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Finland

ISBN 978-951-39-3363-0
ISSN 1457-8905

Copyright c© 2009, by Kari Nissinen
and University of Jyväskylä
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Abstract

The key question of small area estimation is how to obtain reliable regional statistics
when the sample data contain too few observations for statistical inference of adequate
precision. A common procedure is to employ statistical models, which make it possible
to "borrow strength" for the estimation by utilizing data from similar or neighbouring
areas or from earlier similar surveys. This work concentrates on the latter alternative,
which is often called borrowing strength over time.

We consider here small area estimation from longitudinal unit-level survey data collected
with a panel or a rotating panel design, where the sampled units are observed several
times according to a specified scheme. We apply a 3-level variance component model
to such data and under it we derive formulas for an estimator of small area total and
its mean squared error within the empirical best linear unbiased prediction (EBLUP)
framework.

Through a simulation study we show that in small area estimation it is extremely useful
to utilize rotating panel data instead of cross-sectional data or complete panel data when
(cross-sectional) small area totals are to be estimated. Increasing the effective sample
size by using rotating panel data reduces relative estimation errors, leading to smaller
bias and more accurate point estimates. Also the mean squared errors of the estimates
are reduced, which leads to narrower but still valid confidence intervals. In addition,
utilizing rotating panel data provides protection for possible bias caused by misspecified
model. These merits appear particularly in the smallest areas.

Keywords: small area estimation, linear mixed model, empirical best unbiased predic-
tion (EBLUP), rotating panel data, borrowing strength over time
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Selected list of notation
Some frequently used notation, which appears systematically throughout the mono-
graph, is introduced here. The list is not complete, symbols with minor use are left
out. The adopted notation follows the established conventions of statistical literature
as far as possible. Unfortunately the notational conventions of survey sampling are very
different from those of mixed model theory, for example. Thus, some symbols can have
different meanings in different contexts. The most regularly used meanings are given in
the list.

In the monograph the notation is defined in each context as clearly as possible, and it
is hoped that the double use of certain symbols will not cause any confusion.

General notation

i area
j unit (within area)
t time, occasion
m number of areas
T number of occasions
y study variable, response
Y total of y
x vector of auxiliary variables x1, . . . , xp
U population
s sample
r non-sample, remainder, U − s
N population size
n sample size
M number of units in longitudinal data
I identity matrix
J unity matrix
1 unity vector
K number of replications in simulation study

Specific notation for mixed models

y vector of y observations
X model matrix of the fixed part
β vector of fixed effects
Z model matrix of the random part
u vector of random effects
e vector of error terms
p number of fixed effects
q number of random effects
ui random effect of area i
vij random effect of unit j in area i
vi vector of unit effects vij

iii



ui vector of both area effect ui and unit effects vij
G covariance matrix of u
R covariance matrix of e
V covariance matrix of y
σ vector of variance parameters in V (and G and R)
σ2
u variance of area effects
σ2
v variance of unit effects
σ2
e variance of error terms

ũ BLUP of u
û empirical BLUP of u
l coefficient vector of fixed effects in linear combination l′β + m′u
m coefficient vector of random effects in linear combination l′β + m′u

Specific notation for panel data and rotating panel data

Uit population of area i at time t
Ut overall population at time t (U1t ∪ · · · ∪ Umt)
U∗i panel population of area i (Ui1 ∪ · · · ∪ UiT )
U∗ overall panel population (U∗1 ∪ · · · ∪ U∗m or U1 ∪ · · · ∪ UT )
Nit size of Uit
Nt size of Ut (N1t + · · ·+Nmt)
N∗i size of U∗i (Ni1 + · · ·+NiT )
N∗ size of U∗ (N∗1 + · · ·+N∗m or N1 + · · ·+NT )
sit sample from area i at time t
st overall sample at time t (s1t ∪ · · · ∪ smt)
s∗i panel sample data of area i (si1 ∪ · · · ∪ siT )
s∗ overall panel sample data (s∗1 ∪ · · · ∪ s∗m or s1 ∪ · · · ∪ sT )
nit size of sit
nt size of st (n1t + · · ·+ nmt)
n∗i size of s∗i (ni1 + · · ·+ niT )
n∗ size of s∗ (n∗1 + · · ·+ n∗m or n1 + · · ·+ nT )
Tij number of repeated observations on unit j in area i
Mi number of separate units j in panel population U∗i

or (rotating) panel sample s∗i
M total number of separate units j in panel population U∗

or (rotating) panel sample s∗
rit non-sample of area i at time t (Uit − sit)
rt overall non-sample at time t (Ut − st)
r1it subset of rit containing units, which are sampled at some other time than t,

i.e. appear in the rotating panel data s∗i , but not in sit
r2it subset of rit containing the units, which have never been sampled,

i.e. do not appear in s∗i (rit − r1it)
Nrit size of rit (Nit − nit)
Nrt size of rt (Nt − nt)
Nr1it

size of r1it
Nr2it

size of r2it

iv
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1 Introduction

In the sample survey methodology the small area estimation has become a field of ac-
tive research. The small area problem essentially concerns obtaining reliable estimates
of quantities of interest — totals or means of study variables, for example — for geo-
graphical regions, when the regional sample sizes are small in the survey data set. If
the regional estimates are to be obtained by the traditional direct survey estimators,
based only on the sample data from the area of interest itself, small sample sizes lead to
undesirably large standard errors for them. For instance, due to their low precision the
estimates might not satisfy the generally accepted publishing criteria in official statistics.
It may even happen that there are no sample members at all from some areas, making
the direct estimation impossible. All this gives rise to the need of special small area
estimation methodology.

An important motive for the research of small area estimation methods comes from the
increasing demand of regional or subgroup statistics both in administration and scientific
research (Ghosh and Rao 1994, Mukhopadhyay 1998, Rao 1999, Pfeffermann 2002, Rao
2003). Examples of disciplines and topics where the regional statistics can play an
important role are social policy, research on living conditions, environmental sciences,
education, regional economics, unemployment and public health. The governmental
decisions on e.g. regional distribution of national funds are largely based on regional
statistics and therefore ask for highly reliable estimates.

The small areas need not to be understood as only geographically defined regions like
provinces, municipalities or health service districts. They can be as well demographi-
cally, economically or socially defined subpopulations or domains like age-sex groups or
groups of labor workers in different industries. As subpopulations, such domains are not
necessarily small, but they may consist of thousands of units, for example. In the context
of small area estimation an area or domain becomes small when its sample size is too
small for direct estimation of adequate precision (Rao 2003). This happens frequently
because many surveys conducted e.g. by national statistical offices are (and often have
to be) designed principally for national or international purposes and their sampling
designs might not be tuned for obtaining estimates for regions of "subnational" level.
For instance, a stratification, which is relevant for national needs, does not necessarily
coincide with the regions, if these are not of primary interest. As a result, the obtained
sample does not allow acceptable regional inference.

The opinion polls carried out before elections are an illustrative example. The typical
sample size of opinion polls in Finland is around 1000 people (from approximately 4
million people entitled to vote), which gives good estimates at the national level. But
if there is a need to get estimates for districts like the 416 municipalities or the 15
constituencies in Finland, it is evident that splitting a sample of 1000 people into 416
or even 15 subsets makes the number of respondents small at least in some districts.
Increasing the sample size to make the direct estimates reliable for all the districts of
interest would demand too much resources in practice.
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The research on small area estimation deals with the problem of getting good estimates
for small areas or domains, when the survey data contain few, if any, observations from
these areas. The way to improve estimation is to "borrow strength" from outside the
area of interest, that is, to make use of information about the study variable coming from
sources that are external to the sample data from that area. Typically such sources are
data from neighbouring or otherwise similar areas and/or data from earlier time periods.
The first case is often called borrowing strength over space and the second borrowing
strength over time (EURAREA Consortium 2004). By borrowing strength it is generally
meant increasing the "effective" sample size for estimation (Rao 2003), which is done
by using appropriate models to link the external data to the sample data. The resulting
estimators are called indirect. The increased effective sample size is then expected to
turn to decreased mean squared error (MSE) of the small area estimator. The MSE
consists of two components: the variance and the squared bias of the estimator. Thus,
improving an estimator means reducing its variance or bias or both, if possible. Usually
it is found that indirect estimators introduce some bias, but at the same time their
variance is so small that the overall reduction in MSE is substantial.

This study concerns model-based small area estimation, in which strength is borrowed
over time by using longitudinal data sets at unit level, collected by a panel design or
a rotating panel design, and applying a linear mixed model to them. It is shown that
the rotating panel design is particularly powerful here, because the composition of the
sample changes in every survey occasion so that the data sets of different occasions
consist of (at least partially) different units. Supplementing the current, possibly small,
regional data with earlier data from the same areas by a plausible model brings then a
lot of "new" units into the estimation, which substantially increases the effective sample
size. The rotating panel design is widely recognized and applied in official statistics
(Feder, Nathan and Pfeffermann 2000; Singh, Kennedy and Wu 2001), but before this
work it is seldom, if ever, considered in the context of small area estimation.

In general, longitudinal unit level data sets collected either by a panel design or by
some variation of it are rare. However, in some European countries, especially in the
Nordic countries, which have a long tradition of official statistics and register data sets
on individuals, such data are fairly common not only in the official statistics but also
in the econometric research or the research on public health. Longitudinal unit level
data sets are rich in information, but so far there has not been available small area
methodology, by which this richness could be fully utilized. For example, the official
monthly unemployment rate in Finland is estimated only by cross-sectional methods
despite the fact that the data are collected under rotating panel design. The research at
hand is aimed to help in filling this gap.

The longitudinal data sets also make it possible to successfully estimate change between
the survey occasions. This also requires moving away from the cross-sectional models
and starting to apply models and estimators, which are appropriately tuned for the
(rotating) panel data. Estimation of change in small area totals or means using linear
mixed models is a relatively straightforward extension of the "cross-sectional" model-
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based small area estimation, but it will not be considered in this paper. Instead, it will
be left as the target of future research.

Outside some unit level models meant for non-panel data from repeated surveys (EU-
RAREA Consortium 2004) the research on utilizing longitudinal information in small
area estimation only considers area level models. The current study is then arguably
the first one dealing with unit level models.

This report considers small area estimation from panel data and rotating panel data
by a linear mixed model within the best linear unbiased prediction (BLUP) framework
and it is organized in the following way. First, in Chapter 2 we review the literature
on small area estimation especially from the model-based point of view, which gives the
background of the study. In Chapter 3 a general review of the theory on linear mixed
models and their estimation and inference is given. Chapter 4 introduces the general
principles and problems in applying linear mixed models to small area estimation. The
unit level nested error regression model for cross-sectional data is used as an example
with which the needed concepts are illustrated. Chapter 5 introduces the linear mixed
model to be applied to panel and rotating data. In Chapter 6 the empirical BLUP
(EBLUP) estimation of small area totals is presented for the panel data and in Chapter
7 the corresponding presentation is given for the rotating panel data. A Monte Carlo
simulation study for evaluating the performance of the derived estimators and their MSE
estimators under various conditions are presented and discussed in Chapters 8–13.

3



2 Approaches to small area estimation

2.1 Direct and indirect estimators

Following the definition given by Rao (1999, 2003), a small area estimator is direct when
it uses the sample values of study variable y (say) from the specified area only. A simple
example is the expansion estimator

(2.1) Ŷi =
∑
j∈si

wijyij

of area total
Yi =

∑
j∈Ui

yij.

Here Ui is the population of area i, si is a random sample from it, yij is the y value
of unit j in area i and wij is a weight. When wij = 1/πij, where πij is the inclusion
probability of unit ij in the chosen design, the estimator (2.1) is the well known design-
based Horvitz-Thompson estimator. The variance of Ŷi is of order O(n−1

i ), where ni is
the sample size of area i. If ni is small, the variance can be large.

The efficiency of estimation can be increased by auxiliary variables x = (x1, x2, . . . , xp),
which correlate with the study variable y and can be introduced as covariates e.g. in
a linear regression model for y. This leads to model-based estimation or design-based
model-assisted estimation, depending on the chosen framework. The generalized regres-
sion estimation (GREG) (Särndal et al. 1992) is a design-based model-assisted approach
with numerous applications to domain estimation and it is sometimes used also in small
area estimation. A GREG estimator of a small area total Yi is

(2.2) Ŷi,GREG = Ŷi + (Xi − X̂i)
′b̂i,

where
Xi =

∑
j∈Ui

xij

is the vector of area population totals of x variables and

X̂i =
∑
j∈si

wijxij

the direct estimate of it. The estimator is a sum of the Horvitz-Thompson estimator
and a regression-based adjustment term. The vector b̂i of regression coefficients of area
i is obtained by solving the sample weighted least squares equations (Särndal et al. 1992;
Rao 2003 p. 13). The GREG estimator is model-assisted in the sense that regressing y
on x is done only for removing the unexplained variation from y to increase estimation
accuracy. Unlike in the model-based approach, any probability model determining the
relation between y and x is not assumed. It is only required that nonzero correlations
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exist between y and x. The variance of the GREG estimator is calculated from the
residuals of the regression fit within the design-based framework.

The estimator (2.2) is completely area-specific. It employs area-specific auxiliary totals
Xi and also the coefficient b̂i is calculated from area-specific data. It is clearly a direct
estimator. Another GREG estimator could be

(2.3) Ŷi,GREG = Ŷi + (Xi − X̂i)
′b̂,

where the regression coefficient is now estimated jointly from all the areas, or

(2.4) Ŷi,GREG = Ŷi + (X− X̂)′b̂,

where not only b̂ but also the auxiliary totals are obtained from the whole data. The
estimator (2.3) is called survey regression predictor by Battese, Harter and Fuller (1988).

Särndal (2001) considers an estimator direct if it uses y values only from the area of
interest, even if observations on auxiliary variables from other areas were employed.
In this sense (2.3) and (2.4) are not direct, because they utilize the observed y values
from all areas in estimating the regression coefficient. On the other hand, Rao (2003,
Ch. 2.5) argues that unlike "true" indirect estimators, the estimators (2.3) and (2.4)
fail to increase the effective sample size since the order of their variance is O(n−1

i ),
the same as that of the Horvitz-Thompson estimator (2.1). Therefore Rao calls them
modified direct estimators, which do not genuinely borrow strength. According to Rao,
a small area estimator is indirect only if it reduces the order of variance (or MSE)
compared to the usual direct estimators. This characterization defines the model-assisted
design-based estimation direct. Myrskylä (2007, Ch. 2.1.3) discusses the terminology and
suggests that "borrowing information" would be a more pertinent term than "borrowing
strength".

All model-based small area estimation is indirect. An appropriate model is used here
in predicting the unobserved y values (or their sum) from area i to get an estimate of
area total or mean. The model links the small areas to each other in some way and
it is estimated from all the observed data. Rao (2003, Ch. 4) mentions also indirect
estimators that are not based on explicit use of models. Among these are the synthetic
estimators, which rely on implicit assumptions like that small area characteristics are
approximately similar to those of the overall population, the composite estimators, which
combine direct and synthetic estimators, and the James-Stein estimators.

2.2 Design-based approach

The design-based approach to small area estimation or, more generally, to domain es-
timation is based on the traditional probability sampling theory (e.g. Cochran 1977,
Cassel et al. 1977), which rests on the assumption of finite and fixed population and
drawing random samples from it with selection probabilities defined by the sampling
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design. In this approach the survey population U is a collection of N units and with
each unit j is associated a value yj of the study variable y. The yj is not treated as
a random variable, but rather a known (if observed) or unknown (if unobserved) con-
stant. No model or distributional assumptions are specified for y. As fixed constants,
the population values of y can be regarded as a vector-valued parameter of very large
dimension.

In the sense of statistical modelling, the unknown parameters to be estimated e.g. in
small area problems are not model parameters, but some functions h(y1, y2, . . . , yN) of
the y values in the population. To make a distinction to model parameters Pfeffermann
(1993) calls these functions as "descriptive population quantities" (DPQ). A simple
example of DPQ is the total Y =

∑N
j=1 yj of the study variable y.

The model-based inference refers to the probability distribution of the random variable
y. In the design-based inference the only random element is the composition of sample
s (of size n), selected with probability p(s). The statistical properties of an estimator
are evaluated with respect to the sampling distribution determined by the design. That
is, the bias and variance of an estimator Ŷ of Y (say) are calculated over all possible
samples under the specified design and they are therefore called the design bias and the
design variance.

The design expectation of an estimator Ŷ of population total is

Ep(Ŷ ) =
∑

p(s)Ŷs,

where the summation is over all possible samples s and Ŷs is the value of Ŷ in the sample
s. If Ep(Ŷ ) = Y , the estimator is design unbiased. The design variance of Ŷ is

V arp(Ŷ ) = Ep

[
Ŷ − Ep(Ŷ )

]2
.

An estimator Ŷ is design consistent if its design bias and design variance tend to zero
as the sample size reaches the population size. If both Ŷ and its variance estimator
V̂ ar(Ŷ ) are design consistent, the pivot

(Ŷ − Y )/

√
V̂ ar(Ŷ )

converges in distribution to N(0, 1), making e.g. the inference by confidence intervals
possible (Rao 2003, p. 11).

As such, an estimator is not necessarily purely design based or purely model based. At
least in some simple cases the design-based estimator and model-based estimator may
coincide. For instance, under the simple random sampling or stratified sampling with
proportional allocation the ordinary sample mean ȳ is a design-based estimator of the
finite population mean Ȳ . On the other hand, if the study variable y is regarded as
a random variable with a probability distribution, the sample mean is a model-based
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estimator of the expected value µ of this distribution. Thus, in the first place the
choice between design-based and model-based approaches is not a matter of selecting
the estimator, but selecting the framework for inference, i.e. the probability distribution
characterizing the random variation of the estimator. Pfeffermann (1993) and Valliant
et al. (2000, Ch. 1) discuss the relation between design-based and model-based inference
in more detail.

It is possible to evaluate model-based estimators from a design-based standpoint by
examining their sampling distributions, and this is particularly useful in the survey
methodology, where various estimators are often compared under finite population sam-
pling. On the other hand, it is also possible to study model-based properties of a
design-based estimator, but this happens less commonly.

In general, the design-based estimators make explicit use of sampling weights, which are
inverses of the inclusion probabilities of sampling units. A simple design-based estimator
is the Horvitz-Thompson estimator (2.1) of area total Yi. It is design unbiased and has
the design variance

V arp(Ŷi) =
∑
j∈Ui

∑
k∈Ui

(
πijk
πijπik

− 1

)
yijyik,

where πijk is the joint inclusion probability of units j and k in area i (Särndal et al.
1992, Ch. 2.8). An unbiased estimator of this variance is given in Särndal et al. (1992,
Ch. 2.8) and also in Rao (2003, p. 12).

The GREG estimators (2.2)–(2.4) are design consistent and approximately design unbi-
ased. The bias, which often is negligible, arises from the fact that b̂ obtained from the
sample weighted least squares equations is not a design-unbiased estimator of the popu-
lation regression coefficient b (Särndal et al. 1992, Ch. 6.; Valliant et al. 2000, Ch. 2.7).
It is worth noting that b, as a characteristic of a finite population, can be considered a
DPQ in the sense of Pfeffermann (1993).

The approximate design variance, obtained from a Taylor series expansion, of the GREG
estimators (2.2)–(2.4) is of form

V arp(Ŷi,GREG) =
∑
j∈Ui

∑
k∈Ui

(
πijk
πijπik

− 1

)
eijeik,

where eij = yij − x′ijbi (for (2.2)) or eij = yij − x′ijb (for (2.3) and (2.4)) is the residual
from the population regression fit for unit j in area i. This variance is of the same order
O(n−1

i ) as the variance of the Horvitz-Thompson estimator, but in practice one can
anticipate that the regression adjustment makes the actual variance of GREG estimators
remarkably lower (Särndal et al. 1992, p. 226, 238). A variance estimator based on
weighted residuals from the sample regression fit is given in Särndal et al. (1992, Ch.
6.6) and also in Rao (2003, p. 15) and Estevao et al. (1995).
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2.3 Synthetic estimator

An alternative expression for the GREG estimator (2.2) is

(2.5) Ŷi,GREG = X′ib̂i + (Ŷi − X̂′ib̂i),

which is a sum of the area total predicted by the fitted regression model and the sum of
sample residuals. The similar expression for the survey regression predictor (2.3) is

(2.6) Ŷi,GREG = X′ib̂ + (Ŷi − X̂′ib̂).

The first term in these expressions can be considered as an estimator of a small area
total in its own right and it is called the synthetic estimator (Särndal et al. 1992, p. 399;
Rao 2003, Ch. 4.2). Hence the GREG estimator can be viewed as a synthetic estimator
with a correction term for the design bias. The most commonly used synthetic estimator
comes from (2.6), where the regression coefficient is obtained from the whole sample data
to yield

(2.7) Ŷi,SY N = X′ib̂.

This can be calculated even if there are no sample members from the area i. Note that in
such case the bias correction term of the estimator (2.6) goes to zero making the GREG
and synthetic estimators equal.

The synthetic estimator (2.7) is an example of an estimator, which can be considered
either model-based or design-based model-assisted. In the both cases the specified linear
relationship between y and the auxiliary variables, described with the parameter b, plays
an important role. In the design-based approach we assume no explicit model, but the
more correlated y is with the auxiliaries the more efficient is the estimator. If we adopt
the model-based approach, we assume that the linear model

(2.8) yij = x′ijb + eij,

where the eij’s are independent identically distributed random variables with some prob-
ability distribution f , holds for every yij in the population. If b̂ is the unbiased OLS
estimator of b, then Ŷi,SY N is unbiased with respect to the model (using the sample
weighted least squares would introduce some model bias). The model-based variance

V arf (Ŷi,SY N) = X′iCov(b̂)Xi

of Ŷi,SY N comes immediately from the covariance matrix of b̂. Since b is estimated from
the sample data from all areas (of total size of n), the variance of Ŷi,SY N is O(n−1), being
considerable lower than in the Horvitz-Thompson or the GREG estimation. Hence the
synthetic estimator has the ability to borrow strength and is clearly indirect.

On the other hand, we may regard the synthetic estimator as a special case of the
GREG estimator (with no correction for design bias), and as such it is a model-assisted
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estimator, whose inference can be carried out in the design-based framework. Then it
is not explicitly required that the assisting model (2.8) holds, but it appears that the
estimator performs well only if the true regression coefficient, which is now a DPQ,
happens to be close to b in all considered areas. Otherwise the synthetic estimator
can be highly biased in some areas. The assumption that the area-specific regression
coefficients are approximately equal is an example of what Rao (2003) calls implicit
modelling.

The design variance of the synthetic estimator will be small (order n−1), but the bias
can make the mean squared error large (see, for example, the empirical findings in the
EURAREA Consortium (2004) research report). Mukhopadhyay (1998, Ch. 3.3) and
Rao (2003, Ch. 4.2.4) consider the estimation of design MSE of Ŷi,SY N . One approximate
MSE estimator is

M̂SEp(Ŷi,SY N) ≈ (Ŷi,SY N − Ŷi)2 − V̂ arp(Ŷi),

where Ŷi is a design-unbiased direct estimator and V̂ arp(Ŷi) its estimated design variance.

An area-specific synthetic estimator could be obtained by using the first term in (2.5).
This estimator would be design unbiased, but the design variance would be large instead.

2.4 Model-based approach

2.4.1 Comparisons with design-based approach

In the practice of survey statistics the direct design-based estimators have been highly
appreciated, because they are at least approximately design unbiased even in complex
sampling designs. They are also robust to the possible misspecification of the assisting
model so that the estimator is design unbiased, whether the model is correct or not.
The model-based estimators, which rest on the sampling from an infinite hypothetical
population (superpopulation) characterized by a stochastic model, can suffer from severe
bias if the model is not correct. In addition, they may be biased and inconsistent with
respect to the chosen design.

In the small area estimation the question is often about the tradeoff between variance
and bias. With small sample sizes the unbiasedness (and robustness) of the direct
estimators may be of no practical value due to the large variance of the estimator. The
point estimates itself can be "bad" or the standard errors (or coefficients of variation)
can be so large that e.g. the accuracy criteria set for the publication of official statistics
are not fulfilled. The model-based estimators are prone to bias, but they have the
advantage of small variances (also in the design-based sense) compared to the design-
based counterparts, especially in the small area context. In the GREG estimator (2.6)
the synthetic part X′ib̂ has a low design-based variance, of order O(n−1), where n is
the total sample size, but the bias can be considerable. Introducing the design-based

9



regression adjustment term removes the bias, but at the same time the variance of the
estimator becomes of order O(n−1

i ), where ni is the area sample size. If ni is small, the
increase of variance is large. Usually some bias is tolerated, if the mutual reduction of
variance ends up in reduced MSE.

There is evidence that the indirect model-based small area estimators outperform the
direct estimators with respect to the estimation accuracy measured with the MSE or
absolute relative errors (Torabi and Rao 2008 and the large Monte Carlo studies of
EURAREA Consortium (2004)). This is probably why the model-based approach is
widely accepted as the prime framework for the small area estimation. Only a small
portion of the papers published on the small area estimation seem to deal with the
design-based approach (Särndal and Hidiroglou 1989 and Särndal 2001, for example).

2.4.2 Ignorable sample selection

A simple example of a model-based estimator is the synthetic estimator (2.7) under the
model (2.8). All properties of the estimator are derived from the postulated probability
model for the random variable yij and they are valid if the realized yij’s in the sample
obey this model. Unfortunately, this cannot always be guaranteed. The condition,
which is required, is that the sample selection mechanism is ignorable or, synonymously,
noninformative (Valliant et al. 2000, Ch. 2.6; Pfeffermann 1993).

Let δ = (δ1, δ2, . . . , δN) be the sample inclusion vector of a population of size N . That
is, δi = 1 when the unit i is in the sample, otherwise δi = 0. The vector δ is a random
variable of which each sample selection produces a realization. Denote the distribution of
δ by fδ(δ; φ), where φ is an unknown parameter, on which the selection mechanism may
depend. This distribution gives the sample probabilities, which are commonly denoted
by p(s) in the design-based literature (also in Section 2.2).

Let then z denote a vector of variables, which may affect the sample selection. For
instance, z may contain variables that define the strata, the probabilities in the PPS
sampling or the clusters. A sample selection mechanism is ignorable if it does not depend
on the study variable y given z or, more formally, if

(2.9) fδ|y,z(δ|y, z; φ) = fδ|z(δ|z; φ).

Under ignorable sampling design the probability model of y is a justified basis for the
inference. Examples of ignorable sampling schemes are the simple random sampling and
the stratified sampling with proportional allocation. In general, all selection mechanisms,
which yield self-weighting samples, are ignorable. If the sampling is not self-weighting
and depends on z, the proper inference is obtained by putting the z variables into the
model as covariates (Valliant et al. 2000, p. 39; Rao 2003, p. 79).
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In the small area estimation with the basic area level models (Fay and Herriot 1979;
Ghosh and Rao 1994; Rao 1999, 2003) the sampling design is taken implicitly into ac-
count as the models operate with area level quantities, which are computed by "aggre-
gating out" the design on individual units. For the small area estimation with unit level
models in non-ignorable designs Prasad and Rao (1999) and You and Rao (2002, 2003)
have proposed approaches, where the survey weights are incorporated in an originally
model-based inference to produce model-assisted design-consistent estimators.

2.4.3 General prediction theorem

The model-based approach to finite population theory treats the population vector y =
(y1, y2, . . . , yN) as a realization of a random variable Y. The probability distribution
of Y is characterized by a model ξ. The aim is to estimate the value of a descriptive
population quantity, which is a function h(y) of y, typically a linear combination c′y.
If c = 1, where 1 is an unity vector, then h(y) is the population total, and if c = 1/N ,
then h(y) is the population mean.

Let s denote a sample of size n from a finite population U and let r denote the non-
sampled remainder of U so that U = s∪r. Correspondingly, let the vector ys contain the
y observations in the sample and yr the rest of y. It is advisable to order the population
vector so that

y =

[
ys
yr

]
and respectively

c =

[
cs
cr

]
.

The population quantity to be estimated is now

h(y) = c′sys + c′ryr,

a realization of the random variable

h(Y) = c′sYs + c′rYr.

The first term c′sys is observed from the sample, whereas the second term must be
estimated (or predicted, in the frequentist terminology, since it is a function of ran-
dom variables, not a fixed parameter). Thus, estimating h(y), or predicting h(Y), is
essentially predicting the value c′ryr of the unobserved random variable c′rYr. The infor-
mation needed in the prediction will come from the sample vector Ys, and the predictor
(or estimator) of h(Y) can be written

(2.10) ĥ(Y) = c′sYs + a′Ys,

where a is some n× 1 vector defining the predictor a′Ys of c′rYr.
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The estimator ĥ(Y) is model unbiased, if

Eξ[ĥ(Y)− h(Y)] = 0.

The model-based error variance of ĥ(Y) is

V arξ[ĥ(Y)− h(Y)] = Eξ[ĥ(Y)− h(Y)]2.

The general prediction theorem by Royall (1976, see also Valliant et al. 2000) gives the
best linear unbiased predictor (BLUP) of c′Y as well as its error variance under the
general linear model, in the case of finite population. The best linear unbiased predictor
means here a model-unbiased predictor, which is linear in Ys and has the minimum
model-based error variance among all linear unbiased predictors. The theorem serves as
a general basis of the BLUP approach to small area estimation with unit level models.
Either we may consider only the population Ui of an area i, which leads to the direct
estimation, or we may consider the overall population U (and a sample from it), but
define the coefficient vector c so that it picks only those elements of y, which come from
the area i. This leads to the indirect estimation with ability to borrow strength. At
area level it is more straightforward to develop the BLUP approach within the standard
theory of linear mixed models.

Define the general linear model ξ with

Eξ(Y) = Xβ

and
V arξ(Y) = V,

where X contains auxiliary variables, β is a vector of unknown parameters and V is an
arbitrary positive definite covariance matrix. The model ξ covers a variety of special
cases, including the linear mixed models. The theorem does not require normality.

In accordance with the partition U = s ∪ r we can arrange X and V so that

X =

[
Xs

Xr

]
and

V =

[
Vs Vsr

Vrs Vr

]
.

The general prediction theorem. Under the model ξ for a finite population U the
best linear model-unbiased predictor of h(Y) = c′Y is

(2.11) BLUP (c′Y) = c′sYs + c′r[Xrβ̂ + VrsV
−1
s (Ys −Xsβ̂)],

where

(2.12) β̂ = (X′sV
−1
s Xs)

−1X′sV
−1
s Ys
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is the general least squares (GLS) estimator of β. The GLS estimator is also the best
linear unbiased estimator (BLUE) of β, that is, it has the minimum variance among
linear unbiased estimtors (e.g. Silvey 1975, McCulloch and Searle 2001). The error
variance is
V arξ[BLUP (c′Y)− c′Y] = c′r(Vr −VrsV

−1
s Vsr)cr

+ c′r(Xr −VrsV
−1
s Xs)(X

′
sV
−1
s Xs)

−1(Xr −VrsV
−1
s Xs)

′cr.

Proof. The proof is sketched here by following the presentation of Valliant et al. (2000,
Ch. 2.2). The result (2.11) is obtained by minimizing

Eξ(a
′Ys − c′rYr)

2 = V ar(a′Ys − c′rYr) + [Eξ(a
′Ys − c′rYr)]

2

= a′Vsa + c′rVrcr − 2a′Vsrcr + [(a′Xs − c′rXr)β]2(2.13)

with respect to a under the model unbiasedness constraint

Eξ(a
′Ys − c′rYr) = (a′Xs − c′rXr)β = 0

for all β, which is equivalent to

a′Xs − c′rXr = 0.

The minimization can be done using the Lagrange method. The function to be minimized
is

H(a,λ) = a′Vsa− 2a′Vsrcr + 2(a′Xs − c′rXr)λ,

where λ is the vector of Lagrange multipliers. Setting the partial derivative

∂H(a,λ)

∂a
= 2Vsa− 2Vsrcr + 2Xsλ

equal to zero yields

(2.14) Xsλ = Vsrcr −Vsa

and further

(2.15) a = V−1
s (Vsrcr −Xsλ).

Multiplying (2.14) on the left by X′sV
−1
s , using the unbiasedness constraint and solving

for λ yields
λ = (X′sV

−1
s Xs)

−1(X′sV
−1
s Vsr −X′r)cr

and substituting this into (2.15) gives the expression

(2.16) a = V−1
s [Vsr −Xs(X

′
sV
−1
s Xs)

−1(X′sV
−1
s Vsr −X′r)]cr.

The result (2.11) is obtained after straightforward calculations by inserting (2.16) into
(2.10) and using (2.12). The expression of error variance is obtained similarly by inserting
(2.16) into (2.13). �

The inference concerning the BLUP of c′y usually appeals to the normal distribution.
Valliant et al. (2000, Ch. 2.5) give three fairly reasonable conditions, under which the
BLUP is asymptotically normal.
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2.5 Models for small area estimation

2.5.1 Random area effects

The model-based small area estimation largely employs linear mixed models involving
random area effects. The auxiliary variables x are introduced in the fixed part of the
model as covariates. Usually the random terms in the model, and the target variable y
with them, are assumed normal.

In area level models the observational units for both the target variable and auxiliaries
are the areas. The random area effect arises then "naturally" as the residual of a linear
model specified for the target variable.

In unit level models the observational units are the individuals in the areas. The areas
have often a clustering effect making the individual observations within an area closer
together than the observations overall. As a result, the observations are not independent
but have a positive "intra-area" correlation, which must be taken into account in a
proper statistical inference. A convenient way to proceed is to model the clustering by
the random area effect.

The area effect could also be treated as fixed, especially when the number of areas is
small. Then it is assumed that area affects only on the mean level of the target variable
and no within-area clustering is present. The assumption of correlated observations is
often more realistic, however.

From the perspective of small area estimation there is also another advantage in mod-
elling the area effects as random. When the area effects are considered random variables
with a common distribution, samples from all areas give information from this distri-
bution and as a result each area contributes to the estimation of the other area effects.
This leads to a phenomenon, which is known as shrinkage and appears even if the areas
are independent of each other. When a sample from an area is small, there is little in-
formation on the effect of that area. Then, through the assumed common distribution,
the weak information is supplemented with samples from other areas to yield an area
effect estimate, which is "shrunken" (biased) towards the overall mean of area effects,
but is more stable than an estimate based on the data from that area alone. In this way
the shrinkage is closely related to the concept of borrowing strength.

The predicted values of the random area effects are needed in many applications, the
small area estimation being one of them. The best linear unbiased predictors (BLUP),
which can be derived within either frequentist or Bayesian approach (see Robinson 1991),
are usually employed here.

If the target variable y is discrete, e.g. binary, it can be modelled with a generalized
linear mixed model (Zeger and Karim 1991, Goldstein 1995, Ghosh et al. 1998), where
an appropriate link function for y’s expected value and an error distribution for the
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observations would be specified. The random area effects are usually assumed normal
also here.

The basic area level model for small area estimation is often called as Fay-Herriot model
according to the seminal paper by Fay and Herriot (1979). The basic unit level model
is the nested error regression model, a two-level variance component model introduced
by Battese et al. (1988) for small area estimation purposes.

Many extensions of the basic models are proposed in the literature on small area estima-
tion. In spatial models (Cressie 1993) the area effects are allowed to correlate spatially,
e.g. as a function of the distance. With these models the strength for estimation is
borrowed "over space" from the neighbouring or similar areas (EURAREA Consortium
2004). In another class of models strength is borrowed "over time" using temporal data
in form of area-level time series or unit-level data from previous surveys. In these models
random time effects are sometimes considered (e.g. Datta et al. 1994, Ghosh et al. 1996).
Also the state-space models (Durbin and Koopman 2001) are frequently applied to small
area problems with time series data (e.g. Binder and Dick 1989, Pfeffermann and Burck
1990, Singh et al. 1994, Feder et al. 2000).

2.5.2 Basic area level model

Denote the finite population of area i by Ui, i = 1, 2, . . . ,m, and the unknown population
mean of a target variable y in area i by Ȳi. Assume that auxiliary data are available at
area level, that is, we have area-specific data vectors xi = (x1i, x2i, . . . , xpi) with known
values for each area. Let θi = h(Ȳi) denote some function of the unknown area mean, it
is typically the area mean itself or the area total. The target is in the estimation of the
value of θi.

In the basic area level model it is assumed that θi is related to the auxiliary data through
a linear regression model

(2.17) θi = x′iβ + ui,

where the error terms ui are uncorrelated with mean zero and variance σ2
u. Normality

of ui’s is often assumed. We define θ̂i = h( ̂̄Y i), where ̂̄Y i is the direct design-based
estimator of Ȳi. We can specify a "sampling model"

(2.18) θ̂i = θi + ei,

where the ei’s are independent sampling errors with zero mean (meaning that θ̂i is
design-unbiased for θi) and known variances ψi. Combining models (2.17) and (2.18)
yields the area level linear mixed model

(2.19) θ̂i = x′iβ + ui + ei,
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introduced by Fay and Herriot (1979). The model errors ui and sampling errors ei are
assumed mutually independent. When θi is a linear function of Ȳi, it is often safe to
assume normality of θ̂i’s due to the central limit theorem.

The model takes the sampling design into account implicitly through the survey weights
in the direct estimator ̂̄Y i. The assumption of known ψi’s may cause problems. Rao
(1999, 2003) suggests using smoothed estimates obtained from unit-level sample data.
When θi is a nonlinear function of Ȳi, the sampling model (2.18) may not be valid. As a
result, the estimator θ̂i may be biased, especially with small sample sizes ni, even if the
direct estimator ̂̄Y i is design-unbiased. In this case the standard linear model theory
does not apply and alternative methods are needed (Rao 1999).

The natural way to estimate θi = x′iβ + ui is to replace β and ui with the respective
estimator β̂ and predictor ũi. The model-based estimation with the Fay-Herriot model
(2.19) is usually carried out within the frequentist BLUP approach or within the em-
pirical (EB) or hierarchical (HB) Bayes approaches. Reviews of these are given by Rao
(1999, 2003) and Ghosh and Rao (1994). Under (2.19) the BLUP estimator of θi can
be expressed as a weighted combination of the direct estimator θ̂i and the regression-
synthetic estimator x′iβ̂, where β̂ is the BLUE of β, obtained by the GLS method, for
example. The estimator is

θ̃i,BLUP = x′iβ̃ + ũi

= x′iβ̃ + γi(θ̂i − x′iβ̃)

= γiθ̂i + (1− γi)x′iβ̃

with
γi =

σ2
u

σ2
u + ψi

.

The term ũi = γi(θ̂i − x′iβ̃) is the best linear unbiased predictor of the model error ui
and it is obtained as

ũi = E(ui|θ̂i) = E(ui) + Cov(θ̂i, ui)[Cov(θ̂i)]
−1[θ̂i − E(θ̂i)]

(McCulloch and Searle 2001, Ch. 9) under model (2.19).

Since the Fay-Herriot model deals with the area level quantities θi and not with the
individual observations, the BLUP estimator is valid for general sampling designs (Ghosh
and Rao 1994). It is also design-consistent since γi → 1 as ψi → 0. If the direct estimator
is not available, e.g. the sample size of area i is zero, then the BLUP estimator reduces
to the regression-synthetic estimator.

The variance component σ2
u can be estimated by the usual methods associated with the

linear mixed models, e.g. by ML, REML or the method of moments. Replacing σ2
u with

its estimate in γi yields the empirical BLUP (EBLUP) estimator of θi. Under normal
errors this is also the empirical Bayes estimator of θi (Ghosh and Rao 1994).
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2.5.3 Basic unit level model

When the auxiliary data are available at the individual level, the basic model is so-called
nested error regression model. It is a two-level variance component model and in the
context of small area estimation it was introduced by Battese, Harter and Fuller (1988).

The nested error regression model takes the form

(2.20) yij = x′ijβ + ui + eij,

where yij is the response of individual (or unit) j, j = 1, 2, . . . , Ni, in area i, xij is the
vector of auxiliary variables, β is the vector of fixed parameters, ui is the random effect
of area i and eij the random individual error term. The area effects ui are assumed
independent with zero mean and variance σ2

u. Similarly, the errors eij are independent
with zero mean and variance σ2

e . In addition, the ui’s and the eij’s are assumed mutually
independent. Normality of ui’s and eij’s is often imposed to obtain tractable MSE
approximations for the small area estimates. The model (2.20) is assumed to hold in
the population U as well as in the sample s. This requires ignorable sampling design.

The population quantity of interest is usually the total Yi or the mean Ȳi of area i. The
estimation is carried out either in the frequentist (BLUP) framework or in the Bayesian
(EB, HB) framework. A review and examples of these approaches are given in Ghosh
and Rao (1994) and Rao (2003).

The general prediction theorem gives the basis for the BLUP estimation in the unit-level
case. Let si denote a sample from the finite population Ui of area i and ri = Ui− si the
remainder. Consider the estimation of total

Yi =
∑
j∈Ui

yij =
∑
j∈si

yij +
∑
j∈ri

yij.

The sample sum is observed so that the estimation of Yi reduces to prediction of the
unobserved remainder sum with the model (2.20). The best predictor of yij is

ỹij = x′ijβ̂ + ũi,

where β̂ is the BLUE of β and ũi is the BLUP of ui. These are calculated from the
overall sample data s = ∪mi=1si. The BLUP estimator of Yi is then

(2.21)

Ŷi,BLUP =
∑
j∈si

yij +
∑
j∈ri

ỹij

=
∑
j∈si

yij +
∑
j∈ri

x′ijβ̂ + (Ni − ni)ũi,

where ni is the size of sample si. As the employed model is linear, for the BLUP
estimation it suffices to know the area population sum

∑
j∈Ui

xij of the auxiliaries, the
individual values are not needed. The remainder sum of xij’s is simply∑

j∈ri

xij =
∑
j∈Ui

xij −
∑
j∈si

xij,
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the last sum being obtained from the sample. It is not difficult to show that Ŷi,BLUP
(2.21) agrees completely with the general prediction theorem (2.11) under the model
(2.20).

Usually the variance components σ2
u and σ2

e are unknown. When their estimates are
used in the BLUP approach, the resulting small area estimator is the empirical BLUP
estimator.

For categorical or count variables the normality assumption of individual errors is not
valid. Then the generalized linear mixed models with random area effects ui have been
applied (e.g. MacGibbon and Tomberlin 1989; Farrell, MacGibbon and Tomberlin 1997;
Ghosh, Natarajan, Stroud and Carlin 1998).

2.6 Extensions that borrow strength over time

2.6.1 Repeated surveys

Many surveys are regularly repeated in time. In fact, almost all surveys conducted by
national statistical agencies are carried out periodically (EURAREA Consortium 2004)
so that longitudinal data are available at least at the area level and sometimes at the
unit level also, depending on the adopted design.

Some surveys are repeated so that on each occasion a completely new sample is drawn.
Then the resulting data set is not strictly longitudinal, but a series of cross-sectional data
sets. The triennial comprehensive school achievement studies are a Finnish example of
this. The schools keep the same over time, but the pupils are changed. The joint data
set contains then time series information at school level, but not at pupil level.

Sometimes the data are collected with panel designs. In these a selected sample of units
is surveyed repeatedly over the desired period to get a complete (excluding possible drop-
outs) longitudinal unit-level data set. The European Community Household Panel is an
example of this kind of survey. A special target of such surveys is to measure change
in the study variables. The rotating panel design is a special form of panel design,
where the sample changes on each survey occasion according to a preplanned scheme so
that some units enter the sample for a certain time period, replacing other units which
drop out. The merits of rotating panel designs are the decrease of response burden
per sampling unit and keeping the current sample always up-to-date. For instance, the
continuing monthly labour force survey in Finland is implemented in this way.

The idea of looking for gains in the survey estimation by utilizing previously collected
data is not new. Early papers on the analysis of repeated surveys were given by Scott and
Smith (1974), employing standard time series methods, and Jones (1980), considering the
best linear unbiased estimation with stochastic least squares. These authors, however,
did not consider small area estimation. The potential of utilizing time series models in
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obtaining small area estimates does not seem to have drawn any remarkable attention
before late 1980’s. Feder et al. (2000) and Singh et al. (2001) have considered survey
estimation in rotating panel designs, but not in the context of small area estimation.

This far, the majority of the publications on small area estimation from repeated surveys
deal with area level models. The possible reason for this is that in many countries, and
especially in the United States, the infrastructure of the official statistics does not sup-
port longitudinal data sets at individual level. On the other hand, research on small area
estimation from unit level panel data is clearly needed, because aggregating individual
level data to adapt for area level models may cause unnecessary loss of information.

2.6.2 Area level models

The work on combining longitudinal and cross-sectional data for purposes of small area
estimation in the mixed model framework is concentrated mostly on the area level mod-
els. In an important paper, Rao and Yu (1994) discuss various models that combine time
series with the cross-sectional data to exploit the information in the data from previous
time points. They propose the following extension of the basic area level model.

Let θ̂it be the direct estimator of θit, where i = 1, 2, . . . ,m refers to the area and t =
1, 2, . . . , T to the time, and

(2.22) θ̂it = θit + eit.

The vector ei = (ei1, ei2, . . . , eiT )′ of sampling errors for area i is assumed to follow
N(0,Ψi), where the covariance matrix Ψi is known. The linking model for the parameter
of interest is

(2.23) θit = x′itβ + ui + vit,

where ui is a random area effect and vit is a random area by time effect following an
AR(1) process:

(2.24) vit = ρvi,t−1 + εit, |ρ| < 1.

The ui’s and εit’s are assumed independent and distributed as N(0, σ2
u) and N(0, σ2),

respectively. Rao and Yu note that more complex models instead of the AR(1) process
could be formulated, but they feel that resulted gains are unlikely to be significant.

Under model (2.22)–(2.24) Rao and Yu give a two-stage estimator for θit, when this is a
small area mean. Extending the work of Prasad and Rao (1990), they derive a second-
order correct estimator of the MSE of their two-stage estimator. The HB approach, with
diffuse priors, is also considered by Rao and Yu. The computations are performed by
direct numerical integration or by Gibbs sampling.

Datta, Lahiri and Maiti (1999) and You (1999) used the model (2.22)–(2.24), but re-
placed the AR(1) process by a random walk model with ρ = 1. They used the EBLUP
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and EB approaches in the estimation and obtained also an estimator of the MSE for
the estimator of the small area mean. Datta, Lahiri and Maiti estimated the model
parameters by ML and REML, while You used the method of moments estimators.

Ghosh, Nangia and Kim (1996) used the sampling model (2.22) with a linking model
with no area-specific random effects, but with time-specific random effects instead. In
univariate form, the model can be written as

(2.25) θit = x′itβ + z′itbt + vit,

where vit ∼ N(0, σ2
v). For the time-specific effects a random walk model

bt = bt−1 + εt,

where εt ∼ N(0,Σ), was assumed. For the estimation Ghosh, Nangia and Kim adopted
the HB approach with Gibbs sampling with proper normal and inverse Wishart priors
for the model parameters. Rao (1999) criticizes the model for the lack of random area
effects, which tends to produce oversmooth estimates.

Datta, Lahiri and Lu (1994) used the model (2.25) with an additional area-specific
random effect ui and allowed random slopes βi vary over areas. Their linking model was

θit = x′itβi + ui + z′itbt + vit

with normality assumptions for all the random parameters βi, ui and vit. A random
walk model for bt’s was assumed.

Datta, Lahiri, Maiti and Lu (1999) employed a linking model with additional terms for
seasonal variation. They carried the estimation out by the HB approach with Gibbs
sampling.

2.6.3 Unit level models

In the EU-funded research project EURAREA for small area estimation some extensions
of the unit level nested error regression model were proposed (EURAREA Consortium
2004, Sec. C4). These apply to a series of independent cross-sectional samples, were the
data come from repeated surveys for the same areas, but the sampled units change at
every occasion. A unit level model with random cross-classified area and time effects is

(2.26) yijt = x′ijtβt + ui + vt + eijt,

where yijt is response of the unit j in area i at time point t, xijt is the corresponding
auxiliary data vector, βt is a possibly time-dependent fixed parameter, ui is a random
area effect, vt a random time effect and eijt the random error. The random terms are
assumed mutually independent and normal with zero means and variances σ2

u, σ2
v and
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σ2
e respectively. The estimation of small area totals and means under model (2.26) was

carried out within the EBLUP framework (EURAREA Consortium 2004).

Various covariance structures could be specified for the random effects in (2.26). A simple
but well-performing structure is obtained by assuming that both the area effects and the
time effects are independent and identically distributed. Then the covariance matrix of
the yijt’s has a variance component structure, which implies that the correlations between
observations in the same area at different time points are constant. This structure is
also known as compound symmetry. It can be thought unrealistic sometimes, but it
has an important merit being linear with respect the unknown variance components.
The linearity enables a tractable and well-performing Taylor series approximation for
the MSE estimator of EBLUP estimated small area totals and means (Datta and Lahiri
2000) as well as for the covariance matrix of fixed effect estimates (Kenward and Roger
1997).

One alternative to the variance component model is to assume that the time effects
in (2.26) follow an AR(1) process with autocorrelation parameter ρ. This makes the
covariance structure more complex and maybe more realistic, but the linearity is lost so
that the traditional results on the MSE estimation do not apply. In the Monte Carlo
simulations with reality-based data sets, executed in the EURAREA project (2004), it
also turned out that the ML or REML estimation of ρ is very problematic in many prac-
tical situations, typically showing no convergence. Assumably this was due to the fact
that considered data sets did not contain enough time points for reliable autocorrelation
estimation.

