∼ Unif(max(0, λ1 − δ1), min(λ1 + δ1, λmax,1))

λ∗2 ∼ Unif(max(0, λ2 − δ2), min(λ2 + δ2, λmax,2))

β∗ ∼ Unif(max(0, β − δβ), β + δβ)

µ∗Z ∼ N(µZ , σ2
µq)

Z∗(xi) ∼ N(Z(xi), σ
2
x) for i = 1, 2, . . . , n

Z∗(sj) ∼ N(Z(sj), σ
2
s) for j = 1, 2, . . . , k,

where δ1, δ2, δβ, σµq, σx, σs are proper (constant) values for the parameters of the proposal dis-
tributions set by the user. Note that every update of the value Z(sj), j = 1, . . . , k, changes pZ

calculated from (9.7). This value pZ again affects the updating of λ1, λ2, and Z(sj), j = 1, . . . , k,
through the acceptance probabilities. Further, note that Z∗(xi) can only be accepted if it fulfils
the condition given by m(xi). The acceptance probabilities are given in Section 9.2.4.
The MCMC algorithm described above is applicable as such for small data. The updating
of β becomes slow if the dimension of ΣZ is high, which is due to large number observed
points or a dense grid used in the augmentation of the Z-values. This computationally tedious
updating is avoided by suggesting values for β only from a set B = {β1, β2, . . . , βh}, β1 <
β2 < · · · < βh, h ∈ N, h ≥ 3. Often small changes in β are not meaningful and, considering
only a finite number of values for β, the corresponding covariance matrices and their inverses
can be calculated only once at the beginning of the algorithm. A disadvantage may be poorer
mixing. We transform the gamma prior p(β) on (0,∞) into a discrete prior distribution on B
as pB(βi) = p(βi)/

∑h
j=1 p(βj) for i = 1, . . . , h. The scaling factor cancels out in the Metropolis-

Hastings ratio. In the discretization of β, the proposal distribution is changed. Let βt be the
current value in the chain and Y a random variable for which P(Y = −1) = P(Y = 1) = 1/2.
Then, the new value is suggested according to a random walk in B:

β∗ =





βmax(1, t+Y ), if t = 1,

βt+Y , if 1 < t < h,

βmin(t+Y, h), if t = h.

(9.9)

The Bayesian estimation results in posterior distributions for the two intensities and for the
parameters of the random field. In addition, a prediction for the random set is obtained
as the posterior mean of 1(Z(sj) ≥ 0), j = 1, . . . , k. Assume that T iterations have been
performed (omitting the burn-in time) and Z1(sj), Z2(sj), . . . , ZT (sj) are the corresponding
simulated values for Z(sj), j = 1, . . . , k. The Bayesian estimate for the probability P(sj ∈ Θ)
is then obtained by

P̂(sj ∈ Θ) =
1

T

T∑
t=1

1(Zt(sj) ≥ 0) , sj ∈ G. (9.10)

These probabilities could be further used as a basis for classification.
The values for λ1, λ2, β and µZ are stored, whilst Z(xi) and Z(sj) are recorded for examination
only with three different values of i and j due to the (large) dimension of Z. These three
values are sampled from {1, . . . , n} and {1, . . . , k}, respectively. For all j ∈ {1, . . . , k}, the
probabilities P̂(sj ∈ Θ) are calculated iteratively in the MCMC run.
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9.2.4 Acceptance probabilities

In the following, let λ1, λ2, β, µZ , Z be the current values in the chain. In addition, let ΣZ be
the covariance matrix of Z determined by the covariance function with the range parameter β,
|ΣZ | its determinant and pZ the estimate (9.7) calculated from the current Z. The proposals
for the new states are denoted by λ∗1, λ

∗
2, β

∗, µ∗Z and Z∗. The values of Z are updated one at a
time and, thus, Z∗ stands for the vector where one of the components have been changed with
respect to Z. The updating of Z (at grid locations) affects pZ . Thus, let the notation p∗Z refer
to (9.7) calculated from Z∗. Further, the updating of β affects ΣZ : let Σ∗

Z be the covariance
matrix of Z determined by the covariance function with β∗.

The acceptance probabilities for the proposals λ∗1, λ
∗
2, β∗ by (9.9), µ∗Z and Z∗ are minimum of

1 and
rλ1 =

(
λ∗1
λ1

)n1

e|W |pZ(λ1−λ∗1) · min(λ1 + δ1, λmax,1)−max(0, λ1 − δ1)

min(λ∗1 + δ1, λmax,1)−max(0, λ∗1 − δ1)
,

rλ2 =

(
λ∗2
λ2

)n2

e|W |(1−pZ)(λ2−λ∗2) · min(λ2 + δ2, λmax,2)−max(0, λ2 − δ2)

min(λ∗2 + δ2, λmax,2)−max(0, λ∗2 − δ2)
,

rβ =

(
β∗

β

)aβ−1

ebβ(β−β∗)
( |ΣZ |
|Σ∗

Z |
) 1

2

e
1
2
(Z−1vµZ)T (Σ−1

Z −(Σ∗Z)−1)(Z−1vµZ),

rµZ
= e

1
2 [((µZ−µµ)2−(µ∗Z−µµ)2)/σ2

µ+(1v(µ∗Z−µZ))T Σ−1
Z (Z· 2−1v(µ∗Z+µZ))]

and
rZ = e

1
2 [(Z−Z∗)T Σ−1

Z (Z+Z∗−1v· 2µZ)]+|W |(λ1−λ2)(pZ−p∗Z),

if
∏n

i=1 [1(Z∗(xi) ≥ 0)1(m(xi) = 1) + 1(Z∗(xi) < 0)1(m(xi) = 2)] = 1, and 0 otherwise. Note
that when Z(xi) is updated then p∗Z = pZ . Above 1v = (1, 1, . . . , 1)T is a (column) vector of
length n + k.

