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Introduction
This thesis is in the field of geometric measure theory. From one perspective,

it is concerned with conical densities. From another perspective the thesis deals
with porosities of sets and measures. These two concepts are closely related. For
example, some of the dimension estimates for porous sets have been obtained
using conical density results. See [24], [19] and Section 2 of this introduction
for more information. Conical densities are also closely related to rectifiability
and approximate tangent planes. For more information on rectifiability and
approximate tangents see Subsection 1.1 of this introduction, [25] and [28].

1 Conical densities

The study of conical densities goes back to Besicovitch. See [2] and [3]. He stud-
ied the conical density properties of sets in the plane. Since then many authors
have worked in the field. These include Morse and Randolph [27], Marstrand
[22], Federer [11], Salli [30] and Mattila [24]. These works dealt mainly with
distributions of sets with respect to Hausdorff measures. For more general Haus-
dorff (and packing) type measures conical densities were studied by Käenmäki
and Suomala in [18]. See also [33]. The article [A] of this thesis continues the
study of conical densities in the direction shown by [18].

Let n, m ∈ N and 0 ≤ m < n. By Sn−1 we denote the unit sphere Sn−1 =
{x ∈ R

n : |x| = 1} and by G(n, n − m) the space of (n − m)-dimensional linear
subspaces of R

n. For a point x ∈ R
n, a direction θ ∈ Sn−1 and an ’angle’

0 ≤ α ≤ 1, define

H(x, θ, α) = {y ∈ R
n : (y − x) · θ > α|y − x|}.

The one-sided cone H(x, θ, α) with a small α is nearly a halfspace. A cone around
a subspace V ∈ G(n, n − m) is defined as

X(x, V, α) = {y ∈ R
n : dist(y − x, V ) < α|x − y|}.

Notice that when n − m = 1, a cone X(x, V, α) is two-sided. By dist(z, A) we
denote the distance from a point z ∈ R

n to a set A ⊂ R
n. Note that here small

α means small cone. Look at Figure 1 to get an idea what the cones look like.
A typical upper density theorem states that for Hs-almost every point x ∈ R

n

an s-dimensional set A ⊂ R
n is spread around every n−m-dimensional subspace

going through x when s > m. More precisely, let V ∈ G(n, n − m), 0 < α < 1,
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Figure 1: Here are illustrated the cones X(x, l, α), X(x, V, α) and H(x, θ, α)
with a small angle α, a hyperplane V ∈ G(3, 2), a line l ∈ G(3, 1) and a direction
θ ∈ S2.

and A ⊂ R
n with 0 < Hs(A) < ∞ where s > m. Then there exists a positive

constant c depending only on n, m, s and α so that

lim sup
r→0

inf
V ∈G(n,n−m)

Hs(A ∩ X(x, V, α) ∩ B(x, r))

(2r)s
≥ c.

Here B(x, r) is the open ball B(x, r) = {y ∈ R
n : |x− y| < r}. See [24, Theorem

3.3] for the proof of a more general version of this result.
For a general measure µ taking the limit with a denominator (2r)s does not

usually make any sense. Therefore it is replaced by µ(B(x, r)). The article [A]
consists of examples and the following two theorems. We will come back to the
examples in the next subsection.

Theorem 1.1. [A, Theorem 4.1] Suppose µ is a non-atomic measure on R
n and

0 < α ≤ 1. If dimH(µ) ≥ s > m ∈ {0, 1, . . . , n − 1}, then for µ-almost every
x ∈ R

n

lim sup
r→0

inf
θ∈Sn−1

V ∈G(n,n−m)

µ(B(x, r) ∩ X(x, V, α) \ H(x, θ, α))

µ(B(x, r))
≥ c

with the constant c > 0 depending only on α, s, n and m.
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By dimH(µ) we denote the Hausdorff dimension of µ which can be defined
using the Hausdorff dimension of sets as

dimH(µ) = inf{dimH(A) : A is a Borel set with µ(A) > 0}.

Theorem 1.1 means that measures with sufficiently large Hausdorff dimension
are spread near every subspace in many directions. Leaving out the subspace V

we see by the next theorem that any measure (that is not atomic at a point) is
locally spread in many directions.