To overcome the autocorrelation estimation problems with model (2.26) a model with
time-varying area-effects was also suggested. The model is

(2.27) yijt = x′ijtβt + uit + eijt,

where the area by time random effects uit follow independent AR(1) processes with the
same parameter ρ in each area i = 1, 2, . . . ,m. Then each area provides an independent
replication of the process, which would lead to more successful estimation of ρ. An
interesting property of the model (2.27) is that the cross-sectional differences of area
effects do not keep constant over time, unlike in the random main effects model (2.26).
In practical experiments it appeared that the autocorrelation can be estimated efficiently
under the time-varying area effects model, but, unfortunately, the error variance of
predicted uit’s can be high leading to increased MSE’s of the small area estimates.

In general, the international Monte Carlo studies carried out by the EURAREA project
(2004) showed that substantial gains can be achieved by using models for repeated survey
data instead of models for just a single time point data. Among the repeated survey
models the one with a simple variance component covariance structure performed always
well. The estimation of the AR(1) model seldom succeeded, but when that happened,
the no gains were found over the simple variance component model. However, a model
with fixed time effect and a random area effect perfomed practically equally well as
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the models with random time effect. In fact, the fixed time approach is much more
convenient to implement than the approaches with random time effect, and by virtue of
this convenience it is the preferable model choice especially when the number of time
points is not large.

2.6.4 Model for panel data and rotating panel data

In the panel design the samples at different time points contain exactly the same units,
and if there are no drop-outs, a complete panel data set, where all the sampled units are
observed at every time point, is obtained. The panel design is schematically illustrated
in the Table 2.1, where we have a sample of three units observed on five occasions.

Table 2.1. A panel design of T = 5 time points with sample size n = 3. The "X" marks an
observation.

time
unit 1 2 3 4 5
1 X X X X X the sampled
2 X X X X X units
3 X X X X X (siT )
4 the non-sampled
5 units
6 (riT )
7
8

An appropriate model for the panel data takes the covariance of the repeated observa-
tions from the same unit into account. Within the family of linear mixed models it is
possible to fit a variety of covariance structures to the panel data. However, for the pur-
poses of small area estimation by the empirical BLUP approach it is reasonable to stick
to covariance structures, which are linear with respect to the unknown parameters. Such
structures are given e.g. by multilevel variance component models or random coefficient
regression models (Goldstein 1995, Longford 1993).

One simple model, yielding the compound symmetry covariance structure for the re-
peated observations of an unit, is the three-level variance component model

(2.28) yijt = x′ijtβ + ui + vij + eijt,

where yijt is response of the unit j in area i at time point t, xijt is the auxiliary data
vector, β is the fixed regression parameter, ui is a random area effect, vij a random effect
of an unit j within area i and eijt the observation-specific random error within unit ij.
Essentially the same model is used by Stukel and Rao (1999) for small area estimation
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under two-stage cluster sampling. Stukel and Rao call this model two-fold nested error
regression model. In the multilevel hierarchy areas correspond to level 3, units within
areas to level 2 and observations within units to level 1. The time effect is modelled as
fixed by means of indicator variables for each survey occasion, and these are included
in the vector xijt. The random terms ui, vij and eijt are assumed mutually independent
and normal with zero means and variances σ2

u, σ2
v and σ2

e respectively.

The presence of the random area effect induces a constant intra-area covariance σ2
u for

units in same area and, additionally, the presence of the random unit effect induces a
constant intra-unit covariance σ2

u + σ2
v for the repeated observations on the same unit.

The BLUP estimation of small area total is again based on the general prediction the-
orem. Let UiT = siT ∪ riT denote a finite population of area i at "current" time T .
The corresponding sample and the remainder are siT and riT , respectively. The total of
variable y in area i at time T is

YiT =
∑
siT

yijT +
∑
riT

yijT ,

where the latter sum needs to be predicted by the model.

Under (2.28) the best predictor of yijt is

ỹijt = x′ijtβ̂ + ũi + ṽij,

where again β̂ is the BLUE of β and ũi and ṽij are the BLUP’s of ui and vij. For the
units ij belonging to the remainder riT , however, the BLUP of vij is not available. Then,
for any yijT ∈ riT the best predictor is

(2.29) ỹijT = x′ijT β̂ + ũi,

which leads to the estimator

ŶiT =
∑
siT

yijT +
∑
riT

ỹijT

=
∑
siT

yijT +
∑
riT

x′ijT β̂ + (NiT − niT )ũi,

where NiT is the size of UiT and niT is the size of siT .

The estimator is practically of the same form as the estimator based on the cross-sectional
nested error model since the predicted effects ṽij of the observed units cannot play any
role in predicting the sum of the unobserved units. However, in estimating temporal
changes in small area totals the panel model is anticipated to be more useful, because
the ṽij’s bear the information on the temporal correlations.

The model (2.28) applies to the rotating panel data as well, and then more gains are
expected than in the panel case, since the information on unit effects vij can now be
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incorporated into estimation. An example of rotation scheme is given in the Table 2.2.
There one unit enters the sample on every occasion, stays for three occasions and then
drops out. At each time point there is a cross-sectional sample of size n = 3, but
the sample composition is partially changed between time points. Here the overlap in
consecutive samples is two thirds.

Table 2.2. A rotating panel design of T = 5 time points, where units are observed on three
consecutive occasions. The "X" marks an observation.

time
unit 1 2 3 4 5
1 X the units in
2 X X the current
3 X X X sample (siT )
4 X X X the units not in
5 X X X the current sample,
6 X X but in previous
7 X samples (r1iT )
8 the units never
9 sampled (r2iT )

Another example of a rotation scheme is given in the Table 2.3, which shows a fraction of
the real-life design of the monthly Labour Force Survey by Statistics Finland (in reality,
every unit in the figure corresponds a sampled panel of over 2000 respondents and a
monthly sample consists of five such panels). In this design each unit is observed five
times: first three times at intervals of three months, then there is a half-year break and
the final two times again at intervals of three months. For example, the unit number 8
in the figure enters the survey in month 2, is reobserved in months 5 and 8 and will be
observed again in month 2 and 8 in the next year. After this it is dropped out. In this
design there is no overlap in consecutive months, but there is 60 % quarterly overlap
and 40 % overlap at interval of one year (Salonen 1997).

Table 2.3. The rotating panel design of the Finnish Labour Force Survey.

time
unit 1 2 3 4 5 6 7 8 9 10 11 12
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
...
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It can be seen from the Tables 2.2 and 2.3 that a rotation scheme divides the population
UiT (say) into three parts: siT = the units in the current sample, r1iT = the units which
are not in the current sample, but have included in earlier samples, and r2iT = the
units, which have never been sampled. It is also important to note that in principle the
incompleteness of the sample panel data is now determined only by the design, making
the selection mechanism fully ignorable. In practice it is of course possible to have
non-random drop-outs.

The total of variable y in area i at time T is now

YiT =
∑
siT

yijT +
∑
r1iT

yijT +
∑
r2iT

yijT

and its BLUP estimator is

ŶiT,BLUP =
∑
siT

yijT +
∑
r1iT

ỹijT +
∑
r2iT

ỹijT .

For those units, which are included in r1iT , there is sample data available from earlier
occasions, providing information for predicting unit effects vij. Hence, the best predictor
of yijT ∈ r1iT is

ỹijT = x′ijT β̂ + ũi + ṽij,

which is more accurate than the predictor (2.29) in the panel case. The yijT values in
r2iT must still be predicted with (2.29) since their unit effects cannot be predicted from
the sample data. By virtue of the rotation, however, the number of units yijT ∈ r2iT
is reduced remarkably compared to cross-sectional or panel data. The BLUP estimator
ŶiT,BLUP can now be written as

ŶiT,BLUP =
∑
siT

yijT +
∑
j∈riT

x′ijT β̂ + (NiT − niT )ũi +
∑
j∈r1it

ṽij,

where riT = r1iT ∪ r2iT .

Compared to panel data or cross-sectional data, the rotating panel should also increase
the prediction accuracy of the area effects ui, because the non-overlap of repeated sam-
ples increases the amount of area-specific information considerably.
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3 Review of mixed model theory

3.1 Linear mixed model

The ordinary fixed effects linear model is usually written as

(3.1) y = Xβ + e,

where y is an n× 1 random vector of response data, β is a p× 1 vector of fixed effects
parameters, X is a known n × p model matrix comprising the values of explanatory
variables and/or zeros and ones corresponding with the considered design and e is a
vector of random errors. For e it is assumed that E(e) = 0 and Cov(e) = σ2

eIn, where
In is the n × n identity matrix. Also the normal distribution is often assigned to e to
make

y ∼ Nn(Xβ, σ2
eIn).

Hence the vector y contains random variables that are independent with equal variability.

The linear mixed model is obtained by incorporating a q× 1 vector u of random effects,
i.e. effects that are considered random variables instead of fixed constants, with an
appropriate model matrix Z into the fixed effects model (3.1):

(3.2) y = Xβ + Zu + e.

The model matrix Z is often an incidence matrix (design matrix) of zeros and ones only,
but it may also contain explanatory variables (that usually are present also in X). In
the latter case the model (3.2) is often called random coefficient regression model. If Z
is an incidence matrix and the random effects in u are uncorrelated, we have a special
case called variance component model.

For the random vectors u and e we make the following assumptions:

E(u) = 0 Cov(u) = G

E(e) = 0 Cov(e) = R

Cov(u, e) = 0,

where, in principle, G and R can be arbitrary positive definite covariance matrices. In
variance component models the matrices G and R are diagonal.

Under these assumptions the expected value of y is

E(y) = Xβ,

and if u is given,
E(y|u) = Xβ + Zu.
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The covariance matrix of y is

Cov(y) = V = ZGZ′ + R,

and if u is given,
Cov(y|u) = R.

We see that the fixed part Xβ of model (3.2) defines the mean structure of y, whereas the
random part Zu + e defines the covariance structure. By an appropriate specification of
the random part and covariance matrices G and R we can define a variety of covariance
structures. Hence, both the assumption of uncorrelated observations and the assumption
of homoscedastic observations, which are typical of traditional linear models, can be
relaxed. This is reasonable especially when longitudinal, spatial or otherwise hierarchical
data sets are considered and makes mixed models a powerful framework for statistical
modelling of data.

The normal distribution is usually assigned to both random terms u and e so that

u ∼ Nq(0,G) and e ∼ Nn(0,R)

independently. Normality is often a feasible characterization of the behaviour of the
random terms (which are essentially latent) and also makes applying the likelihood
methods, which are the principal approach to the mixed model estimation, convenient.
Other distributions could also be considered, but it seems that the theory and estimation
methods under them are not yet well-established.

Under the normality assumptions the distribution of y given u is N(Xβ+Zu,R), which
is analogous with the linear fixed effects model, where u is treated fixed, with possibly
correlated errors. The distributions of u and y given u imply that

(3.3) y ∼ Nn(Xβ,ZGZ′ + R).

This is called the marginal formulation of linear mixed model (Verbeke and Molenberghs
1997, 2000). Note that although the marginal model (3.3) follows from the linear mixed
model (3.2), the models are not equivalent, because the marginal model does not explic-
itly define the random effect structure in (3.2). The marginal model, however, gives the
basis of the maximum likelihood estimation of the model parameters.

The covariance matrices G and R are functions of a set of scalar parameters. Here we
call them variance parameters and denote the r × 1 (say) vector of them by σ. The
estimation of G and R turns now to estimation of σ. Occasionally, depending on the
context, we shall write G = G(σ), R = R(σ) and V = V(σ). The (fixed) model
parameters to be estimated are vectors β and σ. Often the parameters in σ are simply
variances and covariances, but sometimes they may have other interpretations like the
autoregressive parameter and moving average component in time series applications (e.g.
Box and Jenkins 1970) or the sill and range in geostatistical applications (e.g. Cressie
1991).
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3.2 Estimation of model parameters

3.2.1 Traditional approaches

For variance component models, where all the parameters in σ are variances, the classical
method for estimating σ is so-called ANOVA estimation, based on equating the mean
squares of the analysis of variance to their expected values and solving the estimates from
the resulting equations. The ANOVA estimation, originally meant for balanced data,
was adapted to unbalanced data by Henderson in 1950’s. The Henderson 3 method, also
known as method of fitting constants, has still fairly recently been suggested to be used
with small area models (Prasad and Rao 1990, Morales 2002). ANOVA methods are
non-iterative and therefore easy to implement, give unbiased variances estimates (which
sometimes appear negative, though) and they require no normality of random effects in
the model. Their major drawback is that they only apply to a limited choice of models.

The regression coefficients β can be estimated by the ordinary least squares:

(3.4) β̂OLS = (X′X)−1X′y,

or, more preferably, by the generalized least squares:

(3.5) β̂GLS = (X′V−1X)−1X′V−1y.

It is worth noting that both the OLS and GLS estimators of β are unbiased. The
estimator β̂GLS is generally the best linear unbiased estimator (BLUE) of β. When
Cov(e) = V = σ2

eIn, like in standard linear models, β̂OLS is the BLUE of β.

If the covariance matrix V = ZG(σ)Z′ + R(σ) is unknown, it will be replaced with
its estimate V̂ = ZG(σ̂)Z′ + R(σ̂), where σ̂ is obtained by the ANOVA method, for
example. Kackar and Harville (1981) have shown that the resulting estimator of β is
unbiased if the distribution of y is symmetric about its mean and σ̂ is an even and
translation-invariant function of the data vector y. That is, σ̂(y) = σ̂(−y) (even) and
σ̂(y+Xβ) = σ̂(y) for all y and β (translation invariant). Even and translation-invariant
variance estimators are obtained by the ANOVA method or, under normality, by the
maximum likelihood (ML) or residual ML (REML) methods, for example.

In the above formulas (3.4) and (3.5), as well as later in this presentation, we assume for
simplicity that the model matrix X is of full rank. If this does not hold, we introduce
appropriate constraints or replace the matrix inverses (X′X)−1 and (X′V−1X)−1 with
the generalized inverses (X′X)− and (X′V−1X)−, respectively. In the latter case, to be
precise, the vector β is not estimable since the β̂OLS and β̂GLS are not invariant to the
choice of (X′X)− and (X′V−1X)−. The invariance holds for Xβ̂OLS and Xβ̂GLS instead,
and therefore it is often defined that Xβ̂OLS = BLUE(Xβ) (for Cov(e) = σ2

eIn) and
Xβ̂GLS = BLUE(Xβ), respectively. The problem of less-than-full-rank matrices is met
with the usual analysis of variance models. Detailed discussion of it can be found e.g.
in McCulloch and Searle (2001) and Searle, Casella and McCulloch (1992).
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Besides ANOVA estimation there are also other non-iterative methods, which do not
always require normality, for estimating variance components. They are based on mini-
mizing certain optimality criteria and typically have acronyms like MINQUE (minimum
norm quadratic unbiased estimation) or MIVQUE (minimum variance quadratic unbi-
ased estimation). Searle, Casella and McCulloch (1992) give a detailed presentation of
all these "historical" methods in the context of variance component estimation. The
MIVQUE estimation is also considered by Frees (2004).

Here we concentrate on the ML and restricted (or residual) maximum likelihood (REML)
estimation methods, which have superseded the earlier methods by virtue of their appli-
cability to more general models and attractive properties like consistency, efficiency and
asymptotic normality of the estimators (see Searle, Casella and McCulloch 1992, Ch.
6.8). We construct the likelihood function under the standard assumption of normal
random effects.

3.2.2 Maximum likelihood estimation (ML)

The likelihood function to be maximized for the estimates of β and σ comes from the
marginal model (3.3), where the covariance matrix V = ZGZ′ + R is a function V(σ)
of variance parameters σ. The density of y ∼ Nn(β,V) is

(3.6) f(y; β,V) = (2π)−
n
2 |V|−

1
2 exp

{
−1

2
(y −Xβ)′V−1(y −Xβ)

}
leading to the log likelihood function

(3.7) logL(β,σ) = const− 1

2
log |V(σ)| − 1

2
(y −Xβ)′V(σ)−1(y −Xβ),

which is then maximized with respect of β and σ. The parameter space of β is Θβ = Rp.
For σ, the parameter space Θσ is a subset of Rr such that G and R are non-negative
definite. For variance component models this means that all the variance components
are non-negative. However, if a variance component lies on the boundary of Θσ, i.e. is
zero, it causes problems for the inference.

The partial derivative of the log likelihood with respect to β is

∂ logL(β,σ)

∂β
= X′V(σ)−1(y −Xβ),

and setting this to zero leads to the GLS solution (3.5). For given V this is also the
maximum likelihood estimator β̂ML of β. For unknown V the ML estimator of β is

β̂ML = (X′V̂−1
MLX)−1X′V̂−1

MLy,

where V̂ML = V(σ̂ML) is the ML estimator of V. The estimator β̂ML is unbiased for β
under normality of y (Kackar and Harville 1981, 1984).
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To estimate V(σ), we substitute the GLS solution (3.5) into (3.7) to obtain the profile
log likelihood

(3.8) logL(σ) = const− 1

2
log |V(σ)| − 1

2
r(σ)′V(σ)−1r(σ),

where r(σ) = y−X(X′V(σ)−1X)−1X′V(σ)−1y. The profile log likelihood (3.8) is then
maximized to find σ̂ML. Searle et al. (1992, Ch. 6.2) provide the ML estimation equa-
tions for variance component models. In general the maximization requires numerical
optimization techniques like Newton-Raphson, Fisher scoring or EM algorithms. These
algorithms are discussed e.g. by Lindstrom and Bates (1988), Longford (1993, 2005) and
Wolfinger et al. (1994) and they have been implemented in the procedures for mixed
models in many popular packages like R, SAS and SPSS. It is also worth noting that
the iterative generalized least squares (IGLS) algorithm of Goldstein (1986, 1995) leads
under normality to maximum likelihood estimates of β and σ. The IGLS algorithm is
specially implemented in the MLwiN software.

In estimation of variance parameters, however, the ML method suffers from some well-
known problems. First, it tends to give variance estimates that are biased downwards.
The familiar example is the estimation of variance of a univariate normal distribution
N(µ, σ2), when the mean µ is unknown, from sample observations y1, y2, . . . , yn. The
ML estimator of σ2 is

σ̂2
ML =

1

n

n∑
i=1

(yi − ȳ)2,

where ȳ is the sample mean. The unbiased estimator is the sample variance

(3.9) s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2

with denominator n−1 instead of n. The bias of the ML estimator, due to the estimation
of µ, is then −σ2/n. The bias is larger with linear regression models with several
explanatory variables. In the regression model (3.1) we are to estimate a p× 1 vector β
of fixed parameters instead of just one µ. The ML estimator of the error variance σ2 is
now

σ̂2
ML =

SSE
n

,

where SSE denotes the observed error sum of squares of the model. Again, the unbiased
estimator

(3.10) σ̂2 =
SSE
n− p

.

of σ2 differs from the ML estimator in its denominator, now containing the correct
number n− p of degrees of freedom. We see that the bias of ML estimator can be most
serious if the number p of covariates is large compared to the sample size n.

Another problem of ML estimation is, as Diggle et al. (2002, p. 66) point out, that
being essentially model-dependent it can be highly sensitive to a misspecified model
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matrix X. It may happen that the ML estimators of the variance parameters are not
even consistent. One strategy to fight against this inconsistency is to overly increase the
number p of columns (i.e. explanatory variables) in X for "safety reasons", but then this
would make the bias problem worse.

At least to some extent, these problems of ML estimation can be avoided by adopting
another likelihood-based procedure called residual ML or restricted ML (REML).

3.2.3 Restricted maximum likelihood estimation (REML)

The REML method for variance component estimation was first introduced by Patterson
and Thompson (1971) and further developed by Harville (1974, 1977). It is based on
such linear transformation of the data y that the resulting distribution does not depend
on the fixed effects parameter vector β. Hence β is eliminated from the log likelihood,
but at the same time the loss of degrees of freedom involved in estimating β is taken into
account in the estimation of V(σ). In a way REML corrects the denominator of variance
estimators to reduce the bias in variance parameter estimates. In some simple cases like
balanced ANOVA models it gives variance component estimates that are unbiased and
agree with ANOVA or MIVQUE estimates, provided that the non-negativity constraint
of variance parameters does not come into play (Harville 1977). In the two examples in
the preceding section the unbiased variance estimators (3.9) and (3.10) are also REML
estimators.

The REML method is based on the likelihood principle and has the same merits, like
consistency, efficiency and asymptotic normality, as the ML method. Since the REML
estimators produce unbiased or nearly unbiased variance estimates, have the same desir-
able properties as the ML estimators and do not require computations that are essentially
more complex than those needed in ML estimation, the REML method is now a widely
preferred approach to estimate variance parameters in mixed models (Searle et al. 1992,
Pinheiro and Bates 2000, Verbeke and Molenberghs 2000, Diggle et al. 2002).

Introduce a linear transformation z = K′y of the normal response vector y, where K
is a n × (n − p) matrix of full rank, for which K′X = 0. The distribution of z is
then Nn−p(0,K

′VK), which does not depend on β. The elements of z are sometimes
referred as error contrasts (e.g. Harville 1974, 1977; Verbeke and Molenberghs 2000).
The REML estimators of the variance parameters σ are obtained by maximizing the
likelihood function associated with the error contrasts z instead of the original data y.
The fixed parameter vector β is then estimated by applying the GLS formula (3.5), the
covariance matrix V being replaced with its estimate V̂REML = V(σ̂REML).

An appropriate K is found by selecting n− p columns from the projection matrix

Q = I−X(X′X)−1X′,

which transforms y to the usual OLS residuals (the term "residual maximum likelihood"
originates from the idea to base the likelihood on residuals of the OLS fit to the data).
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However, the resulting likelihood function and inference do not depend on which columns
are used, and nor even the choice of K, as Harville (1974) has shown (see also Diggle et
al. 2002, Frees 2004). Instead, any full-rank n × (n − p) matrix K giving the property
E(z) = 0 for all β will do.

To find a convenient expression for the REML likelihood function, define a non-zero
n × (n − p) matrix A such that AA′ = Q and A′A = I. The matrix A is also an
appropriate choice for K and we define z = A′y. The expected value of z is 0 and
the covariance matrix is A′VA. Because A′X = 0, we can also write z = A′y =
A′(y −Xβ̂GLS), where β̂GLS is given in (3.5). The density of z is then

fz(z) = (2π)−
n−p

2 |A′VA|−
1
2 exp

{
−1

2
z′(A′VA)−1z

}
= (2π)−

n−p
2 |A′VA|−

1
2 exp

{
−1

2
(y −Xβ̂GLS)′A′(A′VA)−1A(y −Xβ̂GLS)

}
.

Applying the result 33 in Rao (1973, p. 77) yields

A′(A′VA)−1A = V−1 −V−1X(X′V−1X)−1X′V−1,

which leads straightforwardly to

(3.11) (y −Xβ̂GLS)′A′(A′VA)−1A(y −Xβ̂GLS) = (y −Xβ̂GLS)′V−1(y −Xβ̂GLS).

To find an expression for the determinant |A′VA| we define H = [A G], where G =

V−1X(X′V−1X)−1 (note that β̂GLS = G′y). Then

|H′VH| =
∣∣∣∣A′VA A′VG
G′VA G′VG

∣∣∣∣ =

∣∣∣∣A′VA 0
0 G′VG

∣∣∣∣ = |A′VA||G′VG|

so that

(3.12) |A′VA| = |H′VH||G′VG|−1.

By a straightforward calculation

(3.13) |G′VG| = |X′V−1X|−1.

For |H′VH| we note that

(3.14) |H′VH| = |H′||V||H| = |V||H′H|,

because H is a square matrix. By using AA′ = Q and A′A = I and the standard result
for block determinants we get

(3.15) |H′H| =
∣∣∣∣A′A A′G
G′A G′G

∣∣∣∣ = |I||G′G−G′AA′G| = |G′G−G′QG| = |X′X|−1.
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Collecting (3.11)–(3.15) together leads to the following expression of the density of the
error contrasts z = A′y:

fz(z) = (2π)−
n−p

2 |X′X|
1
2 |X′V−1X|−

1
2 |V|−

1
2 exp

{
−1

2
(y −Xβ̂GLS)′V−1(y −Xβ̂GLS)

}
.

Now it is seen that the matrix A defining the error contrasts z does not explicitly appear
in the density. It is implicitly related to the matrix X′X, but this does not depend on
V and therefore does not affect the maximization of the likelihood. The consequence is
that the REML estimation does not depend on the choice of n− p error contrasts.

The density of z leads to the restricted or residual log likelihood, which is written here
using the notation of (3.8):

(3.16) logLREML(σ) = const− 1

2
log |X′V(σ)−1X|− 1

2
log |V(σ)|− 1

2
r(σ)′V(σ)−1r(σ).

Maximizing (3.16) produces the REML estimate σ̂REML. Searle et al. (1992, Ch. 6.6)
provide the REML estimation equations for variance component models. In general the
maximization requires numerical methods. If we compare the ML log likelihood (3.8)
and the REML log likelihood (3.16), we note that their only difference is the penalty
term −1

2
log |X′V(σ)−1X| in (3.16). Thus, the same algorithms as in the ML estimation

(e.g. Newton-Raphson) can be used here, with only minor adaptations (Longford 2003).

Substituting the estimator V̂REML = V(σ̂REML) into the GLS formula (3.5) gives the
"REML estimator"

β̂REML = (X′V̂−1
REMLX)−1X′V̂−1

REMLy

of β. This is not identical to β̂ML. However, if y has a symmetric (e.g. normal)
distribution, the both estimators are unbiased (Kackar and Harville 1981, 1984).

The often cited justification of the REML approach has been given by Patterson and
Thompson (1971), who maintain that in the absence of information on fixed β no in-
formation on σ is lost if the inference is based on the error contrasts z instead of the
data y. Harville (1974) showed from a Bayesian point of view that using only error
contrasts in inferences on σ is equivalent to using all the data to make these inferences,
but ignoring any prior information on β (Verbeke and Molenberghs 2000, p. 46).

3.3 Prediction of random effects

3.3.1 Best linear unbiased predictor (BLUP)

Technically speaking, the random effects u in model (3.2) are not model parameters
like β and σ. However, as Pinheiro and Bates (2000) point out, in a way they behave
like parameters and since they are unobservable, there often is interest in obtaining
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estimates of their values. For example, estimates of random area effects are needed in
the estimation of small area means. In the frequentist theory the concept of estimation is
usually reserved only for the fixed parameters, and since the vector u contains random
variables, not unknown constants, we say that we do not estimate but predict their
values (for opposite points of view, see Robinson 1991).

It can be shown that the best predictor BP of u, in the sense that it minimizes the mean
squared prediction error, is the conditional mean

ũ = BP (u) = E(u|y).

The normality assumptions for model (3.2) imply that u and y = Xβ + Zu + e have a
joint multivariate normal distribution[

u
y

]
∼ Nq+n

([
0

Xβ

]
,

[
G GZ′

ZG V

])
,

and under the normal theory the mean of u given y is

E(u|y) = E(u) + Cov(u,y)[Cov(y)]−1(y − E(y))

= GZ′V−1(y −Xβ).(3.17)

This is the best predictor of u, and being a linear function of y it also is the best linear
predictor (BLP) of u.

In practice the unknown β in (3.17) is replaced with its estimator β̂ = β̂GLS, which is
the BLUE of β, yielding the best linear unbiased predictor (BLUP) of u

(3.18) ũ = BLUP (u) = GZ′V−1(y −Xβ̂).

The unbiasedness means here that both the random variable u and its predictor have
the same expected value

E(ũ) = E(ũ− u) = E(u) = 0.

In the sense of the "usual" point estimation the unbiasedness of ũ does not hold since

E(ũ|u) = GZ′V−1[E(y|u)−XE(β̂ββ|u)]

= GZ′V−1[I−X(X′V−1X)−1X′V−1]Zu,

which, in general, is not equal to u. Thus the use of the term "unbiased" in this context is
sometimes criticized, e.g. by Robinson in his important review paper (1991). In fact, the
components ũi of ũ have a tendency to be "biased" towards zero, the common expected
value of the all ui’s. In a way, each E(ũi|ui) can be considered a linear combination of
the "global" mean zero and ui. This phenomenon, which also can be described by the
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fact that ũi’s have less spread than ui’s (or the GLS estimates of ui’s, which would be
used if the ui’s were regarded as fixed effects), is called shrinkage. This is seen from

V ar(ui) = V ar(E(ui|y)) + E(V ar(ui|y))

= V ar(ũi) + a non-negative value.

Hence the BLUP ũ in (3.18) is sometimes called a shrinkage estimator of u (Robinson
1991).

In the context of small area estimation, the shrinkage property of the BLU predictors
is often desirable. For instance, in estimating small area means the BLUP approach
produces composite estimators, which are linear combinations of the local area sample
means and the global overall sample mean and thus shrink the local means towards the
global mean. Since the local area sample mean is an unbiased estimator of the area mean,
combining the global sample mean with it results in a biased estimator. On the other
hand, the presence of the global sample mean in the composite estimator (or shrinkage
estimator) gives some stability for it, thus increasing its efficiency, mostly when there
are little data from the area. In the small area estimation the question is often about
the trade-off between bias and efficiency.

The concept of shrinkage is closely related to the concept of borrowing strength (Longford
2005). When the data set from a region is small, giving weak information on that region,
the regional estimate is strengthened by supplementing the regional data with global
data. The smaller are the regional data, the more weight the global information gets
in the estimation. This is equivalent to strong shrinkage towards the global estimate.
When the regional data are large, the local information receives more weight compared
to the global information, and there will be less shrinkage in the regional estimate. The
shrinkage also gives some protection for extreme estimates, which may occur by chance,
especially when the regional data are small.

3.3.2 Mixed model equations

Henderson (in Henderson et al. 1959) introduced a set of equations, solutions of which
give simultaneously the GLS estimator of β and the BLUP of u. The equations are
derived by maximizing the joint density of y and u with respect to β and u.

Since y|u ∼ Nn(Xβ + Zu,R) and u ∼ Nq(0,G), the joint density of y and u is

f(y,u) = f(y|u)f(u)

= (2π)−n/2|R|−1/2 exp{−1

2
(y −Xβ − Zu)′R−1(y −Xβ − Zu)}

× (2π)−q/2|G|−1/2 exp{−1

2
u′G−1u}

=
exp{−1

2
[(y −Xβ − Zu)′R−1(y −Xβ − Zu) + u′G−1u]}

(2π)(n+q)/2|R|1/2|G|1/2
.
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To maximize the density f(y,u) calculate the partial derivatives of

log f(y,u) =− n+ q

2
log(2π)− 1

2
log |R| − 1

2
log |G|

− 1

2
[(y −Xβ − Zu)′R−1(y −Xβ − Zu) + u′G−1u]

with respect to β and u:

∂ log f(y,u)

∂β
= X′R−1(y −Xβ − Zu)

∂ log f(y,u)

∂u
= Z′R−1(y −Xβ − Zu)−G−1u.

Setting these to zero yields equations{
X′R−1Xβ + X′R−1Zu = X′R−1y

Z′R−1Xβ + Z′R−1Zu + G−1u = Z′R−1y,

which are written in matrix form as

(3.19)
[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

] [
β
u

]
=

[
X′R−1y
Z′R−1y

]
.

These are Henderson’s mixed model equations. Solving them produces the β̂GLS in (3.5)
and the ũ in (3.18). Note that if Z = 0 and G = 0, i.e. we have only fixed effects in
the model, the mixed model equations reduce to the normal equations related to the
generalized least squares. Also note that if G is "very large", i.e. G−1 ≈ 0, meaning
that the variances of ui’s are very large, the BLU predictors of ui’s are close to the GLS
estimates (obtained as if the ui’s were fixed effects), implying weak shrinkage. On the
other hand, if G is close to 0, its inverse is large and dominates the equations. The
result is that the shrinkage becomes strong making ũ close to zero.

A practical merit of the mixed model equations is their computational convenience,
because there, unlike in (3.18), is no need for inverting the n× n covariance matrix V.
The inverses of q × q matrix G and n × n matrix R are needed instead, but they are
often easy to compute: q is usually not that large and R is usually diagonal.

3.3.3 Joint covariance matrix of estimation and prediction errors

It follows from the properties of model (3.2) that the covariance matrix of β̂GLS =
(X′V−1X)−1X′V−1y, where V is known, is

Cov(β̂GLS) = Cov(β̂GLS − β) = (X′V−1X)−1.

To obtain a convenient expression for the covariance matrix of the BLU predictor ũ =
GZ′V−1(y −Xβ̂GLS) of u we define

P = V−1[In −X(X′V−1X)−1X′V−1]
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and write
ũ = GZ′Py.

Under (3.2) its covariance matrix is

Cov(ũ) = GZ′PZG,

by PVP = P. Since the purpose is to predict u, not its expected value zero, it is more
pertinent to consider the covariance matrix of prediction errors ũ− u. This is

Cov(ũ− u) = Cov(ũ) + Cov(u)− 2Cov(ũ,u)

= G−GZ′PZG.

In addition,
Cov(β̂GLS − β, ũ− u) = −(X′V−1X)−1X′V−1ZG.

Collecting these results together yields the joint covariance matrix

(3.20) Cov

[
β̂GLS − β

ũ− u

]
=

[
(X′V−1X)−1 −(X′V−1X)−1X′V−1ZG

−GZ′V−1X(X′V−1X)−1 G−GZ′PZG

]
.

An alternative expression for (3.20) has been presented by Henderson (1975), who showed
that the covariance matrix can be obtained as the (generalized) inverse of the left-hand-
side matrix in (3.19), that is,

(3.21) Cov

[
β̂GLS − β

ũ− u

]
=

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

]−1

.

The equivalence of (3.20) and (3.21) is easy to verify by a straightforward calculation.
The expression (3.21) is computationally economical, because the inverse of V is not
needed.

3.3.4 Empirical best linear unbiased predictor (EBLUP)

Usually the covariance matrices V, G and R are unknown. Then, in predicting u by the
BLUP formula (3.18) they will be replaced with their REML or ML estimates to yield

(3.22) û = EBLUP (u) = ĜZ′V̂−1(y −Xβ̂).

The predictor û is called empirical best linear unbiased predictor (EBLUP) of u, the
word "empirical" referring to the fact that the values of G and V have been obtained
from the observed data (cf. empirical Bayes). The estimator β̂ is now the GLS estimator
(3.5), where V is replaced with its estimate (i.e. β̂ is typically β̂REML or β̂ML), and it
is sometimes called empirical BLUE of β.

Both β̂ and û can be obtained by solving the mixed model equations (3.19) where V,
G and R are substituted by the corresponding estimates.

In small area estimation the approach, where e.g. small area totals are estimated by
utilizing the empirical BLU predictors of random area effects, is often referred as EBLUP
method or approach (Ghosh and Rao 1994, Rao 1999, Pfeffermann 2002, Rao 2003).
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3.4 Statistical inference

3.4.1 Fixed effects

When the covariance matrix V is known, the fixed parameter vector β is unbiasedly
estimated by the GLS solution (3.5)

β̂GLS = (X′V−1X)−1X′V−1y.

Its covariance matrix is

(3.23) Cov(β̂GLS) = Φ = (X′V−1X)−1.

In testing a linear null hypothesis H0 : L′β = c, where L and c are given constants, we
can use the Wald statistic

(3.24) X2 = (L′β̂GLS − c)′(L′ΦL)−1(L′β̂GLS − c).

Under H0 and normality the Wald statistic follows a central χ2 distribution with rL
degrees of freedom, where rL is the rank of the coefficient matrix L. We can also
construct confidence intervals for linear combinations of form l′β, where l is a given
vector, as

(3.25) l′β̂GLS ± zαs.e.(l′β̂GLS),

where zα is the desired critical value of the standard normal distribution and

s.e.(l′β̂GLS) =
√

l′Φl

is the standard error of l′β̂GLS.

When V = V(σ) is unknown, the inference becomes more complicated due to the
uncertainty about σ. Let σ̂ be some estimator of the variance parameter vector σ and
V̂ = V(σ̂) the corresponding estimator of V. Kackar and Harville (1981) have shown
that if (i) the data vector y is symmetrically distributed about its expected value and
(ii) the estimator of σ is even and translation-invariant, then the estimator

β̂ = (X′V̂−1X)−1X′V̂−1y

of GLS form is unbiased for β. This result holds especially for the ML and REML
estimation of variance components under normal distribution. The formula (3.23) gives
now the asymptotic covariance matrix of β̂. Following (3.23), the covariance matrix of
β̂ could be estimated simply with

Φ̂ = (X′V̂−1X)−1,
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which is asymptotically valid, but in finite samples underestimates the true variabil-
ity of β̂ since it implicitly treats V̂ as known, without taking the variation in V̂
into account. In fact, as McCulloch and Searle (2001) point out, Φ̂ is an estimate
of Cov(β̂GLS) = Φ = Cov((X′V−1X)−1X′V−1y). It is not an estimate of Cov(β̂) =

Cov((X′V̂−1X)−1X′V̂−1y) (see also Searle, Casella and McCulloch 1992, Ch. 9.1).

The problem of valid estimation of Cov(β̂) (and, in general, Cov(l′β̂ + m′û), where
l and m are given coefficient vectors) in the context of linear mixed models has been
considered by Kackar and Harville (1984), Harville and Jeske (1992) and further, under
the REML estimation, by Kenward and Roger (1997). Under m = 0 the result of Kackar
and Harville (1984) for translation-invariant estimators of σ give

(3.26)
Cov(β̂) = Cov(β̂GLS) + Cov(β̂ − β̂GLS)

= Φ + Λ

for the fixed effects estimator β̂. The matrix Λ = Cov(β̂− β̂GLS) measures the amount
by which the asymptotic covariance matrix underestimates Cov(β̂). Kackar and Harville
(1984) derive a Taylor series approximation for Λ, written by Kenward and Roger (1997)
as

(3.27) Λ ≈ Φ

{
r∑
i=1

r∑
j=1

[Cov(σ̂)]ij(Qij −PiΦPj)

}
Φ,

where
Pi = X′

∂V−1

∂σi
X,

Qij = X′
∂V−1

∂σi
V
∂V−1

∂σj
X

and Cov(σ̂) is the covariance matrix of the estimator σ̂. As Kenward and Roger employ
the REML estimation, they obtain Cov(σ̂) as the inverse of the corresponding Fisher
information matrix. An estimator Λ̂ of Λ is obtained by substituting V with V̂ in the
approximation (3.27).

Kenward and Roger consider the bias of Φ̂ in estimating Φ. Using a Taylor series
expansion they derive a general, but rather complicated expression for the bias. However,
if the covariance matrix V has a linear structure, i.e. it is a linear function

(3.28) V =
r∑
i=1

σiKi

of the parameters σi in σ, where each Ki is a known matrix, the second derivatives in
the expansion vanish. Kenward and Roger show that this, along with the approximate
unbiasedness of the REML estimator of V, leads to a convenient result

E(Φ̂) ≈ Φ−Λ,
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which suggests together with (3.26) an adjusted "Kenward-Roger estimator"

(3.29) Φ̂KR = Φ̂ + 2Λ̂

of Cov(β̂). This bias-corrected estimator is found to perform well in small samples.

It appears that under a linear covariance structure a bias correction of similar form to
(3.29) can be applied also in estimating the variance of prediction error, when the value
of a linear combination l′β + m′u of fixed and random effects is to be predicted. Such
prediction is an essential part of model-based small area estimation.

Linear covariance structures arise from a variety of linear mixed models. In particular,
the variance component models yield covariance matrices V with a linear structure. The
small area models considered in this report (in later chapters) also possess this property.

Under ML estimation we can test the linear hypothesis H0 : L′β = c with the likelihood
ratio

λ =
L(β̂H0

, σ̂H0)

L(β̂ML, σ̂ML)
,

where β̂ML and σ̂ML are the ML estimates of β and σ and β̂H0
and σ̂H0 are the

respective estimates under H0. The test statistic −2 log λ is asymptotically χ2(rL). For
REML estimation this test is not valid, because the error contrasts used for eliminating
the fixed parameters from the REML log likelihood are not the same under the null
hypothesis and the alternative hypothesis (Verbeke and Molenberghs 2000). Then the
log likelihoods are not comparable any more.

It is often more convenient to apply the Wald statistic (3.24), where Φ has been replaced
with its estimate, Φ̂ or Φ̂KR. Under H0 the statistic X2 follows the χ2(rL) distribution
asymptotically. An often preferred alternative (e.g. Pinheiro and Bates 2000, Brown and
Prescott 1999) is to use the Wald F statistic

(3.30) F = X2/rL,

which follows under H0 the F distribution with degrees of freedom rL and DF2 asymp-
totically. The calculation of the denominator degrees of freedom DF2 is usually compli-
cated. One way to obtain DF2 is the well-known Satterthwaite approximation (1946,
see also Verbeke and Molenberghs 1997). Kenward and Roger (1997) derived a scaled
Wald F statistic to be used in small samples with the adjusted estimator Φ̂KR and an
approximation of DF2, which essentially is the Satterthwaite approximation applied to
Φ̂KR instead of Φ̂.

In constructing confidence intervals for single linear combinations l′β under estimated
Φ the critical value zα in (3.25) should be replaced with the corresponding value from t
distribution with DF2 degrees of freedom.
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Finally we remark that the inference on β is sometimes based on a so-called robust or
empirical estimator of Cov(β̂) (Liang and Zeger 1986, Verbeke and Molenberghs 2000,
Diggle et al. 2002). The covariance matrix of the GLS estimator

β̂W = (X′WX)−1X′Wy

with some symmetric weight matrix W can be estimated with a sandwich estimator

[(X′WX)−1X′W]Ṽ[WX(X′WX)−1],

where Ṽ is a consistent estimator of V regardless of the true covariance structure. The
sandwich estimator is consistent for Cov(β̂W ) and gives a robust inference on β with
respect to the model misspecification of the covariance structure. It may also help
alleviate some of the small sample bias (Brown and Prescott 1999, p. 74).

We may choose W = V̂−1, where V̂ is e.g. the "model-based" REML estimator. If we
also choose Ṽ = V̂, the sandwich estimator reduces to Φ̂, which is consistent only if
the specified covariance structure is correct. In the context of longitudinal data analysis
some feasible choices for Ṽ are discussed by Diggle et al. (2002, Sec. 4.6). An apparently
"terrible" choice for Ṽ, which still may yield an adequate sandwich estimator, is the
singular (y−Xβ̂W )(y−Xβ̂W )′ (see Liang and Zeger 1986; Diggle et al. 2002, p. 72–73)

3.4.2 Variance parameters

The statistical inference on the parameter vector σ determining the covariance matrix
V = V(σ) is based on the classical theory of maximum likelihood estimation. It appears
that under some regularity conditions the distribution of the ML (as well as REML) esti-
mators σ̂ is approximately normal with mean vector σ and a covariance matrix Cov(σ̂),
which is the inverse of the matrix of the Fisher information matrix (Verbeke and Molen-
berghs 2000). Recall that under the regularity conditions the Fisher information matrix
is the negative of the expected matrix of the second derivatives of the log likelihood
with respect to the model parameters. Searle, Casella and McCulloch (1992) give an
expression of the information matrix for variance component models, both in the ML
estimation (Ch. 6.3) and the REML estimation (Ch. 6.6). For more general models with
non-linear covariance structures it is difficult to give any general expression, because the
second derivatives with respect to the variance parameters often become complicated.

Both the approximate confidence intervals for σ and the related Wald χ2 significance
tests can be based on the asymptotic normality of σ̂. However, it is known that the
validity of the normal approximation strongly depends on the true value of σ: the closer
the true value of the parameter is to the boundary of the parameter space, the larger
sample size is needed for a reasonable approximation, and if the true value is on the
boundary, the standard asymptotic theory does not hold (e.g. Verbeke and Molenberghs
2000). An important case where the boundary problem is met is testing the null hy-
pothesis that the variance of a random effect is zero. For covariances or correlations the
value zero is in the interior of the parameter space and causes no problems.
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The Wald statistic for a linear null hypothesis H0 : L′σ = c has the same form as the
statistic (3.24) for the fixed parameters. The parameter β0 in (3.24) will be replaced
with σ̂, which is either the ML or REML estimator of σ and Φ will be replaced with
the asymptotic covariance matrix of σ̂. Similar hypotheses can also be tested by the
likelihood ratio statistic

λ =
L(β̂H0

, σ̂H0)

L(β̂ML, σ̂ML)

for the ML estimation and
λ =

LREML(σ̂H0)

LREML(σ̂REML)

for the REML estimation. The subscript H0 refers here to estimates obtained by the
chosen method (ML or REML) under the constraints in the null hypothesis. The test
statistic −2 log λ (as well as the Wald statistic) is asymptotically distributed as χ2(s),
where s is the number of constraints on σ defined in H0. The likelihood ratio test is
often considered more reliable than the Wald test due to its more rapid asymptotics. In
testing hypotheses that lie on the boundary, however, the likelihood ratio test suffers
from the same problems as the Wald test.

Stram and Lee (1994) have examined the behaviour of the likelihood ratio test when the
null hypothesis lies on the boundary of the parameter space and noticed that the usual
chi-square approximation produces a conservative test, which wrongly favors the null
hypothesis even asymptotically. They argue, however, that for simple hypotheses, e.g.
for just one variance component, the error in significance level is typically small. Stram
and Lee also show that in tests for nonzero variance components the distribution of the
likelihood ratio statistic can be approximated well with a 50:50 mixture of distributions
χ2(s) and χ2(s− 1).

For testing a hypothesis H0 : σ2 = 0 on a single nonzero variance component McCulloch
(2005) suggests a modified likelihood ratio test, where the p value obtained from χ2(1)
distribution is cut in half. This is because the alternative hypothesis is now one-sided
H1 : σ2 > 0, but the likelihood ratio test is inherently two-sided. The Wald test is
sometimes modified in the same way, i.e. in the MIXED procedure of the SAS package,
by taking the square root of the χ2(1) distributed statistic X2 for a single variance
component and calculating the one-sided p value from the N(0, 1) distribution.

3.4.3 Random effects

Recall first that when the covariance matrix Cov(y) = V is known (that is, the param-
eter vector σ determining V = V(σ) is known), the BLUP of the random effects vector
u is

ũ = BLUP (u) = GZ′V−1(y −Xβ̂) = GZ′Py

with β̂ = (X′V−1X)−1X′V−1y and P = V−1[In−X(X′V−1X)−1X′V−1]. The covariance
matrices of ũ and ũ− u are

Cov(ũ) = GZ′PZG
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and

(3.31) Cov(ũ− u) = G−GZ′PZG,

respectively. When V (actually σ) is estimated, we have the empirical BLUP

û = EBLUP (u) = ĜZ′P̂y

obtained by substituting G and V (and the resulting P) with their estimates. Now the
uncertainty about V causes that a straightforward application of (3.31), which is valid
for known V, leads to underestimated variances of the prediction errors. This is similar
to what happens also for the variances of the fixed effect estimators.

Kackar and Harville (1984), followed by Prasad and Rao (1990) and Harville and Jeske
(1992), have considered the mean squared error of the predictor of a linear combination

τ = l′β + m′u

of fixed effects β and random effects u, when V is unknown. Their results have important
applications to small area estimation by linear mixed models. Recall also that the paper
of Kackar and Harville (1984) provided the starting point for the work of Kenward and
Roger (1997) on the inference for fixed effects. We consider here the MSE of the EBLUP
of the random part m′u.

The mean squared error of BLUP (m′u) = m′ũ is simply

MSE(m′ũ) = E[m′ũ−m′u]2

= m′Cov(ũ− u)m

and its estimate is
M̂SE(m′ũ) = m′Ĉov(ũ− u)m,

where
Ĉov(ũ− u) = Ĝ− ĜZ′P̂ZĜ.

For EBLUP (m′u) = m′û we note that

MSE(m′û) = E[m′û−m′ũ + m′ũ−m′u]2

= E[m′û−m′ũ]2 + E[m′ũ−m′u]2 + 2E[m′û−m′ũ][m′ũ−m′u].

Kackar and Harville (1984) show that

E[m′û−m′ũ][m′ũ−m′u] = 0

provided that the random effects and error terms in the mixed model (3.2) are normal
and the estimator σ̂ of σ is translation invariant. The ML and REML estimators of σ
are translation invariant (Kackar and Harville 1981). It follows that

(3.32) MSE(m′û) = MSE(m′ũ) + E[m′û−m′ũ]2,
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i.e. the MSE of EBLUP is the MSE of BLUP plus a non-negative correction term ac-
counting for the uncertainty about V.

Since m′ũ is a function of σ and m′û a similar function of σ̂, we can write a Taylor
series approximation

m′û ≈m′ũ +

(
∂m′ũ

∂σ

)′
(σ̂ − σ),

which gives

(3.33) E[m′û−m′ũ]2 ≈ E

[(
∂m′ũ

∂σ

)′
(σ̂ − σ)

]2

.

Kackar and Harville (1984) give conditions under which the equation

E

[(
∂m′ũ

∂σ

)′
(σ̂ − σ)

]2

= tr[A(σ)B(σ)],

where
A(σ) = Cov

(
∂m′ũ

∂σ

)
and

B(σ) = E[(σ̂ − σ)(σ̂ − σ)′],

holds exactly. This leads them to suggest the "Kackar-Harville approximation"

(3.34) MSE(m′û) ≈MSE(m′ũ) + tr[A(σ)B(σ)].

In practice the MSE matrix B(σ) is often replaced by the asymptotic covariance matrix
of σ̂.

Prasad and Rao (1990) derived a further, computationally convenient approximation for
tr[A(σ)B(σ)] in (3.34). Define b′ = m′GZ′V−1 so that m′ũ = b′(y−Xβ̂). The general
form of the "Prasad-Rao approximation" is then

(3.35) g3(σ) = tr[(∂b′/∂σ)′V(∂b′/∂σ)B(σ)] ≈ tr[A(σ)B(σ)].