9.3 A simulation study

Six realisations of the Gaussian excursion set marked Cox process are simulated in a window
W of size [0, 10]× [0, 10] using different parameter combinations. The aim of the experimenting
is to demonstrate the model and the functionality of the posterior computation. We consider
a Gaussian random field {Z(s)} with mean µZ = −0.25 and Matérn covariance function (9.4)
where a = 1.5. The values β = 1 and β = 2 are addressed to the inverse scale parameter of
(9.4). This leads to two realisations of {Z(s)}, which are simulated on a fine 200 × 200 grid.
After computing the excursion set Θ = {s ∈ W : Z(s) ≥ 0} from a realisation of {Z(s)},
an inhomogeneous Poisson process having the intensity (2.12) is simulated. The following
intensity parameter couples are considered: (λ1 = 6.5, λ2 = 2.0), (λ1 = 5.0, λ2 = 3.0) and
(λ1 = 3.8, λ2 = 3.8). In each case the total intensity is λ = pλ1 + (1 − p)λ2 ≈ 3.8 as the
(expected) area fraction of the excursion sets equals p = Φ(−0.25) ≈ 0.40.

The study design leads to six different Gaussian excursion set marked Cox processes. The
simulated random sets with β = 1 and β = 2 and two corresponding marked point patterns
Nm = {[xi; m(xi)]} with (λ1 = 6.5, λ2 = 2.0) are illustrated in Figures 9.2 and 9.3 (left). The
corresponding patterns for (λ1 = 5.0, λ2 = 3.0) are shown in Figures 9.4 and 9.5 (left), and for
(λ1 = 3.8, λ2 = 3.8) in Figures 9.6 and 9.7 (left).
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Assuming that Nm is observed, the Bayesian analysis is performed with the following parameter
values of the prior and proposal distributions: δ1 = 2.0, 2.0, 1.5, δ2 = 0.6, 0.8, 1.5 correspond-
ing respectively to (λ1 = 6.5, λ2 = 2.0), (λ1 = 5.0, λ2 = 3.0) and (λ1 = 3.8, λ2 = 3.8), and
aβ = 400, 1600, bβ = 400, 800, B = {0.20, 0.25, 0.30, . . . , 1.80}, {1.20, 1.25, 1.30, . . . , 2.80} cor-
responding respectively to β = 1 and β = 2. In addition, the values λmax,1 = λmax,2 = 20,
µµ = −0.25, σµ = 0.5, σµq = 0.5, σx = 0.3 and σs = 0.4 are used throughout.

For approximating the integrals in the likelihood (9.6), the process {Z(s)} is considered on
G. The number of grid points is a compromise between the precision of the approximation
and computational burden. A good choice would be to relate it to the range of correlation of
{Z(s)}. We employ a 20× 20 grid (0.5× 0.5 grid cell) for β = 1 and a 40× 40 grid (0.25× 0.25
grid cell) for β = 2. For comparison, we also employ the 40× 40 grid for β = 1.

The MCMC algorithm is run for 20,000 iterations in each case. Initial values for λ1, λ2 and µZ

are simulated from the corresponding prior distributions and for β uniformly in B. In addition,
Z is initialized such that the likelihood (9.6) is positive for the initial values of Z(x1), . . . , Z(xn):
n random variables are simulated from N(0, 0.5), the absolute values of these are taken and
the signs fixed in accordance with m(xi). The initial values for Z(s1), . . . , Z(sk) are then
simulated conditional on Z(x1), . . . , Z(xn) using the initial parameter values of µZ and β.
In this initialization, an additional nugget effect 0.05 is used to add flexibility to the initial
field. Simulations of the Gaussian random field are performed using the function GaussRF and
conditional simulation using the function CondSimu. Both of these functions exist in the R
library RandomFields, see Schlather (2001b).

The chains seem to reach the balance, which is concluded by visual examination of the trace
plots. Further three adjacent runs were made for each parameter combination using different
initial values, and these separate runs gave mutually consistent results. The marginal posterior
distributions are described by means of their means, standard deviations and 90% posterior
intervals. These descriptions calculated from the last 10,000 iterations of the first runs are
shown in Table 9.1. The posterior of p is computed using (9.2).

Some limited empirical observations can be drawn from the results shown in Table 9.1. In
these simulations with β = 1, using the 20 × 20 grid λ1 was estimated in each case larger
and λ2 smaller than using the 40 × 40 grid. Here the larger number of grid points leads to
slightly better results, but the computation time is multiplied. The posterior mean fields of the
probabilities P̂(sj ∈ Θ) corresponding to the parameter values β = 1 and β = 2, respectively,
and (λ1 = 6.5, λ2 = 2.0) are plotted in Figures 9.2 (middle and right) and 9.3 (right). The
corresponding posterior mean fields for (λ1 = 5.0, λ2 = 3.0) are shown in Figures 9.4 and 9.5,
and for (λ1 = 3.8, λ2 = 3.8) in Figures 9.6 and 9.7. It can be concluded that the uncertainty
is highest on the borders of the random set, but the sets are reconstructed properly. Also the
20 × 20 grid used with β = 1 may be considered adequate for describing the random set, see
Figures 9.2, 9.4 and 9.6 (middle).