Theorem 1.2. [A, Theorem 3.1] Suppose µ is a measure on R
n and 0 < α ≤ 1.

Then for µ-almost every x ∈ R
n

lim sup
r→0

inf
θ∈Sn−1

µ(B(x, r) \ H(x, θ, α))

µ(B(x, r))
≥ c

with the constant c > 0 depending only on n and α.

In the proof of Theorem 1.2 we look at the distribution of the measure on
a sequence of doubling scales. On each of the scales we discretize the possible
directions of cones and conclude that the measure cannot be concentrated on
any of those cones.

The proof of Theorem 1.1 is a bit more technical. Again we do our reasoning
on doubling scales. First we need enough balls with large mass. To find them we
use the concept of average homogeneity and the results obtained by E. Järvenpää
and M. Järvenpää in [14]. From the collection of balls we find some of them in
suitable relative positions using the geometric results of Erdős and Füredi [10].
This forces the conclusion of the theorem to be valid.

1.1 Approximate tangent planes and rectifiability

A set A ⊂ R
n is m-rectifiable if there exist Lipschitz maps fi : R

m → R
n, i ∈ N

such that

Hm(A \
∞⋃

i=1

fi(R
m)) = 0.

A set B ⊂ R
n is called purely m-unrectifiable if Hm(B ∩ A) = 0 for every

m-rectifiable set A.
Let A ⊂ R

n, x ∈ R
n and V ∈ G(n, m). We say that V is an approximate

tangent m-plane for A at x if

lim sup
r→0

Hm(A ∩ B(x, r))

(2r)m
> 0

7



and for all 0 < α < 1

lim
r→0

Hm(A ∩ B(x, r) \ X(x, V, α))

rm
= 0.

Rectifiability and approximate tangent planes are related to each other in the
following manner:

Theorem 1.3. [25, Corollary 15.20] Let A ⊂ R
n be an Hm-measurable set of

R
n with Hm(A) < ∞. Then A is purely m-unrectifiable if and only if for Hm

almost all x ∈ A there are no approximative tangent m-planes for A at x.

Moreover, it is known that if we have a purely m-unrectifiable set A ⊂ R
n

and if we fix V ∈ G(n, n − m) and 0 < α < 1 there exists a positive constant c

depending only on α and n so that

lim sup
r→0

Hm(A ∩ B(x, r) ∩ X(x, V, α))

(2r)m
> c (1)

for Hm almost all x ∈ A. See [25, Corollary 15.16]. In particular,

inf
V ∈G(n,n−m)

lim sup
r→0

Hm(A ∩ B(x, r) ∩ X(x, V, α))

(2r)m
> c.

One could ask if this could be improved to

lim sup
r→0

inf
V ∈G(n,n−m)

Hm(A ∩ B(x, r) ∩ X(x, V, α))

(2r)m
≥ c.

This is not possible as can be seen by the Example 5.4 in [A]: There exists a
purely 1-unrectifiable compact set A ⊂ R

2 with 0 < H1(A) < ∞ so that for
every 0 < α ≤ 1

lim
r→0

inf
l∈G(2,1)

H1(A ∩ B(x, r) ∩ X(x, l, α))

2r
= 0

for every x ∈ A.
A measure µ on R

n is called purely m-unrectifiable if µ(A) = 0 for every
m-rectifiable set A ⊂ R

n. The article [A] gives an example showing that an
estimate like (1) does not hold for measures: There is l ∈ G(2, 1) and a measure
µ in R

2 so that µ is purely 1-unrectifiable and for every 0 < α < 1

lim
r↓0

µ(X(x, l, α) ∩ B(x, r))

µ(B(x, r))
= 0

for µ-almost all x ∈ R
2.
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2 Porosity

The definition of porosity was used already by Denjoy in the 1920’s [7]. He intro-
duced a quantity which is nowadays called upper porosity. The term porosity in
this context is due to Dolženko [8]. Porosities have been studied, for example, in
connection with boundary interpolation sets [5], quasiconformal and quasisym-
metric maps [20], [23], [32], [34], [35], harmonic measures [12], complex dynamics
[29] and so on. In order to define porosity we first let A ⊂ R

n, take a point x ∈ A

and a radius r > 0 and set

por(A, x, r) = sup{α ≥ 0 : B(y, αr) ⊂ B(x, r) \ A for some y ∈ R
n}. (2)

From this we define the lower-porosity of A at x as

por(A, x) = lim inf
r→0

por(A, x, r). (3)

Finally the lower-porosity of A is defined as

por(A) = inf
x∈A

por(A, x).