They explicitly worked out the approximation (3.35) for three simple small area models,
including the Fay-Herriot model (2.19) and nested error regression model (2.20), using
Henderson’s method 3 for the variance component estimation. They also showed that
their approximation

(3.36) MSE(m′û) ≈MSE(m′ũ) + g3(σ)

can be estimated with

(3.37) M̂SE(m′û) ≈ M̂SE(m′ũ) + 2g3(σ̂),
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where g3(σ̂) is obtained by substituting σ with its estimate in g3(σ). The estimator
(3.37) is approximately unbiased. We note that it has actually the same form (with the
bias correction factor of two) as the result (3.29) of Kenward and Roger for fixed effects,
which results from assuming that V has a linear structure. Prasad and Rao (1990) also
give the regularity conditions under which the neglected terms in their approximation,
as well as in the Kackar-Harville approximation, are o(m−1) for large m, where m is the
number of small areas in the considered models.

Datta and Lahiri (2000) showed later that the Prasad-Rao approximation (3.36) is valid
for general linear mixed models if the REML estimation is employed. For the ML
estimation they give an additive adjustment term to account for the bias in the variance
estimates. Similarly, they showed that the estimator (3.37) is approximately unbiased
if the covariance structure is linear. For the ML estimation, however, an additional bias
correction term is again needed.

Finally we note that Das, Jiang and Rao (2004) have thoroughly studied the MSE
approximation for the EBLUP of τ = l′β + m′u under general linear mixed models,
when REML or ML estimation is employed. They essentially give rigorous proofs for
the earlier results by Prasad and Rao and Datta and Lahiri. In a highly technical paper
they also specify the precise order of the neglected terms in the MSE approximation and
its estimator and present the regularity conditions, which are to be satisfied.
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4 Small area estimation with unit level mixed model
for cross-sectional data

4.1 Preliminaries

In this chapter we apply the theory on linear mixed models and the related EBLUP
theory to the estimation of a small area total. The application is presented for the basic
unit level model for cross-sectional data, i.e. the nested error regression model. In the
following chapters we show how the application will be extended for panel data and
rotating panel data.

Consider a finite population U of size N , which divides into m disjoint areas so that

U = U1 ∪ U2 ∪ . . . ∪ Ui ∪ . . . ∪ Um

and
N = N1 +N2 + . . .+Ni + . . .+Nm,

where Ni is the size of area population Ui, i = 1, 2, . . . ,m. Assume then that a random
sample s of size n is drawn from U and

s = s1 ∪ s2 ∪ . . . ∪ si ∪ . . . ∪ sm

with
n = n1 + n2 + . . .+ ni + . . .+ nm.

Furthermore, each area population Ui divides into the sample si and the remainder
ri = Ui − si. It possible that for some areas the sample size ni is zero so that ri = Ui.

The total of target variable y in area i is

Yi =
∑
j∈Ui

yij =
∑
j∈si

yij +
∑
j∈ri

yij,

where j = 1, 2, . . . , Ni denotes the unit. The sample sum
∑

j∈si
yij is observed, which

makes the estimation of Yi reduce to prediction of the unobserved remainder sum∑
j∈ri yij. This is done by using an appropriate model for yij’s.

4.2 Nested error regression model

We consider here the nested error regression model

yij = x′ijβ + ui + eij,

which has already been introduced in Section 2.5.3 as model (2.20). Here yij is the
response of unit j in area i, xij is the corresponding vector of auxiliary variables, β

46



is the vector of fixed parameters, ui is the random effect of area i and eij the random
individual error term. The area effects ui are assumed independent with zero mean
and variance σ2

u. Similarly, the errors eij are independent with zero mean and variance
σ2
e . In addition, the ui’s and the eij’s are assumed mutually independent. Under these

assumptions
E(yij) = x′ijβ

and
V ar(yij) = σ2

u + σ2
e .

We also make the usual assumption that both ui and eij are normally distributed.

It is advisable to write the model in the matrix form. With the notation of (3.2) the
model equation of the Ni × 1 vector

yi =


yi1
yi2
...

yiNi


of the population Ui of area i is

yi = Xiβ + Ziui + ei,

where

Xi =


x′i1
x′i2
...

x′iNi

 , (Ni × p)

Zi = 1Ni
(the unity vector with Ni elements), ui = ui (scalar) and

eij =


ei1
ei2
...

eiNi

 (Ni × 1).

With this notation
E(yi) = Xiβ

and
Cov(yi) = Vi = JNi

σ2
u + INi

σ2
e ,

where JNi
= 1Ni

1′Ni
is the square matrix of ones. Using the usual mixed model notation

we can write
Vi = ZiGiZ

′
i + Ri,

where Gi = σ2
u and Ri = σ2

eINi
. Under the given assumptions the responses yij and yij′

of two units j and j′ (j′ 6= j) coming from the same area i have a common covariance

Cov(yij, yij′) = σ2
u.
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The corresponding intra-area correlation is then

ρ =
σ2
u

σ2
u + σ2

e

.

If we further stack the area vectors yi into one response vector

y =


y1

y2
...

ym

 (N × 1),

we have the model in the form (3.2) of the general linear mixed model. The model is
now

(4.1) y = Xβ + Zu + e

with

X =


X1

X2
...

Xm

 , (N × p)

Z = ⊕mi=1Zi =


1N1 0 . . . 0
0 1N2 . . . 0
...

...
...

0 0 . . . 1Nm

 , (N ×m)

u =


v1

v2
...
vm

 (m× 1)

and

e =


e1

e2
...

em

 . (N × 1)

Units (and observations) coming from different areas i and i′ are not correlated. The
covariance matrix V of the response vector y is block-diagonal

Cov(y) = V = ⊕mi=1Vi =


V1 0 . . . 0
0 V2 . . . 0
...

...
...

0 0 . . . Vm

 (N ×N),

or
V = ZGZ′ + R,

where G = σ2
uIm and R = σ2

eIN .
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4.3 BLUP and EBLUP estimation of area total

The target is to estimate the area total

Yi =
∑
j∈Ui

yij = c′iy,

where ci is an N × 1 vector of Ni ones and N −Ni zeros such that the ones correspond
to those yij’s of y, which belong to area i.

Let the vectors y and e as well as the matrices X and Z in (4.1) be partitioned into
sample parts ys, es, Xs and Zs (of n rows) and remainder parts yr, er, Xr and Zr (of
N − n rows). Then the nested error regression model takes the form

y =

[
ys
yr

]
=

[
Xs

Xr

]
β +

[
Zs

Zr

]
u +

[
es
er

]
.

The corresponding partition of the covariance matrix of y is

V =

[
Vs Vsr

Vrs Vr

]
=

[
ZsGZ′s ZsGZ′r
ZrGZ′s ZrGZ′r

]
+

[
σ2
eIn 0
0 σ2

eIN−n

]
.

Applying the similar partition to ci yields

ci =

[
cis
cir

]
,

where cis picks the units in the sample si from area i and cir picks those in the remainder
ri. Now the area total to be estimated is

Yi = c′isys + c′iryr

and the general prediction theorem (2.11) can be applied directly. This gives

Ŷi,BLUP = c′isys + c′ir[Xrβ̂ + VrsV
−1
s (ys −Xsβ̂)],

where the GLS estimate
β̂ = (X′sV

−1
s Xs)

−1X′sV
−1
s ys

is calculated over the whole sample data s. The covariance matrix V is assumed known
here. By Vrs = ZrGZ′s we can write

Ŷi,BLUP = c′isys + c′irXrβ̂ + c′irZr[GZ′sV
−1
s (ys −Xsβ̂)]

= c′isys + (l′iβ̂ + m′iũ),

where l′i = c′irXr, m′i = c′irZr and ũ is the BLUP of u by (3.18). Note that l′iβ̂ + m′iũ
is the BLUP of linear combination l′iβ + m′iu.
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By observing that
c′isys =

∑
j∈si

yij, l′i = c′irXr =
∑
j∈ri

x′ij

and (under the nested error regression model) m′i = c′irZr is a row vector with Ni − ni
in the ith entry and zeros elsewhere, we obtain the BLUP estimator

(4.2) Ŷi,BLUP =
∑
j∈si

yij + (
∑
j∈ri

x′ij)β̂ + (Ni − ni)ũi

seen already in (2.21).

In practice the covariance matrix V is unknown and needs to be estimated. In the
estimation we prefer the REML method. The "REML estimator" β̂REML of β is then
obtained by replacing the Vs in the GLS formula with its REML estimate V̂s,REML.
The estimator β̂REML is unbiased under mild conditions (Kackar and Harville 1981).
The empirical BLUP of Yi under REML estimation is

Ŷi,EBLUP = c′isys + c′ir[Xrβ̂REML + V̂rs,REMLV̂−1
s,REML(ys −Xsβ̂REML)]

=
∑
j∈si

yij + (
∑
j∈ri

x′ij)β̂REML + (Ni − ni)ûi,(4.3)

where ûi is the empirical BLUP of ui obtained from

û = ĜREMLZ′sV̂
−1
s,REML(ys −Xsβ̂REML),

the EBLUP of u under REML estimation.

4.4 Mean squared error

Consider first the BLUP estimator (4.2), where V is assumed known. The estimation
error is

Ŷi,BLUP − Yi = c′isys + c′irXrβ̂ + c′irZrũ− c′isys − c′iryr

= (
∑
j∈ri

x′ij)β̂ + (Ni − ni)ũi −
∑
j∈ri

(x′ijβ + ui + eij)

= (
∑
j∈ri

x′ij)(β̂ − β) + (Ni − ni)(ũi − ui)−
∑
j∈ri

eij.

The BLUP estimator is model unbiased since the model-based expected value of the
estimation error is E(Ŷi,BLUP − Yi) = 0. Hence the model-based mean squared error of
the estimator is

MSE(Ŷi,BLUP ) = E(Ŷi,BLUP − Yi)2 = V ar(Ŷi,BLUP − Yi)

=
[∑

j∈ri x′ij Ni − ni
]
Cov

[
β̂ − β
ũi − ui

] [∑
j∈ri x′ij

Ni − ni

]
+ V ar(

∑
j∈ri

eij)

=
[
l′i m′i

]
Cov

[
β̂ − β
ũ− u

] [
li

mi

]
+ (Ni − ni)σ2

e ,(4.4)
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where the joint covariance matrix of β̂ − β and ũ− u is given in (3.20) or (3.21).

The first term in (4.4) is the variance of prediction error (l′iβ̂ + m′iũ)− (l′iβ + m′iu). It
is a common practice to write this variance as a decomposition

[
l′i m′i

]
Cov

[
β̂ − β
ũ− u

] [
li

mi

]
= g1i(σ) + g2i(σ),

where
g1i(σ) = m′i(G−GZ′sV

−1
s ZsG)mi

and
g2i(σ) = (l′i −m′iGZ′sV

−1
s Xs)(X

′
sV
−1
s Xs)

−1(li −X′sV
−1
s ZsGmi)

(recall that both Vs and G are functions of variance parameters σ, here σ = (σ2
u, σ

2
e)).

The decomposition is obtained by a straightforward matrix algebra and it has a nice
interpretation as seen below. We use the subscript "s" with matrices X, Z and V to
emphasize that they are now associated with the observed sample data.

Firstly, we note that if both β and V were known, the best predictor of l′iβ + m′iu is
l′iβ + m′iu0, where u0 = GZ′sV

−1
s (ys −Xsβ) is the best predictor of the unobserved u.

We find that in this case the variance of prediction error (l′iβ + m′iu0)− (l′iβ + m′iu) =
m′iu0 −m′iu is equal to g1i(σ) and it arises from the uncertainty about u.

Secondly, we note that

g2i(σ) = V ar[(l′i −m′iGZ′sV
−1
s Xs)(β̂ − β)]

since Cov(β̂ − β) = (X′sV
−1
s Xs)

−1. Thus, g2i(σ) arises from the uncertainty about β.

If we define
g4i(σ) = (Ni − ni)σ2

e ,

we have the decomposition

(4.5) MSE(Ŷi,BLUP ) = g1i(σ) + g2i(σ) + g4i(σ)

for the BLUP estimator of Yi. It shows that the model-based MSE of BLUP estimator
based on linear mixed model y = Xβ + Zu + e emerges from three additive sources:

(i) g1i(σ), the uncertainty about random effects u

(ii) g2i(σ), the uncertainty about fixed effects β

(iii) g4i(σ), the uncertainty about the individual yij’s in ri

The term g4i(σ) measures the unit-level error variation in predicting the yij’s in ri. This
random variation would be present even if β, V and u were all known.
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Consider then the EBLUP estimator (4.3). It is of the same form as the BLUP estimator
(4.2), but the unknown covariance matrices V = V(σ) and G = G(σ) have been
replaced with their REML (say) estimates V̂ = V(σ̂) and Ĝ = G(σ̂). Also the EBLUP
estimator is model unbiased.

According to the results of Kackar and Harville (1984), introduced already in Section
3.4.3,

MSE(Ŷi,EBLUP ) = MSE(Ŷi,BLUP ) + E(Ŷi,EBLUP − Ŷi,BLUP )2

holds under normality of y for translation-invariant (e.g. REML and ML) estimators
of σ. The expectation E(Ŷi,EBLUP − Ŷi,BLUP )2 is generally intractable, but it can be
approximated with

E(Ŷi,EBLUP − Ŷi,BLUP )2 ≈ tr

[
Cov

(
∂Ŷi,BLUP
∂σ

)
Cov(σ̂)

]

(cf. (3.34)). A commonly used further approximation of E(Ŷi,EBLUP − Ŷi,BLUP )2 is the
Prasad-Rao approximation

g3i(σ) = tr[(∂m′iGZ′sV
−1
s /∂σ)′Vs(∂m′iGZ′sV

−1
s /∂σ)Cov(σ̂)],

which is justified by noting that β̂ can be regarded as fixed for the order of the considered
approximation (Prasad and Rao 1990; Singh, Stukel and Pfeffermann 1998).

The approximate MSE of the EBLUP estimator Ŷi,EBLUP can now be expressed as the
four-term decomposition

(4.6) MSE(Ŷi,EBLUP ) ≈ g1i(σ) + g2i(σ) + g3i(σ) + g4i(σ).

The additional term g3i(σ) arises from the uncertainty about variance parameters σ,
which is not present in the BLUP estimation.

The estimation of the approximate MSE (4.6) has been studied e.g. by Prasad and Rao
(1990), Harville and Jeske (1992) and Datta and Lahiri (2000). Datta and Lahiri consider
the ML and REML methods in estimating σ and show that under a general normal linear
mixed model (3.2) with linear covariance structure (3.28) and some regularity conditions

E(g1i(σ̂)) ≈ g1i(σ)− g3i(σ)

E(g2i(σ̂)) ≈ g2i(σ)

E(g3i(σ̂)) ≈ g3i(σ),

when σ̂ is the approximately unbiased REML estimator of σ. If the ML method is
employed, a correction term accounting for the bias in estimates of σ should be added
to g1i(σ̂). The neglected terms in the approximate expected values are all of order
o(m−1), where m is the number of areas (Datta and Lahiri 2000).
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An estimator of the approximate MSE of the EBLUP estimator is then

(4.7) M̂SE(Ŷi,EBLUP ) = g1i(σ̂) + g2i(σ̂) + 2g3i(σ̂) + g4i(σ̂).

It is approximately unbiased under normal linear mixed models with a linear covariance
structure, if the variance parameters are estimated by REML. The restriction to linear
covariance structures can be problematic in longitudinal or spatial applications. Singh
et al. (2005) have considered the MSE estimation with area level models, where this
assumption is relaxed.

Simulation studies for exploring the performance of the estimator (4.7) have been carried
out e.g. by Prasad and Rao (1990), Datta and Ghosh (1991), Hulting and Harville (1991)
and Singh et al. (1998). According to these authors the estimator (4.7) performs mainly
well. Considerable positive bias may occur, when m is small and the area variance σ2

u is
very small compared to the unit-level error variance σ2

e (Singh et al. 1998).

According to the simulation results of Moura and Holt (1999) and the empirical results of
EURAREA Consortium (2004) (with various unit-level models) the g1i term contributes
generally over 90 % of the estimated MSE. The simulation study of our research (Chap-
ters 8–12) supports these findings. The proportion of g1i is typically at least 85 %, often
over 95 %, depending on data, model and area size. This suggests that the variation of
small area estimates is mostly related to the uncertainty about the latent area effects
(and other possible random effects in the model). On the other hand, the term that
contributes least to the MSE is g4i, the share of which is hardly ever over 1 %. In our
study the g3i term associated with the estimation of covariance parameters contributes
typically no more than 2 %. The contribution of the g2i term, associated with fixed
effects, seems to depend much on situation. With cross-sectional or complete panel data
the contribution is typically only 1–4 %. In rotating panel applications it is usually
between 5 and 14 %, and increases with area size. For large areas it may appear as high
as 50 %, reducing the share of the g1i term correspondingly.
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5 Mixed model for unit level panel data

5.1 Notation for finite panel population

Consider areas i = 1, 2, . . . ,m, and a series of time points t = 1, 2, . . . , T . Let Uit denote
the finite population of area i at time point t consisting of units j = 1, 2, . . . , Nit. We
define the longitudinal population of area i as

U∗i = Ui1 ∪ Ui2 ∪ · · · ∪ UiT

and call it panel population. It contains a total number of

N∗i =
T∑
t=1

Nit

"observational elements", in which we count the individual repeated observations on
unit j in area i over the T time points.

The adopted notation system, which is rather complicated, is as follows. When we
consider a cross-sectional population (with no repeated measurements), we denote it by
U , and when we consider a panel population (with T repeated measurements), we denote
it by U∗. Correspondingly, when we denote the cross-sectional number of separate units
j, we use N , and when we denote the number of observational elements in a panel
population, we use N∗. In addition, we will use the letter M to denote the total number
of units in panel populations.

For each time point t we define the joint cross-sectional population as

Ut = U1t ∪ U2t ∪ · · · ∪ Umt,

the size of which is

Nt =
m∑
i=1

Nit.

The overall panel population is the union

U∗ = U∗1 ∪ U∗2 ∪ · · · ∪ U∗m
= U1 ∪ U2 ∪ · · · ∪ UT

and it consists of

N∗ =
m∑
i=1

N∗i =
T∑
t=1

Nt

observational elements. A tabular summary of this notation is given in Table 5.1.
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Table 5.1. The notation for population sizes.

time
area 1 2 . . . T total
1 N11 N12 . . . N1T N∗1
2 N21 N22 . . . N2T N∗2
...

...
...

...
...

m Nm1 Nm2 . . . NmT N∗m
total N1 N2 . . . NT N∗

In the course of time some units usually leave the population and other units enter it,
which implies that the populations Uit and their sizes Nit do not keep the same over the
time points and the number of observational elements is not the same for all units in
the area. We denote the number of observational elements (i.e. repeated observations)
on unit j from area i by Tij, where 1 ≤ Tij ≤ T .

The total "cross-sectional" number of separate units j, which appear in the panel pop-
ulation U∗i (meaning that they appear in U∗ on at least one occasion t) is denoted by
Mi. Thus, in introducing the mixed model for the panel data we will generally have
j = 1, 2, . . . ,Mi. This notation is illustrated with the example in Table 5.2. We also
note that

N∗i =

Ni∑
j=1

Tij.

Table 5.2. A panel population U∗i of area i with Mi = 7 units and T = 5 time points. The
"X" marks an observational element.

time
unit 1 2 3 4 5
1 X X Ti1 = 2
2 X X X X Ti2 = 4
3 X X X X X Ti3 = 5
4 X X X X X Ti4 = 5
5 X X X X X Ti5 = 5
6 X X X X Ti6 = 4
7 X X Ti7 = 2

Ni1 = 5 Ni2 = 6 Ni3 = 5 Ni4 = 6 Ni5 = 5 N∗i = 27

We denote the number of separate units in the overall panel population U∗ by

M =
m∑
i=1

Mi.
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5.2 Mixed model formulation

Let y denote the response (or target variable) and consider p covariates (or auxiliary
variables) x = (x1, x2, . . . , xp).

Define the following linear mixed model for the random observation yijt of unit j in area
i at time t:

(5.1) yijt = µt + x′ijtβ + ui + vij + eijt,

where ui is the random area effect, vij is the random unit effect and eijt is the error term.
We recall that (5.1) is essentially similar to the two-fold nested error regression model
of Stukel and Rao (1999). In the model equation we distinguish the p × 1 vector β of
fixed regression coefficients of x variables and the fixed time-specific intercept µt. In this
model we assume that β keeps constant over time. Instead, the intercept term is allowed
to vary due to the time effect. This is equivalent to introducing a fixed categorical time
factor with T levels, which in turn is equivalent to introducing orthogonal polynomials
for trends up to order T−1. We prefer the categorical time effect (to the linear trend, for
instance), because it gives a "saturated" fit for response means at different time points,
thus helping us to avoid unnecessary bias in time-specific small area estimates.

Later in this text, however, we do not separate µt’s from the regression coefficients,
except when necessary. Instead, we regard µt’s (t = 1, 2, . . . , T ) as elements of the fixed
parameter vector β and let the vector x contain also the corresponding dummy variables,
which pick the specific time point t out of the time points 1, 2, . . . , T .

From the perspective of multilevel models (Goldstein 1995) the model (5.1) is a three-
level model with residual eijt at level 1 (observation or measurement level), unit effect
vij at level 2 (individual level) and area effect ui at level 3 (area level). The random
effects ui, vij and eijt are assumed mutually independent with distributions

ui
i.i.d.∼ N(0, σ2

u)

vij
i.i.d.∼ N(0, σ2

v)

eijt
i.i.d.∼ N(0, σ2

e).

The random effects define the covariance structure of variables yijt. The considered
model is a variance component model with variance components σ2

u, σ2
v and σ2

e , yielding

V ar(yijt) = σ2
u + σ2

v + σ2
e .

The random area and unit effects are needed also in making the model to allow for
the intra-area and intra-unit correlation among yijt’s. This is advisable since the units
coming from the same area often tend to be homogeneous and there usually exists a
strong covariance between the repeated observations from the same unit. However, in
certain cases, especially when the number of areas is small, the area effect could also be
considered fixed. This is equivalent to assuming no intra-area correlation.
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In some applications the fixed time effect has been replaced with a random one. Then
the observations coming from the same time point would be correlated (see Section 2.6).

In the matrix formulation of the model we define the longitudinal response vector of
unit j in area i, where j = 1, 2, . . . ,Mi, as

yij =


yij1
yij2
...

yijTij

 (Tij × 1).

The model equation for yij takes the form

(5.2) yij = Xijβ + 1Tij
ui + 1Tij

vij + eij,

where

Xij =


x′ij1
x′ij2
...

x′ijTij

 (Tij × p)

and

eij =


eij1
eij2
...

eijTij

 (Tij × 1).

The vector 1Tij
is the unity vector of Tij elements.

Collecting the vectors yij into one panel population vector of area i gives

yi =


yi1
yi2
...

yiMi

 (N∗i × 1),

and the model equation for yi is

(5.3) yi = Xiβ + Z1iui + Z2ivi + ei,

where

Xi =


Xi1

Xi2
...

XiMi

 , (N∗i × p)

57



Z1i = 1N∗i =


1Ti1

1Ti2

...
1TiMi

 , (N∗i × 1)

Z2i = ⊕Mi
j=11Tij

=


1Ti1

0 . . . 0
0 1Ti2

. . . 0
...

...
...

0 0 . . . 1TiMi

 , (N∗i ×Mi)

vi =


vi1
vi2
...

viMi

 (Mi × 1)

and

ei =


ei1
ei2
...

eiMi

 . (N∗i × 1)

By uniting the ui and vi into one random effect vector ui of area i we can write the
model equation (5.3) as

(5.4) yi = Xiβ + Ziui + ei

with

Zi = [Z1i Z2i] =


1Ti1

1Ti1
0 . . . 0

1Ti2
0 1Ti2

. . . 0
...

...
...

...
1TiMi

0 0 . . . 1TiMi

 (N∗i × (1 +Mi))

and

ui =

[
ui
vi

]
=


ui
vi1
vi2
...

viMi

 . ((1 +Mi)× 1)

Finally, let

y =


y1

y2
...

ym

 (N∗ × 1)
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be the response vector of the overall panel population and write

(5.5) y = Xβ + Zu + e

with

X =


X1

X2
...

Xm

 , (N∗ × p)

Z = ⊕mi=1Zi =


Z1 0 . . . 0
0 Z2 . . . 0
...

...
...

0 0 . . . Zm

 (N∗ × (m+M))

and

u =


u1

u2
...

um

 =



u1

v1

u2

v2
...
um
vm


((m+M)× 1).

5.3 Covariance structure

The model (5.1) is a variance component model with variance components V ar(ui) = σ2
u,

V ar(vij) = σ2
v and V ar(eijt) = σ2

e . It induces a relatively simple covariance structure
for the observations yijt.

The variance of observation yijt is

V ar(yijt) = σ2
u + σ2

v + σ2
e .

This is constant over measurements t = 1, 2, . . . , T ; an assumption which is not always
realistic, however.

The covariance of two observations yijt and yijt′ from the same unit ij at different time
points (t 6= t′) is

Cov(yijt, yijt′) = σ2
u + σ2

v .

The corresponding intra-unit correlation or autocorrelation between two arbitrary mea-
surements for unit ij, is then a constant

(5.6) ρij =
σ2
u + σ2

v

σ2
u + σ2

v + σ2
e

.
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Due to the random area effect, the observations of two different units ij and ij′ (j 6= j′)
from the same area i also have the covariance

Cov(yijt, yij′t′) = σ2
u,

no matter if t = t′ or t 6= t′. The intra-area correlation, due to the clustering effect of
area, is now

(5.7) ρi =
σ2
u

σ2
u + σ2

v + σ2
e

.

Units (and observations) coming from different areas i and i′ are not correlated.

According to the model the correlation between two repeated measurements on the same
unit has a constant value. The covariance structure of uniform correlations is known as
compound symmetry. In terms of the above variance components the covariance matrix
of the y observations of unit ij is

Cov(yij) = Vij =


σ2
u + σ2

v + σ2
e σ2

u + σ2
v . . . σ2

u + σ2
v

σ2
u + σ2

v σ2
u + σ2

v + σ2
e . . . σ2

u + σ2
v

...
...

...
σ2
u + σ2

v σ2
u + σ2

v . . . σ2
u + σ2

v + σ2
e

 (Tij × Tij).

Other covariance structures for the repeated measurements could also be considered.
One popular alternative is the first-order autoregressive structure AR(1), which lets
the covariance decay as the distance between measurements increases. AR(1) is often
found realistic in repeated measurement studies and is not difficult to specify within the
framework of linear mixed models. For instance, we can introduce a model

(5.8) yijt = µt + x′ijtβ + ui + eijt,

which differs from the model (5.1) by the omission of unit effect vij and letting the error
terms eijt from the same unit ij correlate according to the AR(1) structure. This means
that the vectors

eij =
[
eij1 eij2 . . . eijTij

]′
of errors follow now independently a multivariate normal distribution NTij

(0,R), where
the covariance matrix R has the AR(1) form

R = σ2
e


1 ρ ρ2 . . . ρTij−1

ρ 1 ρ . . . ρTij−2

ρ2 ρ 1 . . . ρTij−3

...
...

...
...

ρTij−1 ρTij−2 ρTij−3 . . . 1

 (Tij × Tij).
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The non-zero autocorrelation parameter ρ compensates for the omission of unit effects.
For yij the model (5.8) gives a covariance matrix

Cov(yij) = Vij =


σ2
u + σ2

e σ2
u + ρσ2

e . . . σ2
u + ρTij−1σ2

e

σ2
u + ρσ2

e σ2
u + σ2

e . . . σ2
u + ρTij−2σ2

e
...

...
...

σ2
u + ρTij−1σ2

e σ2
u + ρTij−2σ2

e . . . σ2
u + σ2

e

 (Tij × Tij).

However, we do not apply the AR(1) model here, in spite of some appealing properties of
it. The reason is that in estimation of small area totals or means by linear mixed models,
the existing estimators of the approximate MSE (originating from seminal papers of
Kackar and Harville (1984) and Prasad and Rao (1990)) meet problems. To be precise,
their bias correction terms are valid only for covariance structures of linear form (3.28),
which make the second derivatives in the Taylor series expansion vanish (Datta and
Lahiri 2000, Rao 2003 p. 109, also Kenward and Roger 1997). The AR(1) structure does
not satisfy this requirement because of the powers of ρ.

Going back to the three-level variance component model (5.1) we note that since the area
effects ui are assumed independent, the covariance matrix V of the overall population
vector y is block-diagonal:

Cov(y) = V = ⊕mi=1Vi =


V1 0 . . . 0
0 V2 . . . 0
...

...
...

0 0 . . . Vm

 (N∗ ×N∗),

where Vi is the covariance matrix of data vector yi of area i. Using the notation of
models (5.3) and (5.4) the N∗i ×N∗i covariance matrix Vi is

Cov(yi) = Vi = JN∗i σ
2
u + Z2iZ

′
2iσ

2
v + IN∗i σ

2
e

= ZiGiZ
′
i + Ri,

where JN∗i is the N∗i ×N∗i matrix of ones, Zi is given with (5.4),

Gi = Cov(ui) =

[
σ2
u 0′

0 σ2
vIMi

]
((1 +Mi)× (1 +Mi))

and
Ri = σ2

eIN∗i .

We note that the covariance matrix Vij of data vector yij can be written as

Cov(yij) = JTij
σ2
u + JTij

σ2
v + ITij

σ2
e .

We also note that the covariance matrix of vectors yij and yij′ , where j 6= j′, is

Cov(yij,yij′) = 1Tij
1′Tij′

σ2
u.

Thus, the area covariance matrix Vi is not block-diagonal.
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6 Small area estimation with mixed model for panel
data

6.1 Notation for sample data

Assume then that at each time point t = 1, 2, . . . , T a random sample st is drawn from
the cross-sectional population Ut and all the resulting samples s1, s2, . . . , sT contain the
same units, thus forming a complete panel sample data

s∗ = s1 ∪ s2 ∪ · · · ∪ sT

with T repeated observations for every unit in the data. Each cross-sectional sample st
divides into m areas so that

st = s1t ∪ s2t ∪ · · · ∪ smt,

where sit is the sample data set of area i at time t. On the other hand, the panel data
s∗ can be regarded as the union

s∗ = s∗1 ∪ s∗2 ∪ · · · ∪ s∗m

of the regional panel sample data sets

s∗i = si1 ∪ si2 ∪ · · · ∪ siT , i = 1, 2, . . . ,m.

A key point is here that the sampling design is typically specified for national purposes
and does not necessarily correspond well to the regional division in the population. For
instance, the strata can be constructed with no respect to small areas, which may appear
to be of interest. The sizes of regional panel data sets s∗1, . . . , s∗m are then random, and as
a consequence they can become very small, which gives rise to the small area estimation
problem.

Note that we assume here that the sampled units stay in their population and do not drop
out during the period when the observations are collected. This assumption pertains only
to the sample data, we do not require that the populations Uit or their sizes Nit should
keep constant over time. Also the assumption of constant samples will be explicitly
relaxed later in the context of rotating panel data.

We may denote the size of the regional sample sit by nit. However, in complete panel
data the sample size nit keeps the same for every time point t, which allows us to write
nit = ni for every i and t. We denote the size of the aggregated sample st at time t by

n =
m∑
i=1

ni

for every t = 1, 2, . . . , T .
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The total number of observations in panel data s∗i of area i is

n∗i =
T∑
t=1

nit = niT

and in the whole sample data s∗
n∗ = nT.

A summary of this sample size notation is given in Table 6.1.

Table 6.1. The notation for sample sizes in the case of complete panel data.

time point
area 1 2 . . . T total
1 n1 n1 . . . n1 n1T
2 n2 n2 . . . n2 n2T
...

...
...

...
...

m nm nm . . . nm nmT

total n n . . . n nT

Denote the set of non-sampled units (remainder) of Uit by rit, that is, Uit = sit∪ rit. The
non-sample size of area i at time t is then

Nrit = Nit − nit = Nit − ni

for every i and t. Correspondingly, Ut = st ∪ rt and the size of rt is

Nrt = Nt − n

for every t.

6.2 BLUP and EBLUP estimation of area total

First we arrange and partition the panel population U∗ into the sample s∗ and the non-
sample r∗ in the same way as in the case of the cross-sectional model (Section 4.3).
For brevity, we use in the following formulas subscripts s and r instead of s∗ and r∗,
respectively, even though they refer to panel data sets. Now the sample parts of the
response vector y and the other data matrices and vectors in model (5.5) have nT rows
and the non-sample parts respectively N∗ − nT rows. The model equation is

y =

[
ys
yr

]
=

[
Xs

Xr

]
β +

[
Zs

Zr

]
u +

[
es
er

]
.
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The corresponding partition of the covariance matrix Cov(y) = V is

V =

[
Vs Vsr

Vrs Vr

]
=

[
ZsGZ′s ZsGZ′r
ZrGZ′s ZrGZ′r

]
+

[
σ2
eInT 0
0 σ2

eIN∗−nT

]
,

where

G = Cov(u) =


G1 0 . . . 0
0 G2 . . . 0
...

...
...

0 0 . . . Gm

 ((M +m)× (M +m)).

The target is to estimate the total

Yit =
∑
j∈Uit

yijt = c′ity,

where the vector cit of ones and zeros is such that the ones pick the yijt’s, which belong
to area i at time t, out of y.

Applying the partition to cit yields

cit =

[
cits
citr

]
,

where cits picks the units in the sample sit from area i and citr picks those in the non-
sample rit, and we write the area total to be estimated as

Yit = c′itsys + c′itryr.

Again, the general prediction theorem gives the BLUP estimator

Ŷit,BLUP = c′itsys + c′itr[Xrβ̂ + VrsV
−1
s (ys −Xsβ̂)]

with the GLS estimator β̂ = (X′sV
−1
s Xs)

−1X′sV
−1
s ys. The formula for BLUP estimator

simplifies to

(6.1) Ŷit,BLUP =
∑
j∈sit

yijt + (
∑
j∈rit

x′ijt)β̂ +Nritũi +
∑
j∈rit

ṽij,

where ũi and ṽij are the BLUPs of the area effect ui and the unit effect vij, respectively,
obtained from the BLUP

ũ = GZ′sV
−1
s (ys −Xsβ̂)

of u. The sample data do not provide information on the non-sampled units, though.
Therefore the effects of the units, which belong to rit, are predicted with their expected
value zero and the BLUP estimator reduces to

(6.2) Ŷit,BLUP =
∑
j∈sit

yijt + (
∑
j∈rit

x′ijt)β̂ +Nritũi,
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which, in fact, is similar to the BLUP estimator (4.2) of the cross-sectional case.

When the covariance matrix V is unknown, we again estimate it by the REML method.
The empirical BLUP of Yit under REML estimation is now

(6.3) Ŷit,EBLUP =
∑
j∈sit

yijt + (
∑
j∈rit

x′ijt)β̂REML +Nritûi,

where β̂REML and the EBLUP ûi are obtained by substituting the known covariance
matrices with their REML estimates in the formulas of β̂ and ũ.

The population sums of auxiliary variables x in area i at time t must be known here. The
non-sample sum

∑
j∈rit x′ijt is then obtained by subtracting the corresponding sample

sum from the population sum.

From the computational point of view it is worth emphasizing that when the areas are
independent, like here, the covariance matrix V has a block-diagonal structure

V =


V1 0 . . . 0
0 V2 . . . 0
...

...
...

0 0 . . . Vm

 =


Z1G1Z

′
1 + R1 0 . . . 0

0 Z2G2Z
′
2 + R2 . . . 0

...
...

...
0 0 . . . ZmGmZ′m + Rm


(note that this block-diagonality applies to G and Z as well). Then it is practical to
compute the BLUP of each area-specific random effect vector

ui =

[
ui
vi

]
, i = 1, 2, . . . ,m,

separately with
ũi = GiZ

′
isV

−1
is (yis −Xisβ̂),

where yis,Xis,Zis and Vis all correspond to the area-specific subset s∗i of the observed
panel data s∗. In the EBLUP case the unknown covariance matrices are of course
replaced with their estimates.

6.3 Mean squared error

Consider first the BLUP estimator (6.2), where V is assumed known. The estimation
error is

Ŷit,BLUP − Yit = (
∑
j∈rit

x′ijt)β̂ +Nritũi −
∑
j∈rit

yijt

= (
∑
j∈rit

x′ijt)β̂ +Nritũi −
∑
j∈rit

(x′ijtβ + ui + vij + eijt)

= (
∑
j∈rit

x′ijt)(β̂ − β) +Nrit(ũi − ui)−
∑
j∈rit

(vij + eijt).
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Again, the BLUP estimator is model unbiased and the model-based mean squared error
of the estimator is

MSE(Ŷit,BLUP ) = V ar(Ŷit,BLUP − Yit)

=
[∑

j∈rit x′ijt Nrit

]
Cov

[
β̂ − β
ũi − ui

] [∑
j∈rit x′ijt
Nrit

]
+ V ar

[∑
j∈rit

(vij + eijt)

]

=
[
l′it m′it

]
Cov

[
β̂ − β
ũ− u

] [
lit

mit

]
+Nrit(σ

2
v + σ2

e),

where l′it = c′itrXr =
∑

j∈rit x′ijt and m′it = c′itrZr, which reduces to a row vector with
Nrit in the entry corresponding to ui and zeros elsewhere. Recall that the joint covariance
matrix of β̂ − β and ũ− u is given in (3.20) or, equivalently, in (3.21).

As with the cross-sectional model in Section 4.4, we can decompose the MSE as

MSE(Ŷit,BLUP ) = g1it(σ) + g2it(σ) + g4it(σ),

where g1it(σ) measures the uncertainty about random effects ui, g2it(σ) measures the
uncertainty from estimating β and g4it(σ) measures the uncertainty about the individual
yijt’s in rit.

When the variance parameters σ are unknown we estimate them. When the employed
estimators are at least approximately unbiased (e.g. REML estimator, ANOVA estima-
tor), the approximate MSE of the resulting EBLUP estimator of area total Yit has the
form

MSE(Ŷit,EBLUP ) ≈ g1it(σ) + g2it(σ) + g3it(σ) + g4it(σ)

seen already in (4.6), but the additional term g3it(σ) measures now the uncertainty
about σ = (σ2

u, σ
2
v , σ

2
e). The explicit formulas needed for computing g1it(σ), g2it(σ),

g3it(σ) and g4it(σ) will be given in (6.6)–(6.10).

Estimators of the "g terms" are obtained by replacing σ with its (approximately unbi-
ased) REML estimate σ̂ in above formulas. Recall that under the REML estimation

E(g1it(σ̂)) ≈ g1it(σ)− g3it(σ)

E(g2it(σ̂)) ≈ g2it(σ)

E(g3it(σ̂)) ≈ g3it(σ)

E(g4it(σ̂)) ≈ g4it(σ).

Thus, an approximately unbiased estimator of the approximate MSE is still

M̂SE(Ŷit,EBLUP ) = g1it(σ̂) + g2it(σ̂) + 2g3it(σ̂) + g4it(σ̂),

which is valid under regularity conditions and when covariance matrix V(σ) has the
linear structure (3.28).
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6.4 Computational formulas for MSE

6.4.1 Term g1it

The general formula of g1it(σ) is

g1it(σ) = m′it(G−GZ′sV
−1
s ZsG)mit,

where mit is a (m+M)× 1 vector with Nrit in the entry corresponding to ui and zeros
elsewhere. Recall that m is the number of areas and M = M1 + M2 + · · · + Mm is
the number of units in these areas. To utilize the block-diagonality of G, Z and V we
redefine mit as a (1 +Mi)× 1 vector

mit =
[
Nrit 0′

]′
to get

g1it(σ) = m′it(Gi −GiZ
′
isV

−1
is ZisGi)mit,

where Gi, Zis and Vis are the area-specific blocks. Now straightforward calculation
gives

g1it(σ) = N2
rit

(σ2
u − σ2

u1
′
niT

V−1
is 1niTσ

2
u).

Define then
γ =

σ2
v

σ2
v + σ2

e/T
.

To find the inverse of covariance matrix Vis we write

(6.4)
Vis = σ2

uJniT + σ2
v

[
⊕ni
j=1JT

]
+ σ2

eIniT

= Ai + σ2
u1niT1′niT

,

where
Ai = σ2

v

[
⊕ni
j=1JT

]
+ σ2

eIniT = ⊕ni
j=1Aij (niT × niT )

with

(6.5) Aij = σ2
vJT + σ2

eIT .

By applying a well-known result on matrix inverses (see e.g. Rao 1973, p. 33) to (6.4)
we obtain

V−1
is = A−1

i −Bi,

where
Bi =

σ2
u(1− γ)2JniT

σ4
e + niTσ2

uσ
2
e(1− γ)

and
A−1
i = ⊕ni

j=1A
−1
ij ,
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since Ai is block-diagonal. Further, the inverse of (6.5) is

A−1
ij =

1

σ2
e

(
IT −

γ

T
JT

)
(T × T ).

With these results we end up to

1′niT
V−1
is 1niT =

niT (1− γ)

σ2
e + niT (1− γ)σ2

u

,

which leads to a computationally convenient formula

(6.6) g1it(σ) = N2
rit
σ2
u

[
σ2
e

σ2
e + niT (1− γ)σ2

u

]
.

6.4.2 Term g2it

The general formula of g2it(σ) is

g2it(σ) = (l′it −m′itGZ′sV
−1
s Xs)(X

′
sV
−1
s Xs)

−1(lit −X′sV
−1
s ZsGmit),

and by the block-diagonality of G, Z and V it receives the area-specific form

g2it(σ) = (l′it −m′itGiZ
′
isV

−1
is Xis)(X

′
sV
−1
s Xs)

−1(lit −X′isV
−1
is ZisGimit),

with mit redefined again as
mit =

[
Nrit 0′

]′
.

Note that (X′sV
−1
s Xs)

−1 is the covariance matrix (3.23) of the GLS estimator β̂ obtained
from the overall sample data under known Vs.

Writing
b′it = m′itGiZ

′
isV

−1
is (1× niT )

and
d′it = l′it − b′itXis (1× p)

we have

(6.7) g2it(σ) = Cov(d′itβ̂) = d′it(X
′
sV
−1
s Xs)

−1dit.

For b′it we get the expression

b′it = Nritσ
2
u1
′
niT

V−1
is = Nritσ

2
u

[
1− γ

σ2
e + niT (1− γ)σ2

u

]
1′niT

and finally

(6.8) d′it =
∑
j∈rit

x′ijt −
[

Nrit(1− γ)σ2
u

σ2
e + niT (1− γ)σ2

u

] ∑
jt∈s∗i

x′ijt,

where the latter summation over the sample panel data s∗i means that the x′ijt vectors
are summed over all niT observations in s∗i . That is, the sum is calculated over all
occasions t = 1, 2, . . . , T and all sampled units j = 1, 2, . . . , ni in area i.

68



6.4.3 Term g3it

This term is generally intractable and we employ the Prasad-Rao approximation

g3it(σ) ≈ tr

[(
∂b′it
∂σ

)
Vis

(
∂b′it
∂σ

)′
Cov(σ̂)

]
,

where Cov(σ̂) is the asymptotic covariance matrix of estimates of σ = (σ2
u, σ

2
v , σ

2
e). Here

we use the REML estimation and take Cov(σ̂) as the inverse of the information matrix
obtained from the REML log likelihood.

We obtain the derivative ∂b′it/∂σ from the expression

b′it =

[
σ2
u

niTσ2
u + Tσ2

v + σ2
e

]
Nrit1

′
niT
.

Then
∂b′it
∂σ

=
Nrit

(niTσ2
u + Tσ2

v + σ2
e)

2

(Tσ2
v + σ2

e)1
′
niT

−Tσ2
u1
′
niT

−σ2
u1
′
niT

 .
Noting that

1′niT
Vis1niT = (niT )2σ2

v + niT
2σ2

u + niTσ
2
e

the formula of g3it can be developed into

(6.9) g3it(σ) =
N2
rit
niT

(niTσ2
u + Tσ2

v + σ2
e)

3

(Tσ2
v + σ2

e)
−Tσ2

u

−σ2
u

′Cov(σ̂)

(Tσ2
v + σ2

e)
−Tσ2

u

−σ2
u

 .

6.4.4 Term g4it

This term, arising from the errors in predicting individual yijt’s in rit, is simply

(6.10) g4it(σ) = (σ2
u + σ2

e)Nrit .
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7 Small area estimation with mixed model for rotating
panel data

7.1 Notation for sample data

We turn to the case where data are collected with a rotating panel design. Then at
each time point t = 1, 2, . . . , T a random sample st is taken from population Ut, and the
resulting cross-sectional samples s1, s2, . . . , sT have some overlap according to a scheme
specified in advance. Each cross-sectional sample st further divides into m areas so that

st = s1t ∪ s2t ∪ · · · ∪ smt,

where sit is the sample from Uit, the population of area i at time t. We denote the size
of sit by nit and the total sample size at time t by

nt =
m∑
i=1

nit.

The cross-sectional samples s1, s2, . . . , sT compose a longitudinal data set

s∗ = s1 ∪ s2 ∪ · · · ∪ sT

with Tij (1 ≤ Tij ≤ T ) repeated observations for every unit j from area i. The data s∗
can be also regarded as the union

s∗ = s∗1 ∪ s∗2 ∪ · · · ∪ s∗m

of the regional longitudinal sample data sets

s∗i = si1 ∪ si2 ∪ · · · ∪ siT , i = 1, 2, . . . ,m.

The total number of observations in data s∗i is

n∗i =
T∑
t=1

nit

and in the whole longitudinal data s∗ correspondingly

n∗ =
m∑
i=1

n∗i =
T∑
t=1

nt.

A summary of this sample size notation is given in Table 7.1.

In addition, we defineMi as the number of separate units j from the area i, which appear
in the sample data s∗i (that is, they appear in s∗i at least on one occasion t). In fact,
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we used the same symbol already with the notation for population data in the same
purpose. However, we believe that this does not cause any confusion. We note now that

n∗i =

Mi∑
j=1

Tij.

An example of using this notation is given in Table 7.2. We denote the number of
separate units in the overall longitudinal data s∗ by

M =
m∑
i=1

Mi.

Table 7.1. The notation for sample sizes in the case of rotating panel data.

time
area 1 2 . . . T total
1 n11 n12 . . . n1T n∗1
2 n21 n22 . . . n2T n∗2
...

...
...

...
...

m nm1 nm2 . . . nmT n∗m
total n1 n2 . . . nT n∗

Table 7.2. A longitudinal data s∗i of area i with Mi = 7 units and T = 5 time points. The
"X" marks an observational element.

time
unit 1 2 3 4 5
1 X Ti1 = 1
2 X X Ti2 = 2
3 X X X Ti3 = 3
4 X X X X Ti4 = 4
5 X X X X X Ti5 = 5
6 X X X X Ti6 = 4
7 X X X Ti7 = 3

ni1 = 5 ni2 = 5 ni3 = 5 ni4 = 4 ni5 = 3 n∗i = 22

Again, we denote the remainder or the set of non-sampled units in Uit by rit. The
non-sample size of area i at time t is then

Nrit = Nit − nit

for every i and t. Correspondingly, the remainder of the overall cross-sectional population
Ut is rt, the size of which is

Nrt = Nt − nt
for every t.
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In a rotating panel design the sampled units are observed at specified time points within
a period and then they are dropped out. At every time point a specific subset of units,
which have been sampled earlier, leaves the data and a new subset is sampled for a
replacement. This kind of subset is often called a panel or a wave. The rest of the
earlier-sampled data stays at least for the next time point. As a result, the composition
of the sample data partially changes between time points and there is certain overlap
between the consecutive samples. This procedure is called rotation and it follows a
specific design defining the scheme, by which the sampled units stay in the sample, and
the degree of overlap between occasions. A variety of continuing surveys are implemented
in this way. It is important to note that in principle the incompleteness of the panel data
is now determined only by the design, making the selection mechanism fully ignorable.
In practice it is of course possible to have non-random drop-outs.

A fragmentary example of continuing rotation scheme is given in Table 7.3. There a
wave of two units enters the data at each time point, stays for two occasions, skips an
occasion, comes back for one occasion and finally drops out. For each time point t there
is a cross-sectional sample data set of three waves and nt = 6 units. For instance, at
time point 1 the data consist of waves 1, 3 and 4. Of these, wave 1 appears for the
last time before dropping out, wave 3 appears for the second time and wave 4 has just
entered the data. This scheme yields a 1/3 overlap between any two samples which are
not more than three occasions apart from each other. Otherwise the overlap is zero. For
example, the overlaps in "occasion pairs" (1, 2), (1, 3) and (1, 4) are all 1/3, whereas the
overlap in (1, 5) is zero.

Table 7.3. A fragment of rotating panel design with T = 5 time points. The "X" marks an
observation.

time
wave unit 1 2 3 4 5
1 1 X

2 X
2 3 X

4 X
3 5 X X

6 X X
4 7 X X X

8 X X X
5 9 X X X

10 X X X
6 11 X X

12 X X
7 13 X X

14 X X
8 15 X

16 X
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7.2 BLUP and EBLUP estimation of small area total

The estimation of area total from rotating panel data follows the same outlines as the
estimation from complete panel data. The target is to estimate the total

Yit =
∑
j∈Uit

yijt =
∑
j∈sit

yijt +
∑
j∈rit

yijt,

where sit and rit again denote the sample and the remainder of area i at time t, respec-
tively. The general prediction theorem leads to the BLUP estimator

(7.1) Ŷit,BLUP =
∑
j∈sit

yijt + (
∑
j∈rit

x′ijt)β̂ +Nritũi +
∑
j∈rit

ṽij,

where β̂ = (X′sV
−1
s Xs)

−1X′sV
−1
s ys and ũi and ṽij are the BLUP’s of the area effect ui

and the unit effect vij, obtained from the vector

ũ = GZ′sV
−1
s (ys −Xsβ̂).