We further experimented with the models with lower intensities (λ1 = 3.25, λ2 = 1.0) and
(λ1 = 2.0, λ2 = 2.0) and these simulations worked as well, but a reduction in the information
leads to greater variability, of course. We also experimented with less restrictive priors for β.
Also a slightly less informative prior seems to work fine for models of Table 9.1, but much
longer simulation chains are required due to lower mixing. For the model with β = 1 and
(λ1 = 5.0, λ2 = 3.0), we run the algorithm for 200,000 iterations using the 20 × 20 grid
and values aβ = 25 and bβ = 25. The posterior means (standard deviations) from the last
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Table 9.1: Results for the simulation experiment. Posterior means (standard deviations) and
90% posterior intervals for the model parameters. The value µZ = −0.25 is used in the simu-
lation.
parameters of simulation λ1 λ2 β µZ p

β = 1, 20× 20 grid (λ1 = 6.5, λ2 = 2.0) 7.07 (0.53) 1.88 (0.18) 1.01 (0.04) -0.24 (0.27) 0.41 (0.10)
6.24, 7.98 1.60, 2.19 0.95, 1.05 -0.69, 0.21 0.25, 0.58

(λ1 = 5.0, λ2 = 3.0) 5.28 (0.43) 2.82 (0.22) 1.00 (0.04) -0.27 (0.27) 0.40 (0.10)
4.62, 6.01 2.48, 3.20 0.95, 1.05 -0.72, 0.19 0.24, 0.57

(λ1 = 3.8, λ2 = 3.8) 4.45 (0.37) 3.63 (0.26) 0.98 (0.04) -0.17 (0.27) 0.44 (0.10)
3.84, 5.08 3.21, 4.07 0.90, 1.05 -0.62, 0.28 0.27, 0.61

β = 1, 40× 40 grid (λ1 = 6.5, λ2 = 2.0) 6.70 (0.42) 1.94 (0.18) 1.01 (0.03) -0.23 (0.27) 0.41 (0.10)
6.02, 7.40 1.66, 2.26 0.95, 1.05 -0.66, 0.21 0.25, 0.58

(λ1 = 5.0, λ2 = 3.0) 5.00 (0.40) 2.92 (0.23) 1.00 (0.04) -0.19 (0.27) 0.43 (0.10)
4.38, 5.67 2.55, 3.32 0.95, 1.05 -0.63, 0.25 0.27, 0.60

(λ1 = 3.8, λ2 = 3.8) 4.27 (0.34) 3.73 (0.26) 1.09 (0.05) -0.13 (0.26) 0.45 (0.10)
3.73, 4.85 3.32, 4.16 1.00, 1.15 -0.57, 0.29 0.28, 0.61

β = 2, 40× 40 grid (λ1 = 6.5, λ2 = 2.0) 7.02 (0.50) 2.02 (0.19) 2.00 (0.05) -0.23 (0.18) 0.41 (0.07)
6.23, 7.86 1.73, 2.35 1.95, 2.10 -0.54, 0.06 0.29, 0.52

(λ1 = 5.0, λ2 = 3.0) 5.26 (0.43) 3.43 (0.25) 1.99 (0.05) -0.25 (0.18) 0.40 (0.07)
4.56, 5.97 3.03, 3.85 1.90, 2.05 -0.55, 0.05 0.29, 0.52

(λ1 = 3.8, λ2 = 3.8) 3.18 (0.32) 4.02 (0.31) 2.00 (0.05) -0.18 (0.19) 0.43 (0.07)
2.69, 3.73 3.53, 4.53 1.90, 2.10 -0.48, 0.13 0.31, 0.55

100,000 iterations are: λ1 = 5.11 (0.42), λ2 = 2.88 (0.23), β = 1.04 (0.11), µZ = −0.21 (0.27),
p = 0.42 (0.10). The difference to the result shown in Table 9.1 is that, with the less informative
prior, the standard deviation of the marginal posterior distribution of β is much larger.

In some simulations, we experienced that if the random initial value for β was unreasonably
small, then β did not start to update properly. It might not be a good practice to start with a
very small value of β (or strong spatial correlation).

In addition, we studied the effect of the discretization of β by allowing β to vary continuously
for the model with β = 1 and (λ1 = 5.0, λ2 = 3.0) using the 20 × 20 grid. We used the same
prior and proposal distribution parameters as in the case with discrete β except the proposal
β∗ ∼ Unif(max(0, β − 0.2), β + 0.2) was used. The posterior means (standard deviations) from
the last 10,000 iterations out of 20,000 are: λ1 = 5.28 (0.43), λ2 = 2.82 (0.23), β = 1.00 (0.04),
µZ = −0.28 (0.28), p = 0.39 (0.10). Thus, the means and standard deviations of the posterior
distributions with a continuous distribution for β are very similar to those with a discrete
distribution. On the basis of our very limited experience, we conclude that the discretization of
β does not affect the results remarkably, and therefore, its use is recommended for computational
reasons.

9.4 Modelling pine saplings growing in treated soil

The new Bayesian model is used to analyse two marked point patterns of pine saplings, both
observed in a window of size 25 m× 25 m, see Figure 3.8. It is known a priori that the patches
tend to be smaller than 1 m in diameter. Consequently, the grid G must be dense enough to
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Figure 9.2: On the left : the simulated Gaussian excursion set (µZ = −0.25, β = 1) with random
set marked Cox process Nm where λ1 = 6.5 and λ2 = 2.0. Black points are points within the
random set (white area), white ones outside. In the middle (G is 20× 20 grid) and on the right
(G is 40 × 40 grid): posterior probabilities P̂(sj ∈ Θ), sj ∈ G, with points of Nm. Light grey
means high probability, dark grey small probability.
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Figure 9.3: On the left : the simulated Gaussian excursion set (µZ = −0.25, β = 2) with random
set marked Cox process Nm where λ1 = 6.5 and λ2 = 2.0. On the right (G is 40 × 40 grid):
posterior probabilities P̂(sj ∈ Θ), sj ∈ G, with points of Nm.

trace such small sets. The grid is taken to have 50 × 50 cells, or equivalently, a grid cell is of
size 0.5 m× 0.5 m. Further, the Matérn covariance function (9.4) with a = 1.5 is used for the
Gaussian random field.

