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Finland

ISBN 978-951-39-3269-5
ISSN 1457-8905

Copyright c© 2008, by Tero Mäkäläinen
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1 Introduction

This dissertation is about analysis on metric spaces. More precisely, we study
embedding inequalities, nonlinear potential theory and p-harmonic functions in
the setting of metric measure spaces. In this section, we give a short overview of
the analysis on metric spaces supporting a Poincaré inequality with a doubling
measure. In subsequent sections we give a short overview of the included papers.

1.1 Doubling measure and Poincaré inequality

We make two assumptions on the metric measure space. The first one is on the
measure and the second on the geometry of the space. Precisely, we assume that

1. the measure µ is doubling;

2. X admits a weak Poincaré inequality.

A measure µ is doubling if balls have positive and finite measure and there
exists a constant Cd ≥ 1 such that for all balls B(x, r) in X,

µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

Note that the doubling measure µ has a density lower bound, see [He]: There
exist constants c, s > 0 that depend only on the doubling constant of µ, such
that

(1)
µ(B(y, r))

µ(B(x,R))
≥ c

( r
R

)s
,

whenever r < R, x ∈ X and y ∈ B(x,R). Usually we consider s to be the natural
dimension of the space X, and we assume that s > 1. However, s is, in general,
not equal to the topological dimension of the space.

Sometimes one assumes that the metric space is doubling, that is, there exists
a finite constant N such that every ball of radius r can be covered with N balls
of radii r/2. If a metric space supports a doubling measure, then it is doubling.
Converse is true in the following sense: we can construct a doubling measure
to every complete doubling space, see [LS]. However, there are non-complete
doubling metric spaces which do not support doubling measures, see [Sa].

When the measure is doubling, the space has many useful properties. For
instance, if the space is complete, as we assume in this work, then it is proper,
that is, all closed and bounded subsets are compact. Also many tools such as
Vitali-type covering theorem, Lebesgue theorem and Hardy–Littlewood maximal
theorem are available.

Before defining a Poincaré inequality, we need a substitute for the Sobolev
gradient in metric spaces.
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A nonnegative Borel function g on X is an upper gradient of an extended
real-valued function f on X if for all compact rectifiable paths γ : [0, lγ] → X,
we have

(2) |f(γ(0))− f(γ(lγ))| ≤
∫

γ

g ds

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
∫
γ
g ds = ∞ otherwise. If g

is a nonnegative measurable function on X and if (2) holds for p-almost every
path, then g is a p-weak upper gradient of f , see Definition 2.1 in [Sh1].

Notice that in Euclidean spaces, modulus of Sobolev gradient is an upper
gradient of a smooth function. From inequality (2), we immediately see that
upper gradient is not unique and g ≡ ∞ is an upper gradient of any function.
Therefore it is natural to define ”the smallest” upper gradient. If f has the upper
gradient in Lp(X), then it has the minimal p-weak upper gradient gf ∈ Lp(X) in
the sense that for every p-weak upper gradient g ∈ Lp(X) of f , gf ≤ g µ-a.e., see
Corollary 3.7 in [Sh2].

The geometric assumption on the space is the following Poincaré inequality.
Let 1 ≤ p < ∞. A metric measure space (X, d, µ) is said to admit a weak
(1, p)-Poincaré inequality if there are constants Cp > 0 and τ ≥ 1 such that

(3) −
∫

B(x,r)

|u− uB(x,r)| dµ ≤ Cpr

(
−
∫

B(x,τr)

gp dµ

)1/p

for all balls B(x, r) ⊂ X, for all integrable functions u in B(x, r) and for all
upper gradients g of u. Here we use the notation uB(x,r) =

∫
B(x,r)

u dµ =

µ(B(x, r))−1
∫
B(x,r)

u dµ. In the definition the word weak refers to the possibility

that τ > 1.
The above definition is due to Heinonen and Koskela [HeK]. There are various

formulation for a Poincaré inequality on a metric measure space. For example,
we could require the inequality (3) for all Lipschitz functions and replace the
upper gradient by the local Lipschitz constant as done in paper [A]. When the
space is complete and is equipped with a doubling Borel regular measure, these
definitions coincide, see e.g. [K1], [K2] and [KR].

Hölder inequality gives that any complete metric space that admits a (1, p)-
Poincaré inequality, admits a (1, p̃)-Poincaré inequality for every p̃ ≥ p. The
converse is not true in general, but by a deep result in [KeZ], we have that a
weak (1, p)-Poincaré inequality implies a weak (1, t)-Poincaré inequality for some
t < p, which is needed in paper [A].