Note again that the subscript s in ys,Xs,Vs and Zs actually refers to longitudinal
sample data set s∗ so that all the observed temporal data is used in the estimation. The
subscript s is used instead of s∗ for convenience.

The estimator (7.1) has exactly the same form as the estimator (6.1) in the panel case.
However, under the panel design we noted that∑

j∈rit

ṽij = 0,

because the sample data do not provide information on vij’s in rit. The case of rotat-
ing panel design is different. At each time point t the rotation scheme partitions the
remainder rit as

rit = r1it ∪ r2it,

where the set r1it contains those units from area i, which do not appear the sample at
time t, but do appear in the longitudinal data s∗i at some other time, and the set r2it
contains those units from area i, which do not appear in the longitudinal data s∗i (i.e.
they have never been sampled). We denote the sizes of r1it and r2it by Nr1it

and Nr2it
,

respectively. Then
Nrit = Nr1it

+Nr2it

and
Mi = nit +Nr1it

,

where Mi denotes the total number of separate units in the data s∗i .

The partition can be illustrated with Table 7.3 (or with Tables 2.2 and 2.3 shown earlier).
If we consider Table 7.3 as an example of s∗i , we see that for t = 5, for instance, the
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sample si5 consists of units 9, 10 and 13–16. The first "remainder set" r1i5 consists of
units 1–8, 11 and 12 and the second set r2i5 consists of the rest of Ui5, which does not
appear in the table. We note also that Mi = 16, ni5 = 6 and Nr1i5

= Mi − ni5 = 10.

Now, due to the rotation, information on the vij’s in r1it is available in the data. Thus,
they can be predicted and, unlike in the panel case, the predictors contribute to the
estimator (7.1). The BLUP estimator Ŷit,BLUP for the rotating panel design is then

(7.2) Ŷit,BLUP =
∑
j∈sit

yijt + (
∑
j∈rit

x′ijt)β̂ +Nritũi +
∑
j∈r1it

ṽij.

It is anticipated that the contribution from the predicted vij’s improves accuracy of the
BLUP estimator.

The EBLUP estimator is correspondingly

(7.3) Ŷit,EBLUP =
∑
j∈sit

yijt + (
∑
j∈rit

x′ijt)β̂ +Nritûi +
∑
j∈r1it

v̂ij,

where the estimator β̂ and predictors ûi and v̂ij are obtained using the REML estimates
of variance components σ.

7.3 Mean squared error

Again, consider first the BLUP estimator (7.2). The estimation error is

Ŷit,BLUP − Yit = (
∑
j∈rit

x′ijt)β̂ +Nritũi +
∑
j∈r1it

ṽij −
∑
j∈rit

(x′ijtβ + ui + vij + eijt)

= (
∑
j∈rit

x′ijt)(β̂ − β) +Nrit(ũi − ui) +
∑
j∈r1it

(ṽij − vij)−
∑
j∈r2it

vij −
∑
j∈rit

eijt.

The BLUP estimator is model unbiased.

We let vr1it
denote the Nr1it

× 1 vector of those vij’s, which belong to the units in the
set r1it. Now ∑

j∈r1it

(ṽij − vij) = 1′Nr1it
(ṽr1it

− vr1it
)

and the model-based mean squared error of the BLUP estimator can be written as

MSE(Ŷit,BLUP ) = V ar(Ŷit,BLUP − Yit)

=
[∑

j∈rit x′ijt Nrit 1′Nr1it

]
Cov

 β̂ − β
ũi − ui

ṽr1it
− vr1it

∑j∈rit x′ijt
Nrit

1Nr1it


+ V ar

[∑
j∈r2it

vij +
∑
j∈rit

eijt

]

=
[
l′it m′it

]
Cov

[
β̂ − β
ũi − ui

] [
lit

mit

]
+Nr2it

σ2
v +Nritσ

2
e ,
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where
ui =

[
ui
vi

]
, ((1 +Mi)× 1)

l′it =
∑
j∈rit

x′ijt

and
m′it =

[
Nrit δi1 δi2 . . . δiMi

]
, (1× (1 +Mi))

where
δij =

{
0, if unit ij is in the sample data sit
1, if unit ij is in the remainder part r1it

for each j = 1, 2, . . . ,Mi. Thus, the vector m′it contains Nr1it
ones and nit = Mi −Nr1it

zeros.

In the computations we again utilize the decomposition

MSE(Ŷit,BLUP ) = g1it(σ) + g2it(σ) + g4it(σ),

where g1it(σ) measures the uncertainty about random effects, g2it(σ) measures the un-
certainty about β and g4it(σ) measures the uncertainty about the individual yijt’s in rit.
The approximate MSE of the EBLUP estimator is correspondingly

MSE(Ŷit,EBLUP ) ≈ g1it(σ) + g2it(σ) + g3it(σ) + g4it(σ),

where the additional term g3it(σ) again measures the uncertainty about σ = (σ2
u, σ

2
v , σ

2
e).

The explicit formulas needed for computing g1it(σ), g2it(σ), g3it(σ) and g4it(σ) are given
in the next section. The approximately unbiased estimator of the approximate MSE is
still

M̂SE(Ŷit,EBLUP ) = g1it(σ̂) + g2it(σ̂) + 2g3it(σ̂) + g4it(σ̂)

and it is valid especially with REML estimation under regularity conditions and when
covariance matrix V(σ) has the linear structure (3.28).

7.4 Computational formulas for MSE

7.4.1 Term g1it

The basic formula of g1it(σ) is

(7.4)
g1it(σ) = m′it(Gi −GiZ

′
isV

−1
is ZisGi)mit

= m′itGimit −m′itGiZ
′
isV

−1
is ZisGimit,

where Gi, Zis and Vis are the blocks of Gs, Zs and Vs specific to area i. However, the
formula (7.4) is not feasible for straightforward computing, because it requires inverting
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the often large Vis. By utilizing the relatively simple structure of Vis we work out an
alternative formula for g1it(σ), where the computation of V−1

is is avoided.

Deriving the inverse of Vis follows here the same guidelines as in the panel data case,
but the practice is somewhat more complicated due to unequal Tij’s. We first write the
covariance matrix Vis as

Vis = σ2
uJn∗i + σ2

v

[
⊕Mi
j=1JTij

]
+ σ2

eIn∗i (n∗i × n∗i )
= σ2

u1n∗i 1
′
n∗i

+ Ai,

where
Ai = ⊕Mi

j=1

(
σ2
vJTij

+ σ2
eITij

)
.

Then we apply the result of Rao (1973, p. 33) to obtain

(7.5) V−1
is = A−1

i −
A−1
i 1n∗i 1

′
n∗i

A−1
i σ2

u

1 + 1′n∗i A
−1
i 1n∗i σ

2
u

,

where
A−1
i = ⊕Mi

j=1

[
1

σ2
e

(
ITij
− γij
Tij

JTij

)]
,

by e.g. McCulloch and Searle (2001, p. 292), with

γij =
σ2
v

σ2
v + σ2

e/Tij
.

Substituting (7.5) into (7.4) yields the expression

(7.6)

g1it(σ) =m′itGimit −m′itGiZ
′
isA

−1
i ZisGimit

+
m′itGiZ

′
isA

−1
i 1n∗i 1

′
n∗i

A−1
i ZisGimitσ

2
u

1 + 1′n∗i A
−1
i 1n∗i σ

2
u

,

which is computationally more convenient than (7.4). The computing of g1it(σ) using
(7.6) can be further simplified by utilizing some additional results, which are presented
in the following.

First we note that

(7.7) m′itGi =
[
Nritσ

2
u δi1σ

2
v δi2σ

2
v . . . δiMi

σ2
v

]
(1× (1 +Mi))

so that the nit entries corresponding to the units in sit are equal to zero and the Nr1it

entries corresponding to the units in r1it are equal to σ2
v . The first term of the right-

hand-side of (7.6) becomes then

(7.8) m′itGimit = N2
rit
σ2
u +Nr1it

σ2
v .
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Further,

(7.9) A−1
i 1n∗i =

1

σ2
e

 (1− γi1)1Ti1

...
(1− γiMi

)1TiMi


yielding

(7.10) 1′n∗i A
−1
i 1n∗i =

1

σ2
e

Mi∑
j=1

Tij(1− γij) =

Mi∑
j=1

(σ2
v + σ2

e/Tij)
−1,

(7.11) Z′isA
−1
i 1n∗i =

1

σ2
e


∑Mi

j=1 Tij(1− γij)
Ti1(1− γi1)

...
TiMi

(1− γiMi
)

 =


∑Mi

j=1(σ
2
v + σ2

e/Tij)
−1

(σ2
v + σ2

e/Ti1)
−1

...
(σ2

v + σ2
e/TiMi

)−1


and

(7.12)

Z′isA
−1
i Zis

=


∑Mi

j=1(σ
2
v + σ2

e/Tij)
−1 (σ2

v + σ2
e/Ti1)

−1 . . . (σ2
v + σ2

e/TiMi
)−1

(σ2
v + σ2

e/Ti1)
−1 (σ2

v + σ2
e/Ti1)

−1 . . . 0
...

... . . . ...
(σ2

v + σ2
e/TiMi

)−1 0 . . . (σ2
v + σ2

e/TiMi
)−1

 .
It can be helpful to note that the summing over j = 1, 2, . . . ,Mi is equivalent to summing
over the set sit ∪ r1it of Mi = nit +Nr1it

units j.

By (7.7) and (7.12) we arrive at the expression

(7.13)

m′itGiZ
′
isA

−1
i ZisGimit

= N2
rit
σ4
u

Mi∑
j=1

(σ2
v + σ2

e/Tij)
−1 + (2Nritσ

2
uσ

2
v + σ4

v)
∑
j∈r1it

(σ2
v + σ2

e/Tij)
−1

for the second term of the right-hand-side of (7.6).

For the last term of the right-hand-side of (7.6) we get

(7.14)

m′itGiZ
′
isA

−1
i 1n∗i 1

′
n∗i

A−1
i ZisGimitσ

2
u

1 + 1′n∗i A
−1
i 1n∗i σ

2
u

=

[
Nritσ

2
u

∑Mi

j=1(σ
2
v + σ2

e/Tij)
−1 + σ2

v

∑
j∈r1it

(σ2
v + σ2

e/Tij)
−1
]2
σ2
u

1 + σ2
u

∑Mi

j=1(σ
2
v + σ2

e/Tij)
−1

by (7.7), (7.10) and (7.11).

From (7.8), (7.13) and (7.14) we obtain an expression for (7.6) in scalar form.
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7.4.2 Term g2it

The general formula for g2it(σ) is

(7.15) g2it(σ) = Cov(d′itβ̂) = d′it(X
′
sV
−1
s Xs)

−1dit,

where
d′it = l′it −m′itGiZ

′
isV

−1
is Xis. (1× p)

Recall that the vectors l′it and m′it are

l′it =
∑
j∈rit

x′ijt

and
m′it =

[
Nrit δi1 δi2 . . . δiMi

]
.

The covariance matrix Cov(β̂) = (X′sV
−1
s Xs)

−1 can be obtained e.g. from the mixed
model equations.

The straight inversion of Vis in d′it can again be avoided by applying (7.5). Then we get
the expression

(7.16) d′it = l′it −m′itGiZ
′
isA

−1
i Xis +

m′itGiZ
′
isA

−1
i 1n∗i 1

′
n∗i

A−1
i Xisσ

2
u

1 + 1′n∗i A
−1
i 1n∗i σ

2
u

for d′it. The computing of (7.16) can be further simplified by making use of (7.7), (7.10),
(7.11) and additional results given below.

First,

(7.17) 1′n∗i A
−1
i Xis =

1

σ2
e

Mi∑
j=1

[(1− γij)
∑
t

x′ijt]

and

(7.18) Z′isA
−1
i Xis =

1

σ2
e


∑Mi

j=1[(1− γij)
∑

t x
′
ijt]

(1− γi1)
∑

t x
′
i1t

...
(1− γiMi

)
∑

t x
′
iMit

 .
The summation

∑
t x
′
ijt in (7.17) and (7.18) gives a vector where the auxiliary data

vectors x′ijt of unit j in area i are summed over those time points t ∈ {1, 2, . . . , T} at
which the unit is observed. Due to the rotating panel design, these time points are not
the same for all units.
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By (7.7) and (7.18) we get

(7.19)

m′itGiZ
′
isA

−1
i Xis

=
1

σ2
e

{
Nritσ

2
u

Mi∑
j=1

[(1− γij)
∑
t

x′ijt] + σ2
v

∑
j∈r1it

[(1− γij)
∑
t

x′ijt]

}

for the second term of the right-hand-side of (7.16). For the third term of the right-
hand-side of (7.16) we get

(7.20)

m′itGiZ
′
isA

−1
i 1n∗i 1

′
n∗i

A−1
i Xisσ

2
u

1 + 1′n∗i A
−1
i 1n∗i σ

2
u

=
Nritσ

2
u

∑Mi

j=1(σ
2
v + σ2

e/Tij)
−1 + σ2

v

∑
j∈r1it

(σ2
v + σ2

e/Tij)
−1

1 + σ2
u

∑Mi

j=1(σ
2
v + σ2

e/Tij)
−1

× σ2
u

σ2
e

Mi∑
j=1

[(1− γij)
∑
t

x′ijt]

by (7.7), (7.10), (7.11) and (7.17). Substituting (7.19) and (7.20) into (7.16) leads to an
alternative computational formula for d′it.

7.4.3 Term g3it

The Prasad-Rao approximation of g3it(σ) has the general form

g3it(σ) ≈ tr

[(
∂b′it
∂σ

)
Vis

(
∂b′it
∂σ

)′
Cov(σ̂)

]
,

where Cov(σ̂) is the asymptotic covariance matrix of (e.g. REML) estimates of σ =
(σ2

u, σ
2
v , σ

2
e) and

b′it = m′itGiZ
′
isV

−1
is (1× n∗i ).

By applying (7.5) the vector b′it can be written as

(7.21) b′it = m′itGiZ
′
isA

−1
i − ait1′n∗i A

−1
i σ2

u,

where

(7.22) ait = ait(σ) =
m′itGiZ

′
isA

−1
i 1n∗i

1 + 1′n∗i A
−1
i 1n∗i σ

2
u

=

∑Mi

j=1 Tij
Nritσ

2
u+δijσ

2
v

Tijσ2
v+σ2

e

1 + σ2
u

∑Mi

j=1
Tij

Tijσ2
v+σ2

e

.
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In addition, we have

(7.23)

m′itGiZ
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−1
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and

(7.24) 1′n∗i A
−1
i σ2
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σ2

u

Ti1σ2
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e...
σ2
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TiMi
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′ 1′Ti1

. . . 0′

... . . . ...
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 .
Substituting (7.23) and (7.24) into (7.21) leads to the expression

b′it = c′it

1′Ti1
. . . 0′

... . . . ...
0′ . . . 1′TiMi

 ,
where

cit =


(Nrit−ait)σ

2
u+δi1σ

2
v

Ti1σ2
v+σ2

e...
(Nrit−ait)σ

2
u+δiMi

σ2
v

TiMi
σ2

v+σ2
e

 ,
and to the derivative

(7.25)
∂b′it
∂σ

=

(
∂c′it
∂σ

)1′Ti1
. . . 0′

... . . . ...
0′ . . . 1′TiMi

 .
For the computation it suffices to find the derivative of the jth element

(7.26) citj =
(Nrit − ait(σ))σ2

u + δijσ
2
v

Tijσ2
v + σ2

e

, j = 1, 2, . . . ,Mi,

of cit. The notation ait(σ) emphasizes here that ait is a function of the variance com-
ponents σ2

u, σ2
v and σ2

e . Since

∂c′it
∂σ

=

∂c′it/∂σ
2
u

∂c′it/∂σ
2
v

∂c′it/∂σ
2
e

 , (3×Mi)
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we shall explicitly work out the partial derivatives of (7.26) with respect to each vari-
ance component. These partial derivatives, given in (7.27)–(7.29), are then used in
constructing the matrix (7.25) needed in the approximation of g3it.

First, for σ2
u we get

(7.27)
∂citj
∂σ2

u

=
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u(∂ait/∂σ
2
u)
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,

where

∂ait
∂σ2

u

=

(
Mi∑
j=1

Tij
Tijσ2

v + σ2
e

)(
Nrit − σ2

v

Mi∑
j=1

δijTij
Tijσ2

v + σ2
e

)/(
1 + σ2

u

Mi∑
j=1

Tij
Tijσ2

v + σ2
e

)2

.

Then, for σ2
v we get
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Finally, for σ2
e we get
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7.4.4 Term g4it

This term is simply

(7.30) g4it(σ) = Nr2it
σ2
v +Nritσ

2
e .
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8 Description of simulation study

8.1 Overview

We carry out a Monte Carlo simulation study to investigate the performance of the
introduced EBLUP estimators based on the three-level model (5.1) for panel data and
rotating panel data. For comparison, we also consider the EBLUP estimators based
on the nested error regression model (2.20) for cross-sectional data and on the random
time model (2.26) for repeated survey data, which is close to rotating panel data, if
the overlap in temporal samples is mild. Thus, in total four "competing" models and
related EBLUP estimators are considered and compared: (1) three-level model under
panel data, (2) three-level model under rotating panel data, (3) nested error regression
model for cross-sectional data and (4) random time model for repeated survey data. We
use hereafter the following abbreviations for the models: NESTED for the nested error
regression model, PANEL for the three-level model under panel data, ROTPANEL for
the three-level model under rotating panel data and RANTIME for the random time
model.

The task is to estimate the area totals of the response variable at the last ("current")
time point in the considered panel or rotating panel data with each of the above models.
The auxiliary x variables used in the estimation are the same for every model. The
factors, whose effects on the estimation performance are studied and which define the
design of the simulation experiment, are as follows:

A. The magnitude of the intra-area correlation (5.7)
B. The magnitude of the intra-unit correlation (5.6)
C. The length of the panel (for estimation from panel or rotating panel data)
D. Using a correct or an incorrect model in the estimation.

The magnitude of the intra-area correlation of the units measures how homogeneous
are the units, which belong to the same area. This factor is given two levels: (1) high
correlation and (2) low correlation. In the first case the area variance is high with respect
to the unit and residual variances, and the second case is the opposite.

The magnitude of the intra-unit correlation or (in a way) autocorrelation measures how
highly the repeated observations of a unit are correlated. Also this factor is given two
levels: (1) high correlation and (2) low correlation, which are related to the magnitude
of both the unit variance and the area variance with respect to the residual variance.

By the length of the panel we mean the number of time points (or lags) in the data used
for the estimation. Again for this factor we define two levels: (1) 10 time points, i.e.
the current occasion and 9 preceding occasions, and (2) 5 time points. The purpose is
to assess the possible loss of efficiency when shorter panel data are used. The NESTED
model is of course applied to the cross-sectional data of the last survey occasion.
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By the correct model we mean here that all the relevant auxiliary variables are included in
the fixed part of the model. In other words, the employed model contains exactly those x
variables, which have appeared in generating the population. In an incorrect model some
important variables are missing from x. In reality, a statistical model can of course be
incorrect in a variety of ways. For instance, the covariance structure can be misspecified
or the true model might not be linear at all. However, we concentrate here only on
linear mixed models with misspecified fixed part. In addition, we consider briefly a case,
where model has not only a misspecified fixed part but also a misspecified covariance
structure, which ignores nonconstant intra-unit correlations and unequal variances over
time. We believe that these cases illustrate reasonably well the robustness of the EBLUP
estimation when the data come from a population, where the employed model does not
hold.

The Monte Carlo study is design-based in the sense that we first create a synthetic
finite longitudinal population of m = 30 areas and T = 10 time points using a specified
statistical model and then repeatedly draw probability samples from it. The properties
of the estimators are evaluated with respect to this finite population sampling. The two-
level factors A (intra-area correlation) and B (intra-unit correlation) define 2 × 2 = 4
different covariance structures for the statistical model, acting as "cells" in the simulation
design: (1) high intra-area correlation and high intra-unit correlation, (2) high intra-area
correlation and low intra-unit correlation, (3) low intra-area correlation and high intra-
unit correlation and (4) low intra-area correlation and low intra-unit correlation. A
separate fixed population will be generated under each covariance structure. We name
the resulting populations POP1, POP2, POP3 and POP4, in the respective order (see
Table 8.1).

Table 8.1. The four covariance structures ("cells") and corresponding populations.

B.
A. intra-unit

intra-area correlation
correlation high low
high POP1 POP2
low POP3 POP4

From each longitudinal population we draw both panel samples and rotating panel sam-
ples K = 1000 times. In other words, there are K = 1000 replicates in each cell. For
comparability, the samples are matched so that in each of the K replicates the panel
sample and the rotating panel sample agree fully at the last survey occasion, whose
regional totals are to be estimated. No drop-outs or non-response are introduced. The
sampling method is the simple random sampling. Hence the regional sample sizes are
not controlled in any way and they merely reflect the regional population sizes. The
overall sample size per time point is set n = 1000. Now and then the sample sizes of the
smallest regions appear to be zero (see Table 8.6). The adopted rotation scheme is the
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one used in the Finnish Labour Force Survey, described in Table 2.3 and in more detail
in Table 8.7.

In each replicate the models ROTPANEL and RANTIME are applied to the rotating
panel sample and the models PANEL and NESTED are applied to the panel sample (the
NESTED model of course uses the last occasion data only). Recall that the RANTIME
model is valid for neither panel nor rotating panel data since it does not allow for any
overlap in the repeated survey data. However, we estimate it from the rotating panel
data to see how its performance is affected if some overlap is present.

The parameters of the mixed models are estimated from the sample data by the REML
and GLS methods. The EBLUP estimates of the area totals at the last occasion are
then calculated under each competing model.

The factors C (length of panel data in use) and D (correct/incorrect model) are related
to the model choice in the estimation stage. We deal with these factors so that in
each replication, for every competing model, the EBLUP estimates are obtained both
with the correctly specified model and with an incorrectly specified model and under
different numbers of occasions in the sample data sets (where appropriate). This leads
to altogether 7 × 2 = 14 estimation tasks per replication. This scheme is presented in
Table 8.2 and it is replicated K = 1000 times for each of the four populations.

Table 8.2. The scheme of models used in the simulation study.

C. D.
number of model
occasions correct incorrect

1 NESTEDc NESTEDi

5 PANEL5c PANEL5i
ROTPANEL5c ROTPANEL5i
RANTIME5c RANTIME5i

10 PANEL10c PANEL10i
ROTPANEL10c ROTPANEL10i
RANTIME10c RANTIME10i

In the above table PANEL5 denotes the case where the PANEL model is used with
data of 5 time points and PANEL10 denotes the case where the panel data consist of 10
time points. Similar notation is used for ROTPANEL and RANTIME. In addition, the
letter ’c’ refers to correct model and the letter ’i’ to incorrect model. We emphasize that
the models PANEL5, ROTPANEL5 and RANTIME5 are applied to the same samples
than PANEL10, ROTPANEL10 and RANTIME10, but they only use the data of 5 last
survey occasions. The NESTED model naturally uses only the last survey occasion.
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The empirical distributions of the EBLUP estimates and their MSE estimates obtained
by K replications are examined to assess and compare the performance, e.g. bias and
accuracy, of the considered estimators.

Outside the systematical examination of the factors A, B, C and D we have also made
some separate experiments to assess how the overlap degree of the rotation scheme affects
to the estimation. In certain cases we have also considered the effect of specifying time
as a fixed effect instead of random (or vice versa). We also have generated and sampled
the population POP1 twice with different seed numbers to see if the choice of seed has
any effect to the results. A brief summary of the findings of these experiments will be
reported.

The SAS software was used in all computations as well as in generating the populations
for simulation. The needed programs were all written by the author as SAS macros, with
the exception of EBLUP estimation with the RANTIME model, which was executed by
a SAS macro written by Dr. Ari Veijanen from Statistics Finland for the EURAREA
Consortium (2004). The SAS procedure MIXED was utilized in estimating the mixed
model parameters by the REML method. The computations of the EBLUP estimation
were programmed in SAS/IML language. The SURVEYSELECT procedure (along with
the random number generator implemented in SAS) was used in selecting the random
samples in the simulation studies.

8.2 Generation of populations

The basis for the generation of populations POP1–POP4 is a real data set provided
by Statistics Finland originally for purposes of the EURAREA research project (2004).
It contains a complete panel population of N = 1084764 10–77-year-old people from
m = 30 NUTS4 regions in the province of Western Finland. NUTS, i.e. Nomenclature
of Statistical Territorial Units, is the standard coding system for the administrative
regional divisions within the European Union. In Finland the NUTS4 regions are groups
of municipalities (the Finnish expression is "seutukunta"). The data cover T = 10
consecutive months from March 1997 to December 1997, and the following variables,
which will serve as auxiliary variables in the EBLUP estimation, are recorded for every
individual:

AGE = age in years
JS = jobseeker status (1 = jobseeker, 0 = not)
SEX = sex (1 = male, 0 = female)

Those people who have died or moved away during the 10 months have not been included
in the data so that the population sizes of the areas are the same in every month. These
are shown along with the regional means of the auxiliary variables in Table 8.3.

For each panel population POP1–POP4 a normal response variable Y was created using
AGE, JS and SEX as covariates. The model equation used in generating the 10847640
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Y values for the 10-month panel data of 1084764 individuals (or units) was in all cases

(8.1) Yijt = 10+0.1AGEijt+1.5JSijt+2SEXijt+MONTHt+REGIONi+INDij+εijt,

whereMONTHt, REGIONi and INDij are the effects of survey month t, NUTS4 region
i and unit ij, respectively, end εijt is the error term. The values of AGE, JS and SEX
were taken from the basis data set as such and are considered fixed in the employed
models. The 10 values of MONTHt are also considered fixed, although they were
created by adding a N(0, 1) distributed random term to the systematical linear trend
−9/6,−7/6,−5/6, . . . , 5/6, 7/6, 9/6. The seed given here to the SAS random number
generator was 97312.

Table 8.3. Regional (cross-sectional) population sizes Ni and means of the auxiliary variables
AGE, JS and SEX.

region i Ni mean(AGE) mean(JS) mean(SEX)
1 16026 43.1 0.17 0.54
2 12402 43.9 0.16 0.53
3 19956 44.9 0.16 0.53
4 52441 41.1 0.15 0.50
5 8728 45.0 0.13 0.52
6 27537 42.1 0.15 0.53
7 53025 42.4 0.15 0.51
8 14155 42.1 0.14 0.53
9 28719 44.7 0.14 0.53
10 47415 42.6 0.14 0.50
11 29056 45.3 0.14 0.52
12 18538 45.4 0.13 0.53
13 55575 43.7 0.13 0.52
14 7859 45.7 0.14 0.52
15 90468 41.6 0.14 0.49
16 11351 44.4 0.14 0.51
17 75975 41.8 0.14 0.50
18 28835 43.9 0.13 0.51
19 10008 45.2 0.13 0.52
20 18614 44.5 0.14 0.52
21 34838 44.1 0.13 0.50
22 15491 46.1 0.12 0.52
23 5475 46.8 0.13 0.52
24 58600 43.9 0.12 0.50
25 34754 45.2 0.13 0.51
26 16267 45.4 0.12 0.53
27 57440 43.0 0.12 0.50
28 73616 44.5 0.12 0.51
29 18841 42.4 0.13 0.50
30 142759 39.8 0.14 0.50

total 1084764
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The random effects, i.e. the 30 values of REGIONi, 1084764 values of INDij and
10847640 values of εijt were independently generated from normal distributions. The
different covariance structures of the generated populations POP1–POP4 were caused by
using different variances in generating the random effects. The target was to create intra-
area correlations (5.7) and intra-unit correlations (5.6), the magnitudes of which could
be met in real-life applications. The variances and the resulting (expected) correlations
are shown in Table 8.4. The seed numbers for generating REGIONi, INDij and εijt
were 97130, 9716026 and 971084764, respectively. It should be noted that the variance
of Y is constant over time.

Table 8.4. The variances of the random effects and the resulting intra-area and intra-unit
correlations in the four generated populations.

POP1 POP2 POP3 POP4
area variance 3 3 1 1
individual variance 4 1 5 1
error variance 1 4 2 6
intra-area corr. 0.375 0.375 0.125 0.125
intra-unit corr. 0.875 0.5 0.75 0.25

After the generation of the populations we computed the realized raw correlations of
Y , AGE, JS and SEX to illustrate the relevance of AGE, JS and SEX as auxiliary
variables in small area estimation. The correlations were practically the same in all
populations, and we present in Table 8.5 the last (10th) month’s correlation matrix of
POP1.

Table 8.5. The raw correlations of Y and the auxiliary variables AGE, JS and SEX in the
generated population POP1, computed from the last month’s data.

Y AGE JS SEX

Y 1 0.52 0.12 0.27
AGE 0.52 1 −0.03 −0.03

JS 0.12 −0.03 1 −0.07
SEX 0.27 −0.03 −0.07 1

In the simulation study the correct model refers to a model, which contains (in addition
to the relevant random effects) all three variables AGE, JS and SEX as covariates. In
an incorrect model only JS, the weakest of the three, is present. For the PANEL and
ROTPANEL models, for instance, this means that the correct model takes the form

(8.2) Yijt = µt + β1AGEijt + β2JSijt + β3SEXijt + vi + uij + eijt,

where i is region, j is unit and t is month, and region and unit effects vi and uij
are random. Note that the possible time trend is accounted by a fixed month-specific
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intercept µt to avoid unnecessary bias when estimating small area totals in the last
month. The incorrect model is correspondingly

(8.3) Yijt = µt + β1JSijt + vi + uij + eijt.

8.3 Performance criteria

In this simulation study the performances of the EBLUP estimators of small area totals
under various models are examined from two general standpoints: the accuracy of the
point estimates and the bias of the MSE estimates. The former is considered through
the relative errors and absolute relative errors of the EBLUP estimates, and the latter
through the realized coverage rates of 95 % confidence intervals and by comparing the
MSE estimates with the realized variation of the EBLUP estimates.

8.3.1 Relative errors and bias

The bias of each EBLUP estimator is measured through the mean relative error. The
relative error of the estimate Ŷit of the true total Yit of area i at time t is

RE(Ŷit) =
Ŷit − Yit
Yit

.

The relative (design) bias of the estimator Ŷit is the (design) expectation of RE(Ŷit),
where Yit is regarded as fixed, and it is estimated by the observed mean

(8.4) MRE(Ŷit) =
1

K

K∑
k=1

RE(Ŷitk)

of the relative errors RE(Ŷitk), where Ŷitk is the estimate of Yit obtained from the kth
replication (k = 1, 2, . . . , K) in the simulations. The mean relative error is calculated
for every area i under each competing estimator and model.

8.3.2 Absolute relative errors

The accuracy of the EBLUP estimates is measured similarly through the absolute relative
errors. These are defined as

ARE(Ŷit) =
|Ŷit − Yit|

Yit
.

A practical measure of the accuracy of Ŷit is the observed mean absolute relative error

(8.5) MARE(Ŷit) =
1

K

K∑
k=1

ARE(Ŷitk).

Also this is calculated for every area under each competing estimator and model.
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8.3.3 Coverage rates

In determining confidence intervals of Yit we appeal to the asymptotic normality of the
EBLUP estimators. The asymptotic 95 % confidence interval is

Ŷit ± 1.96

√
M̂SE(Ŷit).

The coverage rate is the observed percentage of confidence intervals covering the true Yit
in K replications and it should be close to 0.95. It mainly measures the validity of the
estimated MSE and to some extent also the possible bias of Ŷit. Also the coverage rates
are calculated separately for every area under each competing estimator and model.

8.3.4 Bias of MSE estimators

In sampling from a large finite population the true MSE of an EBLUP estimator Ŷit is
unknown, but it can be approximated by the empirical mean squared error

(8.6) EMSE(Ŷit) =
1

K

K∑
k=1

(Ŷitk − Yit)2

obtained by simulation. Now the validity or bias of a MSE estimator can be assessed by
comparing the observed mean

MM̂SE(Ŷit) =
1

K

K∑
k=1

M̂SE(Ŷitk)

of the MSE estimates with EMSE(Ŷit). Since the MSE of a total estimate is often very
large, we prefer to operate with RMSE, the square root of the MSE, which is used in
computing confidence intervals. We define the approximate relative error of an estimated
RMSE as

(8.7) RE[R̂MSE(Ŷit)] =
MR̂MSE(Ŷit)−

√
EMSE(Ŷit)√

EMSE(Ŷit)
,

where

(8.8) MR̂MSE(Ŷit) =
1

K

K∑
k=1

√
M̂SE(Ŷitk).

The relative error (8.7) can interpreted as a measure of bias of the RMSE estimator. It
is calculated for every area i under each competing estimator and model.
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8.4 Repeated sampling

Recall first that target was to estimate the regional population totals of the study variable
Y in December 1997, the last of the 10 time points included in the synthetic population
data sets POP1–POP4. From each of these populations the repeated sampling of the
simulation study was carried out in similar way. The number of repeated samples, or
replications, was K = 1000.

Table 8.6. Regional (cross-sectional) population sizes and minimum, maximum and mean
sample sizes of the last month’s data in the 1000 replications of the simulation study.

region i Ni min(ni) mean(ni) max(ni)
1 16026 4 14.9 29
2 12402 3 11.4 23
3 19956 5 18.3 35
4 52441 30 48.4 70
5 8728 1 8.1 18
6 27537 11 25.4 41
7 53025 27 48.9 72
8 14155 4 13.0 25
9 28719 14 26.4 40
10 47415 22 43.8 69
11 29056 12 26.7 45
12 18538 4 17.1 30
13 55575 33 51.4 76
14 7859 0 7.3 16
15 90468 60 83.0 113
16 11351 1 10.4 23
17 75975 44 70.1 97
18 28835 10 26.7 43
19 10008 1 9.2 20
20 18614 6 17.1 30
21 34838 17 32.1 52
22 15491 4 14.3 31
23 5475 0 4.9 12
24 58600 30 54.1 79
25 34754 15 32.0 49
26 16267 5 14.9 28
27 57440 34 53.1 80
28 73616 45 67.7 89
29 18841 7 17.6 31
30 142759 97 131.6 165

total 1084764 1000

In each replication an SRS sample of n = 1000 units was first drawn from the December
1997 population data of N = 1084764 units. The EBLUP estimation with NESTED
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model was done from this cross-sectional sample data. The seed number given to the SAS
procedure SURVEYSELECT, by which the sampling was carried out, was 6121959 + k,
where k = 1, 2, . . . , 1000 is the number of replication. Some statistics of the realized
regional sample sizes ni are shown in Table 8.6.

The complete panel sample of 10 time points was then constituted by adding the similar
samples from the 9 preceding months to the December sample data. The estimation
with PANEL model was done from this data of 10× 1000 = 10000 observations.

The design for obtaining rotating panel data follows the one used in the monthly Finnish
Labour Force Survey of Statistics Finland, which has already been illustrated in Table
2.3. Table 8.7 presents the design employed in the simulations.

Table 8.7. The rotating panel design of the simulation study.

time point
panel 1 2 3 4 5 6 7 8 9 10
1 X
2 X
3 X
4 X X
5 X X
6 X X
7 X X
8 X X
9 X X
10 X X X
11 X X
12 X X
13 X X X
14 X X
15 X X
16 X X X
17 X X X
18 X X X
19 X X X
20 X X
21 X X
22 X X
23 X
24 X
25 X

The rotating panel sample data consist of 25 panels of 200 units. Each panel is surveyed
at time points indicated by ’X’ in Table 8.7. For instance, panel 4 provides observations
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from time points 1 and 4 (March and June 1997), in total 200 + 200 = 400 observations
for the sample data set. The sample data of each month consist of 5 panels and 1000
observations. It is seen that the data of adjacent months have no overlap. Instead, there
is 60 % overlap (3 panels out of 5) at interval of three months. Altogether, the data
contain 10× 1000 = 10000 observations from 25× 200 = 5000 units.

In each replication the rotating panel data was constituted in the following way. First,
the previously drawn December sample data was randomly split into five equal-sized
panels (numbers 10, 13, 19, 22 and 25 in Table 8.7). In this way the rotating panel
sample matches completely with the panel sample and the cross-sectional sample at the
last survey month. Then, another cross-sectional SRS sample of 4000 units was drawn
from the December population so that it does not contain any already sampled units.
This sample was again randomly split into the rest 20 panels. The eventual 10-month
sample data was then composed by gathering up the monthly observations for each panel
according to the design shown in Table 8.7.

This data set was used in the EBLUP estimation with ROTPANEL and RANTIME
models. The seed number was 20903 + k in drawing the sample of 4000 units and
321 + k in the panel splitting, where k again denotes the replication number.
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9 Simulation study with correct model: results for lon-
gitudinal data of 10 occasions

In the estimation of area totals of the last (T th) month with PANEL and ROTPANEL
approaches the employed model was shown in (8.2). The model for NESTED approach
is

(9.1) YijT = µ+ β1AGEijT + β2JSijT + β3SEXijT + vi + eijT ,

which only uses the cross-sectional data of the last month T , and the model for RANTIME
approach is

(9.2) Yijt = µ+ β1AGEijt + β2JSijt + β3SEXijt + vi + ut + eijt,

where ut is the normal random effect of month t = 1, 2, . . . , T . This model assumes no
panel design, that is, the individuals at different times are independent and no individual
random effect is present. The model (9.2) was also considered with time effects fixed,
but the observed estimator performance was virtually unchanged.

In this chapter we consider the results of using the longitudinal data of 10 months in
the estimation with PANEL, ROTPANEL and RANTIME approaches and compare
them with those of the NESTED approach. That is, we examine the results obtained
under the correct models PANEL10c, ROTPANEL10c, RANTIME10c and NESTEDc,
cf. Table 8.2. The results for the populations POP1–POP4 are presented together to
explore the effect of covariance structure (characterized by the intra-area and intra-unit
correlations, i.e. factors A and B in Section 8.1) on the estimator performance. The
results for 5-month data are presented and compared with these results in Chapter 11.

9.1 Bias

The bias of the region total estimates is measured by the mean of the observed relative
estimation errors. The results for the populations POP1–POP4 are given in Appendix
A in Tables A.1, A.6, A.11 and A.16 (respectively). The tables present the observed
bias under models NESTEDc, PANEL10c, ROTPANEL10c and RANTIME10c together
with the mean cross-sectional sample size of the last month in 1000 simulations. The
corresponding plots of the bias against the last month’s mean sample size are presented
in Figures 9.1, 9.2, 9.3 and 9.4.

We emphasize that the interest is here in the design bias calculated over the repeated
samples from the fixed populations. All the EBLUP estimates are here model-unbiased
since the employed models agree with the one used in generating populations. However,
because each fixed population is just one specific realization of the correct model, it may
happen that the model does not hold well in all areas. Consequently the model-based
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Figure 9.1: Relative bias plotted against last month’s mean sample size in simulations
from POP1. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.

Figure 9.2: Relative bias plotted against last month’s mean sample size in simulations
from POP2. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.
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Figure 9.3: Relative bias plotted against last month’s mean sample size in simulations
from POP3. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.

Figure 9.4: Relative bias plotted against last month’s mean sample size in simulations
from POP4. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.
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estimators may have some design bias over the repeated samples, even with the SRS
sampling.

In general, the design biases are not serious and in the largest areas the models give
almost equally unbiased estimates. In smaller areas, however, it is seen that especially
the estimates obtained from the cross-sectional data with the NESTED model are prone
to some design bias, and when the intra-unit correlation is high (Figures 9.1 and 9.3),
the complete panel data (PANEL model) gives only slightly better results. In this case
the observations from previous time points offer only little additional information over
the cross-sectional information at the current time point. As a result the effective sample
size does not increase much along with the increased number of survey occasions.

When the "longitudinal" intra-unit correlation is low (Figures 9.2 and 9.4), the observed
biases with the PANEL model reduce towards the small biases obtained with the ROT-
PANEL and RANTIME models. Now the previous observations differ more from the
current observations, thus increasing the effective sample size more than under high
intra-unit correlation.

The ROTPANEL and RANTIME models, which use the rotating panel data, correct
for the bias significantly. Overall, the RANTIME model seems to perform best, but the
difference between it and ROTPANEL is negligible.

On the whole, the observed biases seem to increase as the within-area heterogeneity in-
creases, or the intra-area correlation decreases (see Figures 9.3 and 9.4). The estimators
from cross-sectional or complete panel data show notable biases in several areas, which
are not necessarily small, while the estimators from rotating panel data perform well.
One explanation is that under large within-area variance the probability to get small
cross-sectional samples, which do not represent well the population, is increased, and for
some reason these "bad" samples have not cancelled each other out in the simulation.
Another possibility is that the large unit variance employed in generating the fixed pop-
ulation have increased the chance to get such realizations of area populations, which do
not obey well the original model. A natural result from this is that the model-based
estimates for those areas are not always good.

Although the population-specific results do not differ much from each other, comparisons
between Figures 9.1–9.4 suggest that biases are smallest when the intra-area correlation
is high and intra-unit correlation low (POP2) and largest when the circumstances are
opposite (POP3). Thus, as far as bias is concerned, ideal data for small area estimation
would be longitudinal data, in which the units within areas are fairly homogeneous so
that even a small cross-sectional sample is representative, but at the same time there
is enough variation over time so that the effective sample size is genuinely increased by
the observations from previous occasions.

We take then a further look at the bias occurring in the smallest areas and use the
results for region 23 in the simulations from POP1 as an example. Figure 9.5 shows
the 1000 relative estimation errors obtained by the models NESTED and ROTPANEL
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Figure 9.5: Relative errors of EBLUP estimates in region 23 under a) NESTED model
b) ROTPANEL model in simulations from POP1.
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in this region. In this case the NESTED model represents the PANEL model and the
ROTPANEL model represents the RANTIME model well so that we present figures for
the two models only.

For the NESTED model (upper part of Figure 9.5) we see that the sample size is often
very small, sometimes zero, and when sample size increases, the bias reduces. When the
sample size is zero, the EBLUP estimate comes only from the fixed part of the model (i.e.
from auxiliary variables), since the predicted area effect has shrunken to zero because
of missing information. When sample size is close to zero, the predicted area effect is
close to zero due to the weakness of the information about that area and the fixed part
dominates in the estimate. Understandably, the panel design does not help very much
here.

Now we know that the true effect of area 23 in POP1 is clearly positive so that the
shrinkage towards zero makes the EBLUP estimates overly negative in the smallest
samples. The same happens in area 14. Then, in area 5, for example, we could see
the opposite: the true area effect is negative, and the shrinkage in predicting it causes
positive bias in the EBLUP estimation. As the sample size increases, the shrinkage
decreases, leading to better estimates.

The small sample bias is largely avoided by using the rotating panel data (lower part
of Figure 9.5, note that sample size refers to the cross-sectional sample size of the last
month). Then the data provide additional observations from earlier occasions, which
come to strengthen especially the prediction of area effects in small regions. This again
decreases the shrinkage and the EBLUP estimates become more accurate.

9.2 Absolute relative errors

The accuracy of a point estimate of a small area total is measured by the mean absolute
relative error (MARE). The smaller is the MARE, the higher is the accuracy of the
estimates. The results for the populations POP1–POP4 are given in Appendix A in
Tables A.2, A.7, A.12 and A.17 (respectively). The corresponding plots are presented
in Figures 9.6–9.9.

From these figures we see immediately the effect of sample size to the accuracy. The
rate of the absolute decrease in MARE, as the sample size increases, is fastest for the
models NESTED and PANEL, but the rate of the relative decrease is almost the same
for every model. For the considered models, the MARE of the total estimate of the
largest area (area 30 with mean cross-sectional sample size over 130) is 20–30 % of that
of the smallest area (area 23 with mean cross-sectional sample size 5), and the MARE
is approximately halved as the cross-sectional sample size increases from 5 to 25.

The Figures 9.6–9.9 also show the superior performance of the models ROTPANEL and
RANTIME. Using rotating panel data with the ROTPANEL model reduces the MARE
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Figure 9.6: MARE plotted against last month’s mean sample size of region in simulations
from POP1. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.

Figure 9.7: MARE plotted against last month’s mean sample size of region in simulations
from POP2. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.
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Figure 9.8: MARE plotted against last month’s mean sample size of region in simulations
from POP3. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.

Figure 9.9: MARE plotted against last month’s mean sample size of region in simulations
from POP4. Symbols used are © = NESTEDc, � = PANEL10c, ∗ = ROTPANEL10c
and 4 = RANTIME10c.
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Figure 9.10: MARE reduction in terms of MARE ratios plotted against
last month’s mean sample size in simulations from POP1. Symbols used
are � = PANEL10c/NESTEDc, ∗ = ROTPANEL10c/NESTEDc and 4 =
RANTIME10c/NESTEDc.

Figure 9.11: MARE reduction in terms of MARE ratios plotted against
last month’s mean sample size in simulations from POP2. Symbols used
are � = PANEL10c/NESTEDc, ∗ = ROTPANEL10c/NESTEDc and 4 =
RANTIME10c/NESTEDc.
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Figure 9.12: MARE reduction in terms of MARE ratios plotted against
last month’s mean sample size in simulations from POP3. Symbols used
are � = PANEL10c/NESTEDc, ∗ = ROTPANEL10c/NESTEDc and 4 =
RANTIME10c/NESTEDc.

Figure 9.13: MARE reduction in terms of MARE ratios plotted against
last month’s mean sample size in simulations from POP4. Symbols used
are � = PANEL10c/NESTEDc, ∗ = ROTPANEL10c/NESTEDc and 4 =
RANTIME10c/NESTEDc.
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on average 50-60 % compared to the cross-sectional case (model NESTED), depending
on the population. The reduction is largest with the population POP2 of high within-
area homogeneity and low longitudinal intra-unit correlation (Figure 9.11). The results
for the RANTIME model are almost similar, the average MARE reduction being 46–
60 %. In the point estimation the RANTIME model seems to perform almost as well
as the ROTPANEL model even if it wrongly assumes that the longitudinal unit-level
observations are not correlated.

The performance of the PANEL model depends essentially on the magnitude of the
intra-unit correlation. When the correlation is high (POP1 and POP3), the average
gain of using panel data instead of cross-sectional data is only 9 % in terms of MARE
reduction. When the correlation is low (POP2 and POP4), the average reduction is 42
%. We see again how the high intra-unit correlation inhibits the increase of effective
sample size in the case of complete panel data. A similar conclusion was made already
with the bias considerations.

The MARE reductions are illustrated in Figures 9.10–9.13, where the MARE ratios,
i.e. the ratios of the PANEL model MARE, the ROTPANEL model MARE and the
RANTIME model MARE to the NESTED model MARE, are plotted against the mean
sample size. It seems that the gains of using rotating panel data are often biggest in
medium-sized areas, although the differences are small.

The certain large biases in the estimates under models NESTED and PANEL, which
came up with the reduced within-area homogeneity (Figures 9.3 and 9.4), carry over
into the average MARE also. This shows in Figures 9.8 and 9.9 as irregularities in the
MARE decrease with the sample size increase. Similar irregularities were not met with
the populations POP1 and POP2 of higher within-area homogeneity.

Besides the mean absolute relative errors it is interesting to examine the maximum
absolute relative errors, which reflect the "worst possible" performance of the estimators.
These are presented in Figures 9.14–9.17. The behaviour of the maximum absolute
relative errors is in much similar to that of the mean absolute relative errors. The best
results are obtained with the ROTPANEL and RANTIME models, and the performance
of the PANEL model improves as the intra-unit correlation decreases. Overall, utilizing
the rotating panel data either by ROTPANEL model or the RANTIME model does not
only improve the average performance of the estimators but also protects from very bad
estimates.

If we compare the Figures 9.14–9.17 with each other, we note that the lower intra-unit
correlation (POP2 and POP4) turns to stronger protection by rotating panel data (and
to lesser extent by panel data). On the other hand, we observe that the performance of
NESTED is correspondingly deteriorated. We conclude that the estimation from panel
or rotating panel data benefits from the lowered longitudinal correlation through the
increased effective sample size, but the estimation from cross-sectional data only suffers
from the increased error variance.
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Figure 9.14: Maximum absolute relative errors plotted against last month’s mean sample
size in simulations from POP1. Symbols used are © = NESTEDc, � = PANEL10c, ∗
= ROTPANEL10c and 4 = RANTIME10c.

Figure 9.15: Maximum absolute relative errors plotted against last month’s mean sample
size in simulations from POP2. Symbols used are © = NESTEDc, � = PANEL10c, ∗
= ROTPANEL10c and 4 = RANTIME10c.
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Figure 9.16: Maximum absolute relative errors plotted against last month’s mean sample
size in simulations from POP3. Symbols used are © = NESTEDc, � = PANEL10c, ∗
= ROTPANEL10c and 4 = RANTIME10c.

Figure 9.17: Maximum absolute relative errors plotted against last month’s mean sample
size in simulations from POP4. Symbols used are © = NESTEDc, � = PANEL10c, ∗
= ROTPANEL10c and 4 = RANTIME10c.
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9.3 Coverage of confidence intervals

The observed coverage rates of the nominal 95 % confidence intervals calculated from the
EBLUP point estimates and their estimated mean squared errors for the populations
POP1–POP4 are shown in Tables A.3, A.8, A.13 and A.18 of the appendix A. Cor-
respondingly, the Figures 9.18–9.21 show the coverage rates plotted against the mean
sample sizes of regions in the last month. In these figures the nominal 95 % level is in-
dicated by the horizontal line. In this simulation study of 1000 replications we tolerate
a deviation of 1–2 percentage units from the nominal level.