A quite strong prior is used for β: β ∼ Gamma(1600, 800) with mean 2.00 and standard
deviation 0.05, which is justified by a priori knowledge of the sizes of patches. In addition,
the following prior distributions are considered: λ1 ∼ Unif(0, 5), λ2 ∼ Unif(0, 5) and µZ ∼
N(−0.5, 0.25). The parameters of the proposal distributions are decided by preliminary testing
to be the following: δ1 = 0.5, δ2 = 0.1, σµq = 0.5, σx = 0.4 and σs = 0.7. The values
B = {1.00, 1.05, 1.10, 1.15, . . . , 3.00} are assigned for β. The initial values are simulated as in
the simulation experiment of Section 9.3.

A total of 200,000 iterations is performed for the first sapling data set. The MCMC chains for
the parameters λ1, λ2, β and µZ are shown in Figure 9.8. The marginal posterior distributions
are described through the means, standard deviations and 90% posterior intervals obtained
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Figure 9.4: On the left : the simulated Gaussian excursion set (µZ = −0.25, β = 1) with random
set marked Cox process Nm where λ1 = 5.0 and λ2 = 3.0. Black points are points within the
random set (white area), white ones outside. In the middle (G is 20× 20 grid) and on the right
(G is 40 × 40 grid): posterior probabilities P̂(sj ∈ Θ), sj ∈ G, with points of Nm. Light grey
means high probability, dark grey small probability.
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Figure 9.5: On the left : the simulated Gaussian excursion set (µZ = −0.25, β = 2) with random
set marked Cox process Nm where λ1 = 5.0 and λ2 = 3.0. On the right (G is 40 × 40 grid):
posterior probabilities P̂(sj ∈ Θ), sj ∈ G, with points of Nm.

from the last 100,000 iterations, see Table 9.2. The probabilities P̂(sj ∈ Θ) are plotted in
Figure 9.10 (left).

Similar chains are run for the second sapling data set. Again an MCMC sample of size 200,000
is collected, see Figure 9.9. The descriptions of the marginal posteriors shown in Table 9.2 are
obtained discarding the first 100,000 iterations as burn-in. The result concerning the random
set is shown in Figure 9.10 (right). For both data sets, three adjacent runs of the algorithm
were performed and the runs gave consistent results.

In the second sapling data set, there are two vertical ditches where no saplings grow. This
partly explains, why the estimates for λ1 and λ2 in the first data set are slightly larger than in
the second one. The parameter µZ , and thus p, is estimated to be a bit larger in the second
data set. The parameter β of the Matérn covariance function (9.4) is estimated to be around
2.05 and 2.08 in the data sets. This means that the spatial correlation vanishes (is less than
0.05) approximately at distances larger than 2.3 m. Despite the small differences in these data
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Figure 9.6: On the left : the simulated Gaussian excursion set (µZ = −0.25, β = 1) with random
set marked Cox process Nm where λ1 = 3.8 and λ2 = 3.8. Black points are points within the
random set (white area), white ones outside. In the middle (G is 20× 20 grid) and on the right
(G is 40 × 40 grid): posterior probabilities P̂(sj ∈ Θ), sj ∈ G, with points of Nm. Light grey
means high probability, dark grey small probability.
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Figure 9.7: On the left : the simulated Gaussian excursion set (µZ = −0.25, β = 2) with random
set marked Cox process Nm where λ1 = 3.8 and λ2 = 3.8. On the right (G is 40 × 40 grid):
posterior probabilities P̂(sj ∈ Θ), sj ∈ G, with points of Nm.

Table 9.2: Results for the pine sapling data sets. Posterior means (standard deviations) and
90% posterior intervals for the model parameters.

λ1 λ2 β µZ p

sapling data set 1 1.73 (0.48) 0.18 (0.02) 2.08 (0.05) -0.64 (0.16) 0.26 (0.05)
1.11, 2.65 0.14, 0.22 2.00, 2.15 -0.90, -0.36 0.19, 0.36

sapling data set 2 1.32 (0.26) 0.13 (0.02) 2.05 (0.05) -0.43 (0.15) 0.33 (0.05)
0.98, 1.82 0.10, 0.17 1.95, 2.15 -0.68, -0.20 0.25, 0.42

sets, the results are mutually consistent. The obtained area fraction is also in accordance with
the knowledge of the density of patches. The tree density in the tilled area is estimated to be
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9 to 10 times larger than in the untilled area, see Table 9.2.

9.5 Discussion on Bayesian inference for set-marked data

Here a Bayesian method is proposed for statistical reasoning on point pattern data. The model
employed is the random set generated Cox process but, in addition to the point locations, the
observations consist of the knowledge of whether a point belongs to the random set or not. An
interesting feature of this type of data, called here set-marked data, is that the knowledge of
the phase at the point locations improves the possibilities of controlling global features of the
random set, whilst the covariance of the random set has the role of (local) smoothing.

The Gaussian excursion set is used as a model for the random set. The Matérn covariance
function (9.4) with a fixed smoothness parameter a is used as the covariance function of the
generating random field. It is probably not possible to deduce the form of the covariance
function from the point pattern data (with or without set-marking), which is discussed in
Diggle et al. (1998) and in De Oliveira (2000). Instead, it is possible to estimate the inverse
scale parameter (our β) from the data, but this may be sensitive to “odd” point configurations.

