
UNIVERSITY OF JYVÄSKYLÄ
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ABSTRACT  
 
Latent growth curve modeling (LGM) combined with the latent classes (LGMM) 
in the SEM context, is the method under investigation in this study. This dynamic 
way of analyzing longitudinal data takes an increasingly central position in the 
social sciences, e.g. in psychology. Despite twenty years development of the 
theory behind the LGM and LGMM, these are novel methods in analyzing data in 
practice. With limited sample size the functionality of the model is unknown. 
 
The aim of this dissertation was to examine the functionality of the linear LGM 
model with four repeated measurements, which is a typical case in longitudinal 
research. LGMM parameters were estimated using maximum likelihood 
estimation with robust standard errors (MLR). The effect of differences between 
latent classes in mean values of latent components with varying sample sizes is 
examined in this study. Other affecting factors examined are reliability of 
observed variables, number of repeated measures, model construct and additional 
measurement points. The functionality of LGMM was approached from three 
different viewpoints: 1) problems in estimation of model parameters expressed as  
number of failed estimations and as the number of negative variance estimates, 2) 
the ability of AIC, BIC and aBIC information criteria and VLMR, LMR and 
BLRT statistical tests to decide the number of latent classes, and 3) good 
parameter estimation, which was evaluated using four different criteria: MSE,  
proportion of bias in MSE, bias of standard error, and 95 % coverage. 
 
The results of Monte Carlo simulations suggest that from information criteria AIC, 
BIC aBIC and VLMR and LMR tests, BIC is most useful with small sample sizes 
( ) and aBIC with large sample sizes ( ). The few results suggest that 
the BLRT test could be useful in any situation. More investigation is needed to 
further support the functionality of this test. The study reveals that the estimation 
of LGMM fails only in a few cases, and problems in estimation appear mainly in 
the negative variance estimates. The results of the simulations suggest that it is 
possible to identify the true two-latent classes when SMD is at least 2, in which 
case reliability of observed variables should be high and the sample size should be 
relatively large. In that case estimation produce good parameter estimates. When 
SMD is 4 or 5, the probability in identifying the right two-latent-class solution 
instead of the wrong one-class solution is greater than .70 with the smallest sample 
size (n=50) using BIC in models with high reliability. To achieve reliable results 
in estimation, the sample size should be greater than 50.   

500<n 500≥n
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1. Introduction 
 
 
 
The recent development of latent growth modeling (LGM) provides a better tool to 
model development in longitudinal data than older statistical methods. The theory 
of LGM goes back two decades when McArdle and Epstain (1987), and Meredith 
and Tisak (1990), suggested a theory of latent growth modeling based on 
covariance matrix and mean vector. This model consisted of estimated growth 
function with fixed and random parts, which describes the average development in 
the population, as well as the variation of individual development, respectively 
(Meredith & Tisak 1990).   
 
This modeling idea has been extended to include the estimation of the impact of 
covariates on individual growth (McArdle & Aber, 1990) and possibilities to use - 
besides observed variables with continuous scale - categorical variables (Muthén,  
2004). The estimation of model parameters can be managed using structural 
equation modeling (SEM) programs, such as LISREL (Jöreskog et.al., 1999), EQS 
(Bentler, 1995), Mx (Neale et al., 1999), Amos (Arbuckle, J.L., 2006) and Mplus 
(Muthén & Muthén, 1998-2006). Modeling development in the SEM context 
opens up possibilities to test and estimate the growth, or development, of both 
groups and individuals at the same time, and also to relate the development to 
other variables (see for example, Aunola, Leskinen, Onatsu-Arvilommi, & Nurmi, 
2002; Chan, Ramey, Ramey & Schmitt, 2000; Curran & Hussong, 2003, Duncan, 
Duncan, Strycker, Li & Alpert, 1999;  Mason, 2001, Tolvanen, 2000). 
 