We note first that the RANTIME model performs poorly, giving too low rates especially
when the intra-unit correlation is strong (Figures 9.18 and 9.20). The reason is that it
does not recognize the panel design and treats the repeated measurements erroneously as
independent replications, which leads to underestimated MSE’s. The underestimation
reduces slightly as the sample size increases. When the intra-unit correlation is not strong
(Figures 9.19 and 9.21), the RANTIME model still gives too low rates, but this "bias"
is not so striking any more (average rate is over 0.93). The relatively low correlation
between the longitudinal observations takes here the independence assumption of the
RANTIME model closer to the truth.

We look then at the populations POP1 and POP2 of small within-area heterogeneity
(Figures 9.18 and 9.19). In general, the other models give here acceptable rates, which
suggests that both the region totals and the MSE’s are adequately estimated. Particu-
larly this holds for the ROTPANEL model. It is also seen, however, that the deviations
from the nominal rate are slightly larger in smaller areas, and in certain areas especially
the NESTED model gives too low coverage rates.

The area 26 seems especially problematic, and we examine its properties to find an
explanation for the low coverage. It appears that among all the considered areas the
area effect, and consequently the mean of response Y , is highest in area 26. The shrinkage
in predicting the area effect brings then some negative design bias (see Tables A.1 and
A.6) into the EBLUP estimate of the area total. Since the observed variance of the
EBLUP estimates of area 26 is not that large, we conclude that the squared bias raises
the empirical MSE to a level, which the MSE estimates cannot fully reach (cf. Figures
9.26 and 9.27).

The performance of the PANEL model in the problematic areas depends again on the
magnitude of the intra-area correlation. When the correlation is high (Figure 9.18), the
PANEL model does not perform much better than the NESTED model, but when the
correlation is low (Figure 9.19), the performance improves due to the reduced bias of
the EBLUP estimates.

As for the results for the populations POP3 and POP4 of large within-area hetero-
geneity, the ROTPANEL model again performs adequately. The average coverage rates,
computed over all 30 areas, of the NESTED and PANEL models are also adequate. How-
ever, the Figures 9.20 and 9.21 show that in smaller areas the NESTED and PANEL
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Figure 9.18: Coverage of asymptotic 95 % confidence intervals plotted against last
month’s mean sample size in simulations from POP1. Symbols used are© = NESTEDc,
� = PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.

Figure 9.19: Coverage of asymptotic 95 % confidence intervals plotted against last
month’s mean sample size in simulations from POP2. Symbols used are© = NESTEDc,
� = PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.
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Figure 9.20: Coverage of asymptotic 95 % confidence intervals plotted against last
month’s mean sample size in simulations from POP3. Symbols used are© = NESTEDc,
� = PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.

Figure 9.21: Coverage of asymptotic 95 % confidence intervals plotted against last
month’s mean sample size in simulations from POP4. Symbols used are© = NESTEDc,
� = PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.
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models yield now severe deviations from the nominal coverage rate (the performance of
the PANEL improves as the intra-unit correlation goes down, though). In most areas,
especially in the smallish ones, the empirical coverage rate is overly high, sometimes very
close to 1. On the other hand, in some areas, especially in areas 26 and 3, which already
appeared problematic, the rate is unacceptably low. The problematic coverage rates
indicate problems in the MSE estimation. These can stem from problems in estimating
the design variance of the EBLUP estimators or possible design biases in the EBLUP
estimates (cf. Figures 9.3 and 9.4). The reasons for the latter under large within-area
heterogeneity were briefly discussed in Section 9.1. Anyway, using rotating panel data
with the ROTPANEL model makes the coverage rates settle reasonably close to the
nominal 95 % level in every area.

9.4 MSE estimation

In this section we evaluate the performance of the estimators of the mean squared errors
of the area total estimates. For convenience, instead of MSE estimates we consider their
square roots, i.e. RMSE estimates, which are proportional to the lengths of confidence
intervals.

The bias of the RMSE estimates is examined by comparing the mean (8.8) of RMSE esti-
mates to corresponding empirical root mean squared error (ERMSE), i.e. the square root
of (8.6), which is regarded as an estimate of the unknown true RMSE. The approximate
relative error (8.7) is used as the measure of bias.

For each population POP1–POP4, the regional ERMSE’s and the observed means of
regional RMSE estimates are shown with the approximate relative error in Tables A.4
and A.5 (for POP1), A.9 and A.10 (for POP2), A.14 and A.15 (for POP3) and A.19
and A.20 (for POP4) of the appendix. The observed means of the estimated RMSE’s
for the populations POP1–POP4 are shown in Figures 9.22–9.25, where they are plotted
against the mean sample sizes of the last month.

As expected, the cross-sectional NESTED model always yields the largest RMSE es-
timates. When the intra-unit correlation is high (POP1 and POP3), indicating high
stability of longitudinal observations, the PANEL model reduces the estimates only
slightly compared to the NESTED model. The average RMSE reduction is only about
10 % here. When the intra-unit correlation is low (POP2 and POP4), the PANEL model
improves considerably, yielding 43 % average reduction. This corresponds the decreased
similarity of the observations made over time, which increases the effective sample size
and makes borrowing strength over time genuinely possible even when the very same
units are observed.

The gains of using rotating panel data are notably larger. Under high intra-unit cor-
relation (POP1 and POP3) the average RMSE reduction is 53 % with ROTPANEL
model and 60 % with RANTIME model. Under high intra-unit correlation (POP2 and
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Figure 9.22: Mean estimated RMSE plotted against last month’s mean sample size in
simulations from POP1. Symbols used are © = NESTEDc, � = PANEL10c, ∗ =
ROTPANEL10c and 4 = RANTIME10c.

Figure 9.23: Mean estimated RMSE plotted against last month’s mean sample size in
simulations from POP2. Symbols used are © = NESTEDc, � = PANEL10c, ∗ =
ROTPANEL10c and 4 = RANTIME10c.
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Figure 9.24: Mean estimated RMSE plotted against last month’s mean sample size in
simulations from POP3. Symbols used are © = NESTEDc, � = PANEL10c, ∗ =
ROTPANEL10c and 4 = RANTIME10c.

Figure 9.25: Mean estimated RMSE plotted against last month’s mean sample size in
simulations from POP4. Symbols used are © = NESTEDc, � = PANEL10c, ∗ =
ROTPANEL10c and 4 = RANTIME10c.

111



POP4) the average RMSE reduction is 58 % with ROTPANEL model and 60 % with
RANTIME model. However, the RMSE reduction by RANTIME model is spurious,
since the RMSE estimates under it are biased downwards, especially under high intra-
unit correlation (Figures 9.26 and 9.28).

The RMSE reduction does not vary much over the considered areas. However, the
reductions are largest in smallish or medium-sized areas with mean cross-sectional sample
size between 10 and 30 and smallest in either smallest or largest areas, depending on
the population.

All these observations are very similar to those made on the point estimation accuracy
(MARE considerations in Section 9.2.). The reduction in RMSE is often close to the
reduction in MARE. Under strong intra-unit correlations it is difficult to borrow much
strength by using complete panel data instead of cross-sectional data.

Figures 9.22–9.25 are much alike, but it is seen that the overall level of the RMSE esti-
mates is higher in the populations POP3 and POP4 (Figures 9.24 and 9.25). Hence the
increased within-area heterogeneity (or lowered intra-area correlation) causes increases
in RMSE. The average increase is here 8 % for the NESTED model, 6 % for the PANEL
model, 15 % for the ROTPANEL model and 17 % for the RANTIME model. On the
other hand, increase of the within-unit heterogeneity (i.e. decrease in the stability of
longitudinal observations) reduces the estimated RMSE not only for the PANEL model
but also for the ROTPANEL model. The average reduction is here 37 % for the PANEL
model and 11 % for the ROTPANEL model. Since the NESTED and RANTIME models
do not account for the intra-unit correlation, this does not affect their performance in
the MSE estimation.

The biases of the RMSE estimates are illustrated in Figures 9.26–9.29, which present
the approximate relative estimation errors plotted against the mean sample sizes of
the regions. They give virtually the same information as Figures 9.18–9.21 about the
confidence interval coverage rates.

It is seen that the ROTPANEL model gives the most valid RMSE estimates in every
case. The increased within-area heterogeneity (Figures 9.28 and 9.29) seems to increase
the relative errors, though. The RMSE underestimation by the RANTIME model is
particularly considerable when the intra-unit correlation is high (Figures 9.26 and 9.28).

The RMSE estimates under the NESTED model are unsatisfactory in many small areas,
which was already seen with the problems with confidence interval coverage rates. The
relative errors can be large especially when the within-area heterogeneity is large (POP3
and POP4). When the intra-unit correlation is low (POP2 and POP4), moving to the
PANEL model offers some correction, but usually not sufficiently. When the intra-unit
correlation is high, also the PANEL model performs badly. Similar bias problems were
met already with EBLUP estimates from cross-sectional or complete panel data, when
the within-area heterogeneity is large (cf. Section 9.1.).

112



Figure 9.26: Approximate bias of RMSE estimates plotted against last month’s mean
sample size in simulations from POP1. Symbols used are © = NESTEDc, � =
PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.

Figure 9.27: Approximate bias of RMSE estimates plotted against last month’s mean
sample size in simulations from POP2. Symbols used are © = NESTEDc, � =
PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.
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Figure 9.28: Approximate bias of RMSE estimates plotted against last month’s mean
sample size in simulations from POP3. Symbols used are © = NESTEDc, � =
PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.

Figure 9.29: Approximate bias of RMSE estimates plotted against last month’s mean
sample size in simulations from POP4. Symbols used are © = NESTEDc, � =
PANEL10c, ∗ = ROTPANEL10c and 4 = RANTIME10c.
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We believe that the explanation of these problems is that the large unit variance used
in generating the populations POP3 and POP4 produced some area populations, which
do not obey well the actual model. However, we note again that using the ROTPANEL
model helps to correct for these problems.

We give one more illustration of the performance of the RMSE estimators under the
competing models. Figure 9.30 contains four plots, where the square root of empirical
MSE is compared with the estimated one. The plots are drawn from the population
POP3 of high intra-unit correlation and large within-area heterogeneity, which gave the
most problematic estimator performance.

We note first that for the ROTPANEL model the empirical and estimated RMSE agree
well. The RMSE underestimation by the RANTIME model is also seen immediately.
The plots of NESTED and PANEL models are practically similar. These models perform
adequately for many areas, but we note a few circles, which stand out in the plots. In
the corresponding areas the absolute estimation errors are large, presumably due to the
badly fitting model. When the within-area heterogeneity decreases (POP1 and POP2),
these errors become smaller, and when the intra-unit correlation decreases (POP2 and
POP4), the bias of the RANTIME model reduces essentially.

9.5 Summary

The simulation study was carried out with four fixed populations, which differ from each
other in the magnitude of heterogeneity within areas and the correlation of the repeated
observations. The performances of the EBLUP estimators under the competing models
were assessed in terms of relative bias, estimation accuracy measured with absolute
relative errors and validity of estimated mean squared errors in correspondence with
coverage rates of the asymptotic confidence intervals.

In general, it was found that utilizing the rotating panel data with the three-level model
(5.1) called ROTPANEL, which adequately reflects the properties of the design, out-
performs the other approaches in every way. The simple explanation is the borrowing
strength in form of increased amount of longitudinal data made available for the esti-
mation. Under the ROTPANEL model the observed biases of EBLUP estimates were
negligible, the mean absolute relative errors were smaller than under the other models
and also the MSE estimates were valid, producing short confidence intervals with good
coverage properties.

For comparison, we also fitted another model, the RANTIME model (2.26) with inde-
pendent random time effects, to the rotating panel data. Using the same data, it yielded
EBLUP estimates of approximately the same (un)bias and accuracy as the ROTPANEL
model, but its ignorance about the longitudinal correlations in the data caused downward
biases in the MSE estimation, the severity of which increase with the correlations.
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Figure 9.30: Square root of EMSE and mean estimated RMSE plotted against last
month’s mean sample size for a) NESTEDc, b) PANEL10c, c) ROTPANEL10c and d)
RANTIME10c models in simulations from POP3. Symbols used are © = root EMSE,
∗ = mean estimated RMSE.

Using only cross-sectional data and the model (2.20) called NESTED makes the EBLUP
estimates of the smallest areas prone to remarkable biases, which in turn, along with
smaller effective sample, lead to inferior accuracy and MSE estimates. The performance
of the NESTED model gets slightly better as the within-area variance decreases.

The utility of using complete panel data (with the model (5.1)) depends on the magni-
tude of the correlation of repeated observations. If this correlation is high, the estimates
from panel data are not much better than those from cross-sectional data. This is be-
cause the data sets from earlier occasions are then so similar to the current one that
they do not truly increase the amount of information. If the correlations are weaker,
the PANEL model gives better results, but still it cannot compete successfully with the
ROTPANEL model.

We point out, however, that these remarks concern only the estimation of a "cross-
sectional" area total at some specific occasion. If we are interested in estimating change,
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the complete panel data might be of essentially greater value.

If we compare the four different populations in light of the obtained results, we note
that the differences are small. However, the best overall estimation accuracy (in terms
of MARE and valid MSE) was observed with the population POP2, which had high
intra-area and low intra-unit correlation. The population with the opposite properties
was POP3, and with it the observed estimation accuracy was worst. This suggests that
ideal data for small area estimation would be longitudinal data, in which the units within
areas are fairly homogeneous, but at the same time there is enough variation over time
so that the effective sample size is genuinely increased by the observations from previous
occasions.

All these conclusions are made assuming that the model employed in estimation is cor-
rect. In what follows, we research the performance of the estimators under incorrect
models.
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10 Simulation study with incorrect model: results for
longitudinal data of 10 occasions

We consider next the performance of the models NESTED, PANEL, ROTPANEL and
RANTIME, when the only auxiliary variable (or covariate) in the fixed part of the model
is JS, which is weakly correlated with the target variable Y . This incorrect model (in
the sense that important covariates are missing from the model) for the PANEL and
ROTPANEL approaches was shown in (8.3). For the NESTED approach, the model
equation is

(10.1) YijT = µ+ β1JSijT + vi + eijT

and for the RANTIME approach it is correspondingly

(10.2) Yijt = µ+ β1JSijt + vi + ut + eijt.

In this chapter we present selected results concerning the EBLUP estimation of area
totals under the incorrect models (i.e. models NESTEDi, PANEL10i, ROTPANEL10i
and RANTIME10i, cf. Table 8.2). The discussion focuses on how moving from the correct
model to an incorrect model affects the estimator performance in different situations.

All simulation results on biases, absolute relative errors and coverage rates are shown
for every population (POP1–POP4) in Tables B.1–B.20 in Appendix B. Here we shall
present only a few figures selected to illustrate the main findings with incorrect models.

10.1 Bias

The biases, measured with the mean relative errors, of the region total estimates for
populations POP1–POP4 are shown in Tables B.1, B.6, B.11 and B.16, respectively.
The effect of inferior modelling is almost similar in every population. In general, using
a worsened model increases (the small) bias in all areas except in the largest, where the
bias is practically zero regardless of the selected model.

We let the results for POP2 and POP3 to represent all results. They are displayed in
Figures 10.1 and 10.2 for comparison with the corresponding Figures 9.2 and 9.3.

The median percentual increases in bias (over all areas) for different models and popula-
tions are shown in Table 10.1. Many of them seem remarkable. In general, the increases
are largest, when the intra-area correlations are high (the populations POP1 and POP2).
It is also seen that the performance of the PANEL model has strongly suffered under
low intra-unit correlation (POP2 and POP4). As opposed to the results with correct
models, the panel data does not give here much gains over the cross-sectional data.

It should be noted, however, that although the percentual increases in bias are substan-
tial, the biases are still small, less than 6 % at the maximum. The rotating panel data
outperforms again the complete panel and cross-sectional data.
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Figure 10.1: Relative bias under incorrect model plotted against last month’s mean sam-
ple size in simulations from POP2. Symbols used are © = NESTEDi, � = PANEL10i,
∗ = ROTPANEL10i and 4 = RANTIME10i.

Figure 10.2: Relative bias under incorrect model plotted against last month’s mean sam-
ple size in simulations from POP3. Symbols used are © = NESTEDi, � = PANEL10i,
∗ = ROTPANEL10i and 4 = RANTIME10i.
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Table 10.1. The median percentual increase in bias of EBLUP total estimates caused by
incorrect modelling.

model
population NESTED PANEL ROTPANEL RANTIME

POP1 60 71 76 57
POP2 61 219 98 44
POP3 37 43 47 31
POP4 37 165 69 27

10.2 Absolute relative errors

The mean absolute relative errors of the EBLUP estimates are shown in Tables B.2,
B.7, B.12 and B.17. In all cases the inferior model increases the MARE. On average,
the relative increases are approximately the same regardless of the area size, although
they have more variation in smaller areas. The rotating panel data outperforms again
the complete panel and cross-sectional data.

The results for POP2 and POP4 are chosen to represent all results. They are presented
in Figures 10.3 and 10.4. Comparing them with the Figures 9.7 and 9.9 for correct
models shows the increase in MARE. Otherwise the plots are similar.

The median percentual increases in MARE (over all areas) for different models and
populations are shown in Table 10.2. They lead to conclusions, which are similar to
those made for bias. The increases due to bad modelling are largest in the populations
POP1 and POP2 of high intra-area correlations. The accuracy of the estimates from
panel data has suffered remarkably in the populations of low intra-unit correlation. Thus,
the gains of using panel data instead of cross-sectional data reduce if the model is not
correct. To illustrate this we show plots of MARE ratios in Figures 10.5 and 10.6, which
can be compared with Figures 9.11 and 9.13, where the employed model is correct.

Table 10.2. The median percentual increase in MARE of EBLUP total estimates caused by
incorrect modelling.

model
population NESTED PANEL ROTPANEL RANTIME

POP1 32 37 39 39
POP2 33 86 50 55
POP3 23 29 29 30
POP4 22 68 39 44
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Figure 10.3: MARE under incorrect model plotted against last month’s mean sample size
of region in simulations from POP2. Symbols used are© = NESTEDi, � = PANEL10i,
∗ = ROTPANEL10i and 4 = RANTIME10i.

Figure 10.4: MARE under incorrect model plotted against last month’s mean sample size
of region in simulations from POP4. Symbols used are© = NESTEDi, � = PANEL10i,
∗ = ROTPANEL10i and 4 = RANTIME10i.
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Figure 10.5: MARE reduction under incorrect model in terms of MARE ratios
plotted against last month’s mean sample size in simulations from POP2. Sym-
bols used are � = PANEL10i/NESTEDi, ∗ = ROTPANEL10i/NESTEDi and 4 =
RANTIME10i/NESTEDi.

Figure 10.6: MARE reduction under incorrect model in terms of MARE ratios
plotted against last month’s mean sample size in simulations from POP4. Sym-
bols used are � = PANEL10i/NESTEDi, ∗ = ROTPANEL10i/NESTEDi and 4 =
RANTIME10i/NESTEDi.
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Figure 10.7: Maximum absolute relative errors under incorrect model plotted against last
month’s mean sample size in simulations from POP1. Symbols used are© = NESTEDi,
� = PANEL10i, ∗ = ROTPANEL10i and 4 = RANTIMEi.

Figure 10.8: Maximum absolute relative errors under incorrect model plotted against last
month’s mean sample size in simulations from POP4. Symbols used are© = NESTEDi,
� = PANEL10i, ∗ = ROTPANEL10i and 4 = RANTIME10i.
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We show the maximum absolute relative errors in simulations from POP1 and POP4
in Figures 10.7 and 10.8. We notice that in the smallest areas the NESTED and
PANEL models can yield remarkably worse EBLUP estimates than the ROTPANEL
and RANTIME models, and they are worse under incorrect model than under correct
model especially when the within-area homogeneity is strong (POP1 and the not dis-
played POP2) (cf. Figures 9.14 and 9.17).

10.3 Coverage of confidence intervals

The observed coverage rates of the nominal 95 % confidence intervals calculated from the
EBLUP point estimates and their estimated mean squared errors are shown in Tables
B.3, B.8, B.13 and B.18 of Appendix B. We illustrate the results by the plot of coverage
rates for the population POP4, presented in Figure 10.9. The corresponding plot for
the correct model is in Figure 9.21. In the both figures the areas 26 and 3 again stick
out from the rest as especially problematic cases. Their EBLUP estimates were already
found to have large biases.

Figure 10.9: Coverage of asymptotic 95 % confidence intervals under incorrect model
plotted against last month’s mean sample size in simulations from POP4. Symbols used
are © = NESTEDi, � = PANEL10i, ∗ = ROTPANEL10i and 4 = RANTIME10i.

In general, the incorrect model makes those confidence intervals, which already had
poor (too high or too low) coverage rates under the correct model, even poorer. This
concerns especially the performances of NESTED and PANEL models in small regions

124



and the RANTIME model overall. Also the ROTPANEL model suffers from an incorrect
covariate choice, but its performance is still acceptable.

10.4 MSE estimation

Using an incorrect model increases also the MSE estimates of the EBLUP estimates.
The median percentual increases in mean estimated RMSE (over all areas) for different
models and populations are shown in Table 10.3. The table looks much like Table 10.2
for the mean absolute relative errors. The increases are here highest with the PANEL
model.

Table 10.3. The median percentual increase in mean RMSE of EBLUP total estimates caused
by incorrect modelling.

model
population NESTED PANEL ROTPANEL RANTIME

POP1 32 38 36 35
POP2 32 88 48 35
POP3 21 28 27 26
POP4 21 70 37 25

Depending on the model and population, the relative increase is lowest either in the
smallest or in the largest areas. We illustrate this with Figure 10.10, which displays the
ratios MR̂MSEi/MR̂MSEc, where c denotes correct model and i incorrect model, of
the mean RMSE’s (8.8) plotted against mean sample size in POP2. For the NESTED
and PANEL models the lowest increase is always met with the smallest areas.

To examine the bias in MSE estimation we compare the average of RMSE estimates
with the corresponding empirical root mean squared error (ERMSE) and calculate the
approximate relative estimation error. These comparisons (for the four populations) are
shown in Tables B.4, B.5, B.9, B.10, B.14, B.15, B.19 and B.20 of Appendix B. For
illustration, we display the approximate relative errors for POP2 and POP3 in Figures
10.11 and 10.12. The corresponding plots obtained under the correct models are in
Figures 9.27 and 9.28.

We learn that the biases in MSE estimation, which occur especially with smallest areas,
are increased if the employed model is incorrect. Again, the ROTPANEL model gives the
best results. The increases in bias under it are very moderate compared to the NESTED
and PANEL models, which suffered from remarkable biases in some areas even if the
model had correct covariates.
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Figure 10.10: Relative increase of RMSE due to incorrect model plotted against last
month’s mean sample size in simulations from POP2. Symbols used are© = NESTEDi,
� = PANEL10i, ∗ = ROTPANEL10i and 4 = RANTIME10i.

Figure 10.11: Approximate bias of RMSE estimates under incorrect model plotted
against last month’s mean sample size in simulations from POP2. Symbols used are
© = NESTEDi, � = PANEL10i, ∗ = ROTPANEL10i and 4 = RANTIME10i.
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The RANTIME model performs poorly in all four populations. It performed poorly
in the populations POP1 and POP3, which have strong longitudinal correlations, even
under the correct model. In these populations the incorrect model increases the already
large biases only slightly. In the other two populations POP2 and POP4 of low longitu-
dinal correlation the correct RANTIME model performs somewhat better, but then the
incorrect model raises the biases to almost as high level as in POP1 and POP3.

Figure 10.12: Approximate bias of RMSE estimates under incorrect model plotted
against last month’s mean sample size in simulations from POP3. Symbols used are
© = NESTEDi, � = PANEL10i, ∗ = ROTPANEL10i and 4 = RANTIME10i.

10.5 Summary

The behaviour of the competing models NESTED, PANEL, ROTPANEL and RANTIME
does not change much when the employed model differs from the so-called correct one
with respect to the included auxiliary variables. Certainly the wrong model makes the
possible biases in EBLUP estimates as well as in their MSE estimates more severe and
decreases the estimation accuracy and the validity of asymptotic confidence intervals.

Utilizing the rotating panel data by the ROTPANEL model yields superior results in
every way. It successfully protects from very poor point estimates, and gives in most
cases small standard errors and adequate confidence intervals.

With the correct auxiliary variables the use of complete panel data is gainful in some
circumstances, but when the model is not correct, these gains are practically lost.
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11 Simulation study with correct model: results for
longitudinal data of 5 occasions

In this chapter we examine how the performances of the EBLUP estimators under the
PANEL, ROTPANEL and RANTIME models change when the length of panel, i.e. the
number of survey occasions in the data, is reduced from 10 to 5. The employed models
are correct, including all the necessary auxiliary variables. Thus, we consider mod-
els PANEL5c, ROTPANEL5c and RANTIME5c. The cross-sectional model NESTEDc
serves as a benchmark in the performance comparisons.

All the numerical results on biases, absolute relative errors and coverage rates are shown
for every population (POP1–POP4) in Tables C.1–C.20 of Appendix C. Only few selected
figures are presented here to illustrate the main findings.

11.1 Bias

The biases of the region total estimates calculated from the data of 5 survey occasions are
shown in Tables C.1, C.6, C.11 and C.16 for the populations POP1–POP4, respectively.
The reduced number of occasions in the panel data causes only slight increases in bias.
Thus, the large percentual increases presented in Table 11.1 are somewhat misleading.
We do not display any figures here since they would be almost identical with those
obtained from the data of 10 occasions and presented in Chapter 9.

The estimates from rotating panel data, obtained under the models ROTPANEL and
RANTIME, are still virtually unbiased even in the smallest areas. The estimates from
panel data showed some small biases in a few small or smallish areas. These biases are
now larger than before, but the increase is negligible especially when the longitudinal
correlation within units is high (the populations POP1 and POP3).

Table 11.1. The median percentual increase in bias of EBLUP total estimates caused by
shorter panel data.

model
population PANEL ROTPANEL RANTIME

POP1 3 37 75
POP2 29 68 55
POP3 3 40 78
POP4 33 67 73

128



11.2 Absolute relative errors

The mean absolute relative errors of the EBLUP estimates are shown in Tables C.2, C.7,
C.12 and C.17. Halving the number of survey occasions does not yield large increases
in the mean or maximum absolute relative error. The median percentual increases in
MARE for different models and populations are shown in Table 11.2. Again, under high
longitudinal correlation (POP1 and POP3 the length of panel has virtually no effect
on the performance of the PANEL model. The relative increases are approximately the
same regardless of the area size.

Table 11.2. The median percentual increase in MARE of EBLUP total estimates caused by
shorter panel data.

model
population PANEL ROTPANEL RANTIME

POP1 1 18 16
POP2 12 27 27
POP3 1 18 16
POP4 13 27 27

Reducing the number of time points in data does not affect the comparison of the
various approaches. The graphical representations of MARE would be almost identical
with those obtained from the data of 10 occasions (see Chapter 9) and are omitted.

The rotating panel data outperforms the complete panel and cross-sectional data. How-
ever, the gains of using panel or rotating panel data are somewhat smaller with data
of 5 occasions than with data of 10 occasions. To illustrate this we show two plots of
MARE ratios in Figures 11.1 and 11.2, which can be compared with Figures 9.11 and
9.13 to see the difference.

11.3 Coverage of confidence intervals

The observed coverage rates of the nominal 95 % confidence intervals calculated from the
EBLUP point estimates and their estimated mean squared errors are shown in Tables
C.3, C.8, C.13 and C.18. The results are essentially similar to those obtained with data
sets of 10 time points. The only exception is in the performance of the RANTIME
model for rotating panel data. This is illustrated in the plot of coverage rates for the
population POP1 in Figure 11.3. The corresponding plot in the case of 10 time points
is in Figure 9.18. With the shorter data the observed rates have moved closer to the
nominal rates, though they still show too low coverage. The change is due to the fact
that in shorter data the number of units, which are mistakenly assumed independent, is
reduced.
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Figure 11.1: MARE reduction under correct model in terms of MARE ratios plot-
ted against last month’s mean sample size in simulations from POP2. Sym-
bols used are � = PANEL5c/NESTEDc, ∗ = ROTPANEL5c/NESTEDc and 4 =
RANTIME5c/NESTEDc.

Figure 11.2: MARE reduction under correct model in terms of MARE ratios plot-
ted against last month’s mean sample size in simulations from POP4. Sym-
bols used are � = PANEL5c/NESTEDc, ∗ = ROTPANEL5c/NESTEDc and 4 =
RANTIME5c/NESTEDc.
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Figure 11.3: Coverage of asymptotic 95 % confidence intervals under correct model
plotted against last month’s mean sample size in simulations from POP1. Symbols used
are © = NESTEDc, � = PANEL5c, ∗ = ROTPANEL5c and 4 = RANTIME5c.

11.4 MSE estimation

Using the reduced number of survey occasions induces some increase also in the MSE
estimates of the EBLUP estimates. The graphical representations are again omitted,
but the median percentual increases in mean estimated RMSE (over all areas) for the
considered models and populations are shown in Table 11.3. The table looks much like
Table 11.2 for the mean absolute relative errors.

Table 11.3. The median percentual increase in mean RMSE of EBLUP total estimates caused
by shorter panel data.

model
population PANEL ROTPANEL RANTIME

POP1 1 17 33
POP2 12 27 33
POP3 1 17 32
POP4 14 27 32

For the PANEL model, the increases are relatively small (especially in the populations
POP1 and POP3, where the intra-unit correlation is high) and do not vary much with
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the area size. This indicates that under high longitudinal correlation increasing "lags" in
complete panel data does not result in essentially reduced variation of estimates. Under
low longitudinal correlation (POP2 and POP4) the earlier observations contain more
additional information and losing them causes more loss of estimation efficiency.

The ROTPANEL model and especially the RANTIME model suffer more from throwing
longitudinal data away, because the number of unobserved units increases. When the
number of time points is reduced from 10 to 5, the RANTIME model (erroneously) sees
this as halving the number of independent observations, and while it does not recognize
the intra-unit correlation, the loss of efficiency is almost the same in every population.
The ROTPANEL model accounts for the magnitude of the correlation, and for this
reason (as with the PANEL model) the MSE increases more in the populations of low
intra-unit correlation.

For the rotating panel data, especially with the ROTPANEL model, the relative increases
are usually largest in the smallest areas. This is understandable since in the biggest areas
even the cross-sectional sample size is often large enough to give accurate estimates.

Figure 11.4: Approximate bias of RMSE estimates under correct model plotted against
last month’s mean sample size in simulations from POP3. Symbols used are © =
NESTEDc, � = PANEL5c, ∗ = ROTPANEL5c and 4 = RANTIME5c.

As for the bias in MSE estimation, the results are the same as for the confidence interval
coverage rates. The effect of smaller number of survey occasions is seen mainly in
the reduced bias of the MSE estimates under the RANTIME model. Only few small
increases of bias are observed with the other models. The numerical results for the four
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populations POP1–POP4 are shown in respective Tables C.4 and C.5, C.9 and C.10,
C.14 and C.15, C.19 and C.20. For illustration, we display the approximate relative
errors of RMSE estimates for POP3 in Figure 11.4. The corresponding plot for the 10-
occasion data is in Figure 9.28, and comparison of these two figures shows the changed
performance of RANTIME model and the almost unchanged performances of the other
models.

11.5 Summary

When the employed model is correct, reducing the number of survey occasions by half
does not have much effect on the performance of models PANEL, ROTPANEL and
RANTIME. Small increases in (absolute) relative errors and in mean squared errors are
observed. Often the increases are highest in the smallest areas. Again, utilizing the
rotating panel data by the ROTPANEL model yields the most reliable results.
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12 Simulation study with incorrect model: results for
longitudinal data of 5 occasions

In this chapter we present selected results concerning the EBLUP estimation of area
totals from sample data sets of 5 time points under the incorrect models. The considered
models are PANEL5i, ROTPANEL5i and RANTIME5i and NESTEDi as a benchmark
(cf. Table 8.2). The model equations have been shown in (8.3), (10.1) and (10.2).

We have two general interests here. First, do the drawbacks of using an incorrect model
change when the number of time points in sample data is reduced. Second, are the
effects of using shorter panel data the same under incorrect models as under correct
models.

All the numerical results on biases, absolute relative errors and coverage rates are shown
for every population (POP1–POP4) in Tables D.1–D.20 in Appendix D. We present here
only few figures selected to illustrate the main findings.

12.1 Bias

The observed biases of the region total estimates in the case of short panel and incorrect
model are shown in Tables D.1, D.6, D.11 and D.16. As an example, the results for
the population POP3 are displayed in Figure 12.1. It looks much similar to Figure 10.2
drawn from the corresponding results for data of 10 time points. By careful comparison
it can be seen that the biases under the rotating panel data models ROTPANEL and
RANTIME are slightly increased in the smallest areas due to the shorter data. This
increase is negligible under the PANEL model.

The relative increases of bias due to the shorter data are presented in Table 12.1. How-
ever, it should be kept in mind that both the actual biases and their increases are in
general very small. Thus, as for bias under incorrect models there is not much difference
if the longitudinal data contains 5 or 10 time points.

Table 12.1. The median percentual increase in bias of EBLUP total estimates due to shorter
panel data under incorrect models.

model
population PANEL ROTPANEL RANTIME

POP1 1 37 79
POP2 7 46 64
POP3 2 33 84
POP4 8 49 76
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Figure 12.1: Relative bias under incorrect model plotted against last month’s mean
sample size in simulations from POP3. Symbols used are©=NESTEDi, � = PANEL5i,
∗ = ROTPANEL5i and 4 = RANTIME5i.

On the other hand, comparing Table 12.1 with Table 11.1 suggests that the increase in
bias due to shorter data can be smaller under an incorrect model than under correct
model. This holds especially for the PANEL and ROTPANEL model in the populations
POP2 and POP4 of low intra-unit correlation.

The relative increase of bias due to the incorrect modelling in the case of shorter panel
data is shown in Table 12.2. This is similar to Table 10.1, suggesting that the number
of survey occasions is not much related to the effect of correct/incorrect modelling on
bias.

Table 12.2. The median percentual increase in bias of EBLUP total estimates caused by
incorrect modelling in data of 5 time points.

model
population NESTED PANEL ROTPANEL RANTIME

POP1 60 69 72 65
POP2 61 163 78 59
POP3 37 43 43 39
POP4 37 118 54 39
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12.2 Absolute relative errors

The mean absolute relative errors of the EBLUP estimates are shown in Tables D.2, D.7,
D.12 and D.17. As expected, the inferior model and the reduced number of time points
both increase the MARE. The effect of inferior model is the stronger of these two and it
does not change much with the number of time points in data. On the other hand, we
can state that under an incorrect model the effect of shorter data on MARE is smaller
than under the correct model. We come to these conclusions by comparing Table 12.4
with Table 10.2 and Table 12.3 with Table 11.2. They are valid also when the maximum
absolute relative errors are concerned.

Table 12.3. The median percentual increase in MARE of EBLUP total estimates due to
shorter panel data under incorrect models.

model
population PANEL ROTPANEL RANTIME

POP1 1 15 14
POP2 3 20 19
POP3 1 15 13
POP4 4 19 18

Table 12.4. The median percentual increase in MARE of EBLUP total estimates caused by
incorrect modelling in data of 5 time points.

model
population NESTED PANEL ROTPANEL RANTIME

POP1 32 37 34 37
POP2 33 72 42 45
POP3 23 28 25 27
POP4 33 55 31 35

In the case of 5 occasions the gains of panel data or rotating panel data over the cross-
sectional data are only slightly smaller if the model is incorrect. The populations of low
intra-unit correlation make an exception in the sense that an incorrect model reduces the
gains of PANEL model considerably more. This is illustrated in Figures 12.2 and 12.3,
which can be compared to Figures 11.1 and 11.2, where the employed model is correct.
The reduction in the gains of the ROTPANEL and RANTIME models is smaller than
that of the PANEL model.

12.3 Coverage of confidence intervals

The coverage rates of the nominal 95 % confidence intervals are shown in Tables D.3, D.8,
D.13 and D.18. The tendency of incorrect models to yield inferior confidence intervals
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Figure 12.2: MARE reduction under incorrect model in terms of MARE ratios plotted
against last month’s mean sample size in simulations from POP2. Symbols used are � =
PANEL5i/NESTEDi, ∗ = ROTPANEL5i/NESTEDi and 4 = RANTIME5i/NESTEDi.

Figure 12.3: MARE reduction under incorrect model in terms of MARE ratios plotted
against last month’s mean sample size in simulations from POP4. Symbols used are � =
PANEL5i/NESTEDi, ∗ = ROTPANEL5i/NESTEDi and 4 = RANTIME5i/NESTEDi.
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occurs also with the shorter data sets. When the model is incorrect, the number of
occasions has only a minor effect. Once again the ROTPANEL model performs best
among the compared models.

12.4 MSE estimation

The median percentual increases in mean estimated RMSE (over all areas), caused by
the shorter sample data in the case of incorrect model, are displayed in Table 12.5. The
increases caused by incorrect models in the case of shorter data are in Table 12.6. These
tables look much like the corresponding tables about the mean absolute relative errors
and the same conclusions can be made. The increases in the estimated RMSE under
the RANTIME models are not really comparable with the others, because the RMSE
estimates are biased and this bias reduces as the number of occasions goes down.

Table 12.5. The median percentual increase in RMSE of EBLUP total estimates due to
shorter panel data under incorrect models.

model
population PANEL ROTPANEL RANTIME

POP1 1 16 33
POP2 3 20 33
POP3 1 15 31
POP4 4 20 31

Table 12.5 is very similar to Table 11.3 in Section 11.4, and the discussion presented
there is valid also here. However, the RMSE performance of PANEL model makes some
difference. We note that under the incorrect model the effect of the length of the panel
on the performance is negligible in every population. Similar behaviour was noticed also
with the MARE (Table 12.3).

Table 12.6. The median percentual increase in RMSE of EBLUP total estimates caused by
incorrect modelling in data of 5 time points.

model
population NESTED PANEL ROTPANEL RANTIME

POP1 32 38 35 34
POP2 32 73 40 34
POP3 21 27 25 25
POP4 21 56 29 25
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The effect of incorrect modelling on the level of MSE is slightly reduced, when there is
5 time points in the data instead of 10 (cf. Table 10.3).

About the bias in MSE estimation nothing really new can be said. The RMSE bias
results are shown in Appendix D in Tables D.4 and D.5 for POP1, D.9 and D.10 for
POP2, D.14 and D.15 for POP3 and D.19 and D.20 for POP4. With 5 occasions data
the incorrect models yield larger biases in MSE estimates than correct models in the
same way as with 10 occasions data. If the original model is incorrect, shortening the
panel data yield only minor increases in bias.

12.5 Summary

It is not surprising that the small area estimation results are worst when the model
is incorrect and there is less longitudinal data available. However, the effect of bad
modelling on the estimator performance is found stronger than the length of the panel
data. When the model is wrong, the length of the panel does not affect much. When
the model is correct, long panel data give somewhat greater gains than short panel
data. These gains are seen in the accuracy of both EBLUP estimates and their MSE
estimates. The rotating panel data modelled by the ROTPANEL model yields again the
best results.
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13 Miscellaneous findings

In addition to the Monte Carlo studies reported above, we carried out a few simulation
experiments mainly for preliminary purposes. These raised a couple of issues, which are
worth discussing.

First, we experimented with various rotation schemes. It was soon noticed that as the
overlap between survey occasions increases, the results with rotating panel data tend to
those obtained with panel data. The more overlap, the less good properties are available
in estimating the cross-sectional area totals at the last survey occasion. The rotation
plan used in the Finnish Labour Force Survey and also in this work seems very reasonable
here. The situation is of course different, when the estimation problem concerns changes
in totals. It is not within the scope of this thesis, however.

Second, there was a little worry about the incorrect models applied in the simulation
study since they, while obeying the postulated covariance structure and only two fixed
covariates missing, might still be too good to offer a real alternative to the so-called
correct models. Therefore we generated one more fixed population POP5 by a model,
which was made more complicated by adding two strong interactions, a fixed interaction
between month and JS and a random interaction between month and unit, into the
model (8.2) used before. The former interaction introduces temporal variation in the
regression coefficient of JS and the latter makes the response variances grow over time.
The already familiar simple incorrect models (8.3), (10.1) and (10.2) (with the variance
equality assumption) were fitted to samples from this population to obtain the EBLUP
estimates.

However, this additional experiment did not offer any completely new findings. Dete-
riorated performances were found especially with the EBLUP estimators from cross-
sectional data (NESTED) and panel data (PANEL) in the smallest areas. They were
manifested in larger errors in both the EBLUP estimates and their MSE estimates, yield-
ing larger MARE’s and poorer (mainly too high) coverage rates of confidence intervals.
The results for the largest areas were mostly adequate. The ROTPANEL model gave a
valid performance with small EBLUP and MSE estimation errors also in this situation.
The results for EBLUP bias, MARE and RMSE bias, obtained from panel data of 10
time points, are presented in Figures 13.1, 13.2 and 13.3. It is seen that the high intra-
unit correlation makes again the RMSE estimates under the RANTIME model severely
biased. In some areas using the data of only 5 time points deteriorates the model fit,
yielding increase in bias and poor coverage rates.

One interesting issue, which was not fully met with the earlier experiments, but appeared
here, was an outlying area. In the generation of POP5 area 15 happened to receive an
unusually large negative random effect, which stuck out of the other area effects with its
standardized value −2.6. As the area also happened to be the second largest, it caused
difficulties to the area total estimation. Especially the estimates from cross-sectional
data and complete panel data suffered from large positive bias (Figure 13.1) leading to
large MARE (Figure 13.2) and bad MSE estimates (Figure 13.3).
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Figure 13.1: Relative bias under incorrect model plotted against last month’s mean sam-
ple size in simulations from POP5. Symbols used are © = NESTEDi, � = PANEL10i,
∗ = ROTPANEL10i and 4 = RANTIME10i.

Figure 13.2: MARE under incorrect model plotted against last month’s mean sample
size in simulations from POP5. Symbols used are © = NESTEDi, � = PANEL10i, ∗
= ROTPANEL10i and 4 = RANTIME10i.
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Figure 13.3: Approximate bias of RMSE estimates under incorrect model plotted against
last month’s mean sample size in simulations from POP2. Symbols used are © =
NESTEDi, � = PANEL10i, ∗ = ROTPANEL10i and 4 = RANTIME10i.

Again, it appears that using rotating panel data offers a remarkable correction for the
bias, whether data of 5 or 10 occasions are available. This in turn transfers to greater
accuracy and better MSE estimates. Thus, our limited experiment suggests that when
the amount of data available from an area is increased enough, which in this case means
utilizing the rotating panel, even an inferior model can capture the essential properties
of the area, leading to adequate small area estimates.
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14 Discussion

One can hardly claim that the idea of compensating the weakness of the sample in-
formation by introducing external data is fresh. Virtually all literature on the small
area estimation is about borrowing strength or increasing the effective sample size, ei-
ther spatially from neighbouring or otherwise similar areas or temporally from earlier
surveys.

In this work we show in the framework of best linear unbiased prediction (BLUP) how
to borrow strength at unit level using longitudinal data sets collected by panel design
or rotating panel design. The EBLUP estimator of area totals and the estimator of
its approximate mean squared error are derived under a three-level variance component
model, which is relatively simple and easy to estimate, but still accounts for both the
correlations between units in an area and the correlations of the repeated observations
of an unit with a reasonable accuracy.

The simulation studies showed clearly the superiority of using rotating panel data in
estimating small area totals at a certain (usually the last) time point. The increase of the
available information due to fully utilizing the rotating data yields great improvements
in the estimation accuracy, reducing the relative errors of the EBLUP estimates as well
as their mean squared errors, while still keeping the MSE estimates and the resulting
confidence intervals valid.

However, we are aware of the limitations of this study. So far we have stuck to the
framework of linear mixed models with normal random terms. Although it is recognized
as a flexible modelling environment, which can provide pertinent results even for non-
continuous and non-normally distributed responses, there are often practical situations,
e.g. with a multinomial response, where one might look for a more adequate model.
Some progress is made in small area estimation with generalized linear mixed models
(e.g. EURAREA 2004), but the methodology seems not fully established yet. The small
area estimation from unit-level longitudinal data with generalized linear or non-linear
mixed models is one possible direction of future research.

The theory of generalized linear mixed models also relies largely on the normality of
random effects (McCulloch and Searle 2001). In real life, however, the normality of
area effects is not always justified. There are some research activities on the EBLUP
estimation under non-normal area effects, but as far as we know, any papers on the topic
are not yet published. Thus, apparently there is a lot of work to be done concerning the
robustness of EBLUP estimators with respect the non-normality and the possibility to
apply other distributions than normal.

In this thesis we have only considered the estimation of small area totals at a certain time
point. In official statistics these are often of the most interest and there is a desire to
estimate these as precisely as possible. Yet, longitudinal data sets are usually collected
with the purpose of getting information about changes in the course of time. It is known
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that in estimating change a strong correlation between the data sets of different time
points increases the accuracy, just contrary to the cross-sectional estimation problem.
One could expect that the change in small area totals is estimated better from complete
panel data than from rotating panel data, but this may depend on the distributional
properties of the study variable together with the properties of the rotation design. It
is possible that a rotation design optimal for estimating cross-sectional totals and their
change could be found if some properties of the study variable were known. The problem
of estimating small area changes is third direction of future research and it is probably
the one, where the next step will be taken.

It is relatively simple to carry out the estimation of change under the linear mixed model
adopted in this thesis. The estimation under generalized linear mixed models is arguably
more demanding.
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A Appendix: Simulation study with correct model.
Result tables for longitudinal data of 10 occasions

Table A.1. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP1.

bias bias bias bias
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 0.06 0.10 0.02 -0.02
2 11.4 0.02 0.13 0.06 0.05
3 18.3 -1.56 -1.37 -0.33 -0.22
4 48.4 -0.18 -0.09 0.00 -0.02
5 8.1 1.29 1.09 0.23 0.02
6 25.4 0.91 0.76 0.23 0.14
7 48.9 0.42 0.32 0.09 0.02
8 13.0 0.71 0.64 0.27 0.18
9 26.4 -0.62 -0.47 -0.07 -0.06
10 43.8 0.29 0.22 0.02 -0.03
11 26.7 -0.29 -0.21 -0.01 -0.03
12 17.1 -0.63 -0.51 -0.15 -0.13
13 51.4 0.38 0.33 0.04 -0.02
14 7.3 -2.79 -2.44 -0.58 -0.32
15 83.0 0.22 0.17 0.01 -0.03
16 10.4 0.67 0.60 0.08 0.01
17 70.1 0.00 0.00 -0.04 -0.08
18 26.7 -0.17 -0.19 -0.07 -0.08
19 9.2 -1.26 -1.15 -0.38 -0.32
20 17.1 1.26 1.09 -0.30 0.13
21 32.1 0.28 0.20 0.01 -0.08
22 14.3 -0.37 -0.34 -0.14 -0.12
23 4.9 -3.20 -2.82 -0.76 -0.55
24 54.1 0.18 0.11 -0.02 -0.06
25 32.0 -0.62 -0.46 -0.10 -0.08
26 14.9 -2.15 -1.80 -0.45 -0.29
27 53.1 0.95 0.80 0.20 0.08
28 67.7 0.43 0.34 0.06 -0.01
29 17.6 -0.70 -0.61 -0.19 -0.16
30 131.6 -0.12 -0.10 -0.02 -0.04

average 33.3 -0.22 -0.19 -0.06 -0.07

151



Table A.2. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP1.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 2.47 2.32 1.13 1.21
2 11.4 2.73 2.56 1.30 1.42
3 18.3 2.35 2.14 0.96 1.01
4 48.4 1.40 1.31 0.64 0.69
5 8.1 3.41 3.20 1.65 1.75
6 25.4 2.28 2.10 0.98 1.04
7 48.9 1.62 1.48 0.75 0.79
8 13.0 2.85 2.70 1.36 1.41
9 26.4 1.86 1.68 0.83 0.90
10 43.8 1.72 1.53 0.74 0.81
11 26.7 1.85 1.71 0.87 0.92
12 17.1 2.37 2.14 1.00 1.06
13 51.4 1.67 1.52 0.74 0.80
14 7.3 3.70 3.37 1.48 1.54
15 83.0 1.20 1.11 0.58 0.64
16 10.4 2.87 2.79 1.47 1.57
17 70.1 1.28 1.16 0.61 0.65
18 26.7 1.87 1.74 0.87 0.93
19 9.2 2.92 2.70 1.38 1.46
20 17.1 2.74 2.57 1.26 1.33
21 32.1 1.93 1.77 0.82 0.88
22 14.3 2.34 2.22 1.15 1.20
23 4.9 4.17 3.86 1.80 1.89
24 54.1 1.44 1.31 0.67 0.72
25 32.0 1.73 1.52 0.70 0.75
26 14.9 2.77 2.49 1.04 1.05
27 53.1 1.92 1.75 0.85 0.89
28 67.7 1.53 1.38 0.69 0.75
29 17.6 2.11 1.97 1.00 1.04
30 131.6 0.86 0.82 0.44 0.50

average 33.3 2.20 2.03 0.99 1.05
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Table A.3. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP1.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 0.966 0.971 0.963 0.873
2 11.4 0.972 0.958 0.954 0.848
3 18.3 0.921 0.924 0.938 0.841
4 48.4 0.953 0.953 0.959 0.879
5 8.1 0.974 0.962 0.958 0.852
6 25.4 0.949 0.951 0.959 0.876
7 48.9 0.963 0.959 0.949 0.883
8 13.0 0.963 0.952 0.951 0.849
9 26.4 0.960 0.956 0.951 0.855
10 43.8 0.939 0.938 0.955 0.880
11 26.7 0.962 0.959 0.947 0.865
12 17.1 0.945 0.953 0.952 0.862
13 51.4 0.946 0.950 0.951 0.865
14 7.3 0.919 0.921 0.955 0.848
15 83.0 0.949 0.946 0.958 0.889
16 10.4 0.969 0.958 0.959 0.836
17 70.1 0.949 0.947 0.962 0.885
18 26.7 0.956 0.955 0.955 0.864
19 9.2 0.957 0.959 0.947 0.832
20 17.1 0.952 0.945 0.944 0.845
21 32.1 0.946 0.950 0.956 0.866
22 14.3 0.972 0.960 0.948 0.855
23 4.9 0.938 0.946 0.949 0.850
24 54.1 0.949 0.958 0.950 0.879
25 32.0 0.948 0.946 0.953 0.887
26 14.9 0.886 0.900 0.945 0.840
27 53.1 0.936 0.938 0.943 0.875
28 67.7 0.938 0.940 0.939 0.872
29 17.6 0.964 0.956 0.959 0.886
30 131.6 0.950 0.942 0.947 0.902

average 33.3 0.950 0.952 0.952 0.865
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Table A.4. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP1. Results for models NESTEDc and PANEL10c.