We have made a lot of simulations with models using the Gaussian covariance function, that
is the stable covariance function (9.3) with a = 2, and our simulations always resulted in
overestimation of the inverse scale parameter β, even if quite an informative prior was used for
β. Overestimation of β further tends to lead to overestimation of λ1 and underestimation of λ2,
µZ and p. Similar phenomena may be encountered if one uses a large value for the smoothness
parameter a in the Matérn covariance function (9.4), which leads to smoother random fields.
At least, according to our limited experience, very smooth structure may cause very slow
convergence of the MCMC algorithm. The slow convergence for smooth random field structures
was also observed in the MCMC algorithm of the intensity-marked log Gaussian Cox processes,
see Section 6.4. The use of Gaussian covariance function has also been criticized by Diggle
et al. (1998) because it may lead to singular covariance matrices for the finite distributions.

If there is knowledge of the size of the classification error made in measuring the set-marks, this
misclassification can be included into the model. Let ε1 be the probability to observe m(xi) = 2
when Z(xi) ≥ 0 and ε2 be the probability to observe m(xi) = 1 when Z(xi) < 0. Then the
likelihood can be written as

p([X,M ]|λ1, λ2, {Z(s)}) = (1− ε1)
∑n

i=1 1(Z(xi)≥0)1(m(xi)=1)ε
∑n

i=1 1(Z(xi)≥0)1(m(xi)=2)
1

× ε
∑n

i=1 1(Z(xi)<0)1(m(xi)=1)
2 (1− ε2)

∑n
i=1 1(Z(xi)<0)1(m(xi)=2)

× λ
∑n

i=1 1(Z(xi)≥0)
1 λ

∑n
i=1 1(Z(xi)<0)

2

× exp

{
−

[
λ1

∫

W

1(Z(u) ≥ 0)du + λ2

∫

W

1(Z(u) < 0)du

]}
.

With ε1 = ε2 = 0 the likelihood (9.6) is obtained. The acceptance probabilities for λ1, λ2 and Z
differ from those in the algorithm for the model without observation errors, but otherwise the
algorithm described in Section 9.2 may be used. In our experimenting, this extension did not
essentially affect the results with simulated data, where the classification was precise. As regards
the sapling data sets, we believe that the measurements have been made with high precision.
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Figure 9.8: The MCMC chains for the first sapling data set.
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Figure 9.9: The MCMC chains for the second sapling data set.
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Figure 9.10: The posterior probabilities P̂(sj ∈ Θ), sj ∈ G, for the first (on the left) and second
(on the right) sapling data set. Light grey means high probability, dark grey small probability.
The points are the observations.

Allowing observation errors, the germ-grain model may become a competitive alternative for
the random set model, whereas it otherwise could be too rigid for real data sets.

Magnussen et al. (2006) considers the partition of a forest area to high and low intensity
compartments using Voronoi tessellations. This is a further possibility for the leading measure
of the random set generated Poisson process. Blackwell and Møller (2003) deals with Bayesian
analysis for tessellations.

The Bayesian approach enables the calculation of uncertainties for the parameters in terms of
the posterior interval or standard deviation of the marginal posterior distribution. In addition,
it allows estimation of the random set, again with uncertainties. This is a great advantage of
the Bayesian approach. The price is the computational load, especially when high resolution
is used in the discretization of the random field or when the data are extensive, and possibly
the sensitivity to the choice of prior distributions. We applied discretization of the inverse
scale parameter β, which reduces the need for matrix inversion leading to a faster simulation
algorithm. A drawback may be poorer mixing. For some applications, it might be reasonable
to reparametrize the covariance model by φ = 1/β and address the values for φ symmetrically
around the mean (or median or mode) of the prior distribution.

Our work was motivated by the saplings data, where independent and uniform scattering of
points within the two phases is highly plausible because the competition between the young trees
is very weak. In this setting, we believe, one will hardly find a modelling approach superseding
the current one. However, it is a future task to study, how the situation is improved if the phase
is observed both at the locations of points and at sampling locations, which are independent of
the observed point pattern.
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Appendix A

Derivation of mark characteristics

Log-intensity marked Cox process

Proof of (4.2): Let Λ and Λp be the intensity measures of Nm and N , respectively, see Stoyan
et al. (1995) for details of these measures. Since the measure B → Λ(B × L) for fixed L in
the mark space (here R) is absolutely continuous with respect to Λp, referring to Stoyan et al.
(1995), it can be shown that

Λ(d(x,m)) = λ(x,m)νd(dx)ν1(dm), (A.1)

where λ(x,m) is the intensity of the process Nm, and νd and ν1 are Lebesgue measures in Rd and
R, respectively. Let fzv(z, v) stand for the 2-dimensional Gaussian distribution of (Z(x), V (x)),
where V (s) = α+βZ(s)+U(s), s ∈ W ⊆ Rd, as in Section 4.1. Further, let λp be the intensity
of N . For the stationary log Gaussian Cox process N ,

λp =

∫
fz(z)ez dz =

∫ ∫
fzv(z, v)ez dz dv,

where fz(z) =
∫

fzv(z, v) dv is the marginal distribution of Z(x). On the other hand,

λp =

∫

R
λ(x, v) dv.

Therefore, it follows that

λ(x,m) =

∫
fzv(z, m)ez dz. (A.2)

Assuming the density function fm of the mark distribution M exists, M(dm) = fm(m)ν1(dm).
Therefore, by combining (A.1) with (2.1), we obtain that λ(x,m) = fm(m)λp. Since the
intensity of a log Gaussian Cox process is λp = eµZ+ 1

2
σ2

Z and (A.2) holds, we get the mark
distribution

fm(m) =

∫
fzv(z, m)ezdz

eµZ+ 1
2
σ2

Z

.