We say that A is lower-porous if por(A) > 0. The set A is called ̺-porous if
por(A) ≥ ̺. Taking the limit superior instead of limit inferior in (3) gives the
notion of upper-porosity. We will not study upper-porosity here as it does not
imply a drop in the dimension. Indeed, there are upper-porous sets on R

n with
Hausdorff dimension n, see for example [13] or [25]. From now on we will refer
to lower-porosity as porosity. For an extensive review on upper-porosity and
σ-porosity see the survey papers of Zaj́ıček [36], [37].

The first implications of large porosity to dimension were obtained by Mattila
in [24] when he answered to the following question posed by Martio: Let E ⊂ R

n

with por(E, x) = 1
2

for every x ∈ E. Is the Hausdorff dimension of E at most
n − 1? Mattila proved that this is the case and also gave a stronger result:

Theorem 2.1. [24, Corollary 3.4] For 0 < ̺ < 1
2

there is dn(̺), n−1 ≤ dn(̺) ≤
n, such that lim̺→ 1

2

dn(̺) = n − 1 and dimH(E) ≤ dn(̺) for every ̺-porous set
E ⊂ R

n.

This theorem was proved as a corollary to a conical density result. The
transition from holes to cones goes as follows: Let por(E, x, r) > ̺. Then there
is a point z ∈ R

n such that B(z, ̺r) ⊂ B(x, r) \ E and so

H(x, θ, α) ∩ B(x,
r

2
) ⊂ B(x, 2(1 − 2̺)r) ∪ B(z, ̺r),
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where θ is the direction from x to z and α is a suitable angle depending on ̺. The
conical density result implies then that the dimension of E cannot be too large.
If this were not the case, then a cone like H(x, θ, α) ∩ B(x, r

2
) would typically

have large measure compared to B(x, 2(1 − 2̺)r).
It is natural to ask what the optimal function dn in Theorem 2.1 is. By

optimal function dn we mean the function

dn(̺) = sup{dimH(E) : E ⊂ R
n is ̺-porous}.

Salli proved in [31] that for the optimal dn(̺) there are positive constants C1 and
C2 so that

n − 1 +
C1

log( 1
1−2̺

)
≤ dn(̺) ≤ n − 1 +

C2

log( 1
1−2̺

)
. (4)

Here the constant C1 is absolute and the constant C2 depends only on n. More-
over, he proved the upper bound for the packing dimension, which we will denote
by dimp. Recall that for a set A ⊂ R

n we always have dimH(A) ≤ dimp(A).
Salli proved his result by investigating carefully the properties of unions of

balls with equal radii. In particular, he proved that the boundary of the union
can be locally covered with a δ-neighbourhood of a convex set which could in
turn be covered with Cδn−1 balls of radius δ. Carrying out the calculations with
δ = (1− 2 por(A)) gives the upper bound in estimate (4). The lower bound was
shown by looking at Cantor sets and their cartesian products with unit intervals.

The results of Mattila and Salli can be generalized in many directions. One
can replace the Euclidean spaces with more general spaces, pass on from porosi-
ties of sets to porosities of measures, look at sets having holes in different direc-
tions or consider sets that are porous only on some percentage of scales. We will
look at these generalizations in the next subsections.

2.1 k-porosity

Käenmäki and Suomala introduced the notion of k-porosity in [19]. In k-porosity
we look for the maximal k holes in orthogonal directions. With an integer k ∈
{1, . . . , n}, define for a set A ⊂ R

n, a point x ∈ A and a radius r > 0

pork(A, x, r) = sup{α ≥ 0 : there are y1, . . . yk ∈ R
n such that for every i

B(yi, αr) ⊂ B(x, r) \ A, and (yi − x) · (yj − x) = 0 if j 6= i}

and as before
pork(A, x) = lim inf

r→0
pork(A, x, r).