NESTEDc PANEL10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9019 8325 8.34 8258 7796 5.93
2 11.4 7894 7220 9.34 7247 6841 5.93
3 18.3 10192 11605 -12.18 9317 10650 -12.52
4 48.4 16707 16364 2.10 15243 15081 1.07
5 8.1 6453 5925 8.91 5955 5594 6.45
6 25.4 12071 12056 -0.32 10969 11005 -0.33
7 48.9 16801 16289 3.14 15330 14996 2.23
8 13.0 8464 8212 3.07 7759 7721 0.49
9 26.4 12265 12294 -0.24 11193 11065 1.16
10 43.8 15864 16147 -1.75 14473 14589 -0.80
11 26.7 12355 11993 3.02 11274 11063 1.91
12 17.1 9767 10030 -2.62 8932 9087 -1.71
13 51.4 17192 17878 -3.84 15688 16298 -3.74
14 7.3 6065 7075 -14.28 5608 6458 -13.16
15 83.0 22076 21789 1.32 20193 19956 1.19
16 10.4 7513 6791 10.63 6908 6549 5.48
17 70.1 20160 19843 1.64 18421 18097 1.79
18 26.7 12274 11792 4.09 11201 10937 2.41
19 9.2 7020 6699 4.79 6467 6212 4.10
20 17.1 9775 9819 -0.45 8939 9140 -2.20
21 32.1 13559 13707 -1.08 12370 12417 -0.38
22 14.3 8860 8029 10.35 8114 7669 5.80
23 4.9 4965 5316 -6.60 4635 4958 -6.51
24 54.1 17660 17395 1.52 16119 15644 3.04
25 32.0 13562 14163 -4.24 12372 12636 -2.09
26 14.9 9120 11501 -20.70 8350 10281 -18.78
27 53.1 17489 18476 -5.34 15691 16586 -3.77
28 67.7 19871 20808 -4.50 18155 18943 -4.16
29 17.6 9798 9063 8.11 8961 8397 6.72
30 131.6 27724 27140 2.15 25476 25729 -0.98

average 33.3 12749 12791 0.15 11663 11747 -0.51
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Table A.5. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE), em-
pirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under cor-
rect model in simulations from POP1. Results for models ROTPANEL10c and RANTIME10c.

ROTPANEL10c RANTIME10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 4036 3850 4.83 3139 4107 -23.57
2 11.4 3531 3440 2.65 2727 3693 -26.16
3 18.3 4544 4811 -5.55 3564 5047 -29.38
4 48.4 7675 7397 3.76 6399 7993 -19.94
5 8.1 2950 2851 3.47 2263 3013 -24.89
6 25.4 5393 5182 4.07 4294 5479 -21.63
7 48.9 7723 7667 0.73 6444 8145 -20.88
8 13.0 3794 3840 -1.20 2938 3979 -26.16
9 26.4 5508 5491 0.31 4399 5980 -26.44
10 43.8 7251 6972 4.00 5995 7661 -21.75
11 26.7 5548 5570 -0.39 4433 5922 -25.14
12 17.1 4364 4208 3.71 3411 4453 -23.40
13 51.4 7934 7954 -0.25 6647 8542 -22.18
14 7.3 2795 2843 -1.69 2138 2959 -27.75
15 83.0 10526 10429 0.93 9280 11513 -19.40
16 10.4 3373 3378 -0.15 2600 3646 -28.69
17 70.1 9493 9236 2.78 8207 10084 -18.61
18 26.7 5531 5421 2.03 4415 5826 -24.22
19 9.2 3168 3138 0.96 2437 3317 -26.53
20 17.1 4388 4517 -2.86 3431 4777 -28.18
21 32.1 6113 5900 3.61 4942 6283 -21.34
22 14.3 3973 3960 0.33 3089 4123 -25.08
23 4.9 2324 2335 -0.47 1783 2455 -27.37
24 54.1 8160 8125 0.43 6878 8643 -20.42
25 32.0 6125 5869 4.36 4947 6265 -21.04
26 14.9 4084 4324 -5.55 3175 4426 -28.26
27 53.1 8081 8121 -0.49 6793 8615 -21.15
28 67.7 9319 9502 -1.93 8031 10361 -22.49
29 17.6 4398 4212 4.42 3440 4432 -22.38
30 131.6 13939 13801 1.00 13011 15668 -16.96

average 33.3 5868 5811 0.93 4842 6247 -23.71
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Table A.6. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP2.

bias bias bias bias
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 -0.08 0.01 -0.02 -0.05
2 11.4 -0.01 0.20 0.14 0.11
3 18.3 -1.50 -0.56 -0.30 -0.29
4 48.4 -0.25 -0.01 0.02 -0.01
5 8.1 1.21 0.25 0.07 -0.01
6 25.4 0.94 0.31 0.24 0.19
7 48.9 0.49 0.13 0.10 0.06
8 13.0 0.74 0.31 0.25 0.21
9 26.4 -0.66 -0.17 -0.04 -0.06
10 43.8 0.31 0.07 -0.01 -0.04
11 26.7 -0.29 -0.05 0.00 -0.03
12 17.1 -0.59 -0.16 -0.07 -0.09
13 51.4 0.32 0.08 0.01 -0.03
14 7.3 -2.69 -0.94 -0.36 -0.30
15 83.0 0.22 0.08 0.00 -0.03
16 10.4 0.60 0.25 0.03 -0.02
17 70.1 -0.02 -0.06 -0.10 -0.13
18 26.7 -0.17 -0.14 -0.11 -0.13
19 9.2 -1.17 -0.56 -0.32 -0.33
20 17.1 1.27 0.46 0.27 0.19
21 32.1 0.30 0.01 -0.06 -0.11
22 14.3 -0.32 -0.12 -0.10 -0.11
23 4.9 -3.14 -1.31 -0.55 -0.51
24 54.1 0.18 -0.01 -0.06 -0.10
25 32.0 -0.67 -0.12 -0.04 -0.06
26 14.9 -2.10 -0.59 -0.28 -0.25
27 53.1 0.96 0.31 0.17 0.10
28 67.7 0.44 0.10 0.05 0.00
29 17.6 -0.71 -0.28 -0.16 -0.17
30 131.6 -0.14 -0.07 -0.03 -0.06

average 33.3 -0.22 -0.09 -0.04 -0.07
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Table A.7. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP2.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 2.41 1.47 0.98 0.98
2 11.4 2.69 1.69 1.14 1.16
3 18.3 2.30 1.24 0.82 0.82
4 48.4 1.39 0.81 0.56 0.56
5 8.1 3.35 2.04 1.39 1.40
6 25.4 2.31 1.29 0.86 0.86
7 48.9 1.64 0.91 0.65 0.65
8 13.0 2.85 1.67 1.14 1.14
9 26.4 1.86 1.01 0.71 0.72
10 43.8 1.70 0.96 0.67 0.68
11 26.7 1.79 1.06 0.73 0.74
12 17.1 2.30 1.32 0.85 0.86
13 51.4 1.62 0.93 0.66 0.67
14 7.3 3.67 1.93 1.19 1.21
15 83.0 1.20 0.71 0.51 0.51
16 10.4 2.88 1.84 1.18 1.20
17 70.1 1.30 0.74 0.55 0.56
18 26.7 1.90 1.07 0.76 0.77
19 9.2 2.95 1.80 1.20 1.20
20 17.1 2.78 1.55 1.03 1.04
21 32.1 1.86 1.09 0.74 0.75
22 14.3 2.32 1.40 0.98 0.98
23 4.9 4.17 2.44 1.51 1.53
24 54.1 1.43 0.83 0.62 0.62
25 32.0 1.71 0.91 0.62 0.63
26 14.9 2.72 1.29 0.84 0.84
27 53.1 1.92 1.06 0.79 0.78
28 67.7 1.50 0.87 0.62 0.63
29 17.6 2.15 1.25 0.85 0.86
30 131.6 0.87 0.55 0.42 0.43

average 33.3 2.18 1.26 0.85 0.86
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Table A.8. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP2.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 0.974 0.956 0.967 0.941
2 11.4 0.975 0.949 0.950 0.926
3 18.3 0.926 0.938 0.937 0.899
4 48.4 0.961 0.947 0.961 0.944
5 8.1 0.969 0.957 0.955 0.929
6 25.4 0.949 0.947 0.957 0.933
7 48.9 0.950 0.955 0.958 0.939
8 13.0 0.961 0.951 0.964 0.937
9 26.4 0.960 0.960 0.954 0.921
10 43.8 0.942 0.940 0.962 0.944
11 26.7 0.969 0.956 0.960 0.932
12 17.1 0.962 0.954 0.961 0.934
13 51.4 0.942 0.942 0.954 0.942
14 7.3 0.922 0.940 0.954 0.923
15 83.0 0.956 0.957 0.952 0.939
16 10.4 0.968 0.959 0.962 0.925
17 70.1 0.952 0.947 0.968 0.944
18 26.7 0.960 0.952 0.949 0.931
19 9.2 0.960 0.936 0.947 0.916
20 17.1 0.955 0.955 0.952 0.932
21 32.1 0.950 0.952 0.951 0.933
22 14.3 0.970 0.954 0.947 0.930
23 4.9 0.944 0.951 0.947 0.919
24 54.1 0.950 0.958 0.951 0.931
25 32.0 0.942 0.955 0.958 0.940
26 14.9 0.891 0.937 0.948 0.931
27 53.1 0.931 0.949 0.927 0.912
28 67.7 0.941 0.950 0.947 0.933
29 17.6 0.966 0.955 0.966 0.946
30 131.6 0.952 0.938 0.954 0.939

average 33.3 0.952 0.950 0.954 0.932

158



Table A.9. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP2. Results for models NESTEDc and PANEL10c.

NESTEDc PANEL10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9022 8175 10.36 5070 4968 2.05
2 11.4 7897 7041 12.16 4478 4470 0.18
3 18.3 10194 11447 -10.95 5706 6181 -7.68
4 48.4 16709 16076 3.94 9488 9351 1.47
5 8.1 6456 5888 9.65 3738 3595 3.98
6 25.4 12019 12118 -0.82 6720 6727 -0.10
7 48.9 16804 16535 1.63 9547 9155 4.28
8 13.0 8468 8182 3.50 4777 4810 -0.69
9 26.4 12268 12258 0.08 6860 6673 2.80
10 43.8 15867 16142 -1.70 8975 9032 -0.63
11 26.7 12358 11563 6.88 6911 6802 1.60
12 17.1 9770 9613 1.63 5473 5579 -1.90
13 51.4 17195 17577 -2.17 9790 10009 -2.19
14 7.3 6068 6994 -13.24 3547 3834 -7.49
15 83.0 22078 21826 1.15 12958 12823 1.05
16 10.4 7515 6823 10.14 4288 4326 -0.88
17 70.1 20162 19766 2.00 11686 11391 2.59
18 26.7 12276 11924 2.95 6866 6755 1.64
19 9.2 7024 6793 3.40 4038 4179 -3.37
20 17.1 9779 9927 -1.49 5476 5491 -0.27
21 32.1 13562 13222 2.57 7605 7681 -0.99
22 14.3 8863 8001 10.77 4984 4919 1.32
23 4.9 4970 5346 -7.03 3048 3219 -5.31
24 54.1 17661 17468 1.10 10083 9932 1.52
25 32.0 13563 14227 -4.67 7606 7503 1.37
26 14.9 9123 11357 -19.67 5125 5439 -5.77
27 53.1 17490 18842 -7.18 9975 10053 -0.78
28 67.7 19874 20699 -3.99 11492 11902 -3.44
29 17.6 9800 9249 5.96 5490 5362 2.39
30 131.6 27727 27322 1.48 17045 17424 -2.18

average 33.3 12752 12747 0.62 7295 7320 -0.51
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Table A.10. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP2. Results for models ROTPANEL10c and RANTIME10c.

ROTPANEL10c RANTIME10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 3432 3304 3.87 3143 3327 -5.53
2 11.4 2989 2968 0.71 2730 3007 -9.21
3 18.3 3886 4122 -5.73 3567 4130 -13.63
4 48.4 6852 6472 5.87 6405 6539 -2.05
5 8.1 2485 2427 2.39 2265 2449 -7.51
6 25.4 4661 4505 3.46 4299 4498 -4.42
7 48.9 6899 6632 4.03 6451 6619 -2.54
8 13.0 3217 3191 0.81 2941 3180 -7.52
9 26.4 4771 4730 0.87 4403 4804 -8.35
10 43.8 6435 6142 4.77 6001 6236 -3.77
11 26.7 4807 4685 2.60 4438 4720 -5.97
12 17.1 3724 3563 4.52 3414 3579 -4.61
13 51.4 7108 7047 0.87 6653 7100 -6.30
14 7.3 2351 2317 1.47 2140 2336 -8.39
15 83.0 9786 9354 4.62 9289 9464 -1.85
16 10.4 2851 2777 2.66 2602 2824 -7.86
17 70.1 8700 8333 4.40 8215 8436 -2.62
18 26.7 4789 4747 0.88 4420 4800 -7.92
19 9.2 2674 2714 -1.47 2439 2746 -11.18
20 17.1 3746 3681 1.77 3434 3680 -6.68
21 32.1 5340 5208 2.53 4947 5273 -6.18
22 14.3 3378 3356 0.66 3092 3358 -7.92
23 4.9 1958 1966 -0.41 1784 1992 -10.44
24 54.1 7342 7409 -0.90 6884 7473 -7.88
25 32.0 5347 5074 5.38 4952 5142 -3.70
26 14.9 3472 3478 -0.17 3178 3478 -8.63
27 53.1 7257 7565 -4.07 6799 7576 -10.26
28 67.7 8520 8559 -0.46 8039 8571 -6.21
29 17.6 3755 3584 4.77 3443 3618 -4.84
30 131.6 13523 13333 1.43 13024 13579 -4.09

average 33.3 5202 5108 1.74 4846 5151 -6.60
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Table A.11. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP3.

bias bias bias bias
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 -0.04 0.04 0.02 -0.03
2 11.4 -0.08 0.07 0.10 0.07
3 18.3 -3.07 -2.54 -0.74 -0.48
4 48.4 -0.47 -0.28 -0.04 -0.05
5 8.1 1.66 1.43 0.49 0.17
6 25.4 1.56 1.25 0.43 0.25
7 48.9 0.86 0.63 0.19 0.07
8 13.0 1.07 0.95 0.44 0.28
9 26.4 -1.23 -0.91 -0.19 -0.14
10 43.8 0.53 0.40 0.07 -0.02
11 26.7 -0.59 -0.42 -0.05 -0.06
12 17.1 -1.16 -0.91 -0.28 -0.22
13 51.4 0.74 0.59 0.11 0.01
14 7.3 -4.07 -3.54 -1.21 -0.74
15 83.0 0.34 0.25 0.03 -0.03
16 10.4 0.77 0.72 0.19 0.06
17 70.1 0.09 0.06 -0.04 -0.10
18 26.7 -0.44 -0.39 -0.13 -0.13
19 9.2 -1.88 -1.66 -0.64 -0.51
20 17.1 2.06 1.72 0.58 0.29
21 32.1 0.53 0.38 0.06 -0.06
22 14.3 -0.82 -0.69 -0.25 -0.20
23 4.9 -3.80 -3.38 -1.36 -0.98
24 54.1 0.26 0.16 -0.01 -0.08
25 32.0 -1.36 -0.98 -0.24 -0.17
26 14.9 -4.10 -3.34 -1.01 -0.63
27 53.1 1.85 1.44 0.39 0.18
28 67.7 0.88 0.66 0.15 0.03
29 17.6 -1.41 -1.14 -0.38 -0.28
30 131.6 -0.28 -0.20 -0.06 -0.07

average 33.3 -0.39 -0.32 -0.11 -0.12
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Table A.12. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP3.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 2.05 1.99 1.22 1.33
2 11.4 2.10 2.09 1.38 1.54
3 18.3 3.36 2.88 1.25 1.24
4 48.4 1.53 1.39 0.73 0.79
5 8.1 2.61 2.52 1.66 1.81
6 25.4 2.34 2.10 1.08 1.12
7 48.9 1.74 1.53 0.82 0.85
8 13.0 2.37 2.30 1.44 1.51
9 26.4 2.06 1.79 0.96 1.05
10 43.8 1.75 1.53 0.81 0.89
11 26.7 1.84 1.70 0.97 1.04
12 17.1 2.30 2.06 1.12 1.20
13 51.4 1.77 1.56 0.81 0.87
14 7.3 4.27 3.81 1.81 1.80
15 83.0 1.29 1.17 0.65 0.71
16 10.4 2.20 2.22 1.51 1.66
17 70.1 1.36 1.20 0.68 0.73
18 26.7 1.82 1.70 0.98 1.05
19 9.2 2.65 2.49 1.52 1.64
20 17.1 2.77 2.54 1.36 1.40
21 32.1 1.89 1.73 0.90 0.97
22 14.3 2.06 1.99 1.26 1.34
23 4.9 3.99 3.68 2.04 2.11
24 54.1 1.49 1.34 0.76 0.81
25 32.0 2.10 1.74 0.83 0.89
26 14.9 4.26 3.60 1.44 1.34
27 53.1 2.35 1.98 0.92 0.93
28 67.7 1.69 1.46 0.75 0.81
29 17.6 2.19 2.01 1.14 1.20
30 131.6 1.00 0.92 0.53 0.59

average 33.3 2.24 2.03 1.11 1.17
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Table A.13. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP3.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 0.989 0.984 0.965 0.894
2 11.4 0.993 0.986 0.964 0.864
3 18.3 0.815 0.831 0.915 0.836
4 48.4 0.960 0.964 0.959 0.886
5 8.1 0.992 0.982 0.965 0.879
6 25.4 0.954 0.949 0.950 0.885
7 48.9 0.965 0.958 0.952 0.901
8 13.0 0.978 0.967 0.955 0.866
9 26.4 0.954 0.966 0.947 0.869
10 43.8 0.958 0.947 0.956 0.895
11 26.7 0.974 0.971 0.956 0.874
12 17.1 0.966 0.970 0.956 0.878
13 51.4 0.951 0.945 0.950 0.878
14 7.3 0.879 0.886 0.935 0.856
15 83.0 0.955 0.953 0.954 0.889
16 10.4 0.986 0.989 0.967 0.863
17 70.1 0.962 0.959 0.964 0.897
18 26.7 0.976 0.970 0.959 0.877
19 9.2 0.981 0.973 0.955 0.852
20 17.1 0.958 0.949 0.947 0.860
21 32.1 0.965 0.960 0.960 0.880
22 14.3 0.984 0.979 0.959 0.873
23 4.9 0.953 0.953 0.949 0.850
24 54.1 0.962 0.966 0.953 0.892
25 32.0 0.936 0.940 0.957 0.895
26 14.9 0.726 0.748 0.891 0.829
27 53.1 0.870 0.899 0.937 0.881
28 67.7 0.931 0.930 0.939 0.881
29 17.6 0.970 0.965 0.957 0.901
30 131.6 0.952 0.943 0.950 0.903

average 33.3 0.947 0.946 0.951 0.876
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Table A.14. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP3. Results for models NESTEDc and PANEL10c.

NESTEDc PANEL10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9150 7051 29.77 8292 6774 22.41
2 11.4 7701 5656 36.16 7049 5636 25.07
3 18.3 10617 14990 -29.17 9553 13103 -27.09
4 48.4 18835 17651 6.71 16626 15864 4.80
5 8.1 5938 4693 26.53 5510 4571 20.54
6 25.4 12964 12990 -0.20 11559 11615 -0.48
7 48.9 18953 18373 3.16 16728 16309 2.57
8 13.0 8432 7050 19.60 7675 6799 12.88
9 26.4 13283 13193 0.68 11832 11561 2.34
10 43.8 17792 17146 3.77 15719 15206 3.37
11 26.7 13393 11867 12.86 11928 10934 9.09
12 17.1 10099 9503 6.27 9105 8621 5.61
13 51.4 19438 19824 -1.95 17151 17637 -2.76
14 7.3 5467 7190 -23.96 5096 6536 -22.03
15 83.0 25408 24248 4.78 22408 21656 3.47
16 10.4 7216 5327 35.46 6630 5350 23.93
17 70.1 23079 21568 7.01 20346 19259 5.64
18 26.7 13293 11564 14.95 11842 10765 10.00
19 9.2 6587 5818 13.22 6083 5508 10.44
20 17.1 10115 10255 -1.37 9116 9431 -3.34
21 32.1 14905 13889 7.32 13229 12503 5.81
22 14.3 8951 7052 26.93 8119 6874 18.11
23 4.9 4130 4598 -10.18 3915 4311 -9.19
24 54.1 20016 18574 7.76 17656 16390 7.72
25 32.0 14902 16377 -9.01 13227 13932 -5.06
26 14.9 9260 15414 -39.92 8388 13184 -36.38
27 53.1 19799 24930 -20.58 17468 20876 -16.32
28 67.7 22722 24656 -7.84 20032 21444 -6.58
29 17.6 10160 9113 11.49 9157 8359 9.55
30 131.6 32241 31332 2.90 28570 28770 -0.70

average 33.3 13828 13730 4.44 12334 12326 2.45
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Table A.15. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP3. Results for models ROTPANEL10c and RANTIME10c.

ROTPANEL10c RANTIME10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 4559 4200 8.55 3660 4569 -19.89
2 11.4 3952 3673 7.60 3163 4068 -22.25
3 18.3 5166 5881 -12.16 4167 5892 -29.28
4 48.4 8908 8441 5.53 7544 9134 -17.41
5 8.1 3245 3001 8.13 2600 3249 -19.98
6 25.4 6182 6017 2.74 5040 6261 -19.50
7 48.9 8966 8859 1.21 7598 9289 -18.20
8 13.0 4266 4201 1.55 3417 4418 -22.66
9 26.4 6320 6242 1.25 5165 6795 -23.99
10 43.8 8402 7982 5.26 7064 8730 -19.08
11 26.7 6368 6228 2.25 5206 6684 -22.11
12 17.1 4951 4684 5.70 3985 4996 -20.24
13 51.4 9219 9215 0.04 7838 9805 -20.06
14 7.3 3055 3296 -7.31 2448 3315 -26.15
15 83.0 12336 12111 1.86 10961 13211 -17.03
16 10.4 3760 3559 5.65 3010 3958 -23.95
17 70.1 11091 10693 3.72 9689 11584 -16.36
18 26.7 6346 6106 3.93 5185 6605 -21.50
19 9.2 3510 3410 2.93 2811 3671 -23.43
20 17.1 4979 5161 -3.53 4009 5365 -25.27
21 32.1 7042 6698 5.14 5812 7155 -18.77
22 14.3 4483 4325 3.65 3598 4597 -21.73
23 4.9 2474 2543 -2.71 2008 2665 -24.65
24 54.1 9492 9389 1.10 8112 9963 -18.58
25 32.0 7055 6760 4.36 5817 7174 -18.92
26 14.9 4613 5530 -16.58 3702 5254 -29.54
27 53.1 9394 9874 -4.86 8012 10071 -20.44
28 67.7 10881 11165 -2.54 9481 11924 -20.49
29 17.6 4992 4739 5.34 4020 5015 -19.84
30 131.6 16472 16324 0.91 15380 18205 -15.52

average 33.3 6749 6677 1.29 5683 7121 -21.23
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Table A.16. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP4.

bias bias bias bias
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 -0.18 -0.01 -0.02 -0.07
2 11.4 -0.07 0.23 0.18 0.14
3 18.3 -3.00 -1.02 -0.59 -0.56
4 48.4 -0.54 -0.06 0.00 -0.04
5 8.1 1.59 0.51 0.27 0.16
6 25.4 1.62 0.51 0.38 0.30
7 48.9 0.91 0.23 0.17 0.11
8 13.0 1.11 0.50 0.38 0.31
9 26.4 -1.25 -0.31 -0.11 -0.14
10 43.8 0.55 0.14 0.03 -0.03
11 26.7 -0.58 -0.10 -0.03 -0.07
12 17.1 -1.11 -0.29 -0.15 -0.17
13 51.4 0.68 0.17 0.06 0.00
14 7.3 -4.02 -1.59 -0.82 -0.74
15 83.0 0.33 0.11 0.02 -0.03
16 10.4 0.73 0.35 0.12 0.05
17 70.1 0.07 -0.05 -0.10 -0.15
18 26.7 -0.45 -0.22 -0.15 -0.19
19 9.2 -1.84 -0.84 -0.51 -0.51
20 17.1 2.09 0.75 0.47 0.36
21 32.1 0.54 0.08 -0.03 -0.09
22 14.3 -0.75 -0.24 -0.16 -0.19
23 4.9 -3.84 -1.85 -1.03 -0.96
24 54.1 0.25 0.00 -0.06 -0.11
25 32.0 -1.41 -0.28 -0.14 -0.15
26 14.9 -4.05 -1.20 -0.65 -0.60
27 53.1 1.86 0.51 0.30 0.21
28 67.7 0.90 0.20 0.11 0.05
29 17.6 -1.40 -0.48 -0.28 -0.30
30 131.6 -0.30 -0.10 -0.06 -0.10

average 33.3 -0.39 -0.15 -0.08 -0.12
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Table A.17. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP4.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 2.03 1.42 1.07 1.08
2 11.4 2.09 1.60 1.24 1.26
3 18.3 3.30 1.52 1.04 1.04
4 48.4 1.53 0.87 0.65 0.65
5 8.1 2.56 1.84 1.44 1.46
6 25.4 2.43 1.30 0.95 0.94
7 48.9 1.77 0.92 0.72 0.71
8 13.0 2.42 1.59 1.23 1.23
9 26.4 2.07 1.08 0.82 0.83
10 43.8 1.74 0.98 0.74 0.74
11 26.7 1.79 1.10 0.83 0.84
12 17.1 2.20 1.35 0.96 0.97
13 51.4 1.71 0.94 0.72 0.72
14 7.3 4.25 2.15 1.45 1.45
15 83.0 1.29 0.75 0.57 0.57
16 10.4 2.21 1.71 1.25 1.28
17 70.1 1.36 0.78 0.62 0.62
18 26.7 1.87 1.11 0.87 0.88
19 9.2 2.64 1.80 1.33 1.35
20 17.1 2.82 1.54 1.12 1.11
21 32.1 1.82 1.09 0.81 0.82
22 14.3 2.06 1.39 1.09 1.10
23 4.9 4.08 2.45 1.74 1.76
24 54.1 1.48 0.86 0.70 0.70
25 32.0 2.09 1.00 0.74 0.75
26 14.9 4.24 1.66 1.10 1.08
27 53.1 2.36 1.07 0.84 0.82
28 67.7 1.67 0.88 0.67 0.67
29 17.6 2.22 1.33 0.98 0.99
30 131.6 1.03 0.62 0.50 0.51

average 33.3 2.24 1.29 0.96 0.96
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Table A.18. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP4.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL10c ROTPANEL10c RANTIME10c

1 14.9 0.991 0.966 0.969 0.959
2 11.4 0.996 0.961 0.959 0.938
3 18.3 0.822 0.906 0.912 0.897
4 48.4 0.964 0.953 0.959 0.948
5 8.1 0.988 0.973 0.965 0.947
6 25.4 0.954 0.955 0.953 0.940
7 48.9 0.952 0.957 0.960 0.947
8 13.0 0.981 0.957 0.965 0.942
9 26.4 0.960 0.961 0.955 0.927
10 43.8 0.950 0.942 0.968 0.954
11 26.7 0.986 0.959 0.961 0.942
12 17.1 0.982 0.964 0.964 0.946
13 51.4 0.949 0.943 0.956 0.949
14 7.3 0.878 0.929 0.941 0.924
15 83.0 0.963 0.958 0.951 0.939
16 10.4 0.990 0.969 0.965 0.943
17 70.1 0.962 0.954 0.965 0.949
18 26.7 0.973 0.960 0.952 0.930
19 9.2 0.975 0.939 0.951 0.925
20 17.1 0.956 0.947 0.950 0.944
21 32.1 0.973 0.961 0.953 0.939
22 14.3 0.988 0.951 0.954 0.936
23 4.9 0.955 0.946 0.943 0.921
24 54.1 0.960 0.960 0.958 0.939
25 32.0 0.934 0.949 0.963 0.948
26 14.9 0.716 0.901 0.924 0.912
27 53.1 0.881 0.932 0.921 0.914
28 67.7 0.930 0.945 0.948 0.941
29 17.6 0.970 0.957 0.966 0.946
30 131.6 0.951 0.942 0.952 0.942

average 33.3 0.948 0.950 0.953 0.938
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Table A.19. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP4. Results for models NESTEDc and PANEL10c.

NESTEDc PANEL10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9164 6979 31.31 5253 4870 7.86
2 11.4 7711 5521 39.67 4576 4277 6.99
3 18.3 10628 14743 -27.91 5965 7091 -15.88
4 48.4 18847 17464 7.92 10221 9926 2.97
5 8.1 5944 4644 27.99 3726 3361 10.86
6 25.4 12974 13196 -1.68 7109 7177 -0.95
7 48.9 18964 18777 1.00 10287 9841 4.53
8 13.0 8447 7089 19.16 4918 4723 4.13
9 26.4 13297 13145 1.16 7267 6987 4.01
10 43.8 17805 17172 3.69 9642 9562 0.84
11 26.7 13403 11427 17.29 7323 7005 4.54
12 17.1 10112 9020 12.11 5707 5621 1.53
13 51.4 19449 19395 0.28 10562 10694 -1.23
14 7.3 5475 7152 -23.45 3500 3970 -11.84
15 83.0 25419 24257 4.79 14160 13958 1.45
16 10.4 7225 5387 34.12 4351 4106 5.97
17 70.1 23089 21439 7.70 12712 12187 4.31
18 26.7 13305 11716 13.56 7275 7017 3.68
19 9.2 6603 5815 13.55 4059 4072 -0.32
20 17.1 10130 10388 -2.48 5713 5812 -1.70
21 32.1 14917 13363 11.63 8102 7992 1.38
22 14.3 8966 7067 26.87 5157 4871 5.87
23 4.9 4139 4690 -11.75 2861 3043 -5.98
24 54.1 20026 18553 7.94 10893 10566 3.09
25 32.0 14914 16486 -9.54 8101 7994 1.34
26 14.9 9276 15265 -39.23 5313 6430 -17.37
27 53.1 19809 25240 -21.52 10771 11435 -5.81
28 67.7 22732 24559 -7.44 12489 13002 -3.95
29 17.6 10171 9265 9.78 5731 5562 3.04
30 131.6 32253 31639 1.94 18880 19280 -2.07

average 33.3 13840 13695 4.95 7754 7748 0.38

169



Table A.20. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP4. Results for models ROTPANEL10c and RANTIME10c.

ROTPANEL10c RANTIME10c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 3899 3656 6.65 3661 3695 -0.92
2 11.4 3373 3252 3.72 3164 3300 -4.12
3 18.3 4435 4967 -10.71 4170 4953 -15.81
4 48.4 7935 7447 6.55 7550 7510 0.53
5 8.1 2771 2628 5.44 2600 2655 -2.07
6 25.4 5350 5259 1.73 5044 5200 -3.00
7 48.9 7991 7718 3.54 7604 7649 -0.59
8 13.0 3643 3567 2.13 3419 3563 -4.04
9 26.4 5479 5390 1.65 5169 5467 -5.45
10 43.8 7443 7049 5.59 7070 7119 -0.69
11 26.7 5522 5306 4.07 5210 5347 -2.56
12 17.1 4243 3996 6.18 3988 4028 -0.99
13 51.4 8238 8102 1.68 7845 8129 -3.49
14 7.3 2610 2687 -2.87 2448 2681 -8.69
15 83.0 11408 10825 5.39 10971 10894 0.71
16 10.4 3209 3024 6.12 3010 3081 -2.30
17 70.1 10121 9597 5.46 9698 9710 -0.12
18 26.7 5500 5416 1.55 5188 5490 -5.50
19 9.2 2997 3005 -0.27 2812 3054 -7.92
20 17.1 4268 4239 0.68 4011 4190 -4.27
21 32.1 6151 5930 3.73 5817 5993 -2.94
22 14.3 3834 3726 2.90 3600 3751 -4.03
23 4.9 2133 2194 -2.78 2008 2215 -9.35
24 54.1 8515 8524 -0.11 8119 8603 -5.63
25 32.0 6158 5875 4.82 5822 5948 -2.12
26 14.9 3944 4293 -8.13 3704 4233 -12.50
27 53.1 8414 9028 -6.80 8019 8903 -9.93
28 67.7 9909 9927 -0.18 9489 9864 -3.80
29 17.6 4280 4080 4.90 4022 4131 -2.64
30 131.6 15846 15582 1.69 15395 15820 -2.69

average 33.3 5987 5876 1.81 5688 5906 -4.23
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B Appendix: Simulation study with incorrect model.
Result tables for longitudinal data of 10 occasions

Table B.1. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP1.

bias bias bias bias
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 0.04 0.10 0.00 -0.11
2 11.4 0.06 0.20 0.08 0.02
3 18.3 -2.50 -2.33 -0.55 -0.38
4 48.4 -0.24 -0.17 0.00 -0.08
5 8.1 1.63 1.52 0.31 -0.01
6 25.4 1.53 1.41 0.38 0.14
7 48.9 0.55 0.45 0.11 -0.05
8 13.0 1.22 1.16 0.39 0.19
9 26.4 -1.02 -0.87 -0.12 -0.11
10 43.8 0.54 0.48 0.08 -0.05
11 26.7 -0.60 -0.52 -0.04 -0.08
12 17.1 -1.10 -0.98 -0.29 -0.27
13 51.4 0.60 0.57 0.12 0.00
14 7.3 -4.28 -4.00 -1.02 -0.59
15 83.0 0.40 0.35 0.05 -0.04
16 10.4 0.92 0.90 0.22 0.11
17 70.1 0.13 0.12 0.01 -0.08
18 26.7 -0.26 -0.28 -0.07 -0.09
19 9.2 -2.03 -1.94 -0.61 -0.48
20 17.1 1.94 1.84 0.47 0.19
21 32.1 0.38 0.31 0.08 -0.06
22 14.3 -0.95 -0.92 -0.26 -0.19
23 4.9 -4.84 -4.55 -1.36 -0.91
24 54.1 0.27 0.20 0.04 -0.03
25 32.0 -1.03 -0.88 -0.21 -0.16
26 14.9 -3.54 -3.25 -0.78 -0.48
27 53.1 1.41 1.28 0.26 0.05
28 67.7 0.71 0.62 0.13 0.03
29 17.6 -0.93 -0.88 -0.24 -0.18
30 131.6 -0.10 -0.08 -0.02 -0.07

average 33.3 -0.37 -0.34 -0.09 -0.13
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Table B.2. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP1.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 3.07 2.97 1.54 1.65
2 11.4 3.37 3.31 1.74 1.91
3 18.3 3.35 3.21 1.36 1.40
4 48.4 1.91 1.83 0.88 0.96
5 8.1 4.00 3.92 2.18 2.32
6 25.4 2.93 2.77 1.37 1.44
7 48.9 2.21 2.13 1.03 1.13
8 13.0 3.64 3.54 1.84 1.94
9 26.4 2.49 2.36 1.18 1.28
10 43.8 2.21 2.10 1.00 1.10
11 26.7 2.42 2.31 1.22 1.32
12 17.1 3.10 2.94 1.44 1.54
13 51.4 2.23 2.12 0.99 1.11
14 7.3 5.06 4.84 2.07 2.15
15 83.0 1.60 1.52 0.81 0.89
16 10.4 3.49 3.49 1.92 2.07
17 70.1 1.74 1.64 0.85 0.92
18 26.7 2.63 2.55 1.26 1.38
19 9.2 3.71 3.62 1.85 1.99
20 17.1 3.57 3.47 1.77 1.85
21 32.1 2.53 2.42 1.15 1.25
22 14.3 3.05 2.98 1.60 1.71
23 4.9 5.59 5.36 2.50 2.66
24 54.1 1.90 1.78 0.93 1.00
25 32.0 2.35 2.17 0.99 1.08
26 14.9 4.06 3.84 1.45 1.42
27 53.1 2.63 2.50 1.13 1.18
28 67.7 2.04 1.94 0.90 0.99
29 17.6 2.80 2.71 1.39 1.48
30 131.6 1.12 1.08 0.58 0.67

average 33.3 2.89 2.78 1.36 1.46

172



Table B.3. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP1.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 0.975 0.974 0.961 0.849
2 11.4 0.970 0.967 0.961 0.842
3 18.3 0.895 0.892 0.938 0.834
4 48.4 0.952 0.961 0.955 0.873
5 8.1 0.973 0.966 0.966 0.864
6 25.4 0.959 0.959 0.961 0.877
7 48.9 0.950 0.952 0.951 0.870
8 13.0 0.968 0.964 0.956 0.843
9 26.4 0.945 0.947 0.937 0.821
10 43.8 0.962 0.964 0.959 0.883
11 26.7 0.963 0.960 0.941 0.861
12 17.1 0.962 0.958 0.954 0.820
13 51.4 0.948 0.948 0.957 0.868
14 7.3 0.896 0.892 0.935 0.815
15 83.0 0.950 0.961 0.961 0.882
16 10.4 0.970 0.969 0.957 0.845
17 70.1 0.951 0.950 0.954 0.871
18 26.7 0.951 0.948 0.949 0.835
19 9.2 0.967 0.959 0.949 0.840
20 17.1 0.959 0.957 0.925 0.822
21 32.1 0.956 0.949 0.956 0.856
22 14.3 0.963 0.963 0.944 0.834
23 4.9 0.923 0.920 0.950 0.815
24 54.1 0.955 0.960 0.949 0.882
25 32.0 0.947 0.957 0.956 0.859
26 14.9 0.836 0.856 0.918 0.823
27 53.1 0.944 0.937 0.951 0.875
28 67.7 0.948 0.948 0.953 0.891
29 17.6 0.975 0.973 0.955 0.853
30 131.6 0.964 0.955 0.958 0.899

average 33.3 0.949 0.949 0.951 0.853
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Table B.4. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP1. Results for models NESTEDi and PANEL10i.

NESTEDi PANEL10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 11751 10444 12.51 11257 10162 10.78
2 11.4 10177 8919 14.10 9770 8829 10.66
3 18.3 13362 16432 -18.68 12782 15755 -18.87
4 48.4 22303 21718 2.69 21279 20768 2.46
5 8.1 8174 7066 15.68 7876 6923 13.77
6 25.4 15886 15415 3.06 15174 14658 3.52
7 48.9 22432 22457 -0.11 21402 21608 -0.95
8 13.0 10970 10355 5.94 10520 10072 4.45
9 26.4 16229 16573 -2.08 15499 15691 -1.22
10 43.8 21156 20485 3.28 20187 19358 4.28
11 26.7 16348 15645 4.49 15613 14931 4.57
12 17.1 12780 12746 0.27 12231 12237 -0.05
13 51.4 22967 23956 -4.13 21912 22858 -4.14
14 7.3 7637 9432 -19.03 7370 9068 -18.73
15 83.0 29603 28925 2.34 28267 27614 2.36
16 10.4 9642 8219 17.31 9267 8191 13.14
17 70.1 27001 26467 2.02 25773 25069 2.81
18 26.7 16241 16459 -1.32 15511 15877 -2.31
19 9.2 8948 8401 6.51 8612 8171 5.40
20 17.1 12796 12553 1.94 12244 12148 0.79
21 32.1 18001 17863 0.77 17183 17061 0.72
22 14.3 11530 10592 8.86 11047 10323 7.01
23 4.9 6081 7002 -13.15 5901 6760 -12.71
24 54.1 23602 23222 1.64 22521 21808 3.27
25 32.0 18005 19080 -5.63 17187 17652 -2.63
26 14.9 11880 16510 -28.04 11380 15619 -27.14
27 53.1 23370 25182 -7.20 22299 23849 -6.50
28 67.7 26610 27741 -4.08 25399 26320 -3.50
29 17.6 12832 11654 10.11 12280 11303 8.64
30 131.6 37262 35140 6.04 35656 34109 4.54

average 33.3 16853 16888 0.54 16113 16160 0.15
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Table B.5. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE), em-
pirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under incor-
rect model in simulations from POP1. Results for models ROTPANEL10i and RANTIME10i.

ROTPANEL10i RANTIME10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 5503 5237 5.08 4222 5707 -26.02
2 11.4 4809 4587 4.84 3664 5006 -26.81
3 18.3 6200 6720 -7.74 4795 7004 -31.54
4 48.4 10445 10136 3.05 8625 11141 -22.58
5 8.1 4003 3786 5.73 3034 4023 -24.58
6 25.4 7360 7048 4.43 5783 7425 -22.11
7 48.9 10510 10399 1.07 8686 11374 -23.63
8 13.0 5170 5210 -0.77 3949 5521 -28.47
9 26.4 7515 7799 -3.64 5924 8438 -29.79
10 43.8 9875 9387 5.20 8080 10304 -21.58
11 26.7 7571 7710 -1.80 5971 8294 -28.01
12 17.1 5954 5946 0.13 4589 6387 -28.15
13 51.4 10795 10521 2.60 8959 11747 -23.73
14 7.3 3788 3955 -4.22 2864 4131 -30.67
15 83.0 14251 14178 0.51 12512 15769 -20.65
16 10.4 4590 4454 3.05 3491 4844 -27.93
17 70.1 12878 12907 -0.22 11065 14050 -21.25
18 26.7 7547 7775 -2.93 5946 8511 -30.14
19 9.2 4306 4227 1.87 3270 4545 -28.05
20 17.1 5986 6362 -5.91 4616 6668 -30.77
21 32.1 8337 8120 2.67 6658 8866 -24.90
22 14.3 5418 5548 -2.34 4154 5914 -29.76
23 4.9 3129 3281 -4.63 2380 3464 -31.29
24 54.1 11097 11201 -0.93 9271 12081 -23.26
25 32.0 8354 8181 2.11 6664 8865 -24.83
26 14.9 5569 6125 -9.08 4270 6039 -29.29
27 53.1 10990 10897 0.85 9157 11450 -20.03
28 67.7 12645 12425 1.77 10828 13513 -19.87
29 17.6 6000 5813 3.22 4628 6265 -26.13
30 131.6 18745 18042 3.90 17545 20863 -15.90

average 33.3 7978 7933 0.26 6520 8607 -25.73
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Table B.6. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP2.

bias bias bias bias
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 -0.10 0.01 -0.05 -0.14
2 11.4 0.04 0.32 0.14 0.08
3 18.3 -2.43 -1.64 -0.55 -0.45
4 48.4 -0.31 -0.12 0.00 -0.06
5 8.1 1.54 1.04 0.18 -0.03
6 25.4 1.57 1.02 0.37 0.19
7 48.9 0.61 0.27 0.11 -0.01
8 13.0 1.25 0.91 0.37 0.21
9 26.4 -1.05 -0.59 -0.09 -0.10
10 43.8 0.56 0.34 0.05 -0.06
11 26.7 -0.60 -0.34 -0.04 -0.09
12 17.1 -1.06 -0.63 -0.23 -0.23
13 51.4 0.54 0.35 0.08 -0.01
14 7.3 -4.19 -2.90 -0.86 -0.57
15 83.0 0.39 0.25 0.04 -0.04
16 10.4 0.86 0.69 0.19 0.09
17 70.1 0.11 0.05 -0.05 -0.12
18 26.7 -0.25 -0.23 -0.10 -0.14
19 9.2 -1.95 -1.46 -0.55 -0.48
20 17.1 1.95 1.40 0.46 0.26
21 32.1 0.40 0.16 0.01 -0.10
22 14.3 -0.89 -0.66 -0.21 -0.19
23 4.9 -4.80 -3.50 -1.17 -0.88
24 54.1 0.27 0.10 0.00 -0.07
25 32.0 -1.08 -0.56 -0.15 -0.15
26 14.9 -3.48 -2.24 -0.63 -0.44
27 53.1 1.42 0.84 0.24 0.07
28 67.7 0.72 0.42 0.13 0.04
29 17.6 -0.94 -0.64 -0.22 -0.19
30 131.6 -0.13 -0.07 -0.04 -0.09

average 33.3 -0.37 -0.25 -0.09 -0.12
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Table B.7. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP2.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 3.05 2.60 1.45 1.51
2 11.4 3.33 3.01 1.65 1.74
3 18.3 3.30 2.59 1.25 1.26
4 48.4 1.89 1.53 0.86 0.90
5 8.1 4.12 3.58 2.07 2.14
6 25.4 3.00 2.34 1.28 1.31
7 48.9 2.22 1.79 0.98 1.03
8 13.0 3.62 3.05 1.71 1.75
9 26.4 2.48 2.01 1.08 1.14
10 43.8 2.21 1.75 0.96 1.01
11 26.7 2.41 1.95 1.14 1.19
12 17.1 3.03 2.51 1.37 1.42
13 51.4 2.19 1.77 0.96 1.01
14 7.3 5.00 3.94 1.92 1.95
15 83.0 1.59 1.27 0.77 0.80
16 10.4 3.46 3.11 1.76 1.84
17 70.1 1.74 1.37 0.82 0.84
18 26.7 2.58 2.16 1.19 1.26
19 9.2 3.70 3.18 1.79 1.87
20 17.1 3.61 2.94 1.63 1.65
21 32.1 2.46 2.05 1.12 1.17
22 14.3 3.08 2.61 1.52 1.57
23 4.9 5.60 4.53 2.31 2.39
24 54.1 1.93 1.53 0.89 0.92
25 32.0 2.35 1.78 0.94 0.99
26 14.9 4.02 2.95 1.33 1.30
27 53.1 2.61 2.00 1.10 1.11
28 67.7 2.04 1.60 0.88 0.91
29 17.6 2.79 2.36 1.30 1.37
30 131.6 1.14 0.91 0.58 0.62

average 33.3 2.88 2.36 1.29 1.33
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Table B.8. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP2.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 0.973 0.967 0.954 0.886
2 11.4 0.981 0.960 0.959 0.888
3 18.3 0.892 0.909 0.935 0.865
4 48.4 0.959 0.963 0.952 0.898
5 8.1 0.979 0.962 0.963 0.895
6 25.4 0.958 0.960 0.962 0.903
7 48.9 0.952 0.952 0.952 0.903
8 13.0 0.964 0.953 0.952 0.874
9 26.4 0.945 0.955 0.935 0.870
10 43.8 0.953 0.955 0.958 0.911
11 26.7 0.968 0.956 0.944 0.883
12 17.1 0.957 0.952 0.947 0.868
13 51.4 0.949 0.947 0.963 0.898
14 7.3 0.908 0.911 0.937 0.849
15 83.0 0.960 0.961 0.958 0.910
16 10.4 0.971 0.955 0.966 0.892
17 70.1 0.957 0.962 0.947 0.906
18 26.7 0.948 0.941 0.952 0.865
19 9.2 0.963 0.958 0.947 0.869
20 17.1 0.954 0.953 0.932 0.876
21 32.1 0.959 0.948 0.953 0.886
22 14.3 0.958 0.955 0.940 0.868
23 4.9 0.917 0.925 0.942 0.861
24 54.1 0.947 0.955 0.944 0.896
25 32.0 0.930 0.953 0.962 0.906
26 14.9 0.832 0.892 0.936 0.862
27 53.1 0.927 0.956 0.951 0.913
28 67.7 0.944 0.943 0.948 0.920
29 17.6 0.969 0.963 0.953 0.889
30 131.6 0.958 0.952 0.961 0.930

average 33.3 0.948 0.949 0.950 0.888

178



Table B.9. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP2. Results for models NESTEDi and PANEL10i.