The result (4.2) follows directly from the calculation for the n-dimensional mark distribution
by choosing n = 1, see the following proof below.
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The proof of (4.3): For n marks m = (m1, . . . , mn)′ at n points x = (x1, . . . , xn)′ we get the same
way as for a mark (see the previous proof), by replacing d(x×m) by d(x1×. . . xn×m1×· · ·×mn),
that the mark distribution can be expressed in the form

fm(m) =

∫
fzv(z, m)ez′1dz

eµ′Z1+ 1
2
1′ΣZ1

,

where z = (Z(x1), . . . , Z(xn))′, m = (V (x1), . . . , V (xn))′, 1 = (1, . . . , 1)′ (column ma-
trix of length n), ΣZ is the covariance matrix of z and we have used the notation µZ for
(µZ(x1), . . . , µZ(xn))′ = (µZ , . . . , µZ)′. The notations ΣZ = ΣZ(x) and ΣV = ΣV (x) are used
for brevity, and in what follows, µV stands for (µV (x1), . . . , µV (xn))′ = (µV , . . . , µV )′ in this
proof. Let ΣV Z be the cross-covariance matrix of v and z on condition z is known at all points
x1, . . . , xn. (The cross-covariance function is defined by CV Z(s1, s2) = E[V (s1) − µV ][Z(s2) −
µZ ] = βCZ(s1, s2).) On condition that z is known at these locations, ΣV Z = βdiag(ΣZ), where
diag(ΣZ) denotes that only the diagonal elements of ΣZ are taken and other elements of the
matrix are zeros. This is due to that, given Z(x), V(x) is independent of other values of {Z(s)}.
Since fvz(v, z) = fv(v)fz|v(z| v) and

z| v ∼ N(µZ + Σ′
V ZΣ−1

V (v − µV ), ΣZ − Σ′
V ZΣ−1

V ΣV Z),

it holds
∫

fz|v(z| v)ez′1dz = Mz|v(1) = e(µZ+Σ′V ZΣ−1
V (v−µV ))′1+ 1

2
1′(ΣZ−Σ′V ZΣ−1

V ΣV Z)1,

which is the moment-generating function of z| v at point 1. Consequently, we get that

fx(m) =
fv(m)

∫
fz|v(z|m)ez′1dz

eµ′Z1+ 1
2
1′ΣZ1

=
1

2π
√

det ΣV

e−
1
2 [(m−µV −ΣV Z1)′Σ−1

V (m−µV −ΣV Z1)],

which is the density of the distribution N(µV + ΣV Z1, ΣV ).

The proof of (4.4) and (4.5): Following the structure of the proof that Ho and Stoyan (2008)
have used to calculate km·(r), which is E(r) divided by the mean of marks, for the intensity-
marked Cox process, we can calculate E(r) by

E(r) = Eor[m(o)] =
E[m(o)Λ(o)Λ(r)]

E[Λ(o)Λ(r)]
, (A.3)

being a special case of (5.4). The numerator of (A.3) is

E[m(o)Λ(o)Λ(r)] = αE[eZ(o)+Z(r)] + βE[Z(o)eZ(o)+Z(r)]

= αe2µZ+σ2
Z+CZ(r) + βEZ(o){E[Z(o)eZ(o)+Z(r)|Z(o)]},

where

EZ(o){E[Z(o)eZ(o)+Z(r)|Z(o)]} = EZ(o){Z(o)eZ(o)E[eZ(r)|Z(o)]}
= eµZ+ 1

2
(σ2

Z−(CZ(r))2/σ2
Z)EZ(o){Z(o)eZ(o)+CZ(r)/σ2

Z(Z(o)−µZ)}
= eµZ+ 1

2
(σ2

Z−(CZ(r))2/σ2
Z)e

1
2
(σ2

Z+(CZ(r))2/σ2
Z)+CZ(r)+µZ

∫ ∞

−∞
Z(o)

1√
2πσ2

Z

e
− 1

2σ2
Z

(Z(o)−µZ−σ2
Z−CZ(r))2

dZ(o)

= e2µz+σ2
Z+CZ(r)(µz + σ2

Z + CZ(r)).
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Here E[eZ(r)|Z(o)] = MZ(r)|Z(o)(1) (the moment-generating function), the assumption of Z and
U being independent and supplementing to a square have been used. Since E[Λ(o)Λ(r)] =
exp{2µz + σ2

Z + CZ(r)}, we get E(r) = α + β(µz + σ2
Z + CZ(r)). To calculate V (r), we first

calculate

Eor[m(o)2] =
E[m(o)2Λ(o)Λ(r)]

E[Λ(o)Λ(r)]
=
E[(α + βZ(o) + U(o))2Λ(o)Λ(r)]

e2µZ+σ2
Z+CZ(r)

=
α2e2µZ+σ2

Z+CZ(r) + β2E[Z(o)2eZ(o)+Z(r)] + σ2
Ue2µZ+σ2

Z+CZ(r) + 2αβe2µZ+σ2
Z+CZ(r)(µZ + σ2

Z + CZ(r))

e2µZ+σ2
Z+CZ(r)

= α2 +
β2E[Z(o)2eZ(o)+Z(r)]

e2µZ+σ2
Z+CZ(r)

+ σ2
U + 2αβ(µZ + σ2

Z + CZ(r)).

A similar type of calculation as for E[Z(o)eZ(o)+Z(r)] yields

E[Z(o)2eZ(o)+Z(r)] = e2µZ+σ2
Z+CZ(r)(σ2

Z + (µZ + σ2
Z + CZ(r))2).