We can also change the exponent on the left hand side of the Poincaré in-
equality, and we obtain the Sobolev–Poincaré inequalities. It is shown in [HaK],
that a weak (1, p)-Poincaré inequality also implies (q, p)-Poincaré inequality for
some q > p, with possibly a different τ .

It is hard to check if a given space admits a Poincaré inequality. Some results
about sufficient conditions are available, see [Se].
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1.2 Analysis on metric measure spaces

Next we discuss about the analysis on metric measure space that admits the as-
sumptions introduced in section 1.1. Indeed, from now on, we assume that the
measure is doubling and the space admits a weak Poincaré inequality. Some ex-
amples of such spaces are for example Euclidean spaces with Lebesgue measure,
weighted Euclidean spaces with Muckenhoupt weights, complete Riemannian
manifolds with nonnegative Ricci curvature, many graphs and Carnot groups,
see [He] and [HaK].

When these assumptions on the space and on the measure hold, the space
has nice geometric properties and allows us to conduct analysis on such a space,
and recently such analysis was done in many areas of studies. For instance,
many results from Sobolev spaces, nonlinear potential theory, geometric measure
theory and quasiconformal mappings in Euclidean setting can be obtained on
such spaces, see [AT], [HaK], [He], [HeK] [KM1], [KoM] and [Sh2].

In the first order calculus in Euclidean spaces, Sobolev spaces play an im-
portant role. To define Sobolev spaces, one needs weak derivatives. Classical
definitions do not work in general metric spaces, because the space has not a pri-
ori smooth structure. However, more general approaches have been found lately
to define Sobolev type spaces on metric spaces that are, of course, equivalent to
the classical Sobolev spaces in the Euclidean spaces.

Recently there has been progress in the theory of Sobolev spaces in general
metric measure spaces, see for instance [Ch], [HaK], [Ha], [HeK], [KKM], [KoM],
[Sh1] and references therein. There are various approaches to define Sobolev type
spaces in the setting of metric spaces. In [Sh1], Shanmugalingam constructs a
Sobolev type space on metric spaces, which yields the same space studied by
Cheeger in [Ch], when p > 1. When the metric space is complete and admits a
Poincaré inequality with a doubling measure, the Sobolev type spaces introduced
by HajÃlasz [Ha] also coincide with the spaces mentioned above, see [KeZ].

Also nonlinear potential theory can be generalized to metric spaces, see [KM1],
[KM2], [KS] and [Sh2]. Cheeger’s [Ch] definition of partial derivatives makes it
possible to study partial differential equations on such spaces, see [BMS], [BBS1],
[KS2] and [B3].

To study nonlinear potential theory and partial differential equations on met-
ric measure spaces, the natural way is to generalize theory from the Euclidean
setting. In Euclidean spaces, we may study the following p-Laplace equation:

(4) div(|Du|p−2|Du|) = 0.

Or equivalently, we may consider the following nonlinear variational problem:
Find a minimizer for the p-Dirichlet integral

(5)

∫

Ω

|Du|p dx
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among all functions u : Ω → R with prescribed boundary value. Here we need to
assume that the functions u belong to a suitable Sobolev space.

In metric space setting, we may study both problems. However, there are two
reasonable approaches that we are interested in. Those are upper gradient min-
imizers and (Cheeger) p-harmonic functions. We study minimizers in paper [B]
and we give a short overview in section 3. Cheeger p-harmonic functions are
studied in paper [C], on which we give a short survey in section 4.

Certain theorems in papers [A] and [B] are essential to solve problems studied
in paper [C].

2 Adams-type inequalities

In the Euclidean spaces we have the following Adams inequality, see e.g. [AH],
[Ma], [Tu] or [Zi]:

Theorem 2.1. Let ν be a Radon measure on Rn and let 1 ≤ p < q < ∞ with
p < n. Suppose that there is a constant M such that for all balls B(x, r) ⊂ Rn,

ν(B(x, r)) ≤Mrα,

where α = q(n− p)/p. Then

(6)

(∫

Rn

|u|qdν
)1/q

≤ CM1/q

(∫

Rn

|∇u|pdx
)1/p

,

for all u ∈ C∞0 (Rn), where C = C(p, q, n) > 0.

In the Euclidean setting a necessary and sufficient condition for trace type
theorems is obtained, see e.g. [AH, Chapter 7.2]. For Sobolev functions, in-
equality (6) is an extension of the Sobolev inequality, since if ν is n-dimensional
Lebesgue measure, then q = p∗ = np/(n− p).

