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INSTITUT FÜR MATHEMATIK

UND STATISTIK

BERICHT 118

GENERALIZED SOLUTIONS OF A SYSTEM OF
DIFFERENTIAL EQUATIONS OF

THE FIRST ORDER AND ELLIPTIC TYPE WITH
DISCONTINUOUS COEFFICIENTS

B. V. BOJARSKI

JYVÄSKYLÄ
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Foreword to the translation of �Generalized solutions of a sys-

tem of di�erential equations of �rst order and of elliptic type with

discontinuous coe�cients�

A remarkable feature of quasiconformal mappings in the plane is the in-
terplay between analytic and geometric arguments in the theory. The utility of
the analytic approach is principally due to the explicit representation formula

f = z + Cµ(z) + C(µTµ)(z) + C(µT (µTµ))(z) + . . . , (1)

valid for a suitably normalized quasiconformal homeomorphism f of the plane,
with compactly supported dilatation µ. Here T stands for the Beurling-Ahlfors
singular integral operator and C is the Cauchy transform. It was previously
known that T is an isometry on L2, and the above formula easily yields that
in this case f belongs to W 1,2

loc (R2). However, this knowledge alone does not
bring much new, since this fact may be already read from the integrability of
the Jacobian of f .

The full power of the above representation was not realized until Bogdan
Bojarski's fundamental paper [Generalized solutions of a system of di�erential

equations of �rst order and of elliptic type with discontinuous coe�cients,Mat.
Sb. N.S. 43 (85), 1957, 451�503]. This publication was preceded by two short
notes by the same author, but the new point of view is fully developed and
worked out in this paper. A fundamental new approach due to Bojarski is to
derive Lp-estimates for the derivatives of f by �rst showing that ‖T‖Lp→Lp → 1
as p → 2. For this purpose he invokes, in a beautiful manner, new tools from
harmonic analysis of 1950's, including interpolation and the fresh theory of
singular integrals due to Calderon and Zygmund. This breakthrough idea opens
up a direct pathway to many important issues in the theory, e.g. existence,
regularity and Hölder continuity estimates of the solution. Bojarski's paper
actually deals with solutions of general elliptic �rst order PDE-systems and
contains a wealth of material on existence and properties of their solutions.

Bojarski's paper mentioned above was written in Russian around 50 years
ago. Taking into account the importance of this work in the theory of qua-
siconformal mappings, it is a very welcome event that the paper now appears
in English for the �rst time. The translation is due to V.Y.Gutlianskii, Denis
Koftoniuk, Robin Krauze, V.A.Ryazanov, and Evgenii Sevostyanov, and fol-
lows the original paper without changes. Let us �nally mention for the reader's
bene�t that a comprehensive account of modern planar quasiconformal theo-
ry, especially in relation to elliptic PDE's, is given in the recent monograph
[K. Astala, T. Iwaniec and G. Martin: Elliptic Partial Di�erential Equations

and Quasiconformal Mappings in the Plane. Princeton Mathematical Series,
2009].

Eero Saksman
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Generalized solutions of a system
of differential equations of the first

order and elliptic type with
discontinuous coefficients †

B. V. Bojarski, Warszawa

In the present work we investigate properties of the generalized solutions
of the linear elliptic system of two partial differential equations of the following
type:

(∗)
vy = αux + βuy + au+ bv + e,

−vx = γux + δuy + cu+ dv + f.

It is assumed that the coefficients α, β, γ, δ are measurable functions satisfying
the condition of uniform ellipticity, see § 2, and a, b, c, d, e, f are integrable
with some exponent p > 2 in the domain where the system (∗), is considered.

In [1] I. N. Vekua proposed a new method for investigating differential
equations of elliptic type based on the employment of properties of a two-
dimensional singular integral. This method was applied, by the author, in
papers [2] and [3] to the study of systems of differential equations with discon-
tinuous coefficients. In the present paper, this method is applied to systems
of equations of the general form (∗). An inequality of Zygmund and Calderon
lies at the basis of all our arguments, see [4]. This inequality makes possible,
in contrast to the usual way with p = 2, to work in the space Lp, p > 2, which
drastically simplifies proofs and leads to more precise results.

The applied method allows one to investigate the properties of the so-
lutions of system (∗) directly relying on the properties of analytic functions.
The theory of systems of type (∗) developed below, in a formal sense does not
employ classical studies in the theory of partial differential equations of the
second order or systems of equations of the first order; neither it is based on

†Originally published as: Obobshennye resheniya sistemy differencial’nyh uravnenii per-
vogo poryadka ellipticheskogo tipa s razryvnymi koefficientami, Matematicheskii Sbornik 43
(85), no. 4 (1957), 451–503.
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the theory of quasiconformal mappings. Conversely, in a suitable presenta-
tion, it can be considered as the foundation for a theory admitting the most
general assumptions on the coefficients of the equations or characteristics of
quasiconformal mappings (linear as well as quasilinear).

First of all, we study the structure of solutions and get various representa-
tion formulas for them that lead to numerous properties and precise estimates.
These representation formulas establish a close connection between solutions
of (∗) and analytic functions of one complex variable.

On the basis of these results, in § 5 we prove a general existence theorem
which allows us to construct a solution of the system (∗) associated, in a natural
way, with any prescribed analytic function. This existence theorem, as shown
in the sequel, allows us to construct the required solutions in many important
cases (quasiconformal mappings, fundamental solutions, the construction of
solutions with prescribed singularities etc.)

We also study the connection of the generalized solutions of system (∗)
(a = b = c = d = e = f ≡ 0) with the geometric theory of quasiconformal
mappings. The equivalence of the class of univalent generalized solutions of
the systems (∗) and the so-called general quasiconformal mappings, see [5],
is established. We also prove that the generalized solutions of systems (∗)
(a = b = c = d = e = f ≡ 0) with continuous coefficients coincide with the
class of quasiconformal mappings in the sense of M.A. Lavrent’ev.

In § 6 the uniqueness theorem for quasiconformal mappings of simply
connected domains onto the unit disk is proved. In the general case, the proof
of uniqueness is here published for the first time. For the so-called p−elliptic
systems, a proof is given in a paper by Gergen and Dressel [6]. Our proof
also uses an idea of the authors mentioned. Note that, even for equations
with smooth coefficients, our proof of uniqueness is constructed only when the
theory of systems (∗) with discontinuous coefficients is available.

Some applications and complementary results are given in § 8. The fol-
lowing problems are considered: the Dirichlet problem for a disk, correctness
of the Cauchy problem, behavior of the mapping at a boundary point and
quasilinear equations. In particular, some theorems on uniqueness, preparing
to the quasilinear equations, are proved as well.

To the best of our knowledge, the first work devoted to the study of elliptic
systems with discontinuous coefficients is the paper by Morrey [7]. As a matter
of fact, the Beltrami system was investigated by him. Later, the methods of
Morrey were applied in works [6], [8], [9], [10] and [11]. With the same general
assumptions as ours, the system (∗) was studied by Bers and Nirenberg [10].
In this work, some results are merely formulated and proofs are sketched. The
authors proceed along a different route systematically considering solutions of
the system (∗) as limits of the corresponding solutions of equations with smooth
coefficients. The main result of these authors is identical with one of the forms
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of the representation formulas which may be deduced from our Theorem 4;
theorem 4 contains a series of another versions of the representation formulas
and estimates which are absent in [10].

A part of § 3 of the present work is a detailed account of paper [2].

1 Preliminaries

1. The class Wp(G). Denote by C1(G) the class of all complex–valued
functions of the complex variable z = x + iy defined in domain G of the
complex plane z and having continuous derivatives of the first order. For the
complex–valued function f(z) ∈ C1(G), we define the differential operators

fz ≡
∂f

∂z
=

1

2
(fx + ify) , fz ≡

∂f

∂z
=

1

2
(fx − ify) .

Then we can write the usual Riemann formula in the following form:

(1.1)

∫
G1

∂f

∂z
dG =

1

2i

∫
L

f dz or

∫
G1

∂f

∂z
dG = − 1

2i

∫
L

f dz

for any domain G1, G1 ⊂ G, bounded by the rectifiable contour L and for any
function f ∈ C1(G). We have fz ≡ 0, fz = f ′(z) for holomorphic functions in
G.

Denote by Lp(G) or Lp the class of all functions which are Lebesgue
integrable with the exponent p, p ≥ 1 in G; L1(G) = L(G). As usual, we
write f ∈ C1

0(G) if f ∈ C1(G) and f ≡ 0 outside some (generally speaking,
depending on f) compact subset of G.

In accordance with the formula (1.1), we introduce the class Wp(G) of all
functions having generalized partial derivatives of the first order in the Sobolev
sense [12]. Namely, we say that an integrable function f(z), z ∈ G, belongs
to the class Wp(G) if there exist functions ω1, ω2 which are Lp-integrable on
every compact subset of the domain G, such that∫

G

f
∂ϕ

∂z
dG = −

∫
G

ω1ϕ dG and

∫
G

f
∂ϕ

∂z
dG = −

∫
G

ω2ϕ dG

for every function ϕ(z) ∈ C1
0(G). By definition, for f ∈ Wp(G), we set

fz ≡
∂f

∂z
≡ ω1, fz ≡

∂f

∂z
≡ ω2.

It is clear that, if f ∈ C1(G), then f ∈ Wp(G), p > 0, and the generalized
derivatives of the function f(z) coincide with its usual derivatives. The basic
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calculus formulas for generalized derivatives are identical with the correspond-
ing formulas for usual derivatives. Properties of functions in the class Wp(G)
have been investigated in detail in [12].

Theorem 1.1. If f ∈ Wp(G), p ≥ 1, and fz ≡ 0, then f is holomorphic in G,
i.e. f coincides with a holomorphic function after modification on a subset of
measure zero.

For the proof of this theorem, see note [14].

It is easy to verify the following two formulas often used below:

(1.2) fz =
(
f
)
z
, fz =

(
f
)
z
.

2. Some integral operators. In what follows, the properties of two special
operators studied in this section are of great importance.

First of all we consider the integral operator

(1.3) ϕ(z) ≡ T (ω) ≡ − 1

π

∫
G

ω(t)

t− z
dG.

The integral (1.3) is well defined for any function ω ∈ Lp(G) and a.e. z ∈ G
and all z /∈ G. In the particular case, G ≡ K where K is the unit disk, we will
use the integral

(1.4) ψ(z) ≡ T2(ω) ≡ − 1

π

∫
K

zω(t)

1− zt
dK .

The integral (1.4) is a holomorphic function of the variable z for |z| < 1. If
ω ∈ Lp(K), then the integral (1.4) exists for a.e. z /∈ K, as well.

The integrals (1.3) and (1.4) define the functions ϕ(z) and ψ(z) over the
full complex plane of variable z. If ω ∈ Lp, p > 2, then these functions are
continuous. More precisely, for p > 2, we have the following inequalities

(1.5) |ϕ(z)| ≤ C||ω||Lp , ||ω||Lp =

∫
G

|ω|p dG

 1
p

,

and
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(1.6) |ϕ(z + h)− ϕ(z)| ≤ C1|h|β||ω||Lp , β =
p− 2

p
,

which hold for any complex z and h. The constants C and C1 depend only on
domain G and the number p. Similar inequalities also hold for the function
ψ(z) and can be obtained directly from (1.5) and (1.6) observing the formula

ψ(z) = −ϕ
(

1
z

)
, valid for all z (if G ≡ K).

For the proofs of (1.5) and (1.6), see [12].

In the paper of Vekua [14], the following theorem is proved.

Theorem 1.2. If f(z) admits the generalized derivative fz = ω, then f(z) has
the representation

(1.7) f(z) = h(z)− 1

π

∫
G

ω(t)

t− z
dG

where the function h(z) is holomorphic in G. Conversely, if h(z) is holomor-
phic in G and ω ∈ L, then the function f(z) defined by (1.7), possesses the
generalized derivative fz and fz = ω.

In particular, the formula (1.7) holds for functions in the class Wp(G),
p ≥ 1, whose generalized derivatives are integrable in G.

Now we study the properties of some two-dimensional singular integrals.

Let the function ω be defined and integrable with exponent p, p > 1,
on the whole plane E of variable z. The integral − 1

π

∫
E

ω(t)
(t−z)2 dE, generally

speaking, does not exist. However, we can consider its principal value in the
sense of Cauchy: if Eδ denotes the plane E with the disk of radius δ > 0
centered at z deleted, then the integrals

(1.8) fδ(z) = − 1

π

∫
Eδ

ω(t)

(t− z)2
dE

are well defined for any function ω ∈ Lp, p > 1. The integrals (1.8) are a
special case of the integrals in detail studied in [4]. From numerous results of
that paper, we use only the following: for any ω ∈ Lp, p > 1, the uniform
estimate holds
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(1.9) ||fδ||Lp ≤ A′p||ω||Lp

where A′p is an absolute constant (independent of δ), see ([4], Theorem 1).

It follows from (1.9) that the functions fδ(z) converge in the metric of
every Lp, p > 1, as δ → 0 to some function f(z) ∈ Lp. By definition, we call

f(z) the principal value in the sense of Cauchy of the integral
∫
E

ω(t)
(t−z)2 dE and

set

(1.10) f(z) ≡ S(ω) ≡ lim
δ→0

fδ(z) ≡ − 1

π

∫
E

ω(t)

(t− z)2
dE.

By (1.9) we get the following estimate for the principal value:

(1.11) ||S(ω)||Lp ≤ A′p||ω||Lp .

We know that the function ϕ(z) = T (ω) defined by the integral (1.3) has

the generalized derivative with respect to z and ϕz = ∂T (ω)
∂z

= ω. Now, starting
from the estimate (1.9) we prove that, if ω ∈ Lp, p > 1, then T (ω) also has
the generalized derivative with respect to z, which is expressed by the singular
integral (1.10):

(1.12)
∂T (ω)

∂z
= S(ω).

Indeed, let ϕ ∈ C1
0(G); then

∫
G

T (ω)
∂ϕ

∂z
dG = − lim

δ→0

∫
G

ω(t)

 1

π

∫
|t−z|≥δ, z∈G

1

t− z

∂ϕ

∂z
dGz

 dGt.

Now

1

π

∫
|t−z|≥δ

1

t− z

∂ϕ

∂z
dGz = − 1

π

∫
|t−z|≥δ

ϕ(z)

(t− z)2
dGz −

1

2πi

∫
Lδ

ϕ(z)

t− z
dz

where Lδ is a small circle of radius δ centered at point t. Therefore∫
G

T (ω)
∂ϕ

∂z
dG = lim

δ→0

1

π

∫
G

ϕ(z)

∫
|t−z|≥δ

ω(t)

(t− z)2
dGt dGz

6



since we have the uniform estimate∣∣∣∣∣∣
∫
Lδ

ϕ(z)

t− z
dz

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
Lδ

ϕ(z)− ϕ(t)

t− z
dz

∣∣∣∣∣∣ ≤ 2πδM

for some constant M. In view of (1.9) and (1.10) from the last formula we get∫
G

T (ω)
∂ϕ

∂z
dG = −

∫
G

ϕ(z)S(ω) dG,

i.e. the equality (1.12).

Incidentally, in view of Theorem 1.2, we deduce that, if a complex–valued
function f(z) has the derivative fz in the class Lp, p > 1, then it has also the
derivative fz in Lp.

For the derivative Ψ′(z) of the holomorphic function Ψ(z) defined by the
formula (1.4) for |z| < 1, we have the expression

(1.13) S2(ω) = Ψ′(z) = − 1

π

∫
K

ω(t)

(1− zt)2
dK.

We show now how, from inequality (1.9), we can obtain the inequality

(1.13′) ||S2(ω)||Lp(K) ≤ B′
p||ω||Lp(K)

where B′
p is an absolute constant.

First, observe that

Ψ′
(

1

ζ

)
= ζ

2
Φ(ζ), |ζ| > 1

where

Φ(ζ) = − 1

π

∫
K

ω(t)

(t− ζ)2
dK

and, moreover, in view of (1.9),

||Φ||Lp ≤ A′p||ω||Lp .

The inequality (1.13′) follows from the following estimates:∫
K

|Ψ′(z)|p dK =

∫
|z|≤ 1

2

|Ψ′(z)|p dK +

∫
1
2
<|z|<1

|Ψ′(z)|p dK ≤

7



≤ 4pπ
p
q
−p||ω||pLp

+

∫
1
2
<|z|<1

|ζ|2p |Φ(ζ)|p dK
|ζ|4

≤

≤ 4pπ
p
q
−p||ω||pLp

+ 22p−4(A′p)
p||ω||pLp

= (B′
p)
p · ||ω||pLp

since

π · |Ψ′(z)| ≤ 4

∫
K

|ω| dK ≤ 4π
1
q ||ω||pLp

for |z| < 1

2
,

1

p
+

1

q
= 1.

In the sequel, the integrals (1.10) and (1.13) will be considered as linear
operators in Banach spaces Lp(G) and Lp(K) respectively. The inequalities
(1.11) and (1.13′) show that these operators are bounded. Denoting the norm
of the operator S(ω) by Ap, we have:

(1.14) ||S(ω)||Lp ≤ Ap||ω||Lp .