Thus,

Eor[m(o)2] = α2 + β2
(
σ2

Z + (µZ + σ2
Z + CZ(r))2

)
+ σ2

U + 2αβ(µZ + σ2
Z + CZ(r)).

Then, V (r) is obtained by simple calculation:

V (r) = Eor[m(o)2]− [E(r)]2 = β2σ2
Z + σ2

U .

Gaussian intensity-marked Cox process with marking (5.3)

Derivation of the mean mark and mark variance: Obviously

Eo[m(o)] = Eo[Eo[m(o)|Λ(o)]] = a + bEo[Λ(o)]

and

varo[m(o)] = Eo{varo[m(o)|Λ(o)]}+ varo{Eo[m(o)|Λ(o)]}
= c2Eo[Λ(o)] + d2 + b2varo[Λ(o)].

The calculation of moments of the marks for the intensity-marked Cox process in Ho and Stoyan
(2008) yields that

Eo[Λ(o)] = λeσ2
Z

and

varo[Λ(o)] = Eo[(Λ(o))2]− [Eo(Λ(o))]2

= λ2e3σ2
Z − λ2e2σ2

Z

= λ2e2σ2
Z

(
eσ2

Z − 1
)

= e2σ2
ZCΛ(0).

where λ is the intensity of the log Gaussian Cox process and CΛ(0) = λ2(eσ2
Z −1) is the variance

of the intensity {Λ(s)}. The mean mark and the mark variance follow by simple calculation.
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Derivation of the second-order characteristics : Characteristics E(r) and kmm(r) can be calcu-
lated using (A.3) and

Eor{m(o)m(r)} =
E[m(o)m(r)Λ(o)Λ(r)]

E[Λ(o)Λ(r)]
. (A.4)

Since, because of conditional independence,

E[m(o)m(r)Λ(o)Λ(r)] = E[Λ(o)Λ(r)E[m(o)m(r)|Λ(o), Λ(r)]]

= E[Λ(o)Λ(r)[a + bΛ(o)][a + bΛ(r)]]

and
E[m(o)Λ(o)Λ(r)] = E[Λ(o)Λ(r)E[m(o)|Λ(o), Λ(r)]] = E[Λ(o)Λ(r)[a + bΛ(o)]],

we get

E[m(o)m(r)Λ(o)Λ(r)] = a2EeZ(o)+Z(r) + abEeZ(o)+2Z(r) + abEe2Z(o)+Z(r) + b2Ee2Z(o)+2Z(r)

= a2e2µZ+σ2
Z+CZ(r) + 2abe3µZ+5/2σ2

Z+2CZ(r) + b2e4µZ+4σ2
Z+4CZ(r)

= e2µZ+σ2
Z+CZ(r)

(
a + 2abλeσ2

Z+CZ(r) + b2λ2e2σ2
Z+3CZ(r)

)

and

E[m(o)Λ(o)Λ(r)] = ae2µZ+σ2
Z+CZ(r) + be3µZ+5/2σ2

Z+2CZ(r).

Hence
E(r) = a + bλeσ2

Z+CZ(r)

and
Eor[m(o)m(r)] = a + 2abλeσ2

Z+CZ(r) + b2λ2e2σ2
Z+3CZ(r),

from which kmm(r) is obtained by dividing by µ2
m. The value at zero is obtained by kmm(0) =

Eo[(m(o))2]/µ2
m = (σ2

m + µ2
m)/µ2

m. Since

Eor{m(o)2} =
E[m(o)2Λ(o)Λ(r)]

E[Λ(o)Λ(r)]
=
E[Λ(o)Λ(r)E[m(o)2|Λ(o), Λ(r)]]

e2µZ+σ2
Z+CZ(r)

= e−2µZ−σ2
Z−CZ(r)E[Λ(o)Λ(r){var[m(o)|Λ(o), Λ(r)] + [E[m(o)|Λ(o), Λ(r)]]2}]

= e−2µZ−σ2
Z−CZ(r)E[Λ(o)Λ(r){c2Λ(o) + d2 + (a + bΛ(o))2}]

= e−2µZ−σ2
Z−CZ(r){(a2 + d2)E[Λ(o)Λ(r)] + (2ab + c2)E[Λ(o)2Λ(r)] + b2E[Λ(o)3Λ(r)]}

= a2 + d2 + (2ab + c2)eµZ+ 3
2
σ2

Z+CZ(r) + b2e2µZ+4σ2
Z+2CZ(r),

we get

V (r) = Eor{m(o)2} − [E(r)]2

= d2 + c2λeσ2
Z+CZ(r) + b2λ2e2σ2

Z+2CZ(r)
(
eσ2

Z − 1
)

.

By similar calculations, we obtain the mark variogram

γm(r) = d2 + c2λe2σ2
Z+CZ(r) + b2λ2e2σ2

Z+2CZ(r)
(
eσ2

Z − eCZ(r)
)

for r > 0.
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Gaussian intensity-marked Cox process with marking (5.5)

Derivation of the mean mark and mark variance: Mean and variance of the mark (5.5) can be
obtained by following the proof in Ho and Stoyan (2008) for the marking (5.1). First consider
the marks m(xi) = 1/Λ(xi) and denote the lognormal distribution of Λ(o) by F . Then the
corresponding mark distribution function is obtained in the following way using the Campbell
and Fubini theorems and stationarity of the process:

E{Nm(A× (−∞,m])} = E

{
E

[∑
x∈N

1A(x)1(−∞,m]

(
1

Λ(x)

)
|Λ

]}

Campbell
= E

[∫
1A(x)1(−∞,m]

(
1

Λ(x)

)
Λ(x)dx

]

Fubini
=

∫
1A(x)E

[
1(−∞,m]

(
1

Λ(x)

)
Λ(x)

]
dx

stationarity
=

∫
1A(x)E

[
1(−∞,m]

(
1

Λ(o)

)
Λ(o)

]
dx

= E
[
1(−∞,m]

(
1

Λ(o)

)
Λ(o)

] ∫
1A(x)dx

= E
[
1[1/m,∞) (Λ(o)) Λ(o)

] ∫
1A(x)dx

= ν(A)

∫ ∞

1/m

xdF (x),

where the indicator function

1(−∞,m]

(
1

Λ(o)

)
=





1, if
1

Λ(o)
≤ m,

0, otherwise ,

has been rewritten as
1(−∞,m]

(
1

Λ(o)

)
= 1[1/m,∞) (Λ(o)) .