Finally let
pork(A) = inf

x∈A
pork(A, x).

10



Käenmäki and Suomala proved the following result which is a generalization of
Theorem 2.1.

Theorem 2.2. [19, Theorem 3.2] Suppose 0 < k ≤ n. Then

sup{s > 0 : pork(A) > ̺ and dimH(A) > s for some A ⊂ R
n} → n − k

as ̺ → 1
2
.

Also the proof of Theorem 2.2 uses the ideas of the proof of Theorem 2.1. It
is based on a conical density result for sets in R

n which is similar to Theorem
1.1.

Theorem 2.2 was later made more precise by Järvenpää, Järvenpää, Käenmäki
and Suomala in [17] where they proved a result similar to that of Salli’s.

Theorem 2.3. [17, Corollary 2.6] Let 0 < ̺ < 1
2

and suppose A ⊂ R
n with

pork(A) > ̺. Then

dimp(A) ≤ n − k +
c

log( 1
1−2̺

)
,

where c depends only on n and k.

In the proof of Theorem 2.3 one looks at a convex set. This time the convex
set is estimated with planar subsets and when the set A is k-porous with k ≥ 2
we have k − 1-porosity inside these planar subsets. The process of taking unions
of balls, estimating the boundary of the union with a convex set and then moving
into planar subsets can be repeated k − 1 times. At the end by calculating the
estimates from 1-porosity up to k-porosity the final result is obtained.

2.2 Mean porosity

In mean porosity we require holes to occur only at some percentage of scales. A
set A ⊂ R

n is called mean (α, p)-porous at a point x ∈ A if

lim inf
i→∞

#{1 ≤ j ≤ i : por(A, x, 2−j) ≥ α}

i
≥ p.

The set A is called mean (α, p)-porous if it is mean (α, p)-porous at every point
x ∈ A. Mean porosity was introduced by Koskela and Rohde in [20]. They used
a porosity definition where the holes were searched from annuli: Let 0 < ǫ, c ≤ 1
and denote by Am(x) an annulus

Am(x) = {y ∈ R
n : (1 + ǫ)−m < |x − y| < (1 + ǫ)−m+1}.

11



Then a set E is porous at level m at a point x ∈ E if there exsists y ∈ Am(x)
with d(y, E) > cǫ|x − y|.

Koskela and Rohde proved an asymptotic dimension estimate for small mean
porosity. For large mean porosity the correct asymptotics were obtained by
Beliaev and Smirnov [1]. The asymptotics are again similar to the ones Salli
proved.

Theorem 2.4. [1, Corollary 1] There is a positive constant C depending only
on n so that for every mean (α, p)-porous set A ⊂ R

n one has

dimp(A) ≤ n − p +
C

log( 1
1−2α

)
.

The proof is based on the techniques used by Salli: the treatment of bound-
aries, convex sets and neighbourhoods. However, dealing with mean porosity
requires some new tricks. First of all Beliaev and Smirnov moved from porosity
defined with respect to balls to that defined with respect to cubes to ensure that
there is no overlapping that could destroy the estimates. Secondly they collected
the information on porosity using different weights depending on whether a cube
is porous or not.

2.3 Porosity of measures on R
n

For measures porosity was first considered by Eckmann, Järvenpää and Järvenpää
[9]. Let µ be a Radon measure on R

n. For a point x ∈ R
n, a radius r > 0 and a

real number ǫ > 0 define

por(µ, x, r, ǫ) = sup{α ≥ 0 : there is y ∈ X such that

B(y, αr) ⊂ B(x, r) and µ(B(y, αr)) ≤ ǫµ(B(x, r))}.

We define the porosity of µ at a point x ∈ R
n as

por(µ, x) = lim
ǫ→0

lim inf
r→0

por(µ, x, r, ǫ). (5)

The porosity of the measure µ is finally defined as

por(µ) = µ- ess sup
x∈Rd

por(µ, x).