Another important recent modeling extension within the SEM context is mixture 
modeling. This modeling is based on the idea that observed data can represent 
subpopulations, i.e. latent classes, those classes can be identified and their 
parameters estimated (Muthén & Shedden, 1999; Muthén, 2001). The distribution 
of observed variables is through mixed distribution, so that each subpopulation has 
its own model parameter values (see for example, Lubke, Muthén, 2005; Lyytinen, 
Tolvanen, Torppa, Poikkeus, & Erskine, 2006; Muthén, 2006; Torppa, Tolvanen, 
Poikkeus, Eklund, Lerkkanen, Leskinen,  & Lyytinen, in press). 
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A combination of these two above mentioned possibilities to analyze data, i.e. 
latent growth curve modeling combined with the idea of latent classes, is the 
method under investigation in this study (Muthén, 2001; Muthén, 2004). As noted 
in the paper of Bauer and Curran (2003b), it is not surprising that this dynamic 
way of analyzing longitudinal data takes an increasingly central position in the 
social sciences, e.g. in psychology (Fuzhong, Barrera, Hops, Fisher, 2002; Parrila, 
Aunola, Leskinen, Nurmi & Kirby, 2005; van Lier, Muthén, van der Sar & 
Crijnen, 2004).  
 
Meredith and Tisak (1990) and Chou, Bentler and Pentz (1998) have used the term 
‘latent curve analysis’ (LCA), whereas Duncan et al. (1999) and Muthén  (2004) 
have used the term ‘latent growth curve model’ to refer to modeling growth in the 
context of SEM. In this study, the term ‘latent growth curve model’ (LGM or LG 
model) is used.  The term ‘latent growth mixture modeling’ (LGMM or LGM 
modeling; Muthén, 2001; Muthén, 2004), in turn, is used to refer to the 
combination of latent growth curve modeling and mixture modeling. 
 
The conventional latent growth modeling is based on the idea that observed data 
consists of one population. The LGM then consists of an average growth pattern 
defined by the mean value of the latent intercept component as well as the mean 
value of the latent slope component, on one hand, and an individual variation 
around this pattern, defined by the variance of latent intercept and slope 
components, on the other (e.g., Bollen & Curran, 2006). However, another 
possibility is that observed data consists of different subpopulations. Here, the 
distribution of the observed variables is a mixed distribution, so that each 
subpopulation has its own model parameter values.  
 
For example, the LGM parameter values for the mean of intercept and slope 
components differ between subpopulations. The latent growth curve modeling 
combined with the idea of latent classes, i.e. latent growth mixture modeling 
(LGMM or LGM modeling; Muthén, 2001, 2004), makes it possible to identify 
and estimate these subpopulations. In this way, data can be simultaneously 
analyzed through both variable and person-oriented ways. Taking account of both 
of these approaches provides a more holistic view in social sciences (Bergman,  
Magnusson & El-Khouri, 2003). After finding latent classes each observation has 
probabilities to belong to each latent class and these probabilities provide bases to 
extend the modeling, either to predict the latent class membership or to relate the 
latent classes to outcome variables.  
 
Despite twenty years development of the theory behind the LGM and LGMM, 
these are novel methods in analyzing data in practice. As these methods become 
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more common and important to model development, the functionality of the 
models needs more investigation (Bauer & Curran, 2003a, 2003b; Muthén, 2004). 
Because the theory of the models is based on asymptotic results, researchers can 
trust the results when sample size is large, e.g. over 1000. However, in many 
empirical studies, sample size is limited to only 100-500 cases. Simulated data 
makes it possible to examine functionality of these methods also with small sample 
sizes.   
 
The goal of this study is to examine the functionality of the LGMM through a 
limited number of observations. This examination is carried out by producing data 
consisting of random observations, which are based on prior defined parameter 
values of the LGMM and by analyzing this simulated data with the LGMM. By 
repeating a large number of simulations and gathering information from these 
together, makes it possible to draw conclusions concerning the functionality of the 
LGMM with different sample sizes. The differences in parameter values between 
subpopulations obviously have an effect on the functionality of the LGMM with 
smaller sample sizes. Consequently, the effect of this is examined in this study. 
Other affecting factors examined are the reliability of observed variables, number 
of repeated measures, and model construct.  
 
In Chapter 2, the theory of LGM is first concisely explained. Section 2.1 consists 
of the properties of the used linear LGM. In section 2.2, the LGM is discussed in 
the following stages used, when proceeding in the LGM: identification of the 
LGM, estimation of the LGM, testing the model fit, and studying the diagnostics 
of  the parameters of the LGM.   
 
Second, in Chapter 3, the LG model is extended to the mixed distribution with an 
unknown number of subpopulations. Observed distribution is mixed in the sample, 
within which the number of classes and class proportions are unknown. This 
requires the use of an EM algorithm to estimate the model parameters (as will be 
explained in section 3.2.1), and to evaluate the number of groups (as will be 
explained in section 3.2.2). 
 
Third, in Chapter 4, previous simulation studies carried out are described. In 
section 4.1, the simulation studies examining the LGM are introduced and in 
section 4.2., a few simulation studies related to the LGMM are described. The fact 
that there are only a few previous simulation studies on the LGMM, makes 
simulation studies in this study a more demanding case.  
 
In Chapter 5, the Monte Carlo simulation study used in this dissertation is 
introduced by describing the simulation method in section 5.1, the research 
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question and model under investigation in section 5.2, implementation of 
simulation study in section 5.3, and the information of used indicators to evaluate 
the simulation results in sections 5.4 – 5.6. 
 
In Chapter 6, the results of the simulation study carried out in this study are 
described, consisting of three main parts. First, in section 6.1, the results 
concerning problems in the estimation of the LGMM are expressed. The results of  
the pilot simulation study described in subsection 6.1.1, show the boundaries for 
the functionality of the LGMM in terms of successful estimation and improper 
results of estimation. These boundaries advise to specify the LGMM parameters in 
the further simulation study of this work. In subsection 6.1.2, the results of these 
further examined LGM models concerning unsuccessful estimation and negative 
variance estimates are presented. Second, section 6.2 consists of the results related 
to deciding the number of latent classes. Third, section 6.3 consists of the results 
concerning the evaluation of the parameter estimation.  
 
Finally, Chapter 7 consists of the conclusions of the present simulation study and 
their consequences, which should be taken into account, for example, in empirical 
studies applying the LGMM. 
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2. Latent growth curve models  
 
 
 
The latent growth curve model (LGM) is often composed of two latent 
components.  The first one relates to the level (i.e., intercept) and the other one to 
the slope of growth. These two factors consist of the mean value of intercept and 
slope and individual random variation of these two latent components. Slope is 
either fixed to describe linear change or, alternatively, the pattern of slope is 
estimated (Aunola et. al., 2004; McCallum, Kim, Malarkey & Kiecolt-Glaser, 
1997; Duncan & Tidsley, 1995; Wickrama & Lorenz 1997; Duncan, Duncan, 
Alpert, Hops, Stoolmiller & Muthén, 1997). It is also possible to use a higher order 
polynomial latent growth model (see for example Reynolds, Finkel, McArdle, 
Gatz, Berg, & Pedersen, 2005, Windle & Windle, 2001). When comparing the 
LGM with the confirmatory two-factor model, the difference between these two 
models is in unknown coefficients of loadings. The confirmatory factor model 
usually relates each variable to only one factor when variable’s other loadings are 
fixed to zero. In the LGM, most of the variables are related to both growth factors 
(i.e., intercept and slope) and are usually fixed to some specific values.  
 
Growth curve analysis has a long history and the contemporary basis of latent 
growth analysis can be found in the development of multilevel modeling 
(Goldstein, 1987, 1996), hierarchical linear