Because
E[Nm(A× L)] = λν(A)M(L),

the distribution of the mark m(xi) = 1/Λ(xi) is

FM(m) =
1

λ

∫ ∞

1/m

xdF (x),

and the density is

fm(m) =
1

λ

d
dm

∫ ∞

1/m

xdF (x) =
1

λ

1

m3
f

(
1

m

)
,

where f is the density of F . Thus the mean and the second moment for the marking m(xi) =
1/Λ(xi) are

Eo[m(o)] =

∫ ∞

−∞
mfm(m)dm =

1

λ

∫ ∞

0

1

m2
f

(
1

m

)
dm =

1

λ

∫ ∞

0

f(u)du =
1

λ
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and

Eo[(m(o))2] =

∫ ∞

−∞
m2fm(m)dm =

1

λ

∫ ∞

0

1

m
f

(
1

m

)
dm =

1

λ

∫ ∞

0

1

u
f(u)du

=
1

λ
Eo

[
1

Λ(o)

]
=

exp{−µZ + 1
2
σ2

Z}
exp{µZ + 1

2
σ2

Z}
= exp{−2µZ},

where the change of variables u = 1/m and Λ(o) ≥ 0 have been used. Consequently,

varo[m(o)] = e−2µZ − 1

λ2
= e−2µZ

(
1− e−σ2

Z

)
.

Of course, it must hold varo[m(o)] ≥ 0, which is now equivalent to σ2
Z ≥ 0. Using the above

results for 1/Λ(xi), we get for the mark (5.5) that

µm = Eo[Eo[m(o)|Λ(o)]] = Eo

[
a + b

1

Λ(o)

]
= a +

b

λ

and

σ2
m = varo[Eo[m(o)|Λ(o)]] + Eo[varo[m(o)|Λ(o)]]

= varo
[
a + b

1

Λ(o)

]
+ Eo

[
c2 1

Λ(o)
+ d2

]

= b2e−2µZ

(
1− e−σ2

Z

)
+

c2

λ
+ d2.

Derivation of the second-order characteristics : The characteristics are calculated same way as
for (5.3) model. The E(r) is obtained by

E(r) = Eor[m(o)] =
E[m(o)Λ(o)Λ(r)]

E[Λ(o)Λ(r)]
=

aλ2eCZ(r) + bλ

λ2eCZ(r)
= a +

b

λ
e−CZ(r).

Since

Eor[m(o)2] =
E[m(o)2Λ(o)Λ(r)]

E[Λ(o)Λ(r)]

=
1

λ2eCZ(r)

[
c2E[Λ(r)] + (a2 + d2)E[Λ(o)Λ(r)] + 2abE[Λ(r)] + b2E

[
Λ(r)

Λ(o)

]]

=
c2λ + (a2 + d2)λ2eCZ(r) + 2abλ + b2eσ2

Z−CZ(r)

λ2eCZ(r)

= a2 + d2 +
2ab + c2

λ
e−CZ(r) +

b2

λ2
eσ2

Z−2CZ(r),

we get

V (r) = Eor[m(o)2]− [E(r)]2 = d2 +
c2

λ
e−CZ(r) +

b2

λ2

(
eσ2

Z − 1
)

e−2CZ(r).

The unscaled Stoyan’s κmm(r)-function is

κmm(r) = Eor[m(o)m(r)] =
a2E[Λ(o)Λ(r)] + abE[Λ(o)] + abE[Λ(r)] + b2

λ2eCZ(r)

=
a2λ2eCZ(r) + 2abλ + b2

λ2eCZ(r)
= a2 +

2ab

λ
e−CZ(r) +

b2

λ2
e−CZ(r),
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from which kmm(r)-function is obtained by dividing by µ2
m. The mark variogram can be calcu-

lated in the following way:

γm(r) =
1

2
Eor{[m(o)−m(r)]2} =

E{[(m(o))2 + (m(r))2 − 2m(o)m(r)]Λ(o)Λ(r)}
2E[Λ(o)Λ(r)]

=
E[Λ(o)Λ(r)E[(m(o))2 + (m(r))2 − 2m(o)m(r)|Λ(o), Λ(r)]]

2E[Λ(o)Λ(r)]

=
1

2λ2eCZ(r)

[
c2E[Λ(r)] + c2E[Λ(o)] + 2d2E[Λ(o)Λ(r)] + b2E

[
Λ(r)

Λ(o)

]
+ b2E

[
Λ(o)

Λ(r)

]
− 2b2

]

=
1

λ2eCZ(r)

[
c2λ + d2λ2eCZ(r) + b2eσ2

Z−CZ(r) − b2
]

= d2 +

(
c2

λ
− b2

λ2

)
e−CZ(r) +

b2

λ2
eσ2

Z−2CZ(r).

The mark characteristics of the gamma intensity-marked Cox process are obtained by similar
calculations.
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