NESTEDi PANEL10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 11752 10360 13.44 9512 8865 7.30
2 11.4 10180 8729 16.62 8315 7919 5.00
3 18.3 13361 16215 -17.60 10755 12802 -15.99
4 48.4 22298 21636 3.06 17803 17496 1.75
5 8.1 8176 7097 15.20 6787 6256 8.49
6 25.4 15884 15678 1.31 12713 12221 4.03
7 48.9 22427 22467 -0.18 17906 18108 -1.12
8 13.0 10973 10366 5.86 8919 8706 2.45
9 26.4 16227 16595 -2.22 12981 13194 -1.61
10 43.8 21152 20740 1.99 16884 16270 3.77
11 26.7 16346 15538 5.20 13075 12617 3.63
12 17.1 12782 12460 2.58 10304 10512 -1.98
13 51.4 22962 23574 -2.60 18338 18853 -2.73
14 7.3 7641 9313 -17.95 6382 7562 -15.60
15 83.0 29596 28700 3.12 23782 22910 3.81
16 10.4 9644 8223 17.28 7914 7316 8.17
17 70.1 26994 26389 2.29 21630 20852 3.73
18 26.7 16238 16413 -1.07 12989 13611 -4.57
19 9.2 8953 8461 5.81 7391 7291 1.37
20 17.1 12798 12763 0.27 10314 10306 0.08
21 32.1 18000 17468 3.05 14375 14423 -0.33
22 14.3 11533 10712 7.66 9342 9099 2.67
23 4.9 6087 7037 -13.50 5218 5870 -11.11
24 54.1 23595 23627 -0.14 18854 18670 0.99
25 32.0 18002 19508 -7.72 14378 14602 -1.53
26 14.9 11884 16396 -27.52 9616 12217 -21.29
27 53.1 23365 25207 -7.31 18666 19303 -3.30
28 67.7 26604 27805 -4.32 21307 21912 -2.76
29 17.6 12832 11826 8.51 10341 9920 4.24
30 131.6 37251 35427 5.15 30314 28885 4.95

average 33.3 16851 16891 0.54 13570 13619 -0.58
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Table B.10. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under in-
correct model in simulations from POP2. Results for models ROTPANEL10i and RANTIME10i.

ROTPANEL10i RANTIME10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 5137 4972 3.32 4223 5204 -18.85
2 11.4 4480 4324 3.61 3665 4552 -19.49
3 18.3 5802 6263 -7.36 4797 6351 -24.47
4 48.4 9987 9918 0.70 8627 10400 -17.05
5 8.1 3724 3565 4.46 3034 3687 -17.71
6 25.4 6923 6691 3.47 5785 6806 -15.00
7 48.9 10052 9890 1.64 8689 10393 -16.40
8 13.0 4821 4839 -0.37 3950 4998 -20.97
9 26.4 7076 7287 -2.90 5926 7598 -22.01
10 43.8 9413 8971 4.93 8082 9382 -13.86
11 26.7 7129 7253 -1.71 5972 7539 -20.79
12 17.1 5566 5691 -2.20 4591 5902 -22.21
13 51.4 10340 10199 1.38 8962 10758 -16.69
14 7.3 3522 3662 -3.82 2865 3761 -23.82
15 83.0 13928 13606 2.37 12516 14289 -12.41
16 10.4 4274 4083 4.68 3492 4294 -18.68
17 70.1 12487 12509 -0.18 11068 12938 -14.45
18 26.7 7105 7398 -3.96 5948 7782 -23.57
19 9.2 4008 4092 -2.05 3271 4264 -23.29
20 17.1 5598 5840 -4.14 4618 5908 -21.83
21 32.1 7883 7805 1.00 6660 8244 -19.21
22 14.3 5057 5234 -3.38 4155 5411 -23.21
23 4.9 2914 3038 -4.08 2380 3141 -24.23
24 54.1 10653 10826 -1.60 9274 11214 -17.30
25 32.0 7896 7707 2.45 6666 8064 -17.34
26 14.9 5198 5571 -6.70 4271 5478 -22.03
27 53.1 10541 10475 0.63 9159 10673 -14.19
28 67.7 12245 12080 1.37 10831 12363 -12.39
29 17.6 5611 5483 2.33 4630 5758 -19.59
30 131.6 18778 17937 4.69 17550 19154 -8.37

average 33.3 7605 7574 -0.05 6522 7877 -18.71
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Table B.11. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP3.

bias bias bias bias
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 -0.14 -0.02 0.01 -0.11
2 11.4 -0.28 -0.08 0.08 0.02
3 18.3 -4.15 -3.71 -1.07 -0.69
4 48.4 -0.36 -0.23 -0.01 -0.08
5 8.1 1.29 1.23 0.45 0.08
6 25.4 2.17 1.94 0.62 0.28
7 48.9 1.10 0.89 0.24 0.03
8 13.0 1.53 1.45 0.63 0.33
9 26.4 -1.80 -1.51 -0.30 -0.21
10 43.8 0.84 0.72 0.16 -0.01
11 26.7 -1.15 -0.96 -0.16 -0.15
12 17.1 -1.92 -1.67 -0.52 -0.40
13 51.4 0.93 0.83 0.20 0.03
14 7.3 -5.44 -5.03 -1.86 -1.11
15 83.0 0.64 0.54 0.10 -0.02
16 10.4 0.65 0.67 0.28 0.13
17 70.1 0.33 0.28 0.05 -0.08
18 26.7 -0.61 -0.56 -0.14 -0.15
19 9.2 -2.78 -2.59 -1.00 -0.73
20 17.1 2.27 2.10 0.72 0.33
21 32.1 0.55 0.45 0.13 -0.05
22 14.3 -1.78 -1.64 -0.51 -0.34
23 4.9 -5.46 -5.12 -2.24 -1.52
24 54.1 0.31 0.22 0.05 -0.04
25 32.0 -1.96 -1.62 -0.41 -0.28
26 14.9 -5.54 -4.96 -1.50 -0.89
27 53.1 2.40 2.05 0.50 0.17
28 67.7 1.12 0.93 0.23 0.07
29 17.6 -1.40 -1.26 -0.37 -0.27
30 131.6 -0.15 -0.11 -0.03 -0.09

average 33.3 -0.63 -0.56 -0.19 -0.19
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Table B.12. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP3.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 2.27 2.24 1.52 1.69
2 11.4 2.31 2.34 1.69 1.94
3 18.3 4.44 4.07 1.67 1.62
4 48.4 1.83 1.75 0.95 1.04
5 8.1 2.53 2.56 1.98 2.22
6 25.4 2.85 2.65 1.40 1.45
7 48.9 2.16 2.02 1.05 1.14
8 13.0 2.79 2.75 1.81 1.95
9 26.4 2.60 2.40 1.26 1.38
10 43.8 2.08 1.95 1.03 1.13
11 26.7 2.31 2.18 1.27 1.39
12 17.1 2.93 2.72 1.50 1.63
13 51.4 2.14 2.00 1.02 1.13
14 7.3 5.59 5.23 2.45 2.37
15 83.0 1.61 1.51 0.85 0.93
16 10.4 2.31 2.40 1.81 2.04
17 70.1 1.69 1.57 0.89 0.96
18 26.7 2.31 2.25 1.30 1.45
19 9.2 3.32 3.21 1.91 2.08
20 17.1 3.07 2.97 1.74 1.82
21 32.1 2.20 2.12 1.17 1.28
22 14.3 2.75 2.64 1.65 1.78
23 4.9 5.58 5.27 2.79 2.80
24 54.1 1.79 1.66 0.97 1.05
25 32.0 2.71 2.40 1.11 1.20
26 14.9 5.66 5.13 1.91 1.70
27 53.1 3.00 2.69 1.14 1.15
28 67.7 2.06 1.89 0.92 1.00
29 17.6 2.49 2.40 1.44 1.58
30 131.6 1.19 1.13 0.65 0.74

average 33.3 2.75 2.60 1.43 1.52
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Table B.13. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP3.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 0.993 0.992 0.973 0.866
2 11.4 0.996 0.988 0.970 0.868
3 18.3 0.762 0.784 0.910 0.826
4 48.4 0.970 0.972 0.953 0.878
5 8.1 0.996 0.989 0.978 0.890
6 25.4 0.962 0.951 0.961 0.889
7 48.9 0.960 0.957 0.952 0.881
8 13.0 0.988 0.985 0.960 0.863
9 26.4 0.946 0.946 0.941 0.841
10 43.8 0.971 0.971 0.962 0.888
11 26.7 0.975 0.970 0.944 0.872
12 17.1 0.968 0.965 0.948 0.842
13 51.4 0.958 0.955 0.950 0.873
14 7.3 0.799 0.823 0.917 0.824
15 83.0 0.962 0.960 0.959 0.889
16 10.4 0.995 0.991 0.971 0.873
17 70.1 0.963 0.961 0.956 0.880
18 26.7 0.974 0.968 0.953 0.852
19 9.2 0.977 0.972 0.952 0.853
20 17.1 0.973 0.966 0.934 0.841
21 32.1 0.969 0.965 0.961 0.875
22 14.3 0.979 0.973 0.949 0.847
23 4.9 0.881 0.887 0.931 0.831
24 54.1 0.962 0.971 0.947 0.886
25 32.0 0.914 0.928 0.951 0.870
26 14.9 0.633 0.681 0.870 0.806
27 53.1 0.868 0.892 0.945 0.879
28 67.7 0.940 0.943 0.946 0.892
29 17.6 0.986 0.984 0.960 0.870
30 131.6 0.968 0.956 0.957 0.902

average 33.3 0.940 0.942 0.949 0.865
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Table B.14. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP3. Results for models NESTEDi and PANEL10i.

NESTEDi PANEL10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 10837 7878 37.56 10319 7795 32.38
2 11.4 9010 6273 43.63 8635 6431 34.27
3 18.3 12681 19417 -34.69 12010 17954 -33.11
4 48.4 23240 20834 11.55 21651 19741 9.68
5 8.1 6829 4689 45.64 6602 4740 39.28
6 25.4 15693 15496 1.27 14757 14502 1.76
7 48.9 23390 23015 1.63 21788 21608 0.83
8 13.0 9921 8163 21.54 9473 8059 17.55
9 26.4 16105 16669 -3.38 15133 15420 -1.86
10 43.8 21902 20092 9.01 20426 18666 9.43
11 26.7 16243 14656 10.83 15261 13861 10.10
12 17.1 12028 11693 2.86 11409 11078 2.99
13 51.4 24018 24061 -0.18 22365 22639 -1.21
14 7.3 6264 9128 -31.38 6072 8660 -29.88
15 83.0 31649 30166 4.92 29411 28228 4.19
16 10.4 8401 5653 48.61 8072 5849 38.01
17 70.1 28675 26590 7.84 26657 24813 7.43
18 26.7 16126 14428 11.77 15153 14046 7.88
19 9.2 7625 7118 7.12 7351 6916 6.29
20 17.1 12056 11233 7.33 11430 10866 5.19
21 32.1 18191 16132 12.76 17038 15423 10.47
22 14.3 10584 9245 14.48 10080 8965 12.44
23 4.9 4648 6193 -24.95 4546 5936 -23.42
24 54.1 24754 22454 10.24 23042 20843 10.55
25 32.0 18188 20911 -13.02 17035 18661 -8.71
26 14.9 10963 19971 -45.11 10431 18326 -43.08
27 53.1 24479 31471 -22.22 22792 28315 -19.51
28 67.7 28220 29890 -5.59 26238 27565 -4.81
29 17.6 12116 10078 20.22 11488 9768 17.61
30 131.6 40347 36862 9.45 37561 35153 6.85

average 33.3 16839 16682 5.33 15808 15694 3.99
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Table B.15. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under in-
correct model in simulations from POP3. Results for models ROTPANEL10i and RANTIME10i.

ROTPANEL10i RANTIME10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 5778 5243 10.20 4580 5901 -22.39
2 11.4 4992 4473 11.60 3951 5115 -22.76
3 18.3 6561 7739 -15.22 5222 7663 -31.85
4 48.4 11322 10820 4.64 9483 11942 -20.59
5 8.1 4069 3566 14.11 3235 4006 -19.25
6 25.4 7865 7648 2.84 6325 7919 -20.13
7 48.9 11395 11238 1.40 9551 12156 -21.43
8 13.0 5399 5292 2.02 4272 5715 -25.25
9 26.4 8041 8208 -2.03 6483 8944 -27.52
10 43.8 10684 10028 6.54 8879 11029 -19.49
11 26.7 8102 8041 0.76 6534 8775 -25.54
12 17.1 6285 6190 1.53 4992 6716 -25.67
13 51.4 11714 11435 2.44 9854 12645 -22.07
14 7.3 3822 4373 -12.60 3042 4335 -29.83
15 83.0 15600 15395 1.33 13789 16969 -18.74
16 10.4 4742 4308 10.07 3756 4918 -23.63
17 70.1 14054 13916 0.99 12186 15102 -19.31
18 26.7 8075 8086 -0.14 6507 8982 -27.56
19 9.2 4415 4303 2.60 3503 4699 -25.45
20 17.1 6319 6624 -4.60 5020 6968 -27.96
21 32.1 8962 8527 5.10 7299 9382 -22.20
22 14.3 5680 5667 0.23 4502 6156 -26.87
23 4.9 3059 3456 -11.49 2480 3543 -30.00
24 54.1 12055 12039 0.13 10200 13011 -21.60
25 32.0 8978 8868 1.24 7306 9500 -23.09
26 14.9 5848 7414 -21.12 4633 6738 -31.24
27 53.1 11934 12353 -3.39 10073 12495 -19.38
28 67.7 13792 13676 0.85 11924 14673 -18.74
29 17.6 6338 5951 6.50 5035 6556 -23.20
30 131.6 20685 19852 4.20 19354 22717 -14.80

average 33.3 8552 8491 0.69 7132 9176 -23.58
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Table B.16. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP4.

bias bias bias bias
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 -0.28 -0.05 -0.05 -0.15
2 11.4 -0.26 0.17 0.15 0.09
3 18.3 -4.07 -2.57 -0.98 -0.77
4 48.4 -0.43 -0.14 0.00 -0.07
5 8.1 1.21 0.92 0.31 0.07
6 25.4 2.24 1.40 0.57 0.33
7 48.9 1.14 0.54 0.22 0.07
8 13.0 1.58 1.19 0.57 0.36
9 26.4 -1.82 -0.98 -0.24 -0.21
10 43.8 0.87 0.50 0.11 -0.02
11 26.7 -1.13 -0.59 -0.13 -0.16
12 17.1 -1.87 -1.07 -0.40 -0.36
13 51.4 0.86 0.51 0.15 0.02
14 7.3 -5.41 -3.83 -1.57 -1.11
15 83.0 0.63 0.36 0.08 -0.02
16 10.4 0.61 0.60 0.24 0.12
17 70.1 0.31 0.15 -0.03 -0.12
18 26.7 -0.62 -0.40 -0.17 -0.20
19 9.2 -2.75 -1.98 -0.87 -0.73
20 17.1 2.30 1.63 0.66 0.41
21 32.1 0.56 0.26 0.05 -0.08
22 14.3 -1.70 -1.13 -0.40 -0.33
23 4.9 -5.53 -4.21 -1.96 -1.52
24 54.1 0.29 0.12 0.01 -0.08
25 32.0 -2.00 -1.01 -0.31 -0.26
26 14.9 -5.47 -3.45 -1.21 -0.86
27 53.1 2.41 1.29 0.43 0.19
28 67.7 1.13 0.60 0.21 0.09
29 17.6 -1.38 -0.86 -0.32 -0.29
30 131.6 -0.17 -0.08 -0.04 -0.11

average 33.3 -0.62 -0.40 -0.16 -0.19
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Table B.17. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP4.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 2.28 2.12 1.44 1.52
2 11.4 2.28 2.33 1.61 1.73
3 18.3 4.38 3.07 1.51 1.46
4 48.4 1.83 1.47 0.92 0.96
5 8.1 2.59 2.54 1.91 2.02
6 25.4 2.94 2.21 1.30 1.31
7 48.9 2.19 1.67 1.00 1.03
8 13.0 2.79 2.49 1.70 1.74
9 26.4 2.62 1.97 1.15 1.21
10 43.8 2.09 1.63 0.98 1.02
11 26.7 2.28 1.83 1.18 1.23
12 17.1 2.84 2.31 1.42 1.48
13 51.4 2.09 1.64 0.98 1.02
14 7.3 5.56 4.19 2.22 2.16
15 83.0 1.61 1.24 0.80 0.82
16 10.4 2.32 2.36 1.67 1.78
17 70.1 1.69 1.30 0.84 0.86
18 26.7 2.30 1.97 1.24 1.31
19 9.2 3.31 2.83 1.85 1.94
20 17.1 3.13 2.57 1.60 1.61
21 32.1 2.14 1.83 1.13 1.19
22 14.3 2.77 2.33 1.56 1.62
23 4.9 5.67 4.51 2.56 2.54
24 54.1 1.81 1.44 0.93 0.96
25 32.0 2.72 1.87 1.05 1.09
26 14.9 5.62 3.74 1.68 1.56
27 53.1 3.00 2.00 1.09 1.07
28 67.7 2.04 1.52 0.89 0.90
29 17.6 2.50 2.14 1.35 1.44
30 131.6 1.21 0.94 0.64 0.68

average 33.3 2.75 2.20 1.34 1.37
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Table B.18. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP4.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL10i ROTPANEL10i RANTIME10i

1 14.9 0.993 0.982 0.963 0.911
2 11.4 0.996 0.983 0.990 0.905
3 18.3 0.755 0.849 0.909 0.860
4 48.4 0.970 0.970 0.955 0.908
5 8.1 0.998 0.986 0.973 0.928
6 25.4 0.960 0.953 0.956 0.914
7 48.9 0.953 0.956 0.953 0.913
8 13.0 0.984 0.969 0.956 0.893
9 26.4 0.949 0.957 0.941 0.888
10 43.8 0.960 0.964 0.963 0.922
11 26.7 0.978 0.964 0.952 0.896
12 17.1 0.971 0.959 0.945 0.891
13 51.4 0.961 0.947 0.957 0.918
14 7.3 0.820 0.870 0.912 0.854
15 83.0 0.962 0.962 0.962 0.929
16 10.4 0.993 0.981 0.970 0.917
17 70.1 0.962 0.969 0.948 0.908
18 26.7 0.975 0.957 0.954 0.884
19 9.2 0.973 0.965 0.946 0.887
20 17.1 0.970 0.958 0.938 0.892
21 32.1 0.975 0.964 0.957 0.906
22 14.3 0.977 0.965 0.953 0.886
23 4.9 0.875 0.905 0.926 0.861
24 54.1 0.965 0.962 0.942 0.907
25 32.0 0.894 0.943 0.962 0.919
26 14.9 0.632 0.790 0.897 0.856
27 53.1 0.859 0.931 0.944 0.914
28 67.7 0.945 0.941 0.951 0.929
29 17.6 0.986 0.976 0.955 0.909
30 131.6 0.963 0.956 0.965 0.938

average 33.3 0.938 0.948 0.950 0.901
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Table B.19. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP4. Results for models NESTEDi and PANEL10i.

NESTEDi PANEL10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 10846 7909 37.13 8835 7320 20.70
2 11.4 9020 6110 47.63 7519 6238 20.54
3 18.3 12691 19167 -33.79 10163 13932 -27.05
4 48.4 23246 20791 11.81 17747 16741 6.01
5 8.1 6836 4663 46.60 5883 4644 26.68
6 25.4 15699 15848 -0.94 12294 12094 1.65
7 48.9 23394 23206 0.81 17858 17790 0.38
8 13.0 9936 8226 20.79 8178 7379 10.83
9 26.4 16115 16689 -3.44 12587 12735 -1.16
10 43.8 21910 20451 7.13 16768 15761 6.39
11 26.7 16246 14453 12.41 12685 11737 8.08
12 17.1 12039 11377 5.82 9686 9549 1.43
13 51.4 24022 23585 1.85 18322 18451 -0.70
14 7.3 6273 9081 -30.92 5456 7235 -24.59
15 83.0 31649 29899 5.85 24115 23054 4.60
16 10.4 8412 5726 46.91 7076 5723 23.64
17 70.1 28675 26459 8.38 21825 20492 6.50
18 26.7 16133 14480 11.42 12601 12426 1.41
19 9.2 7640 7148 6.88 6504 6259 3.91
20 17.1 12069 11459 5.32 9703 9509 2.04
21 32.1 18198 15682 16.04 14083 13333 5.63
22 14.3 10601 9325 13.68 8650 8015 7.92
23 4.9 4657 6299 -26.07 4199 5264 -20.23
24 54.1 24757 22767 8.74 18869 18011 4.76
25 32.0 18194 21313 -14.63 14082 14782 -4.74
26 14.9 10981 19873 -44.74 8932 13887 -35.68
27 53.1 24481 31522 -22.34 18668 21290 -12.32
28 67.7 28220 29842 -5.44 21478 22299 -3.68
29 17.6 12128 10208 18.81 9743 8791 10.83
30 131.6 40343 37250 8.30 31117 29328 6.10

average 33.3 16847 16694 5.33 13188 13136 1.66
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Table B.20. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under in-
correct model in simulations from POP4. Results for models ROTPANEL10i and RANTIME10i.

ROTPANEL10i RANTIME10i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 5366 4995 7.43 4579 5297 -13.55
2 11.4 4634 4259 8.80 3950 4572 -13.60
3 18.3 6102 7099 -14.04 5222 6952 -24.88
4 48.4 10744 10547 1.87 9486 11015 -13.88
5 8.1 3784 3414 10.84 3234 3629 -10.88
6 25.4 7344 7227 1.62 6326 7203 -12.18
7 48.9 10817 10658 1.49 9554 11014 -13.26
8 13.0 5011 4933 1.58 4272 5111 -16.42
9 26.4 7516 7612 -1.26 6484 7935 -18.29
10 43.8 10107 9543 5.91 8881 9907 -10.36
11 26.7 7574 7551 0.30 6535 7871 -16.97
12 17.1 5842 5879 -0.63 4992 6119 -18.42
13 51.4 11136 10953 1.67 9857 11405 -13.57
14 7.3 3556 3989 -10.85 3041 3937 -22.76
15 83.0 15143 14660 3.29 13793 15191 -9.20
16 10.4 4403 3999 10.10 3755 4295 -12.57
17 70.1 13530 13349 1.36 12190 13729 -11.21
18 26.7 7546 7705 -2.06 6508 8121 -19.86
19 9.2 4103 4163 -1.44 3502 4363 -19.73
20 17.1 5874 6053 -2.96 5021 6091 -17.57
21 32.1 8410 8170 2.94 7301 8608 -15.18
22 14.3 5275 5328 -0.99 4501 5553 -18.94
23 4.9 2865 3210 -10.75 2478 3224 -23.14
24 54.1 11487 11551 -0.55 10203 11928 -14.46
25 32.0 8422 8273 1.80 7307 8571 -14.75
26 14.9 5430 6510 -16.59 4632 6086 -23.89
27 53.1 11360 11724 -3.10 10076 11577 -12.97
28 67.7 13261 13142 0.91 11928 13249 -9.97
29 17.6 5892 5628 4.69 5036 5950 -15.36
30 131.6 20598 19631 4.93 19361 20667 -6.32

average 33.3 8104 8059 0.21 7134 8306 -15.47
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C Appendix: Simulation study with correct model.
Result tables for longitudinal data of 5 occasions

Table C.1. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP1.

bias bias bias bias
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 0.06 0.11 0.08 0.03
2 11.4 0.02 0.13 0.13 0.07
3 18.3 -1.56 -1.38 -0.41 -0.36
4 48.4 -0.18 -0.13 -0.02 -0.06
5 8.1 1.29 1.10 0.34 0.19
6 25.4 0.91 0.79 0.29 0.20
7 48.9 0.42 0.33 0.14 0.05
8 13.0 0.71 0.66 0.34 0.26
9 26.4 -0.62 -0.48 -0.09 -0.11
10 43.8 0.29 0.24 0.07 0.00
11 26.7 -0.29 -0.21 -0.02 -0.05
12 17.1 -0.63 -0.50 -0.17 -0.20
13 51.4 0.38 0.34 0.05 -0.01
14 7.3 -2.79 -2.47 -0.79 -0.69
15 83.0 0.22 0.17 0.02 -0.03
16 10.4 0.67 0.62 0.13 0.04
17 70.1 0.00 -0.01 -0.06 -0.11
18 26.7 -0.17 -0.20 -0.12 -0.16
19 9.2 -1.26 -1.15 -0.45 -0.49
20 17.1 1.26 1.12 0.35 0.23
21 32.1 0.28 0.20 0.00 -0.07
22 14.3 -0.37 -0.36 -0.14 -0.20
23 4.9 -3.20 -2.90 -1.07 -1.01
24 54.1 0.18 0.12 -0.01 -0.06
25 32.0 -0.62 -0.48 -0.12 -0.14
26 14.9 -2.15 -1.85 -0.64 -0.55
27 53.1 0.95 0.81 0.31 0.19
28 67.7 0.43 0.36 0.10 0.02
29 17.6 -0.70 -0.61 -0.24 -0.26
30 131.6 -0.12 -0.11 -0.03 -0.08

average 33.3 -0.22 -0.19 -0.07 -0.11
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Table C.2. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP1.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 2.47 2.34 1.33 1.40
2 11.4 2.73 2.57 1.53 1.64
3 18.3 2.35 2.16 1.14 1.19
4 48.4 1.40 1.32 0.75 0.81
5 8.1 3.41 3.23 1.91 2.02
6 25.4 2.28 2.13 1.19 1.23
7 48.9 1.62 1.49 0.86 0.92
8 13.0 2.85 2.71 1.61 1.66
9 26.4 1.86 1.70 0.98 1.06
10 43.8 1.72 1.56 0.90 0.96
11 26.7 1.85 1.73 1.01 1.03
12 17.1 2.37 2.15 1.18 1.25
13 51.4 1.67 1.54 0.88 0.93
14 7.3 3.70 3.39 1.77 1.85
15 83.0 1.20 1.12 0.69 0.72
16 10.4 2.87 2.81 1.73 1.81
17 70.1 1.28 1.18 0.69 0.75
18 26.7 1.87 1.76 1.02 1.08
19 9.2 2.92 2.74 1.59 1.68
20 17.1 2.74 2.59 1.47 1.50
21 32.1 1.93 1.78 0.99 1.04
22 14.3 2.34 2.24 1.33 1.41
23 4.9 4.17 3.91 2.13 2.22
24 54.1 1.44 1.32 0.77 0.81
25 32.0 1.73 1.55 0.81 0.87
26 14.9 2.77 2.52 1.25 1.27
27 53.1 1.92 1.77 1.01 1.03
28 67.7 1.53 1.40 0.82 0.87
29 17.6 2.11 1.96 1.15 1.21
30 131.6 0.86 0.81 0.52 0.56

average 33.3 2.20 2.05 1.17 1.23
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Table C.3. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP1.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 0.966 0.968 0.963 0.922
2 11.4 0.972 0.958 0.961 0.911
3 18.3 0.921 0.912 0.946 0.895
4 48.4 0.953 0.957 0.954 0.913
5 8.1 0.974 0.962 0.967 0.921
6 25.4 0.949 0.949 0.954 0.923
7 48.9 0.963 0.956 0.960 0.928
8 13.0 0.963 0.955 0.945 0.910
9 26.4 0.960 0.955 0.944 0.905
10 43.8 0.939 0.941 0.942 0.909
11 26.7 0.962 0.955 0.953 0.921
12 17.1 0.945 0.956 0.952 0.917
13 51.4 0.946 0.951 0.945 0.902
14 7.3 0.919 0.923 0.949 0.895
15 83.0 0.949 0.946 0.959 0.917
16 10.4 0.969 0.959 0.958 0.904
17 70.1 0.949 0.952 0.960 0.921
18 26.7 0.956 0.954 0.950 0.909
19 9.2 0.957 0.957 0.952 0.913
20 17.1 0.952 0.947 0.947 0.905
21 32.1 0.946 0.954 0.962 0.918
22 14.3 0.972 0.965 0.948 0.916
23 4.9 0.938 0.949 0.938 0.905
24 54.1 0.949 0.958 0.962 0.925
25 32.0 0.948 0.941 0.963 0.924
26 14.9 0.886 0.897 0.931 0.890
27 53.1 0.936 0.935 0.950 0.917
28 67.7 0.938 0.941 0.946 0.904
29 17.6 0.964 0.963 0.963 0.925
30 131.6 0.950 0.943 0.944 0.911

average 33.3 0.950 0.949 0.952 0.913
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Table C.4. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP1. Results for models NESTEDc and PANEL5c.

NESTEDc PANEL5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9019 8325 8.34 8348 7900 5.67
2 11.4 7894 7220 9.34 7325 6859 6.79
3 18.3 10192 11605 -12.18 9420 10762 -12.47
4 48.4 16707 16364 2.10 15415 15237 1.17
5 8.1 6453 5925 8.91 6015 5658 6.31
6 25.4 12071 12056 -0.32 11093 11159 -0.59
7 48.9 16801 16289 3.14 15503 15252 1.65
8 13.0 8464 8212 3.07 7843 7746 1.25
9 26.4 12265 12294 -0.24 11320 11223 0.86
10 43.8 15864 16147 -1.75 14637 14832 -1.31
11 26.7 12355 11993 3.02 11402 11183 1.96
12 17.1 9767 10030 -2.62 9031 9093 -0.68
13 51.4 17192 17878 -3.84 15866 16461 -3.61
14 7.3 6065 7075 -14.28 5663 6511 -13.02
15 83.0 22076 21789 1.32 20414 20104 1.54
16 10.4 7513 6791 10.63 6980 6627 5.33
17 70.1 20160 19843 1.64 18626 18381 1.33
18 26.7 12274 11792 4.09 11328 11026 2.74
19 9.2 7020 6699 4.79 6534 6304 3.65
20 17.1 9775 9819 -0.45 9038 9207 -1.84
21 32.1 13559 13707 -1.08 12511 12464 0.38
22 14.3 8860 8029 10.35 8203 7738 6.01
23 4.9 4965 5316 -6.60 4675 5033 -7.11
24 54.1 17660 17395 1.52 16301 15887 2.61
25 32.0 13562 14163 -4.24 12513 12862 -2.71
26 14.9 9120 11501 -20.70 8441 10433 -19.09
27 53.1 17489 18476 -5.34 16141 16780 -3.81
28 67.7 19871 20808 -4.50 18357 19242 -4.60
29 17.6 9798 9063 8.11 9061 8428 7.51
30 131.6 27724 27140 2.15 25740 25871 -0.51

average 33.3 12749 12791 0.15 11791 11875 -0.49
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Table C.5. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP1. Results for models ROTPANEL5c and RANTIME5c.

ROTPANEL5c RANTIME5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 4738 4550 4.13 4275 4763 -10.25
2 11.4 4139 3989 3.76 3731 4252 -12.25
3 18.3 5326 5642 -5.60 4818 5942 -18.92
4 48.4 8937 8656 3.25 8242 9318 -11.55
5 8.1 3456 3307 4.51 3113 3506 -11.21
6 25.4 6310 6234 1.22 5731 6441 -11.02
7 48.9 8994 8750 2.79 8292 9295 -10.79
8 13.0 4446 4526 -1.77 4010 4699 -14.66
9 26.4 6447 6505 -0.89 5863 6976 -15.95
10 43.8 8458 8448 0.12 7774 8992 -13.55
11 26.7 6489 6484 0.08 5902 6658 -11.35
12 17.1 5112 5004 2.16 4620 5279 -12.48
13 51.4 9229 9414 -1.97 8524 9944 -14.28
14 7.3 3265 3399 -3.94 2940 3548 -17.14
15 83.0 12167 12272 -0.86 11450 12787 -10.46
16 10.4 3948 3984 -0.90 3560 4189 -15.02
17 70.1 11006 10628 3.56 10281 11453 -10.23
18 26.7 6470 6372 1.54 5876 6737 -12.78
19 9.2 3720 3623 2.68 3349 3832 -12.60
20 17.1 5151 5182 -0.60 4652 5377 -13.48
21 32.1 7150 6953 2.83 6525 7357 -11.31
22 14.3 4666 4601 1.41 4216 4818 -12.49
23 4.9 2723 2792 -2.47 2463 2899 -15.04
24 54.1 9492 9352 1.50 8787 9785 -10.20
25 32.0 7157 6712 6.63 6532 7234 -9.70
26 14.9 4792 5238 -8.51 4329 5362 -19.27
27 53.1 9387 9575 -1.96 8681 9834 -11.72
28 67.7 10809 11043 -2.12 10086 11809 -14.59
29 17.6 5150 4923 4.61 4654 5171 -10.00
30 131.6 15975 16389 -2.53 15385 17695 -13.05

average 33.3 6837 6818 0.42 6289 7198 -12.91
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Table C.6. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP2.

bias bias bias bias
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 -0.08 0.03 0.05 0.00
2 11.4 -0.01 0.20 0.21 0.15
3 18.3 -1.50 -0.66 -0.42 -0.43
4 48.4 -0.25 -0.08 -0.02 -0.07
5 8.1 1.21 0.36 0.24 0.16
6 25.4 0.94 0.42 0.34 0.27
7 48.9 0.49 0.18 0.17 0.11
8 13.0 0.74 0.38 0.32 0.25
9 26.4 -0.66 -0.22 -0.06 -0.10
10 43.8 0.31 0.12 0.06 -0.01
11 26.7 -0.29 -0.05 -0.04 -0.09
12 17.1 -0.59 -0.16 -0.08 -0.12
13 51.4 0.32 0.11 0.02 -0.04
14 7.3 -2.69 -1.13 -0.61 -0.60
15 83.0 0.22 0.09 0.02 -0.04
16 10.4 0.60 0.32 0.09 0.03
17 70.1 -0.02 -0.08 -0.11 -0.16
18 26.7 -0.17 -0.16 -0.16 -0.21
19 9.2 -1.17 -0.60 -0.40 -0.44
20 17.1 1.27 0.59 0.35 0.28
21 32.1 0.30 0.03 -0.04 -0.10
22 14.3 -0.32 -0.18 -0.12 -0.17
23 4.9 -3.14 -1.65 -0.98 -0.98
24 54.1 0.18 0.03 -0.03 -0.08
25 32.0 -0.67 -0.20 -0.11 -0.15
26 14.9 -2.10 -0.79 -0.52 -0.52
27 53.1 0.96 0.38 0.31 0.22
28 67.7 0.44 0.17 0.11 0.05
29 17.6 -0.71 -0.31 -0.25 -0.29
30 131.6 -0.14 -0.09 -0.06 -0.11

average 33.3 -0.22 -0.10 -0.06 -0.11
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Table C.7. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP2.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 2.41 1.64 1.21 1.22
2 11.4 2.69 1.85 1.44 1.46
3 18.3 2.30 1.39 1.07 1.08
4 48.4 1.39 0.90 0.72 0.73
5 8.1 3.35 2.29 1.78 1.79
6 25.4 2.31 1.48 1.12 1.11
7 48.9 1.64 1.02 0.82 0.82
8 13.0 2.85 1.87 1.54 1.54
9 26.4 1.86 1.15 0.93 0.94
10 43.8 1.70 1.09 0.83 0.84
11 26.7 1.79 1.18 0.93 0.93
12 17.1 2.30 1.43 1.11 1.12
13 51.4 1.62 1.02 0.84 0.85
14 7.3 3.67 2.16 1.62 1.64
15 83.0 1.20 0.77 0.64 0.64
16 10.4 2.88 2.07 1.58 1.59
17 70.1 1.30 0.84 0.66 0.67
18 26.7 1.90 1.20 0.96 0.98
19 9.2 2.95 2.04 1.45 1.48
20 17.1 2.78 1.73 1.38 1.37
21 32.1 1.86 1.20 0.97 0.98
22 14.3 2.32 1.57 1.23 1.25
23 4.9 4.17 2.81 2.02 2.04
24 54.1 1.43 0.90 0.73 0.73
25 32.0 1.71 1.05 0.77 0.79
26 14.9 2.72 1.50 1.12 1.12
27 53.1 1.92 1.17 0.97 0.96
28 67.7 1.50 0.98 0.77 0.77
29 17.6 2.15 1.38 1.09 1.11
30 131.6 0.87 0.60 0.50 0.51

average 33.3 2.18 1.41 1.09 1.10
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Table C.8. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP2.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 0.974 0.954 0.962 0.954
2 11.4 0.975 0.952 0.952 0.940
3 18.3 0.926 0.936 0.941 0.924
4 48.4 0.961 0.941 0.957 0.947
5 8.1 0.969 0.960 0.965 0.958
6 25.4 0.949 0.949 0.948 0.942
7 48.9 0.950 0.949 0.953 0.950
8 13.0 0.961 0.954 0.957 0.945
9 26.4 0.960 0.955 0.956 0.946
10 43.8 0.942 0.934 0.955 0.945
11 26.7 0.969 0.949 0.960 0.949
12 17.1 0.962 0.954 0.966 0.958
13 51.4 0.942 0.942 0.953 0.943
14 7.3 0.922 0.936 0.949 0.938
15 83.0 0.956 0.953 0.953 0.947
16 10.4 0.968 0.952 0.961 0.944
17 70.1 0.952 0.957 0.973 0.958
18 26.7 0.960 0.957 0.948 0.942
19 9.2 0.960 0.941 0.956 0.944
20 17.1 0.955 0.958 0.946 0.941
21 32.1 0.950 0.952 0.951 0.943
22 14.3 0.970 0.949 0.962 0.954
23 4.9 0.944 0.942 0.941 0.935
24 54.1 0.950 0.959 0.961 0.953
25 32.0 0.942 0.948 0.967 0.949
26 14.9 0.891 0.931 0.941 0.928
27 53.1 0.931 0.943 0.934 0.930
28 67.7 0.941 0.939 0.950 0.949
29 17.6 0.966 0.961 0.959 0.951
30 131.6 0.952 0.941 0.949 0.941

average 33.3 0.952 0.948 0.954 0.945
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Table C.9. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP2. Results for models NESTEDc and PANEL5c.

NESTEDc PANEL5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9022 8175 10.36 5690 5610 1.43
2 11.4 7897 7041 12.16 5024 4862 3.33
3 18.3 10194 11447 -10.95 6401 6960 -8.03
4 48.4 16709 16076 3.94 10561 10451 1.05
5 8.1 6456 5888 9.65 4185 4076 2.67
6 25.4 12019 12118 -0.82 7529 7666 -1.79
7 48.9 16804 16535 1.63 10625 10453 1.65
8 13.0 8468 8182 3.50 5361 5357 0.07
9 26.4 12268 12258 0.08 7684 7590 1.24
10 43.8 15867 16142 -1.70 10003 10192 -1.85
11 26.7 12358 11563 6.88 7740 7616 1.63
12 17.1 9770 9613 1.63 6142 6017 2.08
13 51.4 17195 17577 -2.17 10888 10992 -0.95
14 7.3 6068 6994 -13.24 3966 4304 -7.85
15 83.0 22078 21826 1.15 14280 13912 2.65
16 10.4 7515 6823 10.14 4808 4880 -1.48
17 70.1 20162 19766 2.00 12925 12794 1.02
18 26.7 12276 11924 2.95 7691 7515 2.34
19 9.2 7024 6793 3.40 4525 4683 -3.37
20 17.1 9779 9927 -1.49 6145 6128 0.28
21 32.1 13562 13222 2.57 8505 8343 1.94
22 14.3 8863 8001 10.77 5594 5510 1.52
23 4.9 4970 5346 -7.03 3383 3685 -8.20
24 54.1 17661 17468 1.10 11204 10981 2.03
25 32.0 13563 14227 -4.67 8507 8625 -1.37
26 14.9 9123 11357 -19.67 5752 6277 -8.36
27 53.1 17490 18842 -7.18 11088 11209 -1.08
28 67.7 19874 20699 -3.99 12720 13190 -3.56
29 17.6 9800 9249 5.96 6159 5911 4.20
30 131.6 27727 27322 1.48 18554 18835 -1.49

average 33.3 12752 12747 0.62 8121 8154 -0.61

199



Table C.10. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP2. Results for models ROTPANEL5c and RANTIME5c.

ROTPANEL5c RANTIME5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 4438 4115 7.85 4277 4127 3.63
2 11.4 3873 3782 2.41 3733 3803 -1.84
3 18.3 4998 5304 -5.77 4820 5362 -10.11
4 48.4 8512 8332 2.16 8246 8424 -2.11
5 8.1 3231 3094 4.43 3114 3108 0.19
6 25.4 5940 5875 1.11 5734 5813 -1.36
7 48.9 8565 8368 2.35 8296 8355 -0.71
8 13.0 4163 4264 -2.37 4012 4261 -5.84
9 26.4 6075 6076 -0.02 5866 6122 -4.18
10 43.8 8036 7761 3.54 7778 7818 -0.51
11 26.7 6115 5924 3.22 5905 5939 -0.57
12 17.1 4794 4629 3.56 4622 4653 -0.67
13 51.4 8800 8890 -1.01 8528 8940 -4.61
14 7.3 3052 3110 -1.86 2941 3135 -6.19
15 83.0 11770 11479 2.54 11456 11462 -0.05
16 10.4 3695 3655 1.09 3561 3691 -3.52
17 70.1 10586 10015 5.70 10286 10222 0.63
18 26.7 6091 6004 1.45 5879 6086 -3.40
19 9.2 3477 3341 4.07 3350 3378 -0.83
20 17.1 4828 4884 -1.15 4654 4866 -4.36
21 32.1 6756 6728 0.42 6528 6795 -3.93
22 14.3 4374 4244 3.06 4218 4277 -1.38
23 4.9 2552 2649 -3.66 2464 2671 -7.75
24 54.1 9067 8887 2.03 8791 8912 -1.36
25 32.0 6763 6373 6.12 6535 6485 0.77
26 14.9 4492 4729 -5.01 4331 4758 -8.97
27 53.1 8960 9405 -4.73 8686 9283 -6.43
28 67.7 10388 10525 -1.30 10091 10503 -3.92
29 17.6 4829 4675 3.29 4656 4727 -1.50
30 131.6 15732 15731 0.01 15393 16001 -3.80

average 33.3 6498 6428 1.12 6292 6466 -2.82
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Table C.11. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP3.

bias bias bias bias
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 -0.04 0.05 0.09 0.02
2 11.4 -0.08 0.06 0.17 0.09
3 18.3 -3.07 -2.60 -0.97 -0.83
4 48.4 -0.47 -0.33 -0.08 -0.13
5 8.1 1.66 1.46 0.69 0.46
6 25.4 1.56 1.31 0.56 0.40
7 48.9 0.86 0.66 0.28 0.15
8 13.0 1.07 0.97 0.55 0.42
9 26.4 -1.23 -0.95 -0.26 -0.26
10 43.8 0.53 0.42 0.15 0.05
11 26.7 -0.59 -0.42 -0.10 -0.14
12 17.1 -1.16 -0.91 -0.35 -0.36
13 51.4 0.74 0.61 0.16 0.06
14 7.3 -4.07 -3.59 -1.62 -1.41
15 83.0 0.34 0.26 0.06 -0.02
16 10.4 0.77 0.74 0.28 0.14
17 70.1 0.09 0.05 -0.04 -0.13
18 26.7 -0.44 -0.40 -0.20 -0.26
19 9.2 -1.88 -1.68 -0.78 -0.79
20 17.1 2.06 1.78 0.72 0.52
21 32.1 0.53 0.39 0.08 -0.02
22 14.3 -0.82 -0.72 -0.30 -0.35
23 4.9 -3.80 -3.46 -1.82 -1.69
24 54.1 0.26 0.18 0.01 -0.06
25 32.0 -1.36 -1.04 -0.33 -0.32
26 14.9 -4.10 -3.44 -1.41 -1.20
27 53.1 1.85 1.48 0.59 0.39
28 67.7 0.88 0.70 0.23 0.11
29 17.6 -1.41 -1.17 -0.50 -0.49
30 131.6 -0.28 -0.22 -0.07 -0.13

average 33.3 -0.39 -0.33 -0.14 -0.19
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Table C.12. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP3.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 2.05 2.00 1.40 1.49
2 11.4 2.10 2.08 1.58 1.72
3 18.3 3.36 2.93 1.51 1.51
4 48.4 1.53 1.41 0.87 0.94
5 8.1 2.61 2.54 1.89 2.01
6 25.4 2.34 2.14 1.31 1.33
7 48.9 1.74 1.55 0.95 1.00
8 13.0 2.37 2.30 1.69 1.75
9 26.4 2.06 1.82 1.13 1.23
10 43.8 1.75 1.57 0.99 1.04
11 26.7 1.84 1.71 1.12 1.15
12 17.1 2.30 2.06 1.31 1.40
13 51.4 1.77 1.59 0.97 1.01
14 7.3 4.27 3.84 2.21 2.22
15 83.0 1.29 1.18 0.78 0.80
16 10.4 2.20 2.24 1.74 1.85
17 70.1 1.36 1.23 0.78 0.83
18 26.7 1.82 1.73 1.14 1.21
19 9.2 2.65 2.50 1.70 1.82
20 17.1 2.77 2.57 1.59 1.60
21 32.1 1.89 1.74 1.09 1.15
22 14.3 2.06 2.01 1.43 1.53
23 4.9 3.99 3.75 2.41 2.47
24 54.1 1.49 1.35 0.87 0.91
25 32.0 2.10 1.80 0.97 1.04
26 14.9 4.26 3.69 1.81 1.73
27 53.1 2.35 2.01 1.13 1.11
28 67.7 1.69 1.49 0.90 0.94
29 17.6 2.19 2.01 1.32 1.39
30 131.6 1.00 0.92 0.62 0.66

average 33.3 2.24 2.06 1.31 1.36
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Table C.13. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP3.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 0.989 0.983 0.969 0.935
2 11.4 0.993 0.986 0.976 0.929
3 18.3 0.815 0.833 0.918 0.882
4 48.4 0.960 0.967 0.954 0.920
5 8.1 0.992 0.983 0.976 0.948
6 25.4 0.954 0.949 0.955 0.929
7 48.9 0.965 0.957 0.957 0.931
8 13.0 0.978 0.972 0.959 0.928
9 26.4 0.954 0.958 0.946 0.909
10 43.8 0.958 0.950 0.949 0.916
11 26.7 0.974 0.971 0.957 0.931
12 17.1 0.966 0.972 0.964 0.931
13 51.4 0.951 0.953 0.951 0.919
14 7.3 0.879 0.884 0.921 0.883
15 83.0 0.955 0.951 0.956 0.923
16 10.4 0.986 0.987 0.972 0.935
17 70.1 0.962 0.962 0.965 0.932
18 26.7 0.976 0.968 0.958 0.923
19 9.2 0.981 0.974 0.959 0.928
20 17.1 0.958 0.947 0.939 0.915
21 32.1 0.965 0.964 0.962 0.920
22 14.3 0.984 0.979 0.956 0.930
23 4.9 0.953 0.953 0.940 0.907
24 54.1 0.962 0.966 0.962 0.934
25 32.0 0.936 0.938 0.968 0.925
26 14.9 0.726 0.749 0.877 0.860
27 53.1 0.870 0.893 0.933 0.908
28 67.7 0.931 0.922 0.936 0.914
29 17.6 0.970 0.969 0.964 0.929
30 131.6 0.952 0.941 0.944 0.913

average 33.3 0.947 0.946 0.951 0.920
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Table C.14. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP3. Results for models NESTEDc and PANEL5c.

NESTEDc PANEL5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9150 7051 29.77 8403 6863 22.44
2 11.4 7701 5656 36.16 7135 5608 27.23
3 18.3 10617 14990 -29.17 9689 13301 -27.16
4 48.4 18835 17651 6.71 16895 16141 4.67
5 8.1 5938 4693 26.53 5566 4608 20.79
6 25.4 12964 12990 -0.20 11735 11837 -0.86
7 48.9 18953 18373 3.16 17000 16694 1.83
8 13.0 8432 7050 19.60 7773 6810 14.14
9 26.4 13283 13193 0.68 12013 11769 2.07
10 43.8 17792 17146 3.77 15974 15520 2.93
11 26.7 13393 11867 12.86 12111 11066 9.44
12 17.1 10099 9503 6.27 9231 8612 7.19
13 51.4 19438 19824 -1.95 17430 17874 -2.48
14 7.3 5467 7190 -23.96 5145 6591 -21.94
15 83.0 25408 24248 4.78 22771 21874 4.10
16 10.4 7216 5327 35.46 6706 5390 24.42
17 70.1 23079 21568 7.01 20677 19637 5.30
18 26.7 13293 11564 14.95 12024 10840 10.92
19 9.2 6587 5818 13.22 6149 5569 10.41
20 17.1 10115 10255 -1.37 9243 9534 -3.05
21 32.1 14905 13889 7.32 13437 12549 7.08
22 14.3 8951 7052 26.93 8226 6940 18.53
23 4.9 4130 4598 -10.18 3943 4376 -9.89
24 54.1 20016 18574 7.76 17944 16695 7.48
25 32.0 14902 16377 -9.01 13434 14310 -6.12
26 14.9 9260 15414 -39.92 8499 13469 -36.90
27 53.1 19799 24930 -20.58 17753 21310 -16.69
28 67.7 22722 24656 -7.84 20359 21944 -7.22
29 17.6 10160 9113 11.49 9285 8398 10.56
30 131.6 32241 31332 2.90 29011 29070 -0.20

average 33.3 13828 13730 4.44 12519 12507 2.63
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Table C.15. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP3. Results for models ROTPANEL5c and RANTIME5c.