In paper [A], we extend the Adams inequality, Theorem 2.1, to the setting
of metric measure spaces. The results are formulated for Lipschitz functions. In
a metric space (X, d), a function u : X → R is said to be Lipschitz continuous,
denoted by u ∈ Lip(X), if for some constant L > 0

|u(x)− u(y)| ≤ Ld(x, y),

for every x, y ∈ X. We also use the notation u ∈ Lip0(X) when the function u
has compact support. For a Lipschitz function u : X → R, we define

Lipu(x) := lim sup
y→x

|u(x)− u(y)|
d(x, y)

.
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Recall that we assume that the metric measure space (X, d, µ) is complete, µ
is doubling and the space admits a weak (1, p)-Poincaré inequality. For Adams
inequality, we have several cases depending on the value of p.

The case p = 1 needs a special treatment as usual. The following theorem is
proven in paper [A].

Theorem 2.2. [A, Theorem 1.3] Let (X, d, µ) be a complete metric measure space
such that it admits a weak (1, 1)-Poincaré inequality and µ is a doubling Radon
measure. Let ν be a Radon measure on X. Suppose that there are M ≥ 0 and
q ≥ 1, such that for all balls B(x, r) ⊂ X of radius r < diamX, it holds

ν(B(x, r))

µ(B(x, r))q
≤Mr−q.

Then (∫

X

|u|qdν
)1/q

≤ CM1/q

∫

X

Lipu dµ,

for all u ∈ Lip0(X), where the constant C > 0 depends only on q, s, the doubling
constant and the constants in the Poincaré inequality.

The proof is based on the recently developed theory of BV-functions in metric
spaces, see [Am] and [Mi]. We need isoperimetric inequality and the co-area
formula in this setting. Moreover, we need a covering theorem referred as boxing
inequality, see Lemma 3.1 in paper [A].

Next we move into the case 1 < p < s. We follow the outline of the proof in
Euclidean spaces, where Riesz potentials play a role.

The Riesz potential of a nonnegative, measurable function f on a metric
measure space (X, d, µ) is

I1,A(f)(x) =

∫

A

f(y)d(x, y)

µ(B(x, d(x, y)))
dµ(y),

for a measurable set A ⊂ X.
To prove Adams inequality in this case, we first need the Fractional Integration

Theorem, which we call the Adams-type inequality for the Riesz potential.

Theorem 2.3. [A,Corollary 4.2] Let (X, d, µ) be a metric measure space, where
µ is a doubling Radon measure, and 1 < p < s. Assume that ν is a Radon
measure such that

ν(B(x, r))

µ(B(x, r))
≤Mr

sq
p
−s−q

for all balls B(x, r) ⊂ X of radius r < diamX, where M is a positive constant
and 1 < p < q <∞. If f ∈ Lp(B0, µ) for some ball B0 = B(x0, r0) ⊂ X, we have

(∫

B0

I1,B0(|f |)qdν
)1/q

≤ Cµ(B0)
1/q−1/p r

s
p
− s

q

0 M1/q

(∫

B0

|f |pdµ
)1/p

,

where C = C(p, q, Cd, s) > 0 is a constant.
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Second, we consider the pointwise inequality, which follows from the Poincaré
inequality and a chain condition, see Section 3 in paper [A].

Theorem 2.4. [A,Remark 3.3] Assume that (X, d, µ) admits a weak (1, p)-Poin-
caré inequality with a doubling Borel measure µ and let B(y, r) ⊂ X such that
r < diamX/10. Let u ∈ Lip0(B(y, r)). Then for each x ∈ B(y, r)

|u(x)|p ≤ Crp−1I1,B(y,r)((Lipu)p)(x).

By combining Theorem 2.3 and Theorem 2.4, we obtain our main theorem:
the Adams inequality in the case 1 < p < s.

Theorem 2.5. [A, Theorem 1.4] Let (X, d, µ) be a complete metric measure space
such that it admits a weak (1, t)-Poincaré inequality for some 1 ≤ t < p, and µ is
a doubling Radon measure. Suppose that ν is a Radon measure on X, satisfying

ν(B(x, r))

µ(B(x, r))
≤Mrα with α =

sq

p
− s− q

t
,

for all balls B(x, r) ⊂ X of radius r < diamX, where 1 < p < q < ∞, p/t < s
and M is a positive constant. Here s is from (1). If u ∈ Lip0(B0) for some ball
B0 = B(x0, r0) ⊂ X, for which r0 < diamX/10, we have

(∫

B0

|u|qdν
)1/q

≤ Cµ(B0)
1/q−1/p r

t−1
t

+ s
p
− s

q

0 M1/q

(∫

B0

(Lipu)pdµ

)1/p

,

where C = C(p, q, s, t, Cd, Cp, τ) > 0.