Later on, we also consider the operator S1(ω) defined in the space Lp(K)
by the formula

(1.15) S1(ω) =
∂T1(ω)

∂z
= − 1

π

∫
K

{
ω(t)

(t− z)2
+

ω(t)

(1− zt)2

}
dK

where, by definition,

(1.16) T1(ω) = − 1

π

∫
K

{
ω(t)

t− z
+
zω(t)

1− zt

}
dK.

In view of (1.11) and (1.13′), S1(ω) is a bounded operator in Lp(K) and,
denoting its norm by Bp, we see that

(1.17) ||S1(ω)||Lp ≤ Bp||ω||Lp .

The norm of operator S1(ω) can be estimated in terms of the value of B′
p.

However, the above estimates for B′
p are not precise. It should be explicitly

stated that, in general, we have no approximate estimates for the constants
Ap and Bp. Obtaining such estimates is related to a deeper study of integrals
(1.12) and (1.18), a task to the best of our knowledge, not yet accomplished.
For p = 2, the study of integrals (1.10) and (1.15) is essentially easier. This is
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shown in paper [1] where, in particular, the equality A2 = 1 is proved. Now
we will prove also that B2 = 1.

For the proof, we remark that if ω ∈ C1
0(K), then S(ω) = − 1

π

∫
K

ω(t)
(t−z)2 dK

is a very good function. For example, it is continuous. Indeed, this follows
from equalities:

S(ω) = − 1

π
lim
δ→0

∫
Kδ

ω(t)

(t− z)2
dK =

= − 1

π
lim
δ→0

∫
Kδ

∂ω

∂t
· 1

t− z
dK − 1

2πi

∫
Lδ

ω(t)

t− z
dt

 = − 1

π

∫
K

∂ω

∂t
· 1

t− z
dK

where Kδ is the unit disk with a small disk of radius δ centered at z, bounded
by the circle Lδ, deleted. In particular, we get

(1.18)
∂S(ω)

∂z
=
∂S1(ω)

∂z
=
∂ω

∂z
.

Let now ω ∈ C1
0(K); then, in view of (1.1),

‖S1(ω)‖2
L2

=

∫
K

S1(ω)S1(ω) dK =

∫
K

∂T1(ω)

∂z
S1(ω) dK =

= − 1

2i

∫
L

T1(ω)S1(ω) dz −
∫
K

T1(ω)
∂S1(ω)

∂z
dK

where L is the boundary of the unit disk. Consider each of the integrals in the
right hand side of the last formula separately. Taking into account (1.2) and
(1.18), the second of these integrals can be transformed as:∫
K

T1(ω)
∂S1(ω)

∂z
dK =

∫
K

T1(ω)
∂ω

∂z
dK = −

∫
K

∂T1(ω)

∂z
ω dK = −

∫
K

|ω|2 dK.

For the first we have:∫
T

T1(ω)S1(ω)dz = −
∫
L

T1(ω)S1(ω)dz = −1

2

∫
L

∂

∂z
[T1(ω)]2 dz = 0

since it is obvious that T1(ω) = −T1(ω) on L and T1(ω) is a holomorphic
function in the neighborhood of line L because ω ∈ C1

0 . Thus, for ω ∈ C1
0(K),

we have
‖S1(ω)‖L2 = ‖ω‖L2 .

9



Hence it follows that B2 = 1 in view of the density of the set C1
0(K) in space

L2(K).

By similar transformations we can get the equality A2 = 1. For that, it
suffices to take as ω continuously differentiable functions vanishing outside of
a sufficiently large disk.

Some information on the constants Ap and Bp as functions of p, for p 6= 2,
can be deduced from M. Riesz’s theorem on convexity, see [15]. According to
this theorem, Ap andBp are logarithmically convex functions in p; in particular,
they are upper semicontinuous. Hence we conclude that

(1.19) Ap ≤ 1 + ε and Bp ≤ 1 + ε

as soon as 2 ≤ p < 2 + δ(ε) for small enough δ. The inequalities (1.19) are of
fundamental significance for our purposes.

3. Differentiability of functions in the class Wp(G). It is said that the
complex–valued function f(z) has a differential in the Stolz sense, or,equivalentely,
is totally differentiable at the point z if there exist constants A and B such
that

f(z + h)− f(z) = Ah+Bh+ o(h) = fx(z)4x+ fy(z)4y + o(h)

h = ∆x+ i∆y

It is known that, if f(z) has first generalized derivatives in the Sobolev sense,
which are integrable, then f(z) has the usual partial derivatives a.e. How-
ever, generally speaking, the inclusion f(z) ∈ Wp(G) does not guarantee the
existence of the total differential of f(z) in the Stolz sense on a set of full
measure.

The following criterion for the existence of a Stolz differential on a set
of full measure was proved by V.V. Stepanov: the function f(z) defined in
domain G has the differential in the Stolz sense a.e. in G if and only if

lim
|h|→0

∣∣∣∣f(z + h)− f(z)

h

∣∣∣∣ < +∞, a.e. in G.

Using Stepanov’s result we now present the proof of the following theorem.

Theorem 1.3. If f(z) ∈ Wp(G), p > 2, then f has the differential in the Stolz
sense for a.e. z ∈ G.

Proof. In view of Theorem 1.2, it is sufficient to consider the case when f(z) is
represented by the integral (1.3). Then the difference quotient takes the form

f(z + h)− f(z)

h
= − 1

π

∫
G

ω(t)dG

(t− z)(t− z − h)
= − 1

π

∫
|t−z|≤3|h|

ωdG

(t− z)(t− z − h)
−
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− 1

π

∫
|t−z|≥3|h|

t∈G

ωdG

(t− z)(t− z − h)
≡ ϕh(z) + ψh(z).

We first estimate integral ϕh(z) at each point z where the integral
∫
|ω(t) −

ω(z)|p dG is differentiable and has derivative equal to zero. At these points

ε(h) =

 1

9πh2

∫
|t−z|≤3|h|

|ω(t)− ω(z)|pdG


1
p

→ 0

as h→ 0.

As is known, points with this property form a set of full measure. Thus
we get:

π · ϕh(z) =

∫
|t−z|≤3|h|

ω(t)− ω(z)

(t− z)(t− z − h)
dG +

+ ω(z)

∫
|t−z|≤3|h|

dG

(t− z)(t− z − h)
= I1 + I2.

The first integral is estimated by the Hölder inequality:

|I1| ≤


∫

|t−z|≤3|h|

|ω(t)− ω(z)|pdG


1
p


∫
|t−z|≤3|h|

dG

|t− z|q|t− z − h|q


1
q

≤

≤ ε(h) · 3
2
p


3∫

0

dρ

ρq−1

2π∫
0

dθ

|1− ρ′eiθ|q


1
q

= C · ε(h)

since q < 2 and the last integral is convergent. The integral I2 can be directly
calculated and it is equal to πω. Therefore

lim sup
h→0

|ϕh(z)| ≤ |ω| < +∞, a.e.

To prove the analogues statement for ψh(z), note the following inequality:

(1.20) ||fn,h||L2 ≤
C1

n
· 1

(3|h|)n
||ω||L2 , n > 0

where

fn,h =

∫
|t−z|≥3|h|

ω(t)

(t− z)n+2
dG

11



and C1 is a constant. The simplest way to prove (1.20) is to remark, see [4],
that fn,k is a convolution of the function ω with the function

ghn(t) =

{
1

t2+n , for |t| ≥ 3|h|,

0, for |t| < 3|h|,

fn,h = ω ∗ ghn.

By the Fourier transform we get

f̃n,h = ω̃ · g̃hn,

and hence, using the boundedness of g̃hn and Parseval’s theorem, we come to
(1.20).

Now, expanding ψh(z) as the series in powers of h, we get that

ψh =

∫
|t−z|≥3|h|

ω(t)

(t− z)2
dG+

∞∑
n=1

hn
∫

|t−z|≥3|h|

ω(t)

(t− z)n+2
dG.

Hence, in view of (1.19) and (1.20),

||ψh||L2 ≤ A2||ω||L2 +
∞∑
n=1

C1

n
· |h|n

(3|h|)n
||ω||L2 ≤ C2||ω||L2

where C2 is independent of h. In view of the Fatou lemma, lim
h→0

|ψh| is square

integrable and hence it is finite a.e. Thus, we have proved that

lim
h→0

∣∣∣∣f(z + h)− f(z)

h

∣∣∣∣ < +∞

a.e. in G. The proof is completed by the application of Stepanov’s theorem
recalled above.

Remark. It follows from the remarks at the beginning of this section and
from (1.12) that, for any function of type (1.3), ω ∈ Lp, p > 2, the following
representation

(1.21) f(z + h)− f(z) = ω · h+ S(ω) · h+ o(h)

holds a.e. Using deeper results from [4] than the inequality (1.9), the estimate
(1.21) may be proved directly without reference to the aforementioned theorem
of Stepanov (see [4], p. 137.)
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2 Definition of the generalized solutions

1. The complex form of the system. The linear system of two equations
with two unknown functions u(x, y) and v(x, y) of the form

vy = αux + βuy + au+ bv + e,

(2.1) −vx = γux + δuy + cu+ dv + f

is called a system of elliptic type if

(2.2) α > 0, K2 = 4αδ − (β + γ)2 > 0.

We consider the system (2.1) in the planar domain G, where the coefficients
α, β, γ, δ, a, b, c, d, e, f as functions of z = x + iy are defined. The system
(2.1) is said to be uniformly elliptic in the domain G if the coefficients α, β,
γ, δ are uniformly bounded and satisfy the inequality:

(2.3) 4αδ − (β + γ)2 ≥ K0 > 0

where K0 is a fixed constant. We will mostly study uniformly elliptic systems.

As will be clear from what follows, the study of the system (2.1) is essen-
tially simplified if we represent it in the complex form. For this aim, multiply
the second of the equations in (2.1) by i and add it to the first one. Then, in-
troducing the complex–valued function w(z) = u+ iv, and using the notations
introduced above, we get the complex equation

(2.4) wz(1− λ)− wz(1 + λ)− wzµ− wzµ = A1w +B1w + C1

where

λ =
α+ δ + i(γ − β)

2
, µ =

α− δ + i(γ + β)

2
.

This equation is equivalent to a simpler one. Indeed, taking the complex
conjugate to (2.4), we get

(2.5) wz(1− λ)− wz(1 + λ)− wzµ− wzµ = A1w +B1w + C1.

We can exclude wz from formulae (2.4) and (2.5); then we get

13



(2.6) wz − q1(z)wz − q2(z)wz = Aw +Bw + C

where the coefficients q1 and q2 are equal, respectively, to

q1(z) =
2µ

|µ|2 − |1 + λ|2
, q2(z) = −|µ|

2 + (1 + λ)(1− λ)

|µ|2 − |1 + λ|2
.

The coefficients A, B, C are obtained from a, b, c, d, e, f by addition and mul-
tiplication by constants and the function 1

|µ|2−|1+λ|2 . In view of the inequality

(2.3) this function is bounded in domain G. Indeed, by a simple calculation,
we obtain

||µ|2 − |1 + λ|2| = 1 +
K2

4
+

(β − γ)2

4
+ α+ δ ≥ 1 +

K0

4
.

We similarly check that

|q1|+ |q2| =
√

(α+ δ)−K2 +
√

(1 + ∆)2 −K2

1 + ∆ + (α+ δ)
, ∆ = αδ − βγ .

¿From the last formula we see that the uniform ellipticity condition of the
system (2.1) can be written in the form of the inequality (q0 constant)

(2.7) |q1|+ |q2| ≤ q0 < 1

valid for all z ∈ G.

Observe that, if a, b, c, d, e, f are bounded in G or in some Lp(G), then
A, B, C are bounded or in Lp(G) as well.

In the sequel we only consider complex equations of the type (2.6) with
coefficients satisfying (2.7).

2. Definition of solutions. In what follows we study equation (2.6), where
the following assumptions mainly hold:

1) Domain G is bounded.

2) q1(z) and q2(z), defined in G, are measurable complex–valued functions
in variable z satisfying the inequality:

|q1(z)|+ |q2(z)| ≤ q0 < 1

a.e. in G.
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3) A, B, C ∈ Lp(G) where p is some fixed number, p > 2.

The restriction 1) is imposed for simplicity only; if the boundary of domain
G contains a continuum, we may get rid of 1) by applying elementary conformal
transformations. The restrictions on q1 and q2 are essential. Without these
restrictions the complexity of the theory drastically increases: in general, it
can occur that the equation (2.6) has no bounded solutions etc. Without the
above restrictions on A, B, C, equation (2.6) may have no continuous solutions.
Therefore, the imposed restrictions seem well justified. Moreover, even under
essentially stronger restrictions on the coefficients than in 2), equation (2.6)
may have no continuously differentiable solutions (for example, if A ≡ B ≡
C ≡ 0, and q1 and q2 are continuous, see [16]).

Therefore, when studying systems of type (2.6) with continuous or, even
more so, discontinuous coefficients, it is necessary to extend the concept of the
solution. We accept the following definition.

A function w = w(z) is said to be a generalized regular solution (or just
solution) of equation (2.6) if:

1) w = w(z) is defined a.e. in G;

2) w = w(z) belongs to W2(G);

3) w, wz and wz satisfy the equation (2.6) for a.e. z ∈ G.

In what follows, we prove that, under our assumptions, any generalized
solution of equation (2.6) is continuous (i.e. coincides a.e. with a continuous
function) and belongs to the class Wp(G) for some p > 2.

Besides regular generalized solutions, our methods allow us to study solu-
tions with isolated singularities of the polar type or even essential singularities.
Such solutions will not belong to the class Wp(G) but to some Wp(G

′) where
G′ ⊂ G is a domain containing no singularities of the solution.

In what follows, it is shown that equation (2.6) always admits generalized
solutions in G.

Moreover, many problems that may be asked in a reasonable way and nat-
urally arise for system (2.6), admit a solution only in the sense given above.
The generalized solutions, in the above sense, preserve many important prop-
erties of analytic and continuously differentiable functions.

Remark. It is easy to see, in view of Remark 1, p. 24, that we may assume,
without extending the class of generalized solutions, that

w(z) ∈ Wp′ , 2 ≥ p′ >
p

p− 1
,

p

p− 1
< 2

15



3 The Beltrami systems

In this section, we study equation (2.6) of the special form:

(3.1) wz − q(z)wz = 0.

We call it the Beltrami equation. In the real form it corresponds to the Beltrami
system

vy = αux + βuy,

−vx = βux + δuy,

αδ − β2 ≡ 1.

It is convenient to consider equation (3.1) in the full complex plane E. There-
fore, we extend the coefficient q(z) in equation (3.1), defined in the bounded
domain G, setting

(3.2) q(z) ≡ 0 outside of G

Then the inequality (2.7) holds for all z.

1. A special solution of the equation (3.1). Let K be a fixed disk
containing the domain G strictly inside; q ≡ 0 outside of K. We denote
by L0

p(K) the class of complex–valued functions which are integrable with
exponent p on K and vanish outside of K. Let ω ∈ L0

p(K). Then the function

(3.3) ϕ(z) = T (ω) ≡ − 1

π

∫
K

ω(t)

t− z
dK = − 1

π

∫
E

ω(t)

t− z
dE,

belongs to the class Wp(E) in view of Theorem 1.2 and formula (1.12). More-
over,

(3.4) ϕz = ω, ϕz = S(ω) = − 1

π

∫
E

ω(t)

(t− z)2
dE

It follows from these equalities that the function

(3.5) χ(z) = z + T (ω) = z − 1

π

∫
K

ω(t)

t− z
dK
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is a generalized (regular) solution of equation (3.1) if and only if ω satisfies the
singular integral equation

(3.6) ω − qS(ω) = q.

We see from (1.11), (1.19) and (2.7) that the norm of operator q(z)S(ω) in
Lp(K) does not exceed the number q0Ap and, for p which are close enough to
2, p > 2,

(3.7) q0Ap < 1 for |2− p| < δ

for small enough δ. Therefore equation (3.6) has a unique solution in any space
Lp(K) for p satisfying the condition (3.7). This solution can be calculated by
the method of successive approximations. Since ω belongs to Lp(K), for p
satisfying (3.7), the solution (3.5) belongs to Wp(K) as well; in particular, it
is Hölder continuous.

2. Equation (3.1) with the coefficient satisfying the Hölder condition.
Such equations were repeatedly studied by various methods (see [17]). We use
only some facts proven in a direct way by I. N. Vekua.

The idea of integrating the differential equation (3.1) using the singular
equation (3.6) belongs to Vekua. Assuming that q(z) satisfies the Hölder con-
dition in the whole plane (q(z) ≡ 0 outside of K) I. N. Vekua [1] proves the
following:

1) formula (3.5), if ω is the solution of equation (3.6), represents a contin-
uously differentiable solution of the equation (3.1) mapping homeomorphically
the plane z onto the plane w;

2) the Jacobian of mapping (3.5) is not zero for every z.

The last statement immediately extends to all univalent solutions of equa-
tion (3.1).

3. Some properties of the solution constructed in section 1. The
following theorem generalizes the above result of I. N. Vekua to an arbitrary
system of the form (3.1).

Theorem 3.1. Let q(z) be a measurable function, defined for all z, such that

q(z) ≡ 0 z ∈ CK = E rK)

and
|q(z)| ≤ q0 < 1, q0 − a constant.

Then the function χ(z) defined by formulas (3.6) and (3.5) realizes a home-
omorphic mapping of plane z onto plane χ; the function χ = χ(z) and its
inverse satisfy the Hölder condition in the full plane with the Hölder constant
and Hölder exponent depending only on q0 and the disk K.

17



Proof. Let qn(z) (n = 1, 2, . . .) be a sequence of continuously differentiable
functions defined in the full plane and satisfying the conditions

qn(z) → q(z), |qn| < q0 a.e.,

(3.8) qn(z) ≡ 0 z ∈ CK.

We may construct such a sequence, for instance, by convolutional averaging of
the function q(z). In view of (3.8), we have

(3.9) ||qn − q||Lp → 0

for each p > 0. Consider the sequence of functions

(3.10) χn(z) = z + T (ωn),
∂χn
∂z

− qn
∂χn
∂z

= 0

where ωn is the solution of the integral equation

(3.11) ωn − qnSωn = qn.

It is obvious that
ωn ≡ 0 in CK.

¿From (3.11) we obtain the estimate:

||ωn||Lp ≤ q0Ap||ω||Lp + ||qn||Lp

or, for p satisfying the condition (3.7),

(3.12) ||ωn||Lp ≤
||qn||Lp

1− q0Ap
<

C

1− q0Ap

where C is a constant which does not depend on n neither p. ¿From (3.11) we
get:

ωn − ωm = qnS(ωn − ωm) + (qn − qm)Sωm + qn − qm

and hence for p satisfying (3.7),

(1− q0Ap)||ωn − ωm||Lp ≤ ||qn − qm||Lp + ||(qn − qm)Sωm||Lp .

But

||(qn − qm)Sωm||Lp ≤ ||qn − qm||Lp·q′
||Sωm||Lp·p′

,
1

p′
+

1

q′
= 1.
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Therefore, choosing p′ close enough to 1, such that q0Ap p′ < 1 and taking into
account (3.7), (3.9) and (3.12), we see that

(3.13) ||ωn − ωm||Lp ≤ εn,m · C1, εn,m → 0 as n,m→∞

where εn,m = ||qn − qm||Lp·q′
and C1 is a constant (depending on p but not on

n nor m).

Thus ωn converge in the mean in the space Lp for p satisfying condition
(3.7). Let

(3.14) ω = lim
n→∞

ωn, ω ∈ L0
p(K).

It is obvious that ω − qSω = q. Setting χ(z) = z + T (ω), we conclude, using
(1.5) and (3.10), that

(3.15) χn(z) → χ(z)

uniformly in the whole plane. χ(z) is a generalized solution of the equation
(3.1), which is Hölder continuous and belongs to the class Wp,loc(E) for some
p > 2.

According to the above result of Vekua, χn(z) is a continuously differ-
entiable homeomorphism of plane z onto plane χ. Thus, χ(z) is the limit of
the uniformly convergent sequence χn(z) of homeomorphisms of plane z onto
plane χ. We prove that χ = χ(z) is also a homeomorphism. For this aim
consider the sequence of the continuously differentiable functions z = zn(χ)
which are inverses to the functions of the sequence (3.10). We have

(3.16) zn(χn(z)) ≡ z and χn(zn(χ)) ≡ χ(z)

for all z and χ.

It is easy to verify the following formulas:

(3.17)
∂zn
∂χ

=
1

Jn
· ∂χn
∂z

,
∂zn
∂χ

= − 1

Jn
· ∂χn
∂z

,

(where Jn is the Jacobian of the transformation χ = χn(z)) from which, in
view of (3.10) it follows that zn(χ) satisfies the quasilinear equation

(3.18)
∂zn
∂χ

+ qn(zn(χ))
∂zn
∂χ

= 0.

19



¿From (1.5) and (3.11) we deduce that

(3.19) |χn(z)− z| < M

with a constant M independent of n and z. Thus, in view of (3.17), we see that
∂zn

∂ω
≡ 0 outside of some fixed disk K1, which does not depend on n. Therefore,

by Theorem 1.2, zn(χ) admits the representation

(3.20) zn(χ) = χ+ fn(χ) + T (ω̃n) = χ+ fn(χ)− 1

π

∫
E

ω̃n(t)

t− χ
dE

where ω̃n ≡ 0 outside of K1 and the function fn(χ) is holomorphic in the
whole plane. For a fixed n, T (ω̃n) is bounded and lim

χ→∞
T (ω̃n) = 0. In view of

(3.19), fn(χ) is also bounded, and fn(χ) → 0 as χ→∞, i.e. fn(χ) ≡ 0, since
lim
z→∞

|χn(z)− z| = 0, i.e. lim
χ→∞

|χ− zn(χ)| = 0. Thus, we can write (3.20) in the

following form:

(3.21) zn(χ) = χ+ T (ω̃n).

¿From this formula and (3.18) we obtain the following equation for ω̃n:

(3.22) ω̃n + qn(zn(χ))Sω̃n = −qn(zn(χ))

where
|qn(zn(χ))| ≤ q0 < 1.

Hence, similarly to (3.12), we deduce the estimate

(3.23) ||ω̃n||Lp ≤ C2

for p satisfying condition (3.7) (C2 does not depend on n).

In accordance with the inequality (1.6), the operator T (ω), mapping the
space Lp into the space of functions satisfying the Hölder condition, is com-
pletely continuous. Therefore, we can choose a subsequence znk

(χ) converging
uniformly to a function z = z(χ) satisfying the Hölder condition as well. Pass-
ing to the limit in (3.16) along the subsequence nk, k →∞, we get χ(z(χ)) ≡ χ
and z(χ(z)) ≡ z, i.e. χ = χ(z) is a homeomorphic mapping of the plane z
onto the plane χ which, together with its inverse mapping, has all the desired
properties. Thus the theorem is proved.
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Remark. It follows directly from the uniqueness of the limit z(χ) and from
the compactness of the sequence zn(χ) that zn(χ) → z(χ) uniformly.

The above constructed mapping f of plane z onto plane χ, in general,
will not be continuously differentiable. We know only that it belongs to the
class Wp,loc(E) for some p > 2. Therefore, a direct application of this mapping
to problems of analysis, for instance to problems considered in [1] would be
difficult. However, as we prove below, the mapping χ = χ(z) has a series of
properties of continuously differentiable mappings with respect to the main
operations of analysis (integration, differentiability etc.).

Theorem 3.2. 1) The image χ(Ω) of any measurable set Ω of plane z is
measurable and

mes χ(Ω) =

∫
Ω

Jχ(z) dΩ

where Jχ is the generalized Jacobian of the transformation χ = χ(z):

Jχ =

∣∣∣∣∂χ∂z
∣∣∣∣2 − ∣∣∣∣∂χ∂z

∣∣∣∣2
2) The function ϕ(z) = f(χ(z)) is integrable on Ω for any function f(χ)

which is integrable on χ(Ω) and∫
χ(Ω)

f(χ) dΩχ =

∫
Ω

ϕ(z)Jχ(z) dΩ.

3) Let Ω be an open set, f ∈ W2(χ(Ω)) and continuous. Then the function
ϕ(z) = f(χ(z)) belongs to W2(Ω) and

ϕz = fχχz + fχχz, ϕz = fχχz + fχχz a.e. in Ω.

4) The inverse function z = z(χ) of the function χ = χ(z) also belongs to
Wp,loc(E) for p satisfying condition (3.7) and it also has the properties 1), 2),
3).

5) Let

Jz =

∣∣∣∣ ∂z∂χ
∣∣∣∣2 − ∣∣∣∣ ∂z∂χ

∣∣∣∣2
then Jz · Jχ ≡ 1 a.e.; in particular, Jz > 0 and Jχ > 0 a.e.

Proof. Let Jn(z) =
∣∣∂χn

∂z

∣∣2 − ∣∣∂χn

∂z

∣∣2 be the Jacobian of the continuously differ-
entiable mapping χn(z). Then the image χn(Ω) is measurable and
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(3.24) mes χn(Ω) =

∫
Ω

Jn dΩ

for any measurable set Ω. Let mes Ω ≤ C0 where C0 is an arbitrary positive
fixed constant. Applying the Hölder inequality and taking into account (3.12),
(3.10) and (1.14), we obtain from (3.24) the estimate

mes χn(Ω) ≤
∫
Ω

|1 + S(ωn)|2 dΩ ≤ 2

∫
Ω

dΩ +

∫
Ω

|Sωn|2 dΩ

 ≤

2
(
mes Ω + Ap||ωn||Lp(mes Ω)

1
q

)
≤ C1(mes Ω)

1
q ,

1

q
+

2

p
= 1, p > 2,

i.e.

(3.25) mes χn(Ω) ≤ C(mes Ω)
1
q ,

where C is a constant depending on q0, p and C0, only. From (3.25) follows
the estimate

(3.26) mes∗ χ(Ω) ≤ C(mes Ω)
1
q

where mes∗ χ(Ω) denotes the outer measure of the set χ(Ω).

We first prove the inequality (3.26) under the assumption that Ω is an
open set. Let χ0 ∈ χ(Ω); then χ0 = χ0(z0), z0 ∈ Ω and Ω contains some disk
K(z0) centered at z0 of radius δ > 0. If z1 is a point on the boundary of this
disk, then, in view of (1.6), (3.23) and (3.21)

δ = |z0 − z1| ≤ C3|χn(z0)− χn(z1)|β

where C3 and β do not depend on n. Since χ = χn(z) is a homeomorphism, we
conclude from this inequality that the image of the disk K(z0) covers some disk

centered at χn(z0) with a radius not less than
(

δ
C3

) 1
β
. But χn(z0) → χ(z0).

Therefore χ0 = χ(z0) belongs to all images χn(Ω) starting from some large
enough n. Thus we have proved the inclusion

χ(Ω) ⊂
∞∑
k=1

Ek
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where Ek =
∞∏
n=k

χn(Ω). From this formula and from (3.25) we immediately

obtain the estimate (3.26) for open sets.

Now, let Ω be an arbitrary measurable set. For every ε > 0 there ex-
ists an open set Ω′ containing Ω, Ω ⊂ Ω′, such that mesΩ′ < mesΩ + ε.

Then mes∗χ(Ω) ≤ mesχ(Ω′) ≤ C (mesΩ′)
1
q and (3.26) follows in view of the

arbitrariness of ε. Thus the proof of estimate (3.26) is complete.

Let Ω0 be a rectangle, mes Ω0 < C0. Using (3.25) and (3.26), we verify
by simple arguments that

(3.27) lim
n→∞

mesχn(Ω0) = mesχ(Ω0).

In view of the formula Jχ = |1+Sω|2−|ω|2 and (3.14) we conclude that there
exists a subsequence nk →∞ (as k →∞) such that

(3.28) Jnk
→ Jχ a.e.

The estimate (3.25) applied to an arbitrary measurable set e ⊂ Ω0 states that
the set of the integrals

∫
e

Jn dΩ, e ⊂ Ω0, is absolutely equicontinuous and,

therefore, passing to the limit along a subsequence nk as k → ∞ is justified
[18]. In view of (3.27), we get

(3.29) mesχ(Ω0) =

∫
Ω0

Jχ dΩ.

In view of the estimate (3.26), the last formula is directly extended to arbitrary
measurable sets Ω. Thus, the statement 1) of the theorem is proved.

2) The statement 2) follows from 1) by standard arguments.

3) As is known, statement 3) is true whenever χ = χ(z) is a continuously
differentiable mapping. Statement 3) has a local nature [12]. Hence it is
sufficient to prove it in the neighborhood of every point of the set Ω.

We consider only the case of z-derivatives, z-derivatives being quite sim-
ilar. Let χ0 ∈ χ(Ω), χ0 = χ(z0), z0 ∈ Ω. Then for a large enough n, in view of
the equicontinuity of χn(z), the sequence of the functions ϕn(z) = f(χn(z)) is
well defined on a small enough disk S centered at point z0. Obviously

(3.30)
∂ϕn
∂z

= fχ(χn(z))
∂χn
∂z

+ fχ(χn(z))
∂χn
∂z
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from which we obtain the following estimate:

(3.30′)

∫
S

∣∣∣∣∂ϕn∂z
∣∣∣∣2 dΩz ≤

∫
χn(S)

|fχ(χ)(χn)z + fχ(χ)(χn)z|
Jn

dΩχ

≤ 2

∫
χn(S)

|fχ|2 + q2
0|fχ|2

1− q2
0

dΩχ

which is, obviously, uniformly bounded, since for all large enough n the sets
χn(S) will be contained in some fixed closed subdomain of Ω. Now ϕn(z) →
ϕ(z) = f(χ(z)) uniformly on S, and we easily check the correctness of the
statement 3), (see [12]).

4) To prove the same facts for the inverse transformation z = z(χ), we
first prove that

(3.31) ||q̃n(χ)− q̃(χ)||Lp → 0

as n → ∞ for any p > 1 where q̃n(χ) = q(zn(χ)), q̃(χ) = q(z(χ)). For this
purpose we show that q̃n(χ) tends to q̃(χ) in measure, i.e. for every ε > 0

(3.32) mes χ(E{|q̃(χ)− q̃n(χ)| > ε}) → 0 as n→∞.

In view of (3.8), we may consider only points χ which belong to χ(K) since
we have q̃(χ) = q̃n(χ) = 0 outside of K for large a enough n. By Egorov’s
theorem, for any prescribed σ and µ (which will be fixed later) there exists a
set Kσ,µ such that

(3.33) mes (K −Kσ,µ) < σ, |qn(z)− q(z)| < µ for n > N(σ, µ), z ∈ Kσ,µ.

Changing the variable χ = χn(z), we have

|qn(zn(χ))− q(zn(χ))| < µ for χ /∈ χn(K −Kσ,µ), n > N

and, in view of (3.25),

(3.34) mes χn(K −Kσ,µ) < Cσ
1
q .

On the other hand, using Lusin’s theorem, for arbitrary σ1, µ1 and δ1 there is
a set Kσ1,µ1,δ1 such that
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(3.35)
mes (K−Kσ1,µ1,δ1) < σ1, |q(z)−q(z′)| < µ1 for |z−z′| < δ1, z, z

′ ∈ Kσ1,µ1,δ1 .

As observed in the remark on page 19, zn(χ) → z(χ) uniformly in the whole
plane. Therefore, for a large enough n, in view of (3.35), we have

(3.36) |q(zn(χ))− q(z(χ))| < µ1

for all χ such that

(3.37) χ /∈ χn(K −Kσ1,µ1,δ1) and χ /∈ χ(K −Kσ1,µ1,δ1),

i.e., according to (3.25) and (3.26), outside of the set of measure 2Cσ
1
q

1 . Taking
ε > 0 and δ > 0 arbitrary and setting µ1 = µ = ε

2
, σ1 = σ =

(
δ

3C

)q
, from

(3.34), (3.35), (3.36) and (3.37) we get

|q̃(χ)− q̃n(χ)| < ε

outside of a set whose measure is less than or equal to 2Cσ
1
q

1 + Cσ
1
q = δ for

all n such that |zn(χ)− z(χ)| < δ and for all χ ∈ χ(K). Thus, we verified the
correctness of (3.32) and, consequently, also (3.31). The obvious inequalities
|q̃n(χ)| ≤ q0, |q̃(χ)| ≤ q0 and q0 < 1 together with (3.31), (3.22) and (3.18),
as shown in the proof of Theorem 3.1, allow us to conclude that z(χ) belongs
to Wploc(E), satisfies the equation zχ + q̃(x)zχ = 0 and has all the properties
proved above for the function χ(z). Statement 4) of the Theorem 3.2 is thus
demonstrated.

5) Statement 5) follows from (3.28) and the similar fact for Jz by passing
to the limit in the equality Jnχ · Jnz ≡ 1.

The proof of Theorem 3.2 is complete.

Now we give two important supplements to the theorem.

Remark 1. Statement 3) of Theorem 3.2 can be proved in the following
form: if f(χ) ∈ Wp1(χ(Ω)), p1 >

p
p−1

, then ϕ(z) = f(χ(z)) ∈ Wq1(Ω), where

q1 = p1(p−2)
p−p1 > 1; if p1 = 2, then q1 = 2. For that goal, only minor changes are

required in our proof: in the estimation of the integral (3.30′) it is sufficient to
use the Hölder inequality; instead of the uniform convergence of the sequence
ϕn(z) = f(χn(z)), ϕn(z) → f(χ(z)) we may use the convergence to measure
what is sufficient for our proof (see [12]).
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Remark 2. The corresponding formulation of statement 3) and the differen-
tiation formula remain valid for the superposition of the form χ(f(η)) = ϕ(η).
The proof in this case is the same as above.

4. A general solution of the Beltrami system. The theorems proved in
the previous section allow us to study the properties of any solution of equation
(3.1). In this connection, the following theorem is fundamental.

Theorem 3.3. Let w(z) be a regular generalized solution of equation (3.1).
Then

(3.38) w(z) = f(χ(z))

where f(χ) is a holomorphic function in domain χ(G). The function χ = χ(z)
extends over the whole complex plane of variable z as a continuous, univalent,
holomorphic function in the exterior of G. If w(z) is a generalized solution
admitting isolated singularities in G, then w(z) is also represented in the form
(3.38) and all singularities of w(z) are transferred to f(χ) while preserving the
type (pole to pole, essential singularity to essential singularity). Conversely,
any function of the form (3.38) is a generalized solution of equation (3.1).

The proof of this theorem follows by direct checking from Theorem 1.1,
statement 3), Theorem 3.2 and from the properties of the function χ = χ(z)
which have been proved above.

It follows from Theorem 3.3 that every regular solution of equation (3.1),
satisfying (2.7), belongs toWp(G), p > 2, and is Hölder continuous on any com-
pact subset of G. In general, formula (3.38) allows us to transfer to solutions
of system (3.1) many properties of complex analytic functions (the argument
principle, behavior in the neighborhood of singularities, unique continuation
property, and many others).

The function w = w(z) defined by (3.38) will be univalent if, and only
if, the function f(χ) is univalent. From the known properties of the univalent
functions and the properties of the mapping χ = χ(z) formulated in Theorem
3.2, we deduce the following corollary.

Corollary 3.1. All statements of Theorem 3.2 hold true for any mapping
w = w(z) of plane z onto plane w realized by an arbitrary univalent regular
solution of the equation (3.1).

Immediately we obtain also the following strengthening of Theorem 3.3.

Theorem 3.4. Let w(z) be an arbitrary univalent solution of equation (3.1).
Then any other solution W = W (z) of this equation may be represented in the
form
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(3.39) W (z) = f(w(z))

where f(w) is a complex analytic function in w(G) (which admits, possibly,
singularities). The converse statement is also true.

Theorems 3.3 and 3.4 allow us to construct solutions of equation (3.1)
with the prescribed properties or to reduce the construction of such solutions
to the construction of the corresponding complex analytic functions.

In particular, we directly obtain Riemann’s theorem on the existence of
mappings of an arbitrary domain G onto canonical domains: the unit disk
for G simply connected or the unit disk with deleted subdisks for G multiply
connected. Instead of the above mentioned, we can consider canonical domains
of other types. When properly normalized these mappings are unique. This
follows directly from uniqueness theorems for conformal mappings.

Not dwelling longer on the obvious and known corollaries to Theorems
3.3 and 3.4, we stress that the mapping χ = χ(z) in Theorem 3.3 maps the
whole plane z onto the whole plane χ. This remark is every essential in the
study of boundary correspondence for solutions of the system (3.1).

5. Solutions of equation (3.1) mapping the unit disk onto itself. In
this section K will denote the open unit disk centered at the origin. Theorem
3.3 makes it possible to construct solutions of system (3.1) mapping the disk K
onto itself. It follows from this theorem, together with the Caratheodory exten-
sion theorem for conformal mapping of a domain bounded by a Jordan curve
to the closed domain, that every such mapping can be extended by continuity
to the closed unit disk with the condition of preserving the homeomorphism.

However, in the case of solutions of equation (3.1) mapping the unit disk
onto itself, much deeper results hold true than those which may be directly
deduced from Theorem 3.3. For instance, Theorem 3.3 allows us only to state
that every such mapping satisfies the Hölder condition on any disk strictly
contained in the interior of K. As a matter of fact the following holds:

Theorem 3.5. Let w(z) be a regular solution of equation (3.1) mapping the
disc K onto itself. Then w(z) satisfies the Hölder condition in the closed disk
K and wz and wz are integrable in the disk K with some exponent p > 2.

Proof. We already know that w(z) can be extended by continuity to the closed
disk. Using a device of M.A. Lavrent’ev, see [19], we consider the extension
w∗(z) of the mapping w = w(z) to the exterior of the unit disk by the formula

(3.40) w∗(z) =

 w(z), |z| < 1,

1

w( 1
z )
, 1 < |z| < 1 + η.
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Formulas (3.40) define a continuous function for small enough |z| < 1 + η
for η > 0. In view of the statement 3) of the Theorem 3.2 the generalized
derivatives of the function w∗(z) exist for |z| < 1 and 1 < |z| < 1 + η and can
be calculated by the formulas

∂w∗

∂z
=
∂w

∂z
,

∂w∗

∂z
=
∂w

∂z
for |z| < 1

and

∂w∗

∂z
=
w∗2

z2
· ∂w
∂ζ

(ζ) ,
∂w∗

∂z
=
w∗2

z2 · ∂w
∂ζ

(ζ) for |z| > 1 , ζ =
1

z

which imply that w∗(z) satisfies the equation

(3.41)
∂w∗

∂z
− q∗(z)

∂w∗

∂z
= 0 , q∗(z) =

{
q(z), for |z| < 1,

q(ζ) z
2

z2
, for |z| > 1,

in the disk |z| < 1 + η; |q∗(z)| ≤ q0 < 1. As is easy to see, w∗(z) has
generalized derivatives which are square integrable in |z| < 1+ η. Thus, w∗(z)
is a generalized solution of the equation (3.1) in the disk |z| < 1 + η. Then
Theorem 3.5 can be deduced immediately from Theorem 3.3 since the disk
|z| ≤ 1 is strictly contained in the interiour of the domain |z| < 1 + η.

The following theorem is a very important refinement of Theorem 3.5.

Theorem 3.6. Under the hypothesis of Theorem 3.5 and the additional condi-
tion w(0) = 0, ||wz||Lp, ||wz||Lp and the Hölder constant are uniformly bounded
by quantities depending on q0 only and the Hölder exponent is bounded from
below by a constant only depending on q0.

Proof. Let χ = χ(z) be a solution of the equation (3.1) of the form (3.5). Let
z = z(χ) be its inverse function. We have proved that z(χ) and χ(z) satisfy
the Hölder condition with a constant and an exponent depending on q0 only.
Denote them by C and α, respectively. We prove first that w(z) satisfies the
inequality

(3.42) |w(z)| < C1 |z|α for |z| < β

with C1, α and β depending only on q0. Indeed, let χ(0) = χ0. In view of the
inequality

(3.43) 1 = |z| ≤ C|χ(z)− χ(0)|α ,

we conclude that χ(K) contains the disk K(χ0, δ) centered at χ0 with the

radius δ = C− 1
α . In view of Theorem 3.3, our solution w(z) has the form
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w(z) = f(χ(z)) where f(χ) is a holomorphic univalent function mapping χ(K)
onto K such that f(χ0) = 0. In particular, |f(χ)| < 1 for χ ∈ χ(K) and,
even more so, for χ ∈ K(χ0, δ). From this we at once obtain the estimate
|f ′(χ)| ≤ M for χ ∈ K(χ0,

δ
2
) where M depends only on δ. But the preimage

of the disk K(χ0,
δ
2
) under the mapping χ = χ(z) contains some disk centered

at the origin of radius β =
(
δ

2C

) 1
α . For z in this preimage, we have

|w(z)| =
∣∣∣∣f(χ(z))− f(χ0)

χ(z)− χ(0)

∣∣∣∣ · |χ(z)− χ0| ≤M · C · |z|α.

Thus inequality (3.42) has been proved for any solution of equation (3.1) map-
ping the unit disk onto itself provided that w(0) = 0. In particular, this is true
for the inverse transformation z = z(χ) satisfying, in view of the corollary to
Theorem 3.3, the following equation:

zχ + q̃(χ)zχ ≡ zχ̄ + q1(χ)zχ = 0

where

q̃(χ) = q (z(χ)) and q1(χ) =
q̃(χ)zχ
zχ

, |q1| ≤ q0 < 1.

Thus,

(3.44) |z(w)| ≤ C1|w|α for |w| < β.

For |z| <
(
β
C

) 1
α , we have |w(z)| ≤ β and, in view of (3.44),

(3.45) |w(z)| ≥
(
|z|
C1

) 1
α

for |z| < β1.

The last inequality allows us easily to derive our statement using argu-
ments applied in the proof of Theorem 3.5. Indeed, it follows from (3.45) that
|w(z)| ≥ γ1 on the circle |z| = β1, therefore, in view of (3.40), we have on the
circle |z| = 1

β
= 1 + η the inequality

(3.46) |w∗(z)| ≤ 1

γ1

.

In this estimate γ1 and η depend on q0 only. However, w∗(z) is a solution
of the equation (3.41), w∗(z) = f1(χ1(z)) where χ1(z) is the solution of the
form (3.5) for the equation (3.41) and f1(χ) is a complex analytic function
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in χ1(Kη). Since |q∗(z)| ≤ q0 < 1, χ1(z) with its inverse satisfy the Hölder
condition with an exponent α and a constant C2 which depend on q0 only (and
on β1 which, in turn, depends on q0 only). We conclude from this that the
distance between the boundaries of χ1(Kη) and χ1(K) is not less than some
δ1 depending on q0 only. The function f1(χ) is holomorphic in χ1(Kη) and
|f1(χ)| < 1

γ1
for χ ∈ χ1(Kη). Therefore we have the following inequality in

χ(K1) :

(3.47) |f ′1(χ)| ≤M1

where M1 depends on γ1 and δ1 only. Thus,

|w(z)−w(z1)| = |w∗(z)−w∗(z1)| = |f1 (χ1(z))−f1 (χ1(z1)) | ≤M1 ·C2|z−z1|α

for each z, z1 ∈ K as was to be proved.

The other statements of the theorem follow from the inequalities

|wz(z)| ≤M1

∣∣∣∣∂χ1

∂z

∣∣∣∣ , |wz| ≤M1

∣∣∣∣∂χ1

∂z

∣∣∣∣ for every z ∈ K .

The proof of Theorem 3.6 is complete.

Theorem 3.6 implies the following.

Corollary 3.2. Under the assumptions of Theorem 3.6, for the measure of the
image w(E) of a measurable set E in K, the following estimate holds:

(3.48) mesw(E) ≤ (mesE)
1
q

where C and q depend on q0 only.

Note also one more lemma extending the classical Schwartz lemma to
solutions of equation (3.1).

Lemma 3.1. Let w(z) be a solution of equation (3.1) mapping the unit disk
into itself. If w(0) = 0, then

f−1(r) ≤ |w(r)| ≤ f(r) for |z| = r

where f(r) is some monotone function of variable r satisfying the conditions:
f(0) = 0, f(r) < 1 for r < 1 and lim

r→1
f(r) = 1; f(r) depends only on q0. If

w(z) is an arbitrary solution of equation (3.1) in the disk |z| ≤ 1 such that
w(0) = 0 and |w(z)| ≤ 1, then |w(z)| ≤ f(r), r = |z|.

The proof of this lemma follows from Theorem 3.6.
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4 General representations of the system’s so-

lutions (2.6)

1. Homogeneous equations with the principal Beltrami part. These
are equations of the following type:

(4.1) wz − q(z)wz = Aw +Bw.

Parallel with the solutions of system (4.1), we will consider solutions of the
corresponding Beltrami equation, which in this section will be denote by f :

(4.2) fz − q(z)fz = 0.

Let equations (4.1) and (4.2) be given in a domain G. We prove the following
theorem.

Theorem 4.1. Let w = w(z) be a generalized solution (possibly, admitting
isolated singularities) of equation (4.1). Then w(z) is represented in the form

(4.3) w(z) = f(z)eT (ω) = f(z)eϕ(z)

where f(z) is a solution of equation (4.2),

ϕ(z) = T (ω) = − 1

π

∫
G

ω(t)

t− z
dG, ω ∈ Lp(G), p > 2;

The function ϕ(z) extends by continuity to the whole complex plane as a holo-
morphic function in the exterior of G, vanishing at infinity.

Proof. Let w(z) be the considered solution. Set

h(z) =

{
A+Bw

w
, for w(z) 6= 0, w(z) 6= ∞,

A+B, for w(z) = 0 and at singular points.

Consider the integral equation

(4.4) ω − qSω = h.

In view of the assumptions in § 2, h(z) ∈ Lp, p > 2 (p is defined by the
inequality (3.7)) and the equation (4.4) has the unique solution ω ∈ Lp(G) for
each h ∈ Lp.
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Set

ϕ(z) = T (ω) = − 1

π

∫
G

ω(t)

t− z
dG

and consider the function

f(z) = w(z)e−ϕ(z).

We have
fz = wze

−ϕ − we−ϕω, fz = wze
−ϕ − we−ϕSω

hence

[fz − q(z)fz] e
−ϕ = wz − w [ω − qSω]− qwz = wz − wh− qwz = 0,

i.e.
fz − q(z)fz = 0.

Thus, f(z) is a solution of equation (4.2). But w = feϕ and this proves
the representation (4.3). Other statements of Theorem 4.1 follow from the
given formulas for ϕ(z).

The representation of form (4.3) is unique if its components are required
to have the properties defined in Theorem 4.1. Indeed, assuming that w(z) =

f(z)eϕ(z) = f1(z)e
ϕ1(z), we observe that f(z)

f1(z)
= eϕ1(z)−ϕ(z) is a solution of

equation (4.2) which admits analytic extension to the whole plane and is equal
to 1 at infinity. In view of Theorem 3.3 and the Liouville theorem, such a
solution is equal to 1 identically. The uniqueness follows.

Theorem (4.3) is a generalization of the representation formula for solu-
tions to equations (4.1) proved, for the first time by Teodorescu, for systems
of the form wz = aw, see [20]. This representation was, independently of
Teodorescu, generalized by I. N. Vekua and L. Bers to systems of the form
wz = aw + bw, see [21] and [22].

Representation (4.3) is not the only possible one. It is characterized by
the property that the function ϕ(z) in (4.3) may be continuously and complex
analytically extended to the whole plane and vanishes at infinity. One can give
other representations of the form (4.3) dropping the above requirements on the
exponent ϕ(z). For instance, the following theorem holds (in the particular
case when G is the unit disk).

Theorem 4.2. Let K be the unit disk. Then every solution of the equation
(4.1) in K can be represented in the form

(4.5) w(z) = f(z)eψ(z)
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where

ψ(z) = T1(ω) = − 1

π

∫
K

[
ω(t)

t− z
+
zω(t)

1− zt

]
dK, ω ∈ Lp(G), p > 2

and <ψ(z) = 0 for |z| = 1 and f(z) is a solution of the equation (4.2). Such
a representation is unique.

The proof of this theorem repeats the proof of the previous theorem with
the difference that, instead of the integral equation (4.4), we solve the equation
of the form ω − qS1(ω) = h where operator S1(ω) is defined by (1.15).

2. Representations for solutions of general homogeneous equations
of form (4.6). In this section we generalize the theorems proved to solutions
of equations of the form

(4.6) wz − q1(z)wz − q2(z)wz = Aw +Bw.

Parallel with (4.6) we will also consider the equation

(4.7) wz − q1(z)wz − q2(z)wz = 0.

We first consider equation (4.7). If w = w(z) is its generalized solution, then
w(z) satisfies the equation

(4.8) wz − q0(z)wz = 0

where
q0(z) = q1(z) + q2(z)

wz

wz
for wz 6= 0,

q0(z) = q1(z) + q2(z) for wz = 0.

Evidently |q0(z)| ≤ q0 < 1 where q0 is a constant. The following theorem
follows directly from Theorems 3.3 and 3.4.

Theorem 4.3. Any generalized solution of equation (4.7) can be represented
in the form

(4.9) w(z) = f(χ(z))

where f(χ) is a complex analytic function in χ(G) and χ = χ(z) is an univalent
solution of equation (4.8). It can be chosen in various ways, in particular, we
may assume that χ(z) has the form (3.5); we can also suppose that χ(G) is a
canonical domain (the unit disk provided that G is simply connected and, in
the general case, the plane with cuts etc.).
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In the same way, we obtain the following theorem from Theorems 3.4, 4.1
and 4.2:

Theorem 4.4. Any generalized solution of equation (4.6) can be represented
in the form

(4.10) w(z) = f(χ(z))eϕ(z)

where f(χ) is a complex analytic function in χ(G) and χ = χ(z) is a univalent
solution of equation (4.8). It can be chosen in various ways, in particular, we
can require that χ(G) is either the unit disk (for a simply connected domain)
or a canonical domain of another type. χ(z) can be also chosen in the form of
(3.5). ϕ(z) can also be chosen in various ways; in particular, as in Theorems
4.1 and 4.2. In both cases, ϕ(z) is Hölder continuous in the closed domain G,
ϕz, ϕz ∈ Lp(G), p > 2, and the integrals ‖ϕz‖Lp and ‖ϕz‖Lp have estimations
not depending on the represented solution.

Representation (4.9) is unique when suitably normalized. Representation
(4.10) is also unique provided that χ(z) satisfies equation (4.8).

Representations (4.9) and (4.10) also hold for solutions admitting isolated
singularities; in this case all the singularities are transferred to the complex
analytic function f(χ).

The difference between Theorems 4.3 and 4.4 and Theorems 3.3 and 4.1 is
that, in the former theorems, we cannot consider the homeomorphism χ(z) as
fixed (i.e. as the same for all solutions). Indeed, χ(z) satisfies the equation (4.8)
in which the coefficient q0(z) depends on the represented solution. However,
|q0(z)| ≤ q0 where q0 is a constant not depending on the represented solution.
In view of that, it is very important to study these properties of solutions for
equations of form (4.8) that depend on q0 only. This is the case in Theorem
3.6. Other properties of this type will be studied below.

With the help of representations of type (4.9) and (4.10), a number of
properties of complex analytic functions is extended to solutions of equations
(4.6) and (4.7). For instance, the following properties literally hold for systems
of form (4.7): the maximum principle, the argument principle, the theorem on
unique continuation and on isolated zeros, analogs of the theorems on remov-
able singularities, on the behavior of solutions in the neighborhood of poles or
essential singularities, criteria of the univalence of the mapping etc. For solu-
tions of systems of type (4.6) the following hold true: the argument principle,
the theorem on the unique continuation, on isolated zeros, etc.

In the following some other corollaries of Theorems 4.3 and 4.4 will be
derived.
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Remark. Theorems 4.3 and 4.4 also hold for solutions of the inequalities

|wz| ≤ |q1| · |wz|, |q1|+ |q2| < q0 < 1,

|wz − q1wz − q2wz| ≤ A|w|, A ∈ Lp, p > 2.

3. On some particular solutions of system (2.6). Let equation (2.6) be
defined in a bounded domain G. We prove the following theorem:

Theorem 4.5. Under the assumptions of § 2, equation (2.6) always admits
a solution w = w(z) which may be complex analytically extended to the whole
plane E in the class Wp,loc(E), p > 2, such that

w(z) ∼ f(z) for z →∞

where f(z) is a prescribed entire function. Such a solution is unique.

Proof. We will look for the solution of equation (2.6) satisfying the conditions
of the theorem in the following form

(4.11) w(z) = f(z)− 1

π

∫
G

ω(t)

t− z
dG ≡ f(z) + T (ω).

Substituting (4.11) in (2.6), we get for ω the equation

(4.12) ω − q1S(ω)− q2S(ω) = AT (ω) +BT (ω) + C∗

where

C∗ = Af +Bf + C + q1f
′ + q1f ′, z ∈ G, C∗ ≡ 0 outside of G.

We can apply the Fredholm theory to equation (4.12). Indeed, denoting by R
the inverse operator to

ω − q1S(ω)− q2S(ω) = h,

we see that equation (4.12) is equivalent to the equation ω = R(A · T (ω)) +
R(B ·T (ω))+RC∗ in which the operator R(A·T (ω))+R(B ·T (ω)) is completely
continuous since the operator T (ω) is completely continuous. Hence, it is suf-
ficient to consider the homogeneous equation (4.12). Let ω ∈ Lp be a solution
of this equation. Then w1(z) = T (ω) will be a solution to the homogeneous
equation (4.6) which is analytic outside of G and vanishes at infinity. In view
of (4.10), w1(z) = f(χ(z))eϕ(z), moreover, without loss of generality we may
assume that function ϕ(z) may be extended to the whole complex plane and
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is holomorphic outside of G and equal to zero at infinity. The function χ(z)
can be chosen in the form (3.5). Changing variables z : χ = (z) and taking
into account that χ(z) holomorphically depends on z outside of G, we see that
f(χ) may be complex analytically extended to the whole plane with f(χ) = 0
for χ = ∞. Therefore f(χ) ≡ 0, i.e. w1(z) ≡ 0, hence ω(z) = ∂w1

∂z
= 0.

Thus we have proved that the homogeneous equation (4.12) admits only
trivial solution. In view of what has been said above, we conclude that the
non-homogeneous equation (4.12) admits the unique solution ω. Then formula
(4.11) gives the desired solution of equation (2.6). The uniqueness follows,
since, according to Theorem 1.2. any solution satisfying the conditions of
Theorem 4.5 may be represented in the form (4.11). If f(z) is not an entire
function but satisfies only the condition f ′(z) ∈ Lp(G), p > 2, then we can
also get solutions of equation (2.6) of the class Wp(G) by the method described
above, which, however, in general, may not be complex analytically extended
to the whole plane. Additionally, other theorems on the existence of solutions
for the equation (2.6) can be proved by similar methods. We shall prove the
following

Theorem 4.6. Let K be the unit disk. Then equation (2.6) has a unique
solution satisfying the following conditions:

1) w(z) ∈ Wp(K), p > 2, |wz| and |wz| ∈ Lp(K);

2) <w(z) = 0 for |z| = 1;

3) w(1) = 0.

Proof. The proof is similar to the proof of the previous theorem. We seek the
solution w(z) in the form

(4.13) w(z) = − 1

π

∫
K

[
ω

t− z
+

zω

1− zt
− ω

t− 1
− ω

1− t

]
dK ≡ T2(ω)

where w(z) automatically satisfies conditions 2) and 3) of Theorem 4.6. If
ω ∈ Lp(K), p > 2, then w(z) also satisfies condition 1). Substituting (4.13) in
(2.6), we get the equation

(4.14) ω − q1S1(ω)− q2S1(ω) = AT2(ω) +BT2(ω) + C.

As in the previous proof, we see that the Fredholm theory in Lp(K) can be
applied to equation (4.14). Therefore, to prove solvability, it is sufficient to
consider the homogeneous equation C ≡ 0. Let ω ∈ Lp(K) be a solution of the
homogeneous equation (4.14); then the corresponding w(z) will be a Hölder
continuous solution of equation (4.6) satisfying conditions 1), 2), 3). In view
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of (4.10), w(z) = f(χ(z))eϕ(z) where f(χ) is a holomorphic function in |χ| < 1,
χ(z) and ϕ(z) are Hölder continuous for |z| ≤ 1 and <ϕ(z) = 0 for |z| = 1.
In view of 2), the equality <{f(χ(z))eϕ(z)} = 0 holds for |z| = 1 and, passing
to the variable χ, we obtain <{f(χ)eϕ(z(χ))} = 0 for |χ| = 1, i.e. f(χ) is a
solution of the homogeneous Riemann–Hilbert problem for the disk |χ| ≤ 1.
The index of this problem is 0. Hence, (see [23]), all of its solutions have the
form f(χ) = iC0e

p(χ) where p(χ) is a function holomorphic for |χ| < 1 and
Hölder continuous for |χ| < 1 and C0 is some real constant. From condition
3) we obtain: C0 = 0, i.e. f(χ) ≡ 0 and w(z) ≡ 0. Hence ω ≡ 0 also. Thus,
we have proved that the homogeneous equation (4.14) admits only the trivial
solution. Therefore equation (4.14) is always uniquely solvable, i.e. equation
(2.6) admits a solution of form (4.13). The uniqueness follows since the desired
solution may always be represented in the form (4.13), (see [24]).

Remark. It is easy to see that equations (4.12) and (4.14) can be solved by
the iteration scheme

(4.14′) ωn+1 − q1S(ωn+1)− q2S(ωn+1) = AT (ωn) +BT (ωn) + C∗.

4. Representation of solutions of non–homogeneous equations of
form (2.6). Combining Theorem 4.4 with Theorems 4.5 and 4.6, or with their
slight modifications, various representation formulas for solutions of equation
(2.6) can be obtained. In general, these representations will have the form

(4.15) w(z) = f(χ(z))eϕ(z) + w0(z).

We can require that functions f(χ), χ(z), ϕ(z), participating in formula (4.15),
have properties of the same type as mentioned in Theorems 3.3, 3.4, 4.1, 4.2, 4.3
and 4.4: f(χ) is always an analytic function of variable χ in the domain χ(G)
(possibly, admitting singularities); χ(z) is a homeomorphism of G onto χ(G)
satisfying the homogeneous equation of form (4.8). Many properties of the
functions χ(z), ϕ(z) and w0(z) do not depend on the represented solution but
depend only on the constants bounding the coefficients of equation (2.6). As
an example, we present one of the respective theorems in a precise formulation:

Theorem 4.7. Let w = w(z) be a solution of equation (2.6) satisfying the
assumptions of § 2. Then w(z) can be represented in form (4.15). Here χ(z)
is a homeomorphism of form (3.5) of the z–plane onto the χ–plane satisfying
equation (4.8); ϕ(z) is a continuous function in the whole plane, holomorphic
outside of G and equal to zero at infinity; χ and ϕ ∈ Wp,loc(E), p > 2 (E is
the full plane). Moreover the norms, ‖ϕz‖Lp, ‖ϕz‖Lp, ‖χz‖Lp, ‖χz‖Lp admit
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bounds by quantities depending only on domain G, the constant q0 and the in-
tegrals

∫
G

|A|p dG,
∫
G

|B|p dG. In particular, χ and ϕ satisfy a Hölder condition

with exponent and Hölder constant depending only on the quantities mentioned
above. w0(z) is a solution of the non–homogeneous equation (2.6) in the class
Wp,loc(E), Hölder continuous in the whole plane, analytic outside of G and
such that w0(z) ∼ 1 as z →∞.

In general, the representation (4.15) is certainly not unique. However,
if we require all components of this representation to satisfy the conditions
mentioned in the theorem (in particular, χ(z) should be a solution of equation
(4.8)), the representation (4.15) is unique. In this case, even more may be
proven: all components of representation (4.15) continuously depend on the
represented solution. In the weakest form this can be made more precise in the
following way: if wn(z) = fn(χn(z))e

ϕn(z) tend uniformly on compact subsets
of G to w(z) = f(χ(z))eϕ(z) and, moreover, ∂wn

∂z
→ ∂w

∂z
, ∂wn

∂z
→ ∂w

∂z
a.e. in

G, then χn(z) → χ(z), ϕn(z) → ϕ(z) uniformly on compact subsets of χ(G)
and fn(χ) → f(χ) uniformly in χ(G). (We have given the formulation of our
proposition only for solutions of homogeneous equations.)

A proof of the above proposition may be obtained by a more detailed
inspection of the above formulas for all components of representation (4.15).

We skip detail formulations of other theorems describing alternative rep-
resentations of form (4.15). It is clear how this can be done.

Representation (4.15), revealing the structure of solutions of equation
(2.6) makes possible to reduce investigation of the properties of solutions to
the study of properties of the corresponding analytic functions. In most cases,
this essentially simplifies the problem under investigation. We already met
some examples of this type above, others will be given in the following.

Individual components of representation (4.15) are interconnected; they
all depend on the represented solution. Therefore, given in advance and com-
bined in formula (4.15), they do not generate a solution of the equation (2.6).
Only in the case when B ≡ 0 and q2 ≡ 0, the functions χ(z) and ϕ(z) may be
chosen independently of the particular represented solution. However, for the
important case of a simply connected domain G, we show below that solutions
of form (4.15) always exist.

A representation of form (4.15) for the general equation of the form (2.6)
was first given in the paper of L. Bers and L. Nirenberg [10]. They considered
the case when G is the unit disk, χ(G) = K, =w0(z) = 0 and =ϕ(z) = 0
for |z| = 1. There is no complete proof of this result in the cited paper; the
authors promised to present such a proof in a following paper. The scheme of
the proof presented in [10] shows that the method of these authors is different
from ours.
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A formulation of the representation theorem corresponding to a slight
modification of Theorem 4.6 shows that the theorem of Bers and Nirenberg is
a particular case of our representations.

5. Compactness of solutions of system (4.7). The representations (4.9)
and (4.15) contain a number of criteria of compactness for solutions of systems
(2.6) and (4.6). However, from these representation formulas we can also derive
some criteria of compactness for families of derivatives of the solutions. In this
direction, we prove the following lemma.

Lemma 4.1. Let χn(z) be a sequence of homeomorphisms of the unit disk onto
itself satisfying the equations

(4.16)
∂χn(z)

∂z
− q1

n(z)
∂χn(z)

∂z
− q2

n(z)
∂χn(z)

∂z
= 0

and the normalization condition χn(0) = 0. Let

q1
n → q1, q2

n → q2, |q1
n|+ |q2

n| ≤ q0 < 1 a.e. .

Then the families of the derivatives (where z = zn(χ) are the inverse homeo-
morphisms)

∂χn

∂z
,
∂χn

∂z
,
∂zn

∂χ
,
∂zn

∂χ

are compact in Lp(K), p > 2.

Proof. In view of Theorem 3.6,
∣∣∣∣∂χn

∂z

∣∣∣∣, ∣∣∣∣∂χn

∂z

∣∣∣∣, ∣∣∣∣∣∣∂zn

∂χ

∣∣∣∣∣∣, ∣∣∣∣∣∣∂zn

∂χ

∣∣∣∣∣∣ are uniformly

bounded. We first prove that one can choose subsequences of the sequences
∂χn

∂z
and ∂χn

∂z
which are convergent in the norm of Lp. Indeed, by Theorem 4.3,

χn(z) = fn(χ
n
1 (z)) where χn1 (z) is a homeomorphism of the plane z onto the

plane χ of the form

χn1 (z) = z − 1

π

∫
K

[
ωn(t)

t− z
− ωn(t)

t

]
dK, ωn ∈ Lp, p > 2,

and fn(χ) is a holomorphic univalent function mapping the domain χn1 (K) onto
the unit disk; in view of the chosen formula, we have that χn1 (0) = 0. Therefore,
the origin χ = 0 belongs to all domains χn1 (K) and fn(0) = 0. Substituting
χn(z) = fn (χn1 (z)) into the equation (4.16), we obtain the non-linear equation
for χn1 (z)

∂χn1
∂z

− q1
n

∂χn1
∂z

− q2
n

f ′n(χ
n
1 )

f ′n(χ
n
1 )
· ∂χ

n
1

∂z
= 0
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in which

|q1
n|+ |q̃2

n| ≤ q0 < 1, q̃2
n = q2

n

f ′n
f ′n
.

Substituting the expression for χn1 , we have

(4.17) ωn − q1
n(z)S(ωn)− q̃2

nS(ωn) = q1
n + q̃2

n

and we conclude that the norms ‖ωn‖Lp are uniformly bounded. Thus, tak-
ing into account the inequalities (1.5) and (1.6), we see that the sequence of
homeomorphisms χn1 (z) satisfies a Hölder condition with exponent and con-
stant depending on q0 only. The same can be said about the inverse homeo-
morphisms z = zn1 (χ). Therefore we can choose uniformly convergent subse-
quences, χnk

1 → χ1 and znk
1 → z1, of the sequences χn1 and zn1 , respectively;

χ1(z) and its inverse z = z1(χ) are homeomorphisms satisfying the Hölder con-
dition and χ1(0) = 0. It is easy to see that the sequence of domains χnk

1 (K)
converges to a domain χ1(K) in the sense of Caratheodory. Therefore we
can choose a subsequence fnk

(χ) of the sequence fn(χ) converging uniformly,
together with the sequence of derivatives, to some function f(χ) on each com-
pact subset of χ1(K); f(χ) is an univalent function mapping χ1(K) onto K,
such that f(0) = 0. For simplicity, we may assume in the following, that the
original sequences have all the properties proved for the subsequences.

It is easy to verify that

q̃2
n(z) → q2

n

f ′n(χ1(z))

f ′n(χ1(z))
a.e.

Therefore we derive from (4.17) that the sequence ωn converges to some ω ∈
Lp(K) in the norm of the space Lp and χ1(z) = z + T (ω). We show that
∂χn

∂z
converges to the function f ′(χ1)

∂χ1

∂z
in the norm of Lp. For this purpose

consider the expression∥∥∥∥∂χn∂z − f ′(χm1 )
∂χm1
∂z

∥∥∥∥p
Lp

=

∫
K

∣∣∣∣f ′n(χn1 )
∂χn1
∂z

− f ′(χn1 )
∂χm1
∂z

∣∣∣∣p dK =

=

∫
K1

|. . .|p dK +

∫
K2

|. . .|p dK

where K1 is the disk of radius r < 1 centered at 0 and K2 is the annulus
r < |z| < 1. In view of Lemma 3.1, we can state that χn1 (K1) are contained
in some closed fixed subdomain of χ1(K) for large enough n. Since in this

subdomain f ′n tends to f ′ uniformly and
∥∥∥∂χn

1

∂z
− ∂χm

1

∂z

∥∥∥
Lp

→ 0, the first integral
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in the last formula tends to zero for every fixed r < 1. For the second integral,
as is easy to see, we have the following estimate∫

K2

∣∣∣∣∂χn∂z − ∂χm

∂z

∣∣∣∣p dK ≤ C(mesK2)
1
q1

for large enough q1. The constant C bounds from above the norms
∥∥∂χn

∂z

∥∥
and

∥∥∂χm

∂z

∥∥ in the metric of the space Lpp1 where p1 is close enough to 1 and
1
q1

+ 1
p1

= 1, p > 2. By Theorem 3.6, these norms are bounded by a quantity

depending only on q0 (but not on n and m). Thus, we have
∥∥∂χn

∂z
− ∂χ

∂z

∥∥
Lp
→ 0.

Similarly we verify that
∥∥∂χn

∂z
− ∂χ

∂z

∥∥
Lp
→ 0.

The simplest way to verify the relations
∥∥∥∂znk

∂χ
− ∂z

∂χ

∥∥∥
Lp

→ 0 and
∥∥∥∂znk

∂χ
− ∂z

∂χ

∥∥∥
Lp

→

0 for a subsequence nk → ∞ is the following: in view of the formulas ∂zn

∂χ
=

− 1
Jn

∂χn

∂z
, we can assert that ∂znk

∂χ
tends to ∂z

∂χ
a.e. since Jnk

cannot tend to
zero on a set of a positive measure. Theorem 3.6 obviously implies the abso-

lute equicontinuity of the integrals
∫
e

∣∣∣∂zn

∂χ

∣∣∣p dK, e ∈ K. Therefore the chosen

subsequence tends to ∂z
∂χ

in the norm of Lp, as well. Lemma 4.1 is proved.

Lemma 4.1 implies.

Corollary 4.1. In the assumptions of Lemma 4.1, the limit function satisfies
the equation

χz − q1χz − q2χz = 0.

Remark. One can conclude from the uniqueness theorems proved below that
the limit function, properly normalized, does not depend on the choice of the
subsequence χnk → χ. It follows then, that under suitable normalization (for
instance, χn(0) = 0, χn(1) = 1) the full sequence χn converges to χ and∥∥∂χn

∂z
− ∂χm

∂z

∥∥
Lp
→ 0. Similar relations hold for the other derivatives.

In the same way we can prove the following statement.

Lemma 4.2. Let wn(z) be a sequence of solutions of the systems

∂wn
∂z

− q1
n

∂wn
∂z

− q2
n

∂wn
∂z

= 0

in a domain G. Let wn(z) → w(z) uniformly on compact subsets of G,
|wn(z)| < M in G and q1

n → q1, q2
n → q2, |q1

n|+ |q2
n| ≤ q0 < 1.

Then:
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1) w = w(z) is a solution of the system

∂w

∂z
− q1∂w

∂z
− q2∂w

∂z
= 0

2) if wn(z) are univalent, then w(z) is either a constant or an univalent
function.

5 The existence of solutions to the equation

(4.6)

The existence problem for solutions of the Beltrami system is rather completely
solved by Theorem 3.4. In the general case, the situation is more complex. This
section is devoted to the proof of a theorem related to this question.

Theorem 5.1. Let K be the (open) unit disk and F (χ) be an arbitrary analytic
function in K, possibly admitting isolated singularities in K. Then there exist
two functions χ(z) and ϕ(z) of the class Wp(K), p > 2, which are Hölder
continuous in the closed disk K and such that the formula

w(z) = F (χ(z))eϕ(z)

represents a solution to equation (4.6). χ = χ(z) realizes a homeomorphic
mapping of K onto itself; for any given points z0, χ0, z1 and χ1 in the interior
and on the boundary of K, respectively, we can require that χ0 = χ(z0), χ1 =
χ(z1). ϕ is required to admit an extension to the whole plane as a continuous
function of variable z, holomorphic outside of K and vanishing at infinity.
Moreover, χ(z) and ϕ(z) admit nearly universal estimates: |χ(z)|, |ϕ(z)| and
the norms of their derivatives ‖χz‖, ‖χz‖, ‖ϕz‖, ‖ϕz‖ in Lp(K) are bounded
by constants that do not depend on the properties of the function F (for fixed
z, q0).

If A = B ≡ 0, then we can choose ϕ(z) ≡ 0.

All the statements of the theorem are valid if, instead of the above require-
ments on ϕ, we require that Reϕ(z) = 0 for |z| = 1 and ϕ(1) = 0.

For simplification the proof is organized into a series of steps.

Without loss of generality, we may assume that z0 = χ0 = 0, z1 = χ1 =
1. We first consider the case A = B ≡ 0 everywhere and q2(z) ≡ 0 in a
neighborhood of zero.

By a simple calculation it can easily be seen that the function w(z) =
F (χ(z)) is a solution of the homogeneous equation (4.7) if and only if χ(z) is
a solution of the quasi-linear equation of the form
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(5.1)
∂χ

∂z
− q1(z)

∂χ

∂z
− q2(z)

F ′(χ)

F ′(χ)

∂χ

∂z
= 0 .

We prove that equation (5.1) always admits a solution χ = χ(z) mapping the
unit disk |z| ≤ 1 onto the unit disk |χ| ≤ 1 and such that χ(0) = 0, χ(1) = 1.
We construct the solution of (5.1) in the form

(5.2) χ(z) = f(z)eT1(ω)

where f(z) is the solution of the homogeneous equation fz−q(z)fz = 0 mapping
the unit disk |z| ≤ 1 onto the unit disk |f | ≤ 1, satisfying the conditions
f(0) = 0, f(1) = 1, and

(5.3) T1(ω) = − 1

π

∫
K

{
ω(t)

t− z
− ω(t)

t− 1
+
zω(t)

1− zt
− ω(t)

1− t

}
dK

where ω(t) is a complex-valued function, ω ∈ Lp. Obviously, we have χ(0) = 0,
χ(1) = 1 for any ω ∈ Lp. Substituting (5.2) in (5.1), we get the following
nonlinear equation for ω

(5.4) ω − q1S1(ω)− q2
F ′(χ)

F ′(χ)

χ

χ
S1(ω) = q2

F ′(χ)

F ′(χ)

fz
f
eT1(ω)−T1(ω)

in which χ = χ(z) should be considered as a nonlinear operator (5.2) acting on
ω. We fix p > 2 according to the inequality q0Bp < 1, and work henceforward
in a fixed Banach space Lp(K). The operator T1(ω) maps compactly the space
Lp(K) into the space of functions continuous in the closed disk |z| ≤ 1. For all
solutions of equation (5.4), we clearly have the estimate ||ω|| ≤ C with some
C not depending on ω. Denote by Ω the set of all ω ∈ Lp(K), ||ω|| ≤ C, such
that |χ(z)| ≤ 1 for |z| ≤ 1. Ω is a convex closed set in Lp(K). Let h > 0 and

Fh(χ) be the average of F ′(χ)
F ′(χ)

, |Fh(χ)| ≤ 1, see [12].

Consider the functional equation

(5.5) Φ− q1S1(Φ)− q2Fh(χ)
χ

χ
S1(Φ) = q2Fh(χ)

fz
f
eT1(ω)−T1(ω)

in which χ = χω ≡ f(z)eT1(ω) is considered as an operator acting on ω. Equa-
tion (5.5) defines an operator Φ = Φ(ω) on the set Ω. Indeed, this equation
is always uniquely solvable since the principle of the contracting mappings
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may be applied to it. (The operator Φ(ω) and other quantities considered
below depend on h. However, for simplicity, we will not mark this depen-
dence with the subscript h.) We prove first that the operator Φ(ω) maps
Ω into itself. The estimate ||Φ||Lp ≤ C is obvious. Consider the function
χΦ = f(z)eT1(Φ) where Φ = Φ(ω), ω ∈ Ω. We immediately verify that it sat-
isfies equation (χΦ)z − q1(χΦ)z − q̃2(χΦ)z = 0 in which q̃2 = q2(z)Fh(χ)χω

χω

χΦ

χΦ
,

i.e. |q1| + |q̃2| ≤ q0 < 1. By the strong maximum principle proved above for
solutions of such equations, we get |χΦ| < 1 for |z| < 1 since |χΦ| = 1 for
|z| = 1, i.e. Φ ∈ Ω. Let ωn be a sequence of functions belonging to Ω, and
let Φn = Φ(ωn). Since the operator T1(ω) is completely continuous, we can
choose a subsequence nk, k = 1, 2, . . ., such that χnk

= f(z)eT1(ωnk
) converge

uniformly in the closed disk |z| ≤ 1. Then the sequences q2Fh(χnk
)
χnk

χnk
and

q2Fh(χnk
) fz

f
eT1(ωnk

)−T1(ωnk
) will converge at every point of the disk |z| < 1. As

in the proof of Theorem 3.1, we show that Φnk
converge in the norm of Lp(K).

Thus, the equation (5.5) defines a compact operator Φ = Φ(ω) mapping the
bounded closed convex set Ω of the Banach space Lp(K) into itself. By the
Schauder theorem, (see [25]), the operator Φ(ω) has at least one fixed point.
Thus, we have proved the solvability of the equation

(5.6) ω − q1S1(ω)− q2Fh(χ)
χ

χ
S1(ω) = q2Fh(χ)

fz
f
eT1(ω)−T1(ω)

where χ = χω ≡ f(z)eT1(ω). Since χω satisfies the equation χz − q1χz −
q2Fh(χ)χz = 0 and the conditions χ(0) = 0, χ(1) = 1, it can be seen that χ(z)
homeomorphically maps the disk K onto itself: indeed, by the representation
theorems χ(z) has the form χ(z) = f̃(χ1(z)) where χ1(z) is a homeomorphism

of the disk K onto itself, χ1(0) = 0, χ1(1) = 1, and f̃(χ1) is an analytic

function. In view of the conditions |f̃(χ1)| = 1 for |χ1| = 1, f̃(0) = 0, f̃(1) = 1,

the function f̃(χ1) can only have the form f̃(χ1) = χn1 , n ≥ 1. By the argument

principle 2π = ∆ arg|χ1|=1 χ(z) = ∆ arg|z|=1 f̃(χ1), hence n = 1 and we are
done. By the same argument, Lemmas 3.1, 4.1 and Theorem 3.6 may be
applied as well. Recall now that we agreed not to mark the dependence of
the considered quantities on h; in fact, we have constructed the functions
ωh and χh = f(z)ET1(ωh) which are solutions of equation (5.6). Choosing an
uniformly convergent subsequence χhk

→ χ for hk → 0, it is easy to verify that

Fhk
(χhk

) tends to F ′(χ)
F ′(χ)

a.e. and, consequently, also functions ωhk
converge in

the norm of Lp to some ω. ω is a solution of the non-linear equation (5.4) where
χ = χ(z) = f(z)eT1(ω) and χ(z) itself is the desired solution of the equation
(5.1). Thus, the case A = B ≡ 0 and q2 ≡ 0 in a neighborhood of the origin is
settled completely.

Now lets get rid of our first assumption still keeping for a while the con-
dition that ”q2 ≡ 0 in a neighborhood of the origin”. As lareviously done, we
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verify by a simple calculation that our theorem will be proved if we show the
existence of solutions admitting all properties required in the theorem, for the
following system of non-linear functional equations

χz − q1(z)χz − q2(z)
F ′(χ)

F ′(χ)
eϕ−ϕχz = 0,

(5.7) ϕz − q1ϕz − q2
w

w
ϕz = A+B

w

w

where w(z) = F (χ(z))eϕ(z), χ(z) and ϕ(z) are the unknowns. We again search
for solutions in the form

χ(z) = f(z)eT1(ω), ϕ(z) = T (ω1)

where

T (ω) = − 1

π

∫
K

[
ω

t− z
+

zω

1− zt
− ω

t− 1
− ω

1− t

]
dK, and

(5.8) T (ω1) = − 1

π

∫
K

ω1(t)

t− z
dK,

and f(z) is the solution of the homogeneous equation fz−q1(z)fz = 0 mapping
the disk |z| ≤ 1 onto itself, such that f(0) = 0, f(1) = 1. All the requirements
imposed on the unknowns χ(z) and ϕ(z) by our theorem will be automatically
satisfied as long as we establish an estimate of the norms ||ω||Lp and ||ω1||Lp ,
p > 2, not depending on F (χ).

Substituting (5.8) in (5.7), we get the system of the following equations
for the new unknowns ω and ω1:

ω − q1S1(ω)− q2
F ′(χ)

F ′(χ)

χ

χ
eϕ−ϕ S1(ω) = q2

F ′(χ)

F ′(χ)

χ

χ

fz
f
eϕ−ϕ · eT1(ω)−T1(ω),

(5.9) ω1 − q1S(ω1)− q2
w

w
S(ω1) = A+B

w

w

where w = F (χω)e
ϕω1 , and χ = χω, and ϕ = ϕω1 should be considered as

operators on ω and ω1.

For the proof of solvability of system (5.9), introduce the space Lp×Lp of
ordered pairs (ω, ω1) with the norm ||(ω, ω1)||Lp×Lp = ||ω||Lp + ||ω1||Lp . Lp×Lp
is a Banach space. We immediately get an estimate ||(ω, ω1)|| ≤ C for solutions
(ω, ω1) of the system (5.9) with C not depending on (ω, ω1). Denote by Ω∗ the
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set of all (ω, ω1), ||(ω, ω1)|| ≤ C, such that |χω| ≤ 1 for every |z| ≤ 1. Ω∗ is a
convex closed set in Lp × Lp.

As before, we replace system (5.9) by a system with the averaged coeffi-

cients F ′(χ)
F ′(χ)

∼ Fh(χ) and F (χ)
F (χ)

= F ∗
h (χ):

ω − q1S1(ω)− q2Fh(χ)
χ

χ
eϕ−ϕ S1(ω) = q2Fh(χ)

χ

χ

fz
f
eϕ−ϕ · eT1(ω)−T1(ω),

(5.10) ω1 − q1S(ω1)− q2F
∗
h (χ) eϕ−ϕ S(ω1) = A+BF ∗

h (χ)eϕ−ϕ

and consider the functional system

Φ−q1S1(Φ)−q2Fh(χω)
χω
χω

eϕω1
−ϕω1 S1(Φ) = q2Fh(χω)

χω
χω

fz
f
eϕω1

−ϕω1 ·eT1(ω)−T1(ω),

(5.11) Φ1 − q1S(Φ1)− q2F
∗
h (χω) e

ϕω1
−ϕω1 S(Φ1) = A+BF ∗

h (χω)e
ϕω1

−ϕω1

which defines an operator Ψ((ω, ω1)) = (Φ,Φ1) on the set Ω∗. Following the
method described in the proof of analogous properties of operator Φ(ω) above,
we show that Ψ compactly maps Ω∗ into itself.

Applying the Schauder fixed point theorem, we obtain the existence of
a solution to system (5.10). Passing to the limit for a suitable subsequence
hk → 0 we establish the existence of solutions for system (5.9) satisfying all
the requirements of the theorem. The limiting process is justified in the same
way as in the analogous case above.

We still must the last restriction: q2(z) ≡ 0 in a neighborhood of the
origin. This may be done by passing to the limit in equation (5.1) or in system
(5.7). For a sequence qn2 (z) → q2(z) where qn2 vanishes in a neighborhood of the
origin, we solve equations (5.1) or (5.7) for q2 = qn2 , and obtain the sequences
of solutions χn(z) and ϕn(z). Relying on Lemma 4.1, we then perform the
limiting process, generally speaking, along some subsequence nk → ∞. The
necessary estimates are given by Theorem 3.6 and the inequalities (1.5) and
(1.6).

The case of the boundary condition <ϕ(z) = 0 for |z| = 1 is considered
analogously. In this case we look for ϕ(z) in the form

ϕ(z) = T1(ω1) = − 1

π

∫
K

[
ω

t− z
+

zω

1− zt
− ω

t− 1
− ω

1− t

]
dKt.

The theorem is thus proved.

When q2 ≡ 0 in equation (4.6), i.e. when (4.6) has the form
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(5.12) wz − q(z)wz = Aw +Bw, z ∈ G,

Theorem 5.1 may be strengthened: then the precise converse to Theorem 4.1
may be proved.

Theorem 5.2. Let f(z) be an arbitrary solution of the homogeneous equation

fz − q(z)fz = 0

in domain G. Then there exists a Hölder continuous function ϕ(z) such that
w(z) = f(z)eϕ(z) is a solution of the equation (5.12). Moreover, we can require
that ϕ(z) may be extended to the entire plane as a continuous function of the
variable z, holomorphic outside of G, equal to zero at infinity or <ϕ(z) = 0
for |z| = 1, ϕ(1) = 0 (if G ≡ K). In both cases ϕ(z) ∈ Wp(K), p > 2, and the
integrals ||ϕz||Lp, ||ϕz||Lp have an estimate from above not depending on f(z).

The proof of this theorem can be obtained by the same method as the
proof of the previous theorem.

In the case A = B ≡ 0, Theorem 5.1 also allows us to construct multi–
valued solutions corresponding to the multi–valued functions F (χ) such that
F ′(χ) is single–valued. Using the above method the complex–valued Green
function for equation (4.7) may be directly constructed.

Theorems 5.1 and 5.2 are generalizations of theorems proved in [13] and
[22] for the case when q1 ≡ q2 ≡ 0.

6 The uniqueness theorem

We say that a complex–valued function w = w(z) realizes a quasiconformal
mapping of the domain ∆ onto the domain D, corresponding to a given system
of partial differential equations if w = w(z) maps ∆ onto D homeomorphically
and satisfies the system.

In this section we prove the uniqueness theorem for quasiconformal map-
pings which correspond to the linear systems of the form

(6.1) wz − q1(z)wz − q2wz = 0

with the most general assumptions on the coefficients q1(z) and q2(z). We
allow q1(z) and q2(z) to be measurable functions satisfying the only condition
(2.7) in the domain where the equation is considered.
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As we remarked above, the case when q2 ≡ 0, i.e., the case of the Beltrami
equations, is trivial: the corresponding uniqueness theorem is obtained directly
from the uniqueness theorems for conformal mappings.

For a special class of equations, beyond the Beltrami class, the uniqueness
theorem was proven by Gergen and Dressel [16] (for the so-called p−elliptic
systems). These authors consider the equations with smooth coefficients. In
the framework of the method applied by Gergen and Dressel, their arguments
cannot be extended to the general case of non–p–elliptic systems. We show
below that the general uniqueness theorem can be obtained by the methods
applied in the present paper. In the proof below, among other considerations,
is also used an idea employed in the work of Gergen and Dressed.

The basis for our uniqueness theorem is the following.

Lemma 6.1. Let f = f(z) be a generalized solution of the equation

(6.2) fz − q(z)fz + q(z)fz = 0, |q(z)| < q′0 <
1

2
,

mapping the unit disk |z| ≤ 1 onto the disk |f | ≤ 1. Then f(z) ≡ z whenever
one of the following conditions holds:

1) f(z) = z at three different points in the circle |z| = 1;

2) f(z) = z at one point in the disk |z| < 1 and at one point on the circle
|z| = 1;

3) f(z) = z at two different points in the disk |z| < 1.

Proof. For the proof we extend our function to some disk of radius ρ0 > 1 by
the formula

f ∗ = f(z) for |z| ≤ 1,

f ∗ =
1

f
(

1
z

) for 1 < |z| ≤ ρ0.

We choose the radius ρ0 in such a way that f ∗(z) is not equal to infinity
in the disk |z| ≤ ρ0. Thus, we get a continuous function in the disk |z| ≤ ρ0.

Now we write the differential equation for f ∗(z) on the exterior of the
unit disk. For the partial derivatives we get:

f ∗z =
ζ2

f(ζ)2
fζ(ζ), ζ =

1

z
, |z| > 1,

f ∗z =
ζ2

f(ζ)2
fζ(ζ).
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Hence, in view of equation (6.2), we obtain

(6.3) f ∗z − q(ζ)

[
f ∗z

ζ2

ζ 2
− f ∗z

f 2(ζ)

f 2(ζ)

]
= 0 for |z| > 1, ζ =

1

z
.

It is obvious that f ∗(z) has the first generalized derivatives in the Sobolev
sense in the disk |z| < ρ0. f satisfies equation (6.2) inside the unit disk and
the equation (6.3) outside of it. Thus, setting

q̃1(z) = −q̃2(z) = q(z) for |z| < 1,

(6.4) q̃1(z) = q(ζ)
ζ2

ζ 2
and q2(z) = −q(ζ) f 2(ζ)

f 2(ζ)
for |z| > 1,

we see that f ∗ is a generalized solution of the equation

f ∗z − q̃1f
∗
z − q̃2f ∗z = 0

in the disk |z| < ρ0. In view of (6.4), we have |q̃1|+ |q̃2| < 2q′0 < 1.

Consider the function w(z) = f ∗(z) − z. From the equations above we
derive the equation for w(z) :

wz − q̃1(z)wz − q̃2(z)wz = 0 for |z| < 1,

wz − q̃1wz − q̃2wz = q̃1(z) + q̃2(z) for |z| > 1;

however, for |z| > 1

q̃1 + q̃2 = q(ζ)

[
ζ2

ζ 2
− f 2(ζ)

f 2(ζ)

]
=
q(ζ)z2

f ∗ 2
[ϕ− ϕ] [ϕ+ ϕ]

where

ϕ =
f ∗(z)

z
.

Set

q̃1(z) + q̃2(z)

f ∗(z)− z
=
q(ζ)z2

f ∗2 · z

[
ϕ− ϕ

ϕ− 1

]
[ϕ+ ϕ] = A(z), |z| > 1.

In view of the choice of ρ0, we have C1 < |ϕ| < C for 1 < |z| < ρ0 with some
constants C1 and C.

Moreover,
∣∣∣ϕ−ϕϕ−1

∣∣∣ < 2 for all ϕ; hence

|A| ≤ 4q′0C

C2
1

.
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Setting A(z) ≡ 0 for |z| < 1, we obtain the equation for w(z)

(6.5) wz − q̃1wz − q̃2wz = A(z)w for |z| < ρ0,

with |q̃1| + |q̃2| < 2q′0 < 1 and A(z) bounded. In view of the properties of
solutions of the equations of the form (6.5) proved above, we can assert that
either w(z) is identically zero or it vanishes on a discrete set of points in any
disk |z| ≤ ρ′0 < ρ0. If w(z) is not identically zero, the argument principle can
be applied to the function w(z). If w(z) ≡ 0, then there is nothing to prove.
Suppose that w(z) is not identically zero. We show that this assumption is
not compatible with any of the conditions 1) – 3) of the lemma.

Indeed, let N1 be the number of zeros of w(z) in the disk |z| < 1, N2 be
the number of zeros of w(z) on the circle |z| = 1. The function w(z) has no
zeros in the annulus 1 < |z| < 1 + η < ρ′0 for a small enough η. Therefore the
increment of the argument of the function w(z) along the circle C : |z| = 1+ η
equals to ∆C argw(z) = 2π(N1 +N2). On the other hand, on the circle C we
have

w(z) =
1

f
(

1
z

) − z =
z

f
(

1
z

) [
1

z
− f

(
1

z

) ]
= − z

f
(

1
z

) w

(
1

z

)
.

Suppose that η is so small that all N1 zeros of w(z) in the disk |z| < 1 and the
unique zero of f(z) lie in the disk |z| < 1

1+η
. Then the last formula gives

∆C argw(z) = 2π + 2π − 2πN1 = 4π − 2πN1.

Therefore

(6.6) 4π − 2πN1 = 2π(N1 +N2) or 2N1 +N2 = 2.

It can easily be seen that the equality (6.6) is incompatible with any of the
assumptions of our lemma. Thus, in those cases w(z) ≡ 0. The lemma is
proved.

Now we prove the fundamental uniqueness theorem for the system of the
form (6.2).

Theorem 6.1. Let w = w(z) be a solution of the system

wz − q1(z)wz − q2(z)wz = 0, |q1|+ |q2| ≤ q0 < 1,

mapping the unit disk onto itself. Then such a solution is unique provided that
at least one of the following conditions holds:
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1) w(zi) = wi (i = 1, 2, 3) at three assigned points on the circle |z| = 1; here
w1, w2 and w3 are also prescribed;

2) w(z0) = w0, w(z1) = w1, |z0| < 1, |w0| < 1, |z1| = |w1| = 1 where
z0, z1, w0 and w1 are prescribed.

Proof. We argue by contradiction. Suppose there exist two solutions w = w(z)
and v = v(z) satisfying the conditions of the lemma. Consider the function
z = z(v) which is inverse to the solution v = v(z). It maps the disk |v| ≤ 1
onto the disk |z| ≤ 1. We have for its derivatives the following equalities

zv =
vz
J
, zv = −vz

J

where J = |vz|2 − |vz|2 is the Jacobian. It follows that the function z = z(v)
satisfies the equation

zv + q1(z(v))zv + q2(z(v))zv = 0.

Consider the function f(v) = w(z(v)). It obviously belongs to the class W2(K)
and maps the unit disk |v| ≤ 1 onto the disk |f | ≤ 1. We write the differential
equation for the function f(v). For this purpose we calculate the derivatives:

fv = wzzv + wzzv = q2(z) [wz zv − wzzv] ,

fv = wzzv + wzzv = wzzv(1− |q1(z)|2)− q1q2wzzv − q2q1wzzv − |q2|2wz zv,

fv − fv = −(wz zv − wzzv)(1 + |q2|2 − |q1|2)

and we get

fv − q̃(fv − fv) = 0, q̃ =
−q2(z(v))

1 + |q2|2 − |q1|2
,

i.e. f(v) satisfies the equation of the type considered in the lemma. It is simple
to verify that |q̃(v)| ≤ q̃0 < 1

2
for |v| < 1. In view of conditions 1) and 2)

of our theorem, the function f(v) satisfies all the conditions of the lemma.
Therefore f(v) ≡ v, hence v(z) ≡ w(z) as was to be proved.

Corollary 6.1. Let G be a domain bounded by a Jordan curve Γ. If w(z)
is a solution of equation (6.1) mapping G onto K and satisfying one of the
following normalization conditions: 1) w(z) maps three given points on Γ to
the three prescribed points of the circle |w| = 1 or 2) w(z) maps the two given
points z0 ∈ G and z1 ∈ Γ onto the two assigned points w0, w1 of the disk K:
w0 ∈ K, |w1| = 1, then such a solution is unique.
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7 Generalized solutions of system (4.7) and

quasiconformal mappings

In this section, we briefly consider the connection between the theory of solu-
tions of equations(4.7) and the geometric theory of quasiconformal mappings.

In the classical case, the class of quasiconformal mappings is defined as the
so–called mappings with continuous characteristics (with one or two pairs of
characteristics), which are denoted by p, θ or p, θ, p1 and θ1, respectively, (in-
troduced by M. A. Lavrent’ev in 1935). Since the corresponding precise defini-
tions are rather long, we don’t give them here and refer the reader Lavrent’ev’s
paper [19]. A quasiconformal mapping is said to be Q–quasiconformal if it’s
characteristics are bounded by the number Q : p ≤ Q, p1 < Q everywhere in
the considered domain. Lavrent’ev also introduced the so-called class AQ of
mappings with bounded distortion, i.e. the class of homeomorphic mappings
for which at each point z0, the following inequality holds

(7.1) lim
ρ→0

max
ϕ1

|w(z0 + ρeiϕ1)− w(z0)|

min
ϕ
|w(z0 + ρeiϕ)− w(z0)|

≤ Q.

The classical definition of quasiconformal mapping was generalized by Pesin.
He introduced the concept of so-called general quasiconformal mappings. In
particular, he requires that the inequality p ≤ Q holds almost everywhere only
(for a precise definition see [5]).

We recall some properties of the general Q–quasiconformal mappings.
Let w(z) = u + iv be such a mapping. It is known by the general theorems
of D. E. Men’shov that u and v are differentiable in the Stolz sense a.e., it’s
partial derivatives are square integrable and at a.e. point satisfy the uniformly
elliptic system of the partial differential equations (4.7). It is also known that
u and v are absolutely continuous on a.e. lines parallel to the coordinate axes.
It follows from these properties that w = u+ iv has the generalized derivatives
in z and z, satisfying system (4.7). We combine all that was said above in the
following proposition.

Theorem 7.1. A general Q–quasiconformal mapping is a generalized solution
of a uniformly elliptic system (4.7). In the general case, the coefficients of
the corresponding system are measurable functions. They are continuous if the
characteristics of the mapping are continuous.

We note that, the case of mappings with one pair of characteristics (p1 ≡
1) corresponds to the Beltrami systems. In this case, it is not difficult to show
the inequality
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(7.2) |q(z)| ≤ Q− 1

Q+ 1

which illustrates the connection between the uniform boundedness of charac-
teristics and the uniform ellipticity of the equations.

Theorem 7.1 allows us to ascertain that all properties proved above of
solutions of equations (4.9) extend to the class of general Q - quasiconformal
mappings. In this way we immediately obtain a series of partly known, and
proved earlier by other methods, and partly new properties of general Q -
quasiconformal mappings.

In particular, our methods allow us to assert the integrability of the
derivatives of quasiconformal mappings with some exponent p > 2. Hence
also follow the estimates of the Jacobian of a Q–quasiconformal mapping or
estimates of the measure of the image of an arbitrary measurable set under
Q–quasiconformal mapping etc.

In this section, our main goal is to prove an inverse theorem to The-
orem 7.1. In this way we show the full equivalence of the class of univa-
lent generalized solutions of equation (4.7) and the corresponding class of Q–
quasiconformal mappings.

A series of distortion theorems from the geometric theory of quasiconfor-
mal mappings can be easily transformed to mappings realized by generalized
solutions of the system (4.7). First of all, we note a simple proof of a distor-
tion estimate for mappings realized by solutions of system (4.7) and conformal
mappings. This proof we obtain as a straightforward consequence of some es-
timates for conformal mappings. A more precise estimate may be obtained if
the corresponding result from the theory of quasiconformal mappings is used
(see [26]).

Lemma 7.1. Let w(z) be the solution of equation (4.7) mapping the unit disk
onto itself such that w(0) = 0, w(1) = 1. Then

(7.3) |w(z)− z| ≤ Kε ln
1

ε
+K1ε

α

where K, K1 and α are some universal constants, depending on q0 only and
ε = ‖|q1(z)|+ |q2(z)|‖Lp.

Proof. According to Theorem 3.3, w(z) may be represented in the form w(z) =
f (χ(z)) where

χ(z) = z − 1

π

∫
K

[
ω

t− z
− ω

t

]
dK,
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K is the unit disk, ω is a solution of the equation ω − qS(ω) = q with q =
q1 + q2

wz

wz
. From the above equation we have:

|χ(z)− z| ≤ C‖ω‖Lp ≤ C1‖q‖Lp ≤ C1ε,

i.e. χ(z) maps K onto a Jordan domain, close enough to the disk. The above
estimates for χ = χ(z) and z = z(χ), where z = z(χ) is the inverse function
for χ = χ(z), and a theorem of Warszawski on the distortion of conformal
mappings lead to the inequality (7.3), (see [27]). The applicability of the
Warszawski estimate in our case can be easily established by the estimates for
the function z = z(χ) following from Theorem 3.2. In view of the inequality
(7.2), we have

ε ≤
∥∥∥∥p− 1

p+ 1

∥∥∥∥
Lp

+

∥∥∥∥p1 − 1

p1 + 1

∥∥∥∥
Lp

where p and p1 are characteristics of the mapping.

Analogously to the theory of ε–quasiconformal mappings (see [19] and
[28]), a class of equations may be introduced, whose solutions have proper-
ties analogous to the properties of ε–quasiconformal mappings. These will be
equations for which

(7.4) vrai max (|q1|+ |q2|) < ε

in the considered domain. We will call such equations the ε–equations. In
view of the inequality (7.2),

|q1|+ |q2| ≤
∣∣∣∣p− 1

p+ 1

∣∣∣∣
Lp

+

∣∣∣∣p1 − 1

p1 + 1

∣∣∣∣
Lp

,

it is obvious that ε–quasiconformal mappings are solutions of the ε′–equations
and the quantities ε and ε′ are small quantities of the same order. A fundamen-
tal property of the ε–equations is that they are invariant under conformal trans-
formations of the independent (z) and dependent (w) variable. (In general,
the above property does not hold for equations for which ‖q1‖Lp + ‖q2‖Lp < ε
and this is crucial in some respects.) The known lemmas on the distortion
of rings for ε-quasiconformal mappings can be literally transferred to univa-
lent solutions of the ε–equations. Moreover, in view of the above mentioned
property of the class of ε–equations, the proofs directly apply to our case. In
the following, we will use one of such lemmas that are stated below in the
formulation of Volkovyskii (see Lemma 8.4 in [28]).

Lemma 7.2. Let w = w(z) be a generalized solution of the ε–equation (4.7)
mapping the unit disk |z| ≤ 1 onto the disk |w| ≤ 1 with w(0) = 0. Then∣∣∣∣w(z1)− w(z0)

w(z2)− w(z0)

∣∣∣∣ < 1 + η(ε, ε′),
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(7.5)

∣∣∣∣arg
w(z1)− w(z0)

w(z2)− w(z0)
− arg

z1 − z0

z2 − z0

∣∣∣∣ < η(ε, ε′)

for an arbitrary choice of the point z0 in the disk |z| < 1, and points z1 and
z2 in an annulus (1− ε′)ρ ≤ |z − z0| ≤ ρ, where 0 < ρ ≤ 1− |z0|, 0 ≤ ε′ < 1,
and η(ε, ε′) is finite for all ε and ε′, such that lim

ε,ε′→0
η(ε, ε′) = 0.

¿From Theorems 1.3 and 3.3 follows

Lemma 7.3. Any univalent generalized solution of equation (4.7) is differen-
tiable in the Stolz sense, with the non-zero Jacobian, on a set of full measure.

Let w(z) be an univalent generalized solution of equation (4.7). Consider
a point z0 such that the mapping w = w(z) is differentiable with the non-zero
Jacobian and satisfies (4.7). The points of this type form a set of full measure.
It can easily be seen that, the limit

(7.6) lim
ρ→0

max
ϕ
|w(z0 + ρeiϕ)− w(z0)|

min
ϕ1

|w(z0 + ρeiϕ1)− w(z0)|

exists at point z0 and does not exceed 1+q0
1−q0 . By Theorem 3.3 and Lemma 7.2,

for ε = q0 and ε′ = 0 we conclude that the upper limit

(7.7) lim
ρ→0

max
ϕ
|w(z0 + ρeiϕ)− w(z0)|

min
ϕ1

|w(z0 + ρeiϕ1)− w(z0)|
< +∞.

exists everywhere in the mapped domain. If the mapped domain does not
coincide with the unit disk, to establish inequality (7.7) we first map the do-
main conformally onto the unit disk. From (7.6) and (7.7) we get the following
theorem.

Theorem 7.2. Any univalent generalized solution of equation (4.7) belongs to
the class of general Q–quasiconformal mappings (moreover, Q ≤ 1+q0

1−q0 ).

Incidentally, it follows from the above considerations that the class of
general Q–quasiconformal mappings coincides with the generalized class A′Q of
mappings with bounded distortion: for a mapping to belong to A′Q fulfilment of
the inequality (7.1) a.e. and the finiteness of the upper limit (7.1) everywhere
is required (or everywhere except in a finite or countable set).

On the basis of the properties of the generalized solutions proved above, it
is not difficult to establish other geometric properties of the mappings realized
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by solutions of system (4.7). However, in distinction to the boundedness of the
distortion, which holds everywhere in each point of the mapped domain, these
properties hold a.e. only. Thus, it is clear that the solutions of general systems
(4.7) with measurable coefficients map infinitesimal ellipses with characteristics
p(z) and θ(z), centered at a.e. point of the mapped domain, to infinitesimal
ellipses with characteristics p1(z) and θ1(z). The quantities p, θ, p1 and θ1 are
calculated from the coefficients q1 and q2 of equation (4.7), by simple formulas.

If the coefficients q1 and q2 of the equation (4.7) satisfy the Hölder con-
dition, then the generalized solution is continuously differentiable and is a
solution in the classical sense. Moreover, it is not difficult to show, that uni-
valent solutions of such equations have a non zero Jacobian at each point
of the mapped domain. Hence the geometric properties of the mappings are
immediately established at each point of the domain.

If the coefficients of the equation are continuous only, then, in general, the
generalized solution may not be differentiable at every point. Nevertheless, the
geometric properties of the mapping are preserved at each point, even at those
points where the Jacobian equals zero, or the mapping is not differentiable.

Theorem 7.3. If w = w(z) is a generalized solution of equation (4.7) with
continuous coefficients, mapping the unit disk onto itself, then the mapping
maps an infinitesimal ellipse with characteristics p(z) and θ(z) into an in-
finitesimal ellipse with characteristics p1(z) and θ1(z) at every point of the
disk. The characteristics p, θ, p1 and θ1 are continuous functions of the point
z.

We briefly sketch a proof of this theorem, which can be obtained on the
basis of our theory. As is well known, any solution of the general equation (4.7)
can be represented as a superposition of a solution of the Beltrami equation
and of an equation of the form

(7.8) wz − q(z)wz = 0.

It is sufficient to consider each of these cases separately. Without loss of
generality, we can assume that w(0) = 0 and w(1) = 1. Let w(z) be a solution
of the equation wz − q(z)wz = 0 satisfying the conditions of the theorem.
Let wn(z) be a sequence of solutions of the equations wnz − qn(z)w

n
z = 0,

wn(0) = 0 and wn(1) = 1 where qn(z) are continuously differentiable, |qn| ≤ q0
and qn → q uniformly in the unit disk. By the uniqueness theorem, we have:
wn(z) → w(z) uniformly in the unit disk.

To apply the proof, which for an analogous problem may be found in the
work of Lavrent’ev or in the book of Volkovysski (see [28]), to our case, it

is enough to establish that the superpositions fn,m = wn (zm(w)) and f̃n,m =
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zm(wn(z)) are solutions of the εn,m–equations to which Lemma 7.2 is applica-
ble. We have the following equations for fn,m

(7.9)
∂fn,m
∂w

=
qn(zm)− qm(zm)

1− qn(zm)qm(zm)
·
∂zm

∂w
∂zm

∂w

∂fn,m
∂w

,

which are the εn,m–equations with εn,m → 0. In the same way we argue in the

case of the equation (7.8). Then, for f̃n,m = zm(wn(z)), we have

∂f̃n,m
∂z

−
qn(z)− qm

(
f̃n,m(z)

)
1− qn(z)qm(f̃n,m(z))

∂wn

∂z
∂wn

∂z

∂f̃n,m
∂z

= 0

which are the εn,m–equations as well, in view of the general uniqueness theorem
(εn,m → 0 for n,m→∞).

Next in the proof we use Lemma 7.2 and repeat the arguments from the
just quoted works.

The following statement follows directly from Theorem 7.3.

Corollary 7.1. The class of mappings realized by the generalized solutions of
the system (4.7) with continuous coefficients coincides with the class of classical
quasiconformal mappings with continuous characteristics.

By the considerations of this section, the existence Theorem 5.1 contains
the solution of the following classical problem of the theory of quasiconformal
mappings (or non classical, when the characteristics are discontinuous): to
map quasiconformally, with assigned characteristics p(z), θ(z), p1(z), θ1(z)
a given simply connected domain D onto another such domain, fixing the
correspondence of one pair of inner points and one pair of boundary points.
The characteristics are supposed to be arbitrary measurable functions of z
and to be uniformly bounded in the mapped domain. In this formulation, the
theorem is presented in the author’s paper [3].

Theorem 5.1 allows us also to map arbitrary simply connected domains,
which are not necessarily Jordan domains. By Theorem 5.1, we can also solve
the problem of quasiconformal mapping of two Jordan domains with a given
correspondence of three pairs of similarly oriented boundary points of these
domains, in the most general form. For this purpose, it is sufficient to apply
the continuity method of Brauer. The uniqueness theorem and Lemmas 4.1
and 4.2 give all that is needed for the application of this method, (see [29]).

In the general formulation as above, the solution of the quasiconformal
mapping problem, though, without the full detailed proof, can be found in
work [10].
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In connection with the geometric theory of quasiconformal mappings, we
note the following geometric interpretation of Lemma 6.1 from which we ob-
tained the uniqueness of the quasiconformal mapping of an arbitrary Jordan
domain onto the unit disk. From the formulas presented in the book [28] it
is easy to see that, systems of type (6.2) correspond to the quasiconformal
mappings with two pairs of characteristics p, θ; p1, θ1, such that p = p1,
θ = θ1. This means that the infinitesimal ellipses with characteristics p and
θ are transformed by a parallel translation under the corresponding quasicon-
formal mapping. Lemma 6.1 asserts in this case that, if three points on the
boundary of a disk stay fixed, then all the points of the disk stay fixed. In this
formulation Lemma 6.1 is a generalization of the known result by D. E. Men-
shov who considered the case where infinitesimal circles are transformed by a
parallel translation.

8 Some applications

The representations and estimates obtained above can be successfully used
in the solution of a series of problems which naturally arise when studying
elliptic systems of the form (2.6). Various types of representations may be
useful for different problems. This was seen above when some special solutions
of equation (2.6) in Section 4 were constructed. Below we briefly present some
additorial examples.

1. The Dirichlet problems for a disk. In addition to the results of Sub-
section 3, Section 4, we now construct the solution of the Dirichlet prob-
lem, namely, to find a solution of equation (2.6) satisfying the conditions
<w(z) = f(z) for |z| = 1 and =w(1) = 0, where f(z) is a given real val-
ued function. We consider the most simple case when the problem can be
solved by the method of successive approximations. Let Φ(z) be a holomor-
phic function for |z| < 1 such that <Φ(z) = f(z) for |z| = 1 and =Φ(1) = 0.
Suppose that Φ′(z) ∈ Lp(K) for some p > 2. Then we search the solution in
the form

(8.1) w(z) = Φ(z)− 1

π

∫
K

[
ω(t)

t− z
+

zω

1− zt
− ω

t− 1
− ω

1− t

]
dK.

Substituting (8.1) in equation (2.6), we get for ω an integral equation of the
form (4.14) for which the Fredholm theory is applicable, as shown in Section
4. This equation can be solved by the method of successive approximations
according to the scheme (4.14′).

In the general case the uniqueness of the solution of the Dirichlet problem
can be obtained from the representation (8.1) as shown above in the proof of
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Theorem 4.5. If f(z) is continuous only, then the desired solution may be
obtained as a limit of the uniformly convergent sequence wn(z) → w(z) where
wn(z) is the solution of the problem <wn(z) = fn(z), =wn(1) = 0, fn → f
uniformly and fn are sufficiently smooth functions. The convergence wn → w
follows from the maximum principle for homogeneous equations (4.6), which
may be obtained, from the representation (4.10), in the following formulation:
if |w(z)| ≤ m on |z| = 1, then |w(z)| ≤ M ·m for |z| ≤ 1, with M depending
on the coefficients of the equation only.

2. Correctness of the Cauchy problem. Let w(z) be a solution of equation
(4.6) such that |w(z)| ≤ M for |z| ≤ 1 and |w(z)| ≤ m on an arc s of the
circle |z| = 1. Then, from the known estimates for holomorphic functions and
from Theorems 3.6 and 4.4 and Lemma 3.1, we get the estimate of the form
|w(z)| ≤ fr(m,M) where fr(m,M) → 0 as m → 0 uniformly in every inner
disk |z| ≤ r < 1. This estimate establishes the stability of the Cauchy problem
in the class of bounded solutions.

3. Behavior of the mapping at a boundary point. Let w = w(z) be
a solution of the equation (4.7) mapping the unit disk |z| ≤ 1 onto itself,
w0 = w(z0), |z0| = 1. Then the following is true.

Theorem 8.1. If∣∣∣∣q1(z)− q1(z0)

z − z0

∣∣∣∣ ∈ Lp(K) and

∣∣∣∣q2(z)− q2(z0)

z − z0

∣∣∣∣ ∈ Lp

for some p > 2, then the mapping w = w(z) is differentiable at the point z0

and the Jacobian J = |wz|2 − |wz|2 is not zero at z0.

Proof. We consider the case q1(z0) = q2(z0) = 0. The general case is reduced
to this one by a linear affine and elementary conformal transformations of
dependent and independent variables in equation (4.7). We extend w(z) by
symmetry outside of the disk |z| ≤ 1 setting w∗(z) = w(z) for |z| < 1 and
w∗(z) = 1

w( 1
z̄ )

for |z| > 1. Consider the function

Ψ =
w∗(z)− w0

z − z0

.

¿From equation (4.7) and from the extension formulas we get the following
equation for Ψ(z)

(8.2) Ψz − q̃1Ψz − q̃2Ψz = AΨ +BΨ

with discontinuous coefficients. For |z| < 1, we have

q̃1 = q1, q̃2 = q2
z − z0

z − z0

, A =
q1

z − z0

, B =
q2

z − z0

.
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Analogous formulae hold for |z| > 1. Therefore |q̃1| + |q̃2| < q0 < 1 and
A,B ∈ Lp in a neighborhood of the point z0. By the representation theorem we
have Ψ(z) = f (χ(z)) eϕ(z) where ϕ(z) is continuous at the point z0, χ = χ(z)
is a homeomorphism of a neighborhood of z0 onto itself such that χ(z0) = z0,
and f(χ) is an analytic function in the neighborhood of χ0(z0) = z0. It is
clear that χ0 cannot be an essential singular point of f(χ). But, in view of
the univalentness of w(z), the increment of the argument ∆ arg|z−z0|=r Ψ =
∆ arg|χ−χ0|=r f(χ) = 0 for sufficiently small r, therefore χ0 is a regular point
of the function f(χ) and f ′(χ0) 6= 0, what was to be proved.

Remark. With the help of conformal mappings, Theorem 8.1 can be extended
to mappings of the unit disk onto an arbitrary domain with a sufficiently
smooth boundary curve. The theorem holds also if z0 is an inner point of the
domain and w = w(z) is a univalent solution of the equation (4.7) in some
annulus around z0. Then the proof can be simplified since we don’t need to
extend the function w(z) to the exterior of the unit disk. In this formulation,
for mappings with one pair of the characteristics, Theorem 8.1 is proved in
another way in paper [30].

4. Quasilinear equations. Theorems 4.4 and 5.1 preserve their validity for
wide classes of quasilinear equations of the type

(8.3) wz − q1(z, w)wz − q2(z, w)wz = F (z, w) ,

and the proof, under some assumptions on q1, q2 and F as functions of w
(|q1| + |q2| ≤ q0 < 1, |F (z, w)| ≤ A(z)|w|, A(z) ∈ Lp, p > 2, and, in the
simplest case, when q1 and q2 are continuous in w) does not need almost any
change.

We consider the case F (z, w) ≡ 0 in some detail. Let the equation be
given in the unit disk K, q1(z, w) and q2(z, w) defined for z ∈ K and w ∈ ∆,
where ∆ is a domain of the plane (it can be the full complex plane) and
let|q1|+ |q2| ≤ q0 < 1 for z ∈ K and w ∈ ∆. Then the following holds.

Theorem 8.2. Let f(χ) be any analytic function for |χ| < 1 such that f(K) ⊂
∆. Then there exists a homeomorphic mapping of K onto itself, χ = χ(z),
χ(0) = 0, χ(1) = 1, such that w(z) = f (χ(z)) is a solution of the equation
(8.3) (with F ≡ 0) and χ = χ(z) is a solution of an equation of the form (4.7).
It is assumed, that q1(z, w) and q2(z, w) are continuous in w for a.e. z ∈ K,
or, if they are of the form q1 = q′1(z) · q′′1(w) and q2 = q′2(z) · q′′2(w), that they
are measurable only.

The proof of the above theorem is analogous to the proof of Theorem 5.1.
In the case when q1 = q′1(z) · q′′1(w) and q2 = q′2(z) · q′′2(w), the estimate (3.48),
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for the measure of the image under mappings realized by solutions of equations
(4.7), is to be used.

The important case of Theorem 8.2, when f(χ) is univalent and maps K
on to a simply connected domain ∆, gives a new proof of Shapiro’s theorem
on the existence of a quasiconformal mapping of the unit disk K on Jordan
domain with a given correspondence of a pair of boundary points and a pair
of inner points, or three pairs of boundary points, see [31]. Our conditions on
the coefficients of the equation are more general than in [31].

When considering univalent solutions of equation (8.3) (F ≡ 0), the roles
of the variables z and w are symmetric; therefore, Theorem 8.2 holds if we
interchange the variables z and w.

We now present some uniqueness theorems for quasiconformal mappings
corresponding to quasilinear systems of the type (8.3) (F ≡ 0).

Theorem 8.3. Let |q1(z, w)−q1(z′, w)| ≤M1|z−z′| and |q2(z, w)−q2(z′, w)| ≤
M2|z − z′| where M1, M2 are constants not depending on z, z′ and w. Then
the solution of equation (8.3) mapping the unit disk on to the Jordan domain
is unique provided that it is normalized as in Theorem 6.1.

Proof. Let w = w(z) and v = v(z) be two such solutions. Denote by z =
z(v) the inverse function to v = v(z), and consider the superposition f(z) =
z (w(z)). Obviously f(z) maps the unit disk onto itself. We construct two
equations for f(z). We have the following formulae for the derivatives fz and
fz:

(8.4)

fz = zvwz + zvwz = [q2(z, w)− q2(f(z), w)] zvwz+

+ [q1(z, w)− q1(f(z), w)] zvwz + q1(f(z), w) [zvwz − zv wz] ,

fz = zvwz + zvwz,

fz − fz = (zvwz − zv wz) (1 + |q1|2 − |q2|2) .


¿From these we see that f(z) satisfies the equations

fz − q̃(fz − fz) = [q2(z, w)− q2(f(z), w)] zvwz+

(8.5′) + [q1(z, w)− q1(f(z), w)] zvwz,

(8.5′′) fz −Qfz = 0

where

q̃ =
q1 (f(z), w)

1 + |q1|2 − |q2|2
, |q̃| ≤ q̃0 <

1

2
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and Q is a coefficient such that |Q| ≤ q′0 < 1 for |z| < 1. Extending the
function f(z) to a disk |z| ≤ 1 + η by symmetry and denoting the obtained
function by f ∗(z), we get equation of the type (8.5′) for f ∗(z). Introducing
the function F (z) = f ∗(z) − z we observe that it is a continuous generalized
solution of the equation

(8.5) Fz − q̃1Fz − q̃2Fz = AF

in the disk |z| ≤ 1 + η for sufficiently small η. Moreover, |q̃1| + |q̃2| ≤ q0 < 1.
From (8.5), (8.5′) and (8.5′′) and from the conditions of Theorem 8.3 we see
that the only unbounded terms in the expression of A(z), for sufficiently small
η, may be the products |zvwz| by constants. But it is obvious that these
products are integrable in the disk |z| ≤ 1 + η with some exponent p > 2.
Indeed, we have |zvwz| ≤ fz

1−q′0
2 for |z| ≤ 1 and in view of Theorem 3.5, |fz| is

integrable with some exponent p > 2 since f(z) maps the unit disk onto itself
and satisfies equation (8.5′′). This also implies the integrability of A(z) in the
annulus 1 < |z| < 1 + η with some exponent p > 2, and the p-integrability of
A(z) in the disk |z| ≤ 1 + η.

Thus F (z), either vanishes in the disk |z| < 1 + η for all z, or vanishes at
most on an isolated set of points; in this case to F (z) the argument principle
can be applied. As in the proof of Theorem 6.1, we see that the normalization
conditions of the mappings exclude the last possibility. Therefore F (z) ≡ 0,
i.e. w(z) ≡ v(z) as was to be proved.

Interchanging the roles of z and w in Theorem 8.3, we obtain the following.

Corollary 8.1. A solution of equation (8.3), mapping the Jordan domain ∆
onto the unit disk, and satisfying the same normalization conditions as in
Theorem 6.1, is unique, provided that q1(z, w) and q2(z, w) satisfy a Lipschitz
condition with respect to w, uniformly for z ∈ ∆.
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