Note that if we change the order of taking limits in (5) we get the porosity of
the support of µ. Eckmann, Järvenpää and Järvenpää proved in [9] that if a
measure µ on R

n is doubling in the sense that at µ-almost every point x ∈ R
n

lim sup
r→0

µ(B(x, 2r))

µ(B(x, r))
< ∞,

12



then

por(µ) = sup{por(A) : A is a Borel set with µ(A) > 0}. (6)

They also gave an example showing that this is not generally true for non-
doubling measures. Equality (6) together with Salli’s result gives the asymptotic
behaviour of the optimal upper bound for the dimension of doubling porous
measures.

Large porosity of measures on the real line was investigated by Järvenpää
and Järvenpää in [16]. An estimate analogous to that of Salli’s for the Hausdorff
measure of general porous measures was proved by Järvenpää and Järvenpää in
[15]. (See also [14].)

Mean porosity of measures can be defined similarly to that of sets. A measure
µ on R

n is called mean (α, p)-porous at a point x ∈ R
n if

lim
ǫ→0

lim inf
i→∞

#{1 ≤ j ≤ i : por(µ, x, 2−j, ǫ) ≥ α}

i
≥ p.

Finally, µ is mean (α, p)-porous if there is a set A ⊂ R
n so that µ(A) > 0 and µ

is mean (α, p)-porous at every point x ∈ A. In the article [B] of this thesis we
prove that for any mean (α, p)-porous measure µ we have

dimp µ ≤ n − p +
C

log( 1
1−2α

)
, (7)

where C depends only on n.

Quite surprisingly, it is impossible to estimate mean porous measures by mean
porous sets - at least on every scale at once. This is shown in the last section of
[B] by constructing a 1

8
-porous measure with µ(A) = 0 for any 0 < p ≤ 1 and

0 < α ≤ 1
2

and for any mean (α, p)-porous set A. Therefore the proof of the
estimate (7) is more involved with the actual definition of porosity of measures.
As in the proof of Theorem 2.4 we pass on from porosity defined with respect
to balls to that defined with respect to cubes. Although this guarantees that
we have no overlapping it makes the proof a bit more technical. This is because
we deal with general measures and therefore there is no control on the relative
measures of neighbouring cubes.

The problem of neighbouring cubes is overcome by looking separately at the
cubes which are on a ’boundary region’ of a larger cube and the cubes which
are in an ’inner region’. This separation gives an error in the estimate which is
eventually made smaller and smaller by induction. Mean porosity is dealt with
similar weights as in the proof of Theorem 2.4.

13



2.4 Porosity in metric spaces

In metric spaces the above mentioned definition of porosity of sets (in particular
(2)) is not the most natural one. One reason for this is the fact that with the
previous definition the maximum porosity is just some number between 0 and 1
that depends on the metric space. We want the maximum porosity not to exceed
1
2

so we instead use the definition introduced in [26]. Let (X, d) be a metric space.
For a set A ⊂ X, a radius r > 0 and a point x ∈ A let

por∗(A, x, r) = sup{̺ ≥ 0 : there is y ∈ X such that B(y, ̺r) ∩ A = ∅

and ̺r + d(x, y) ≤ r}.

and
por∗(A, x) = lim inf

r→0
por∗(A, x, r).

We say that A is ̺-porous, if por∗(A, x) ≥ ̺ at every point x ∈ A.
One way to investigate the structure of a metric space is to look at the

measures it supports. The first class of measures we use here is the class of
regular measures and the second one is the class of doubling measures.

Let s > 0. A metric space X is called s-regular if it supports an s-regular
measure µ. A measure µ is said to be s-regular if there are constants 0 < aµ ≤ bµ

and rµ > 0 so that
aµr

s ≤ µ(B(x, r)) ≤ bµr
s

for all x ∈ X and 0 < r < rµ.
David and Semmes proved in [6] that for ̺-porous sets A in s-regular spaces

dimp(A) ≤ s − ds(̺), (8)

where ds(̺) > 0 depends on s and ̺. Bonk, Heinonen and Rohde showed in
[4] that inequality (8) is true also for the Assouad dimension of A. Recall that
the Assouad dimension is always at least the packing dimension. In the article
[C] we show that ds(̺) = c̺s is the asymptotically sharp function in (8). The
constant c depends on the constants aµ, bµ and s. The proof of (8) is based on
careful estimation on the measure of the neighbourhoods of porous sets.