The case in which p = s and the space admits a weak (1, 1)-Poincaré inequality
is not included in Theorem 2.5. We prove the following theorem in this borderline
case.

Theorem 2.6. [A, Theorem 6.2] Let (X, d, µ) be a complete metric measure space
such that it supports weak (1, 1)-Poincaré inequality and µ is a doubling Radon
measure. Let B0 = B(x0, r0) ⊂ X such that r0 < diamX/10 and suppose that ν
is a Radon measure in B0 with

ν(B(x, r)) ≤M
(

log
r0
r

) 1−s
s
q

,

for all balls B(x, r) ⊂ X such that x ∈ 2B0 and r < r0/2. Here 1 < s < q < ∞
and M is a positive constant. Then

(∫

B0

|u|qdν
)1/q

≤ Cr0µ(B0)
−1/sM1/q

(∫

B0

(Lipu)sdµ

)1/s

,

for all u ∈ Lip0(B0), where C = C(q, s, Cd, Cp, τ) > 0 is a constant.

The case p > s follows from the Theorem 5.1 (3) in [HaK].
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3 Nonlinear potential theory: balayage

Recently, nonlinear potential theory has been generalized to the setting of metric
measure spaces. Main references that include basic results for minimizers, su-
perminimizers and superharmonic functions, are [KM2], [KM1], [Sh2] and [B1].
The Dirichlet problem has been studied in [BBS1] and the Perron method in
[BBS2]. Harnack’s inequalities are found in [KS] and Moser’s iteration in [BM].
Boundary regularity is studied in [BB1] and polar sets in [KS2]. Recent progress
of this topic is presented in [BB3]. The list is not exhaustive by any means.

In the Euclidean spaces a nonlinear balayage is studied in [HK1], [HK2] and
[HKM]. In paper [B], we develop the basic theory of balayage on metric measure
spaces. To give the definition of the balayage, we need the notion of superhar-
monic function.

A function u from the Newtonian space N1,p
loc (Ω) (see [B, Definition 2.2]) is a

minimizer in a domain Ω if for all ϕ ∈ N1,p
0 (Ω) we have

(7)

∫

ϕ 6=0

gpu dµ ≤
∫

ϕ 6=0

gpu+ϕ dµ.

A function u ∈ N1,p
loc (Ω) is a superminimizer in Ω if (7) holds for all nonnegative

ϕ ∈ N1,p
0 (Ω).

Now superharmonic functions are defined as lower semicontinuous functions
(not identically ∞ in any component of Ω), that admit a certain comparison
principle with minimizers, see [B, Definition 3.3] and [B1].

To define the balayage, we also need the lim inf-regularization of a function
f : Ω → R, which is

f̂(x) = lim
r→0

inf
Ω∩B(x,r)

f, x ∈ Ω.

In paper [B], we give two definitions for balayage as follows. Let

Φψ = Φψ(Ω) = {u : u is superharmonic in Ω and u ≥ ψ in Ω},
Ψψ = Ψψ(Ω) = {u : u is superharmonic in Ω and u ≥ ψ q.e. in Ω},
Rψ = Rψ(Ω) = inf Φψ,

Qψ = Qψ(Ω) = inf Ψψ.

The lim inf-regularizations R̂ψ and Q̂ψ are called the R- and Q-balayage of ψ in
Ω, respectively. If Φψ = ∅, we set R̂ψ = ∞ and similarly for Q̂ψ. From now on
assume that Φψ 6= ∅.

In paper [B], we show that the balayage is superharmonic and study the
properties of balayage when the obstacle function, or the domain, is varying, see
Theorem 4.4, Propositions 4.11 and 4.12 in [B]. An interesting question is to
find, whether R- and Q-balayages are equal, in other words, whether the sets of
capacity zero can be neglected, see Section 11 in [B]. We give some conditions,
that give us positive answer to this question.
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Theorem 3.1. [B, Proposition 4.6, Theorem 4.10, Corollary 5.4] Assume that

Ω is bounded. If ψ is lower semicontinuous or Q̂ψ ∈ N1,p(Ω) or ψ ∈ N1,p(Ω),

then R̂ψ = Q̂ψ.

When the obstacle function is continuous and bounded above, we obtain the
following useful result needed in paper [C].

Theorem 3.2. [B, Proposition 4.9, Corollary 6.9] If ψ is a continuous and

bounded in Ω, then Q̂ψ = R̂ψ is a continuous p-supersolution with R̂ψ ≥ ψ.
Moreover, R̂ψ is p-harmonic in the open set {R̂ψ > ψ}.

We study the connection between the balayage and the solution of the obstacle
problem and prove the following theorem.