ROTPANEL5c RANTIME5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 5344 4854 10.09 4899 5135 -4.60
2 11.4 4611 4171 10.55 4235 4509 -6.08
3 18.3 6058 7030 -13.83 5558 7156 -22.33
4 48.4 10412 9942 4.73 9667 10683 -9.51
5 8.1 3762 3399 10.68 3469 3625 -4.30
6 25.4 7250 7263 -0.18 6661 7365 -9.56
7 48.9 10479 10214 2.59 9727 10658 -8.74
8 13.0 4985 4894 1.86 4575 5102 -10.33
9 26.4 7416 7390 0.35 6820 7898 -13.65
10 43.8 9835 9656 1.85 9110 10202 -10.70
11 26.7 7467 7223 3.38 6866 7467 -8.05
12 17.1 5800 5505 5.36 5319 5843 -8.97
13 51.4 10762 10915 -1.40 10004 11403 -12.27
14 7.3 3526 3962 -11.00 3255 4028 -19.19
15 83.0 14290 14261 0.20 13487 14725 -8.41
16 10.4 4377 4109 6.52 4024 4396 -8.46
17 70.1 12894 12254 5.22 12097 13139 -7.93
18 26.7 7442 7145 4.16 6835 7594 -9.99
19 9.2 4087 3837 6.52 3760 4104 -8.38
20 17.1 5842 5943 -1.70 5355 6062 -11.66
21 32.1 8263 7882 4.83 7615 8332 -8.61
22 14.3 5254 4933 6.51 4824 5236 -7.87
23 4.9 2836 2993 -5.25 2644 3097 -14.63
24 54.1 11078 10763 2.93 10318 11213 -7.98
25 32.0 8271 7811 5.89 7622 8363 -8.86
26 14.9 5406 6932 -22.01 4962 6761 -26.61
27 53.1 10952 11956 -8.40 10192 11788 -13.54
28 67.7 12658 13097 -3.35 11865 13691 -13.34
29 17.6 5847 5533 5.68 5361 5830 -8.04
30 131.6 18871 19281 -2.13 18158 20663 -12.12

average 33.3 7869 7838 1.02 7309 8202 -10.82
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Table C.16. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under correct model in simulations from POP4.

bias bias bias bias
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 -0.18 0.01 0.05 -0.02
2 11.4 -0.07 0.21 0.25 0.17
3 18.3 -3.00 -1.28 -0.91 -0.92
4 48.4 -0.54 -0.17 -0.07 -0.14
5 8.1 1.59 0.70 0.55 0.45
6 25.4 1.62 0.70 0.58 0.48
7 48.9 0.91 0.32 0.29 0.21
8 13.0 1.11 0.62 0.51 0.42
9 26.4 -1.25 -0.42 -0.21 -0.26
10 43.8 0.55 0.21 0.13 0.05
11 26.7 -0.58 -0.13 -0.11 -0.17
12 17.1 -1.11 -0.34 -0.22 -0.27
13 51.4 0.68 0.23 0.11 0.02
14 7.3 -4.02 -1.98 -1.36 -1.35
15 83.0 0.33 0.13 0.05 -0.03
16 10.4 0.73 0.45 0.23 0.14
17 70.1 0.07 -0.06 -0.10 -0.17
18 26.7 -0.45 -0.26 -0.23 -0.30
19 9.2 -1.84 -0.96 -0.69 -0.75
20 17.1 2.09 0.98 0.68 0.58
21 32.1 0.54 0.13 0.03 -0.05
22 14.3 -0.75 -0.34 -0.24 -0.30
23 4.9 -3.84 -2.30 -1.70 -1.71
24 54.1 0.25 0.05 -0.01 -0.09
25 32.0 -1.41 -0.44 -0.29 -0.34
26 14.9 -4.05 -1.64 -1.19 -1.18
27 53.1 1.86 0.67 0.54 0.43
28 67.7 0.90 0.32 0.23 0.14
29 17.6 -1.40 -0.58 -0.47 -0.51
30 131.6 -0.30 -0.14 -0.10 -0.17

average 33.3 -0.39 -0.18 -0.12 -0.19
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Table C.17. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under correct model in simulations from POP4.

MARE MARE MARE MARE
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 2.03 1.60 1.30 1.30
2 11.4 2.09 1.73 1.51 1.52
3 18.3 3.30 1.76 1.40 1.41
4 48.4 1.53 0.99 0.85 0.85
5 8.1 2.56 2.05 1.79 1.79
6 25.4 2.43 1.53 1.24 1.22
7 48.9 1.77 1.05 0.91 0.90
8 13.0 2.42 1.79 1.62 1.62
9 26.4 2.07 1.26 1.08 1.09
10 43.8 1.74 1.12 0.92 0.92
11 26.7 1.79 1.24 1.05 1.05
12 17.1 2.20 1.47 1.24 1.25
13 51.4 1.71 1.06 0.92 0.92
14 7.3 4.25 2.49 2.00 2.01
15 83.0 1.29 0.82 0.71 0.71
16 10.4 2.21 1.90 1.62 1.63
17 70.1 1.36 0.89 0.73 0.75
18 26.7 1.87 1.26 1.09 1.11
19 9.2 2.64 1.99 1.58 1.62
20 17.1 2.82 1.78 1.51 1.49
21 32.1 1.82 1.22 1.06 1.07
22 14.3 2.06 1.57 1.35 1.37
23 4.9 4.08 2.84 2.31 2.34
24 54.1 1.48 0.95 0.82 0.82
25 32.0 2.09 1.19 0.94 0.96
26 14.9 4.24 2.04 1.58 1.58
27 53.1 2.36 1.22 1.07 1.03
28 67.7 1.67 1.01 0.84 0.83
29 17.6 2.22 1.48 1.26 1.28
30 131.6 1.03 0.68 0.60 0.61

average 33.3 2.24 1.47 1.23 1.24
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Table C.18. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under correct model in simulations from POP4.

coverage coverage coverage coverage
region n̄i NESTEDc PANEL5c ROTPANEL5c RANTIME5c

1 14.9 0.991 0.967 0.971 0.965
2 11.4 0.996 0.976 0.964 0.960
3 18.3 0.822 0.898 0.919 0.906
4 48.4 0.964 0.948 0.962 0.952
5 8.1 0.988 0.972 0.974 0.969
6 25.4 0.954 0.943 0.945 0.944
7 48.9 0.952 0.948 0.949 0.950
8 13.0 0.981 0.965 0.959 0.950
9 26.4 0.960 0.949 0.959 0.956
10 43.8 0.950 0.943 0.955 0.951
11 26.7 0.986 0.959 0.961 0.958
12 17.1 0.982 0.967 0.971 0.967
13 51.4 0.949 0.950 0.951 0.951
14 7.3 0.878 0.909 0.941 0.932
15 83.0 0.963 0.952 0.955 0.950
16 10.4 0.990 0.971 0.967 0.959
17 70.1 0.962 0.963 0.973 0.961
18 26.7 0.973 0.965 0.951 0.948
19 9.2 0.975 0.951 0.960 0.954
20 17.1 0.956 0.946 0.946 0.939
21 32.1 0.973 0.959 0.954 0.949
22 14.3 0.988 0.963 0.967 0.961
23 4.9 0.955 0.938 0.942 0.927
24 54.1 0.960 0.958 0.962 0.959
25 32.0 0.934 0.945 0.962 0.948
26 14.9 0.716 0.875 0.895 0.883
27 53.1 0.881 0.929 0.920 0.921
28 67.7 0.930 0.939 0.949 0.952
29 17.6 0.970 0.966 0.960 0.951
30 131.6 0.951 0.942 0.945 0.944

average 33.3 0.948 0.949 0.953 0.947
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Table C.19. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP4. Results for models NESTEDc and PANEL5c.

NESTEDc PANEL5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 9164 6979 31.31 5990 5511 8.69
2 11.4 7711 5521 39.67 5196 4590 13.20
3 18.3 10628 14743 -27.91 6813 8234 -17.26
4 48.4 18847 17464 7.92 11615 11359 2.25
5 8.1 5944 4644 27.99 4196 3763 11.51
6 25.4 12974 13196 -1.68 8126 8386 -3.10
7 48.9 18964 18777 1.00 11688 11519 1.47
8 13.0 8447 7089 19.16 5597 5291 5.78
9 26.4 13297 13145 1.16 8306 8119 2.30
10 43.8 17805 17172 3.69 10975 10969 0.05
11 26.7 13403 11427 17.29 8371 7949 5.31
12 17.1 10112 9020 12.11 6515 6068 7.37
13 51.4 19449 19395 0.28 11992 11955 0.31
14 7.3 5475 7152 -23.45 3928 4547 -13.61
15 83.0 25419 24257 4.79 15896 15315 3.79
16 10.4 7225 5387 34.12 4928 4583 7.53
17 70.1 23089 21439 7.70 14336 13927 2.94
18 26.7 13305 11716 13.56 8315 7875 5.59
19 9.2 6603 5815 13.55 4585 4494 2.02
20 17.1 10130 10388 -2.48 6522 6646 -1.87
21 32.1 14917 13363 11.63 9251 8788 5.27
22 14.3 8966 7067 26.87 5877 5476 7.32
23 4.9 4139 4690 -11.75 3162 3491 -9.42
24 54.1 20026 18553 7.94 12355 11843 4.32
25 32.0 14914 16486 -9.54 9251 9512 -2.74
26 14.9 9276 15265 -39.23 6057 7833 -22.67
27 53.1 19809 25240 -21.52 12221 13249 -7.76
28 67.7 22732 24559 -7.44 14098 14735 -4.32
29 17.6 10171 9265 9.78 6543 6180 5.87
30 131. 32253 31639 1.94 20859 21169 -1.46

average 33.3 13840 13695 4.95 8785 8779 0.62

209



Table C.20. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
correct model in simulations from POP4. Results for models ROTPANEL5c and RANTIME5c.

ROTPANEL5c RANTIME5c
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 5023 4439 13.16 4899 4465 9.72
2 11.4 4337 4020 7.89 4233 4038 4.83
3 18.3 5699 6570 -13.26 5558 6637 -16.26
4 48.4 9896 9610 2.98 9671 9724 -0.55
5 8.1 3548 3227 9.95 3466 3233 7.21
6 25.4 6830 6891 -0.89 6662 6754 -1.36
7 48.9 9958 9840 1.20 9731 9737 -0.06
8 13.0 4689 4657 0.69 4574 4647 -1.57
9 26.4 6991 6895 1.39 6821 6958 -1.97
10 43.8 9329 8889 4.95 9113 8903 2.36
11 26.7 7040 6662 5.67 6867 6709 2.36
12 17.1 5454 5102 6.90 5319 5147 3.34
13 51.4 10239 10244 -0.05 10008 10244 -2.30
14 7.3 3328 3615 -7.94 3252 3638 -10.61
15 83.0 13764 13292 3.55 13493 13256 1.79
16 10.4 4120 3840 7.29 4022 3876 3.77
17 70.1 12359 11527 7.22 12102 11755 2.95
18 26.7 7010 6781 3.38 6836 6898 -0.90
19 9.2 3849 3593 7.12 3758 3659 2.71
20 17.1 5492 5645 -2.71 5355 5568 -3.83
21 32.1 7805 7628 2.32 7617 7681 -0.83
22 14.3 4945 4610 7.27 4824 4672 3.25
23 4.9 2694 2883 -6.56 2641 2920 -9.55
24 54.1 10556 10201 3.48 10321 10225 0.94
25 32.0 7812 7463 4.68 7623 7616 0.09
26 14.9 5086 6179 -17.69 4961 6192 -19.88
27 53.1 10429 11561 -9.79 10196 11225 -9.17
28 67.7 12125 12329 -1.65 11870 12185 -2.59
29 17.6 5498 5296 3.81 5361 5382 -0.39
30 131.6 18465 18392 0.40 18167 18763 -3.18

average 33.3 7479 7396 1.49 7311 7424 -1.32
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D Appendix: Simulation study with incorrect model.
Result tables for longitudinal data of 5 occasions

Table D.1. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP1.

bias bias bias bias
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 0.04 0.11 -0.02 -0.15
2 11.4 0.06 0.19 0.19 0.07
3 18.3 -2.50 -2.34 -0.72 -0.66
4 48.4 -0.24 -0.20 -0.04 -0.16
5 8.1 1.63 1.53 0.54 0.29
6 25.4 1.53 1.44 0.47 0.27
7 48.9 0.55 0.46 0.15 -0.04
8 13.0 1.22 1.17 0.50 0.31
9 26.4 -1.02 -0.89 -0.19 -0.22
10 43.8 0.54 0.49 0.12 -0.02
11 26.7 -0.60 -0.52 -0.09 -0.17
12 17.1 -1.10 -0.98 -0.40 -0.44
13 51.4 0.60 0.57 0.13 0.02
14 7.3 -4.28 -4.02 -1.40 -1.21
15 83.0 0.40 0.35 0.07 -0.02
16 10.4 0.92 0.91 0.29 0.17
17 70.1 0.13 0.11 -0.01 -0.11
18 26.7 -0.26 -0.28 -0.11 -0.17
19 9.2 -2.03 -1.94 -0.73 -0.73
20 17.1 1.94 1.86 0.56 0.39
21 32.1 0.38 0.32 0.07 -0.05
22 14.3 -0.95 -0.94 -0.31 -0.34
23 4.9 -4.84 -4.61 -1.81 -1.58
24 54.1 0.27 0.21 0.05 -0.04
25 32.0 -1.03 -0.91 -0.24 -0.24
26 14.9 -3.54 -3.29 -1.08 -0.90
27 53.1 1.41 1.30 0.39 0.20
28 67.7 0.71 0.65 0.19 0.10
29 17.6 -0.93 -0.88 -0.31 -0.33
30 131.6 -0.10 -0.09 -0.05 -0.14

average 33.3 -0.37 -0.34 -0.13 -0.20
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Table D.2. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP1.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 3.07 2.99 1.78 1.87
2 11.4 3.37 3.33 2.01 2.14
3 18.3 3.35 3.22 1.60 1.67
4 48.4 1.91 1.84 1.00 1.10
5 8.1 4.00 3.93 2.46 2.59
6 25.4 2.93 2.80 1.59 1.66
7 48.9 2.21 2.16 1.20 1.31
8 13.0 3.64 3.53 2.11 2.23
9 26.4 2.49 2.38 1.39 1.50
10 43.8 2.21 2.12 1.18 1.25
11 26.7 2.42 2.32 1.40 1.47
12 17.1 3.10 2.93 1.68 1.79
13 51.4 2.23 2.14 1.15 1.24
14 7.3 5.06 4.86 2.46 2.53
15 83.0 1.60 1.53 0.91 0.98
16 10.4 3.49 3.51 2.18 2.36
17 70.1 1.74 1.65 0.97 1.05
18 26.7 2.63 2.56 1.46 1.58
19 9.2 3.71 3.64 2.11 2.25
20 17.1 3.57 3.47 1.96 2.05
21 32.1 2.53 2.42 1.34 1.43
22 14.3 3.05 2.98 1.81 1.93
23 4.9 5.59 5.40 2.95 3.09
24 54.1 1.90 1.79 1.05 1.12
25 32.0 2.35 2.19 1.12 1.22
26 14.9 4.06 3.88 1.75 1.77
27 53.1 2.63 2.52 1.34 1.37
28 67.7 2.04 1.96 1.05 1.14
29 17.6 2.80 2.70 1.54 1.65
30 131.6 1.12 1.08 0.67 0.73

average 33.3 2.89 2.79 1.57 1.67
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Table D.3. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP1.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 0.975 0.969 0.966 0.911
2 11.4 0.970 0.967 0.967 0.915
3 18.3 0.895 0.891 0.944 0.880
4 48.4 0.952 0.969 0.959 0.901
5 8.1 0.973 0.967 0.967 0.928
6 25.4 0.959 0.958 0.952 0.920
7 48.9 0.950 0.950 0.951 0.903
8 13.0 0.968 0.962 0.958 0.898
9 26.4 0.945 0.945 0.940 0.891
10 43.8 0.962 0.965 0.962 0.926
11 26.7 0.963 0.963 0.945 0.911
12 17.1 0.962 0.962 0.950 0.895
13 51.4 0.948 0.951 0.955 0.911
14 7.3 0.896 0.894 0.922 0.881
15 83.0 0.950 0.956 0.958 0.932
16 10.4 0.970 0.970 0.963 0.916
17 70.1 0.951 0.952 0.943 0.915
18 26.7 0.951 0.951 0.952 0.894
19 9.2 0.967 0.957 0.953 0.907
20 17.1 0.959 0.958 0.939 0.893
21 32.1 0.956 0.954 0.954 0.910
22 14.3 0.963 0.963 0.944 0.897
23 4.9 0.923 0.921 0.940 0.890
24 54.1 0.955 0.968 0.953 0.922
25 32.0 0.947 0.953 0.959 0.908
26 14.9 0.836 0.858 0.909 0.869
27 53.1 0.944 0.935 0.959 0.923
28 67.7 0.948 0.948 0.959 0.920
29 17.6 0.975 0.976 0.965 0.912
30 131.6 0.964 0.957 0.960 0.929

average 33.3 0.949 0.950 0.952 0.907
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Table D.4. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP1. Results for models NESTEDi and PANEL5i.

NESTEDi PANEL5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 11751 10444 12.51 11315 10232 10.58
2 11.4 10177 8919 14.10 9817 8847 10.96
3 18.3 13362 16432 -18.68 12849 15808 -18.72
4 48.4 22303 21718 2.69 21397 20926 2.25
5 8.1 8174 7066 15.68 7910 6926 14.21
6 25.4 15886 15415 3.06 15256 14812 3.00
7 48.9 22432 22457 -0.11 21520 21816 -1.36
8 13.0 10970 10355 5.94 10572 10086 4.82
9 26.4 16229 16573 -2.08 15584 15833 -1.57
10 43.8 21156 20485 3.28 20299 19500 4.10
11 26.7 16348 15645 4.49 15698 14990 4.72
12 17.1 12780 12746 0.27 12294 12200 0.77
13 51.4 22967 23956 -4.13 22034 22981 -4.12
14 7.3 7637 9432 -19.03 7400 9100 -18.68
15 83.0 29603 28925 2.34 28421 27751 2.41
16 10.4 9642 8219 17.31 9310 8214 13.34
17 70.1 27001 26467 2.02 25914 25171 2.95
18 26.7 16241 16459 -1.32 15595 15937 -2.15
19 9.2 8948 8401 6.51 8651 8211 5.36
20 17.1 12796 12553 1.94 12308 12177 1.08
21 32.1 18001 17863 0.77 17278 17087 1.12
22 14.3 11530 10592 8.86 11103 10343 7.35
23 4.9 6081 7002 -13.15 5922 6813 -13.08
24 54.1 23602 23222 1.64 22646 21960 3.12
25 32.0 18005 19080 -5.63 17282 17859 -3.23
26 14.9 11880 16510 -28.04 11438 15757 -27.41
27 53.1 23370 25182 -7.20 22422 24039 -6.73
28 67.7 26610 27741 -4.08 25538 26567 -3.87
29 17.6 12832 11654 10.11 12344 11242 9.80
30 131.6 37262 35140 6.04 35841 34261 4.61

average 33.3 16853 16888 0.54 16199 16248 0.19
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Table D.5. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under in-
correct model in simulations from POP1. Results for models ROTPANEL5i and RANTIME5i.

ROTPANEL5i RANTIME5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 6373 6015 5.95 5727 6426 -10.88
2 11.4 5553 5299 4.79 4988 5621 -11.26
3 18.3 7174 7883 -8.99 6463 8315 -22.27
4 48.4 12060 11613 3.85 11095 12723 -12.80
5 8.1 4614 4326 6.66 4144 4521 -8.34
6 25.4 8512 8274 2.88 7700 8655 -11.03
7 48.9 12137 12081 0.46 11163 13101 -14.79
8 13.0 5973 5979 -0.10 5367 6292 -14.70
9 26.4 8697 9093 -4.35 7879 9797 -19.58
10 43.8 11415 10978 3.98 10464 11658 -10.24
11 26.7 8754 8987 -2.59 7931 9329 -14.99
12 17.1 6884 6995 -1.59 6195 7432 -16.64
13 51.4 12452 12342 0.89 11476 13252 -13.40
14 7.3 4351 4730 -8.01 3909 4908 -20.35
15 83.0 16388 16245 0.88 15428 17324 -10.94
16 10.4 5292 5032 5.17 4755 5406 -12.04
17 70.1 14835 14736 0.67 13850 15863 -12.69
18 26.7 8730 8985 -2.84 7896 9673 -18.37
19 9.2 4976 4855 2.49 4466 5154 -13.35
20 17.1 6935 7139 -2.86 6238 7475 -16.55
21 32.1 9649 9454 2.06 8775 10137 -13.44
22 14.3 6273 6303 -0.48 5646 6718 -15.96
23 4.9 3596 3834 -6.21 3251 4017 -19.07
24 54.1 12805 12679 0.99 11832 13502 -12.37
25 32.0 9659 9294 3.93 8783 10128 -13.28
26 14.9 6445 7358 -12.41 5799 7484 -22.51
27 53.1 12664 12736 -0.57 11690 13028 -10.27
28 67.7 14571 14365 1.43 13587 15397 -11.76
29 17.6 6936 6558 5.76 6241 7009 -10.96
30 131.6 21450 20864 2.81 20740 22817 -9.10

average 33.3 9205 9168 0.16 8449 9772 -14.13
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Table D.6. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP2.

bias bias bias bias
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 -0.10 0.02 -0.07 -0.18
2 11.4 0.04 0.30 0.25 0.15
3 18.3 -2.43 -1.73 -0.76 -0.73
4 48.4 -0.31 -0.19 -0.05 -0.16
5 8.1 1.54 1.08 0.45 0.26
6 25.4 1.57 1.12 0.52 0.33
7 48.9 0.61 0.31 0.16 0.01
8 13.0 1.25 0.96 0.48 0.30
9 26.4 -1.05 -0.64 -0.16 -0.21
10 43.8 0.56 0.38 0.11 -0.02
11 26.7 -0.60 -0.35 -0.11 -0.20
12 17.1 -1.06 -0.63 -0.30 -0.36
13 51.4 0.54 0.38 0.10 -0.02
14 7.3 -4.19 -3.03 -1.24 -1.12
15 83.0 0.39 0.26 0.08 -0.02
16 10.4 0.86 0.74 0.28 0.16
17 70.1 0.11 0.04 -0.05 -0.16
18 26.7 -0.25 -0.24 -0.14 -0.21
19 9.2 -1.95 -1.48 -0.66 -0.69
20 17.1 1.95 1.50 0.59 0.43
21 32.1 0.40 0.19 0.04 -0.08
22 14.3 -0.89 -0.71 -0.25 -0.31
23 4.9 -4.80 -3.73 -1.70 -1.57
24 54.1 0.27 0.13 0.04 -0.06
25 32.0 -1.08 -0.64 -0.20 -0.24
26 14.9 -3.48 -2.40 -0.96 -0.87
27 53.1 1.42 0.91 0.43 0.24
28 67.7 0.72 0.50 0.23 0.12
29 17.6 -0.94 -0.66 -0.32 -0.35
30 131.6 -0.13 -0.10 -0.09 -0.17

average 33.3 -0.37 -0.26 -0.11 -0.19
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Table D.7. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP2.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 3.05 2.70 1.71 1.76
2 11.4 3.33 3.08 1.94 2.00
3 18.3 3.30 2.67 1.54 1.58
4 48.4 1.89 1.60 1.01 1.07
5 8.1 4.12 3.61 2.44 2.48
6 25.4 3.00 2.45 1.59 1.59
7 48.9 2.22 1.86 1.18 1.25
8 13.0 3.62 3.12 2.05 2.10
9 26.4 2.48 2.07 1.34 1.39
10 43.8 2.21 1.82 1.14 1.17
11 26.7 2.41 2.00 1.37 1.40
12 17.1 3.03 2.53 1.64 1.69
13 51.4 2.19 1.81 1.16 1.19
14 7.3 5.00 4.07 2.39 2.42
15 83.0 1.59 1.31 0.89 0.91
16 10.4 3.46 3.19 2.08 2.18
17 70.1 1.74 1.41 0.95 0.99
18 26.7 2.58 2.22 1.42 1.48
19 9.2 3.70 3.27 2.07 2.15
20 17.1 3.61 3.01 1.96 1.98
21 32.1 2.46 2.09 1.34 1.38
22 14.3 3.08 2.67 1.80 1.87
23 4.9 5.60 4.71 2.87 2.94
24 54.1 1.93 1.58 1.04 1.07
25 32.0 2.35 1.86 1.11 1.17
26 14.9 4.02 3.11 1.67 1.68
27 53.1 2.61 2.09 1.33 1.32
28 67.7 2.04 1.67 1.05 1.07
29 17.6 2.79 2.38 1.55 1.60
30 131.6 1.14 0.94 0.67 0.70

average 33.3 2.88 2.43 1.54 1.59
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Table D.8. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP2.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 0.973 0.963 0.960 0.934
2 11.4 0.981 0.957 0.955 0.923
3 18.3 0.892 0.914 0.936 0.897
4 48.4 0.959 0.961 0.952 0.919
5 8.1 0.979 0.966 0.962 0.937
6 25.4 0.958 0.954 0.958 0.935
7 48.9 0.952 0.944 0.949 0.913
8 13.0 0.964 0.960 0.951 0.915
9 26.4 0.945 0.943 0.936 0.904
10 43.8 0.953 0.960 0.947 0.938
11 26.7 0.968 0.961 0.946 0.921
12 17.1 0.957 0.955 0.943 0.916
13 51.4 0.949 0.947 0.957 0.925
14 7.3 0.908 0.913 0.935 0.896
15 83.0 0.960 0.962 0.959 0.939
16 10.4 0.971 0.958 0.972 0.944
17 70.1 0.957 0.962 0.951 0.930
18 26.7 0.948 0.948 0.943 0.903
19 9.2 0.963 0.958 0.951 0.917
20 17.1 0.954 0.957 0.932 0.919
21 32.1 0.959 0.948 0.952 0.920
22 14.3 0.958 0.956 0.951 0.924
23 4.9 0.917 0.918 0.937 0.901
24 54.1 0.947 0.953 0.952 0.932
25 32.0 0.930 0.948 0.962 0.933
26 14.9 0.832 0.887 0.921 0.898
27 53.1 0.927 0.953 0.948 0.933
28 67.7 0.944 0.939 0.955 0.930
29 17.6 0.969 0.974 0.962 0.921
30 131.6 0.958 0.954 0.970 0.953

average 33.3 0.948 0.949 0.950 0.922
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Table D.9. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP2. Results for models NESTEDi and PANEL5i.

NESTEDi PANEL5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 11752 10360 13.44 9802 9162 6.99
2 11.4 10180 8729 16.62 8559 8075 5.99
3 18.3 13361 16215 -17.60 11090 13170 -15.79
4 48.4 22298 21636 3.06 18365 18201 0.90
5 8.1 8176 7097 15.20 6973 6332 10.12
6 25.4 15884 15678 1.31 13116 12838 2.17
7 48.9 22427 22467 -0.18 18471 18834 -1.93
8 13.0 10973 10366 5.86 9187 8923 2.96
9 26.4 16227 16595 -2.22 13392 13725 -2.43
10 43.8 21152 20740 1.99 17418 16798 3.69
11 26.7 16346 15538 5.20 13490 12955 4.13
12 17.1 12782 12460 2.58 10624 10582 0.40
13 51.4 22962 23574 -2.60 18916 19381 -2.40
14 7.3 7641 9313 -17.95 6552 7789 -15.88
15 83.0 29596 28700 3.12 24500 23566 3.96
16 10.4 9644 8223 17.28 8143 7483 8.82
17 70.1 26994 26389 2.29 22295 21386 4.25
18 26.7 16238 16413 -1.07 13402 13946 -3.90
19 9.2 8953 8461 5.81 7599 7451 1.99
20 17.1 12798 12763 0.27 10634 10568 0.62
21 32.1 18000 17468 3.05 14833 14726 0.73
22 14.3 11533 10712 7.66 9627 9276 3.78
23 4.9 6087 7037 -13.50 5339 6084 -12.25
24 54.1 23595 23627 -0.14 19445 19177 1.40
25 32.0 18002 19508 -7.72 14836 15312 -3.11
26 14.9 11884 16396 -27.52 9910 12800 -22.58
27 53.1 23365 25207 -7.31 19252 20098 -4.21
28 67.7 26604 27805 -4.32 21965 22722 -3.33
29 17.6 12832 11826 8.51 10662 9952 7.13
30 131.6 37251 35427 5.15 31163 29831 4.47

average 33.3 16851 16891 0.54 13985 14038 -0.44
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Table D.10. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under in-
correct model in simulations from POP2. Results for models ROTPANEL5i and RANTIME5i.

ROTPANEL5i RANTIME5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 6208 5813 6.80 5726 6002 -4.60
2 11.4 5406 5185 4.26 4987 5291 -5.75
3 18.3 6996 7669 -8.78 6462 7863 -17.82
4 48.4 11869 11752 1.00 11094 12319 -9.94
5 8.1 4490 4237 5.97 4144 4316 -3.99
6 25.4 8317 8243 0.90 7699 8266 -6.86
7 48.9 11944 12017 -0.61 11161 12523 -10.88
8 13.0 5817 5787 0.52 5366 5941 -9.68
9 26.4 8502 8815 -3.55 7878 9135 -13.76
10 43.8 11217 10745 4.39 10463 11031 -5.15
11 26.7 8558 8753 -2.23 7930 8919 -11.09
12 17.1 6710 6853 -2.09 6194 7049 -12.13
13 51.4 12264 12229 0.29 11475 12599 -8.92
14 7.3 4234 4580 -7.55 3908 4656 -16.07
15 83.0 16288 16032 1.60 15426 16373 -5.78
16 10.4 5152 4785 7.67 4754 5011 -5.13
17 70.1 14691 14593 0.67 13848 15125 -8.44
18 26.7 8530 8836 -3.46 7895 9238 -14.54
19 9.2 4842 4767 1.57 4465 4929 -9.41
20 17.1 6758 7013 -3.64 6237 7107 -12.24
21 32.1 9449 9357 0.98 8774 9666 -9.23
22 14.3 6113 6146 -0.54 5645 6376 -11.46
23 4.9 3504 3760 -6.81 3251 3846 -15.47
24 54.1 12624 12612 0.10 11830 12884 -8.18
25 32.0 9458 9181 3.02 8782 9692 -9.39
26 14.9 6280 7035 -10.73 5798 7094 -18.27
27 53.1 12481 12675 -1.53 11688 12617 -7.36
28 67.7 14422 14324 0.68 13585 14526 -6.48
29 17.6 6760 6528 3.55 6240 6759 -7.68
30 131.6 21571 20502 5.21 20737 21485 -3.48

average 33.3 9049 9027 -0.08 8448 9288 -9.64

220



Table D.11. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP3.

bias bias bias bias
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 -0.14 -0.01 0.00 -0.14
2 11.4 -0.28 -0.10 0.15 0.04
3 18.3 -4.15 -3.75 -1.41 -1.23
4 48.4 -0.36 -0.28 -0.05 -0.19
5 8.1 1.29 1.23 0.68 0.41
6 25.4 2.17 1.98 0.79 0.51
7 48.9 1.10 0.92 0.34 0.10
8 13.0 1.53 1.47 0.79 0.54
9 26.4 -1.80 -1.54 -0.43 -0.43
10 43.8 0.84 0.74 0.24 0.06
11 26.7 -1.15 -0.98 -0.26 -0.31
12 17.1 -1.92 -1.68 -0.70 -0.69
13 51.4 0.93 0.84 0.25 0.09
14 7.3 -5.44 -5.07 -2.42 -2.08
15 83.0 0.64 0.55 0.15 0.02
16 10.4 0.65 0.68 0.35 0.20
17 70.1 0.33 0.27 0.05 -0.09
18 26.7 -0.61 -0.57 -0.21 -0.27
19 9.2 -2.78 -2.60 -1.21 -1.14
20 17.1 2.27 2.14 0.87 0.62
21 32.1 0.55 0.46 0.15 -0.01
22 14.3 -1.78 -1.67 -0.63 -0.62
23 4.9 -5.46 -5.19 -2.83 -2.52
24 54.1 0.31 0.24 0.08 -0.04
25 32.0 -1.96 -1.67 -0.51 -0.47
26 14.9 -5.54 -5.04 -2.03 -1.68
27 53.1 2.40 2.09 0.73 0.44
28 67.7 1.12 0.98 0.33 0.18
29 17.6 -1.40 -1.28 -0.50 -0.50
30 131.6 -0.15 -0.12 -0.06 -0.17

average 33.3 -0.63 -0.57 -0.24 -0.31

221



Table D.12. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP3.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 2.27 2.26 1.71 1.84
2 11.4 2.31 2.35 1.88 2.06
3 18.3 4.44 4.10 2.00 2.01
4 48.4 1.83 1.77 1.07 1.18
5 8.1 2.53 2.55 2.15 2.32
6 25.4 2.85 2.69 1.63 1.66
7 48.9 2.16 2.05 1.22 1.32
8 13.0 2.79 2.74 2.04 2.15
9 26.4 2.60 2.43 1.49 1.62
10 43.8 2.08 1.97 1.22 1.28
11 26.7 2.31 2.18 1.46 1.53
12 17.1 2.93 2.72 1.74 1.86
13 51.4 2.14 2.02 1.19 1.27
14 7.3 5.59 5.25 2.92 2.88
15 83.0 1.61 1.52 0.97 1.02
16 10.4 2.31 2.41 2.00 2.23
17 70.1 1.69 1.58 1.01 1.09
18 26.7 2.31 2.26 1.49 1.63
19 9.2 3.32 3.22 2.12 2.26
20 17.1 3.07 2.97 1.93 1.99
21 32.1 2.20 2.11 1.34 1.45
22 14.3 2.75 2.65 1.82 1.97
23 4.9 5.58 5.34 3.28 3.33
24 54.1 1.79 1.67 1.09 1.17
25 32.0 2.71 2.45 1.26 1.37
26 14.9 5.66 5.21 2.39 2.26
27 53.1 3.00 2.72 1.39 1.37
28 67.7 2.06 1.92 1.08 1.15
29 17.6 2.49 2.40 1.59 1.73
30 131.6 1.19 1.13 0.74 0.81

average 33.3 2.75 2.62 1.64 1.73
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Table D.13. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP3.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 0.993 0.991 0.972 0.935
2 11.4 0.996 0.988 0.976 0.938
3 18.3 0.762 0.787 0.908 0.855
4 48.4 0.970 0.973 0.964 0.904
5 8.1 0.996 0.990 0.982 0.958
6 25.4 0.962 0.953 0.954 0.921
7 48.9 0.960 0.954 0.951 0.910
8 13.0 0.988 0.987 0.960 0.917
9 26.4 0.946 0.944 0.944 0.905
10 43.8 0.971 0.975 0.961 0.932
11 26.7 0.975 0.973 0.950 0.923
12 17.1 0.968 0.966 0.950 0.907
13 51.4 0.958 0.960 0.959 0.921
14 7.3 0.799 0.819 0.895 0.863
15 83.0 0.962 0.959 0.962 0.930
16 10.4 0.995 0.992 0.977 0.947
17 70.1 0.963 0.961 0.954 0.928
18 26.7 0.974 0.971 0.959 0.901
19 9.2 0.977 0.972 0.957 0.915
20 17.1 0.973 0.967 0.941 0.898
21 32.1 0.969 0.966 0.957 0.921
22 14.3 0.979 0.973 0.953 0.918
23 4.9 0.881 0.890 0.919 0.881
24 54.1 0.962 0.973 0.959 0.933
25 32.0 0.914 0.933 0.954 0.913
26 14.9 0.633 0.669 0.845 0.826
27 53.1 0.868 0.897 0.941 0.918
28 67.7 0.940 0.941 0.950 0.923
29 17.6 0.986 0.990 0.969 0.926
30 131.6 0.968 0.960 0.956 0.932

average 33.3 0.940 0.942 0.949 0.913
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Table D.14. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP3. Results for models NESTEDi and PANEL5i.

NESTEDi PANEL5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 10837 7878 37.56 10382 7838 32.46
2 11.4 9010 6273 43.63 8680 6408 35.46
3 18.3 12681 19417 -34.69 12092 18084 -33.13
4 48.4 23240 20834 11.55 21836 19947 9.47
5 8.1 6829 4689 45.64 6628 4721 40.39
6 25.4 15693 15496 1.27 14868 14712 1.06
7 48.9 23390 23015 1.63 21976 21908 0.31
8 13.0 9921 8163 21.54 9527 8078 17.94
9 26.4 16105 16669 -3.38 15248 15608 -2.31
10 43.8 21902 20092 9.01 20600 18853 9.27
11 26.7 16243 14656 10.83 15378 13942 10.30
12 17.1 12028 11693 2.86 11483 11059 3.83
13 51.4 24018 24061 -0.18 22559 22808 -1.09
14 7.3 6264 9128 -31.38 6095 8699 -29.93
15 83.0 31649 30166 4.92 29672 28440 4.33
16 10.4 8401 5653 48.61 8111 5845 38.77
17 70.1 28675 26590 7.84 26892 24936 7.84
18 26.7 16126 14428 11.77 15269 14077 8.47
19 9.2 7625 7118 7.12 7383 6945 6.31
20 17.1 12056 11233 7.33 11505 10912 5.43
21 32.1 18191 16132 12.76 17175 15443 11.22
22 14.3 10584 9245 14.48 10140 9001 12.65
23 4.9 4648 6193 -24.95 4558 5988 -23.88
24 54.1 24754 22454 10.24 23243 21014 10.61
25 32.0 18188 20911 -13.02 17172 19006 -9.65
26 14.9 10963 19971 -45.11 10494 18560 -43.46
27 53.1 24479 31471 -22.22 22989 28716 -19.94
28 67.7 28220 29890 -5.59 26470 27963 -5.34
29 17.6 12116 10078 20.22 11564 9718 19.00
30 131.6 40347 36862 9.45 37884 35408 6.99

average 33.3 16839 16682 5.33 15929 15821 4.11
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Table D.15. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under in-
correct model in simulations from POP3. Results for models ROTPANEL5i and RANTIME5i.

ROTPANEL5i RANTIME5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 6653 5856 13.61 6087 6382 -4.62
2 11.4 5712 5013 13.94 5241 5467 -4.13
3 18.3 7566 9219 -17.93 6922 9372 -26.14
4 48.4 13092 12358 5.94 12125 13582 -10.73
5 8.1 4619 3920 17.83 4263 4226 0.88
6 25.4 9089 9021 0.75 8322 9210 -9.64
7 48.9 13178 13073 0.80 12201 13938 -12.46
8 13.0 6191 5964 3.81 5673 6304 -10.01
9 26.4 9299 9569 -2.82 8523 10334 -17.52
10 43.8 12366 11735 5.38 11421 12406 -7.94
11 26.7 9364 9323 0.44 8582 9765 -12.11
12 17.1 7239 7205 0.47 6620 7703 -14.06
13 51.4 13533 13389 1.08 12551 14230 -11.80
14 7.3 4315 5204 -17.08 3991 5234 -23.75
15 83.0 17956 17732 1.26 16946 18674 -9.25
16 10.4 5411 4737 14.23 4973 5229 -4.90
17 70.1 16211 15844 2.32 15192 17007 -10.67
18 26.7 9334 9249 0.92 8543 10065 -15.12
19 9.2 5035 4804 4.81 4633 5148 -10.00
20 17.1 7289 7390 -1.37 6665 7696 -13.40
21 32.1 10376 9832 5.53 9530 10564 -9.79
22 14.3 6536 6321 3.40 5990 6825 -12.23
23 4.9 3424 3991 -14.21 3207 4091 -21.61
24 54.1 13931 13584 2.55 12947 14424 -10.24
25 32.0 10385 10084 2.98 9538 10914 -12.61
26 14.9 6730 9142 -26.38 6164 8807 -30.01
27 53.1 13773 14830 -7.13 12789 14530 -11.98
28 67.7 15915 15914 0.01 14899 16749 -11.05
29 17.6 7299 6658 9.63 6674 7210 -7.43
30 131.6 23651 22898 3.29 22835 24920 -8.37

average 33.3 9849 9795 0.94 9135 10367 -12.09
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Table D.16. Mean sample size n̄i in the last month and observed relative bias (%) of the
EBLUP total estimates under incorrect model in simulations from POP4.

bias bias bias bias
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 -0.28 -0.05 -0.06 -0.18
2 11.4 -0.26 0.12 0.23 0.12
3 18.3 -4.07 -2.76 -1.40 -1.31
4 48.4 -0.43 -0.23 -0.06 -0.19
5 8.1 1.21 0.95 0.59 0.39
6 25.4 2.24 1.54 0.82 0.59
7 48.9 1.14 0.62 0.33 0.15
8 13.0 1.58 1.26 0.76 0.54
9 26.4 -1.82 -1.07 -0.38 -0.42
10 43.8 0.87 0.56 0.22 0.06
11 26.7 -1.13 -0.64 -0.26 -0.34
12 17.1 -1.87 -1.12 -0.57 -0.60
13 51.4 0.86 0.55 0.21 0.06
14 7.3 -5.41 -4.04 -2.22 -2.02
15 83.0 0.63 0.39 0.15 0.02
16 10.4 0.61 0.63 0.34 0.20
17 70.1 0.31 0.15 0.00 -0.14
18 26.7 -0.62 -0.43 -0.23 -0.31
19 9.2 -2.75 -2.06 -1.11 -1.11
20 17.1 2.30 1.76 0.88 0.67
21 32.1 0.56 0.30 0.11 -0.04
22 14.3 -1.70 -1.22 -0.54 -0.58
23 4.9 -5.53 -4.45 -2.72 -2.55
24 54.1 0.29 0.16 0.06 -0.06
25 32.0 -2.00 -1.14 -0.46 -0.48
26 14.9 -5.47 -3.74 -1.84 -1.66
27 53.1 2.41 1.43 0.72 0.48
28 67.7 1.13 0.71 0.35 0.21
29 17.6 -1.38 -0.92 -0.48 -0.52
30 131.6 -0.17 -0.11 -0.10 -0.21

average 33.3 -0.62 -0.43 -0.22 -0.31
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Table D.17. Mean sample size n̄i in the last month and MARE (%) of the EBLUP total
estimates under incorrect model in simulations from POP4.

MARE MARE MARE MARE
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 2.28 2.20 1.66 1.72
2 11.4 2.28 2.35 1.81 1.90
3 18.3 4.38 3.22 1.90 1.90
4 48.4 1.83 1.56 1.09 1.15
5 8.1 2.59 2.54 2.15 2.23
6 25.4 2.94 2.33 1.63 1.60
7 48.9 2.19 1.75 1.21 1.25
8 13.0 2.79 2.56 2.00 2.04
9 26.4 2.62 2.05 1.43 1.48
10 43.8 2.09 1.70 1.17 1.19
11 26.7 2.28 1.89 1.42 1.46
12 17.1 2.84 2.35 1.68 1.75
13 51.4 2.09 1.69 1.18 1.21
14 7.3 5.56 4.35 2.81 2.76
15 83.0 1.61 1.29 0.94 0.94
16 10.4 2.32 2.41 1.91 2.03
17 70.1 1.69 1.35 0.99 1.02
18 26.7 2.30 2.02 1.46 1.53
19 9.2 3.31 2.89 2.09 2.18
20 17.1 3.13 2.65 1.92 1.91
21 32.1 2.14 1.87 1.35 1.39
22 14.3 2.77 2.39 1.80 1.89
23 4.9 5.67 4.73 3.21 3.23
24 54.1 1.81 1.49 1.08 1.11
25 32.0 2.72 2.00 1.25 1.31
26 14.9 5.62 4.03 2.23 2.17
27 53.1 3.00 2.13 1.38 1.32
28 67.7 2.04 1.60 1.07 1.07
29 17.6 2.50 2.17 1.60 1.67
30 131.6 1.21 0.98 0.73 0.77

average 33.3 2.75 2.28 1.60 1.64
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Table D.18. Mean sample size n̄i in the last month and coverage of the 95 % confidence
intervals under incorrect model in simulations from POP4.

coverage coverage coverage coverage
region n̄i NESTEDi PANEL5i ROTPANEL5i RANTIME5i

1 14.9 0.993 0.982 0.974 0.948
2 11.4 0.996 0.986 0.966 0.949
3 18.3 0.755 0.838 0.887 0.862
4 48.4 0.970 0.970 0.952 0.931
5 8.1 0.998 0.988 0.979 0.968
6 25.4 0.960 0.944 0.949 0.935
7 48.9 0.953 0.953 0.942 0.921
8 13.0 0.984 0.977 0.962 0.937
9 26.4 0.949 0.946 0.938 0.918
10 43.8 0.960 0.967 0.952 0.946
11 26.7 0.978 0.968 0.953 0.934
12 17.1 0.971 0.961 0.956 0.928
13 51.4 0.961 0.951 0.966 0.943
14 7.3 0.820 0.867 0.906 0.884
15 83.0 0.962 0.959 0.958 0.944
16 10.4 0.993 0.986 0.975 0.961
17 70.1 0.962 0.962 0.953 0.933
18 26.7 0.975 0.969 0.953 0.920
19 9.2 0.973 0.965 0.956 0.928
20 17.1 0.970 0.960 0.939 0.921
21 32.1 0.975 0.963 0.956 0.932
22 14.3 0.977 0.971 0.960 0.940
23 4.9 0.875 0.885 0.925 0.896
24 54.1 0.965 0.958 0.956 0.940
25 32.0 0.894 0.936 0.952 0.932
26 14.9 0.632 0.758 0.867 0.855
27 53.1 0.859 0.927 0.935 0.929
28 67.7 0.945 0.938 0.950 0.933
29 17.6 0.986 0.989 0.963 0.938
30 131.6 0.963 0.954 0.972 0.956

average 33.3 0.938 0.946 0.948 0.929
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Table D.19. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under
incorrect model in simulations from POP4. Results for models NESTEDi and PANEL5i.

NESTEDi PANEL5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 10846 7909 37.13 9140 7526 21.45
2 11.4 9020 6110 47.63 7754 6271 23.65
3 18.3 12691 19167 -33.79 10537 14561 -27.64
4 48.4 23246 20791 11.81 18485 17542 5.38
5 8.1 6836 4663 46.60 6038 4626 30.52
6 25.4 15699 15848 -0.94 12777 12837 -0.47
7 48.9 23394 23206 0.81 18600 18703 -0.55
8 13.0 9936 8226 20.79 8449 7570 11.61
9 26.4 16115 16689 -3.44 13084 13372 -2.15
10 43.8 21910 20451 7.13 17462 16390 6.54
11 26.7 16246 14453 12.41 13188 12122 8.79
12 17.1 12039 11377 5.82 10035 9621 4.30
13 51.4 24022 23585 1.85 19084 19092 -0.04
14 7.3 6273 9081 -30.92 5592 7481 -25.25
15 83.0 31649 29899 5.85 25094 23904 4.98
16 10.4 8412 5726 46.91 7287 5793 25.79
17 70.1 28675 26459 8.38 22724 21136 7.51
18 26.7 16133 14480 11.42 13101 12703 3.13
19 9.2 7640 7148 6.88 6687 6378 4.84
20 17.1 12069 11459 5.32 10054 9796 2.63
21 32.1 18198 15682 16.04 14654 13619 7.60
22 14.3 10601 9325 13.68 8946 8205 9.03
23 4.9 4657 6299 -26.07 4280 5462 -21.64
24 54.1 24757 22767 8.74 19654 18556 5.92
25 32.0 18194 21313 -14.63 14653 15772 -7.09
26 14.9 10981 19873 -44.74 9240 14761 -37.40
27 53.1 24481 31522 -22.34 19444 22635 -14.10
28 67.7 28220 29842 -5.44 22366 23420 -4.50
29 17.6 12128 10208 18.81 10097 8816 14.53
30 131.6 40343 37250 8.30 32292 30564 5.65

average 33.3 16847 16694 5.33 13693 13641 2.10
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Table D.20. Mean sample size n̄i in the last month, average estimated RMSE (MR̂MSE),
empirical RMSE (ERMSE) and approximate relative error (RE) of MR̂MSE (in %) under in-
correct model in simulations from POP4. Results for models ROTPANEL5i and RANTIME5i.

ROTPANEL5i RANTIME5i
region n̄i MR̂MSE ERMSE RE MR̂MSE ERMSE RE

1 14.9 6473 5674 14.08 6083 5916 2.82
2 11.4 5560 4930 12.78 5236 5103 2.61
3 18.3 7364 8936 -17.59 6918 8965 -22.83
4 48.4 12834 12518 2.52 12123 13080 -7.32
5 8.1 4503 3878 16.12 4258 4011 6.16
6 25.4 8856 8989 -1.48 8319 8825 -5.73
7 48.9 12917 13036 -0.91 12198 13319 -8.42
8 13.0 6025 5809 3.72 5669 5934 -4.47
9 26.4 9065 9223 -1.71 8520 9562 -10.90
10 43.8 12105 11454 5.68 11418 11649 -1.98
11 26.7 9128 9063 0.72 8579 9300 -7.75
12 17.1 7044 6988 0.80 6617 7226 -8.43
13 51.4 13275 13161 0.87 12548 13408 -6.41
14 7.3 4209 4994 -15.72 3987 4986 -20.04
15 83.0 17767 17381 2.22 16943 17551 -3.46
16 10.4 5269 4550 15.80 4968 4807 3.35
17 70.1 15984 15579 2.60 15189 16068 -5.47
18 26.7 9094 9104 -0.11 8540 9554 -10.61
19 9.2 4904 4725 3.79 4628 4918 -5.90
20 17.1 7092 7286 -2.66 6661 7309 -8.87
21 32.1 10127 9723 4.16 9527 10011 -4.83
22 14.3 6363 6148 3.50 5986 6429 -6.89
23 4.9 3352 3933 -14.77 3202 3972 -19.39
24 54.1 13679 13428 1.87 12944 13669 -5.30
25 32.0 10135 9963 1.73 9535 10451 -8.76
26 14.9 6551 8603 -23.85 6161 8421 -26.84
27 53.1 13518 14642 -7.68 12786 14092 -9.27
28 67.7 15685 15736 -0.32 14897 15671 -4.94
29 17.6 7102 6652 6.76 6670 6931 -3.77
30 131.6 23670 22361 5.85 22833 23352 -2.22

average 33.3 9655 9616 0.63 9131 9816 -7.20
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