We call a metric space X doubling if it supports a doubling measure µ. Among
complete metric spaces this definition of a doubling metric space agrees with the
usual definition of a doubling metric space where we require that for any r > 0
all balls of radius 2r can be covered by a fixed number of balls of radius r. See
[21]. A measure µ is doubling on X if there exists a constant cµ ≥ 1, called the
doubling constant, so that there exists some r0 > 0 such that

0 < µ(B(x, 2r)) ≤ cµµ(B(x, r)) < ∞

14



for every x ∈ X and 0 < r < r0.
In the case of doubling metric spaces a similar calculation gives a weaker

result. This is because there might in general be too many empty annuli in the
space. Also in a doubling metric space there might be a ’bad part’ which destroys
any estimates. However, this part has always zero measure with any doubling
measure on the space.

Theorem 2.5. [C, Theorem 4.10] Suppose that µ is a doubling measure on X.
Then there is a set N ⊂ X with µ(N) = 0 so that

dimp(A) ≤ dimp(X) − c(µ)(log
1

̺
)−1̺log

2
cµ

for any ̺-porous set A ⊂ X \ N .

In article [C] the following connection between uniformly porous and regular
subsets of complete regular metric spaces is verified: Let X be a complete s-
regular metric space. A set A ⊂ X is uniformly porous if and only if there is
0 < t < s and a t-regular set F ⊂ X such that A ⊂ F . By uniform porosity of
A we mean that there exist constants rp > 0 and ̺ > 0 so that por∗(A, x, r) > ̺

for every x ∈ A and 0 < r < rp.
From the definition of porosity one sees that its maximum value in any metric

space is 1
2
. Therefore it is natural to ask in what spaces the estimate (4) of Salli’s

is valid. In the article [D] I give partial answers to this. First of all, the estimate
in s-regular geodesic metric spaces can not generally be of the form s− 1+ ds(̺)
with ds(̺) → 0 as ̺ → 1

2
. This is essentially because ’a direction’ does not

have to contribute a whole +1 in the dimension. On the other hand, if we drop
geodesity there is in general no hope for an n − 1-type estimate even with bi-
Lipschitz images of the Euclidean space R

n. Reason for this is that without an
assumption like geodesity the boundaries of holes do not have to come close to
the porous set.

Making the two above mentioned heuristic properties into assumptions on
local mappings from the metric space to a Euclidean space one arrives to an
estimate like the one of Salli’s. For example, normed vector spaces and step two
Carnot groups satisfy these assumptions.

3 Open Questions

In the study of conical densities and porosity there are still several open questions.
Let us list some of the immediate questions one considers while reading the
theory.
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Question 1. In Theorem 1.1 we had to require that dimH(µ) > m. Would the
claim hold also with dimH replaced by dimp?

Question 2. [A, Question 5.1] Given α > 0 and n ∈ N does there exist a
constant c > 0 depending only on α and n so that for every non-atomic measure
µ on R

n one could pick θ = θ(x) ∈ Sn−1 for µ almost all x ∈ R
n so that

lim sup
r→0

min µ(B(x, r) ∩ H(x, θ, α)), µ(B(x, r) ∩ H(x,−θ, α))

µ(B(x, r))
> c?

Question 3. In [B] our proof for the dimension estimate of porous measures
works only with 1-porosity. Is it true also that for measures µ in R

n with k-
porosity at least ̺ we have

dimp(µ) ≤ n − k +
C

log( 1
1−2̺

)

with some constant C depending only on n?

Question 4. In [B] we considered the case where porosity is large. For small
porosity one could ask if there exists a constant c depending only on n so that
for any (α, p)-porous measure µ on R

n we have

dimp(µ) ≤ n − cpαn.
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sions of measures, Nonlinearity 13 (2000), 1–18.
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[37] L. Zaj́ıček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal.
2005, 509–534.

19
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(15 pp.) 2006

106. TOLONEN, TAPANI, On different ways of constructing relevant invariant measures. (13 pp.)
2007

107. HORPPU, ISMO, Analysis and evaluation of cell imputation. (248 pp.) 2008
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