Theorem 3.3. [B, Proposition 5.6] Assume that V ⊂ Ω is open and bounded

and that Q̂ψ ∈ N1,p(V ). Then Q̂ψ is the solution of the obstacle problem in V ,

with the obstacle ψ and boundary values Q̂ψ.

Boundary regularity for minimizers was previously studied in [BB1], where
several definitions for regular boundary points are given. In Theorems 7.5 and
7.8 in [B], we show that equivalent characterizations for regular boundary points
in terms of balayage are available. We also give characterizations for polar sets
in terms of balayage, see Theorem 8.2 in [B]. These characterizations are shown
to coincide with the definitions of polar sets given in [KS2].

4 Partial differential equations: removability

Another approach in the study of p-harmonic functions is based on derivatives
due to Cheeger. In [Ch] Cheeger showed that under our general assumptions
the metric space has a differentiable structure, under which Lipschitz functions
have derivatives almost everywhere. This deep theorem allows us to consider the
following equation for a function u in a domain Ω:

(8)

∫

Ω

|Du|p−2Du ·Dϕ dµ = 0,

where 1 < p < ∞ is a fixed number and D denotes the derivation operation,
see [Ch]. A continuous function u is (Cheeger) p-harmonic in a domain Ω if
u ∈ N1,p

loc (Ω) and (8) holds for all Lipschitz testing functions ϕ with compact
support in Ω. A function v ∈ N1,p

loc (Ω) is a p-supersolution in Ω if for every
nonnegative Lipschitz functions ϕ with compact support in Ω, the inequality
”≥” holds in (8).

Cheeger p-harmonic functions are studied, for example, in [BMS], [BBS1],
[KS2] and [B3]. In the proof of Theorem 5.2 in [KS], it is shown that there exists
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0 < κ ≤ 1 such that for every p-harmonic function h in Ω satisfies the local
Hölder continuity estimate

(9) osc(h,B(x, r)) ≤ C
( r
R

)κ
osc(h,B(x,R)),

where 0 < r < R, B(x, 2R) ⊂⊂ Ω, and C and κ are independent of r, R and h.
In paper [C], we study the removable sets for p-harmonic functions. We

say that a compact set E ⊂ Ω is removable for Hölder continuous p-harmonic
functions, if every function that is Hölder continuous in Ω and p-harmonic outside
E, is actually p-harmonic in Ω.

In paper [C], we give the sharp result on removability defined above. We
characterize the removable sets in terms of weighted Hausdorff measure. For the
definition of weighted Hausdorff measure, see Definition 2.5 in paper [C].

Theorem 4.1. [C, Theorem 1.1] Let X be a complete metric measure space with
a doubling measure µ supporting a weak (1, p)-Poincaré inequality. Let Ω ⊂ X be
open and bounded, and let 0 < α < κ, where κ is from (9). A closed set E ⊂ Ω
is removable for α-Hölder continuous p-harmonic functions if and only if E is of
weighted (−p+ α(p− 1))-Hausdorff measure zero.

For A-harmonic functions in Rn, where A is of p-Laplacian type, see [HKM,
Chapter 3], the above theorem was proven in [KiZ].

To show that the given function is actually p-harmonic in the whole domain,
the balayage is a key tool in our methods. In paper [B], we have shown that
the balayage of a bounded continuous function is a supersolution. To prove the
above removability result, we need the connection between the Riesz measure
and the supersolution. This is given by the following equation proven in [BMS],
see also [C, (13)]. There is a one to one correspondence between supersolutions
u ∈ N1,p

0 (Ω) and Radon measures ν given by
∫

Ω

|Du|p−2Du ·Dϕ dµ =

∫

Ω

ϕ dν,

whenever ϕ ∈ N1,p
0 (Ω). We say that ν is a Riesz measure associated with u.

The proof of Theorem 4.1 is based on the following result, which gives the
optimal Hölder continuity of p-supersolutions in terms of the associated Riesz
measure. It has interest of its own.

Theorem 4.2. [C, Theorem 1.3] Let Ω ⊂ X be open and bounded, and 0 < α <
κ, where κ is as in (9). Assume that u is a p-supersolution in Ω and ν ∈ N1,p

0 (Ω)∗

is a Riesz measure associated with u. Then u ∈ C0,α
loc (Ω) if and only if there is a

constant M > 0 such that

(10)
ν(B(x, r))

µ(B(x, r))
≤Mr−p+α(p−1),

for all balls B(x, 4r) ⊂ Ω.
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In the proof of Theorem 4.2, the Adams inequality, Theorem 2.5, plays a key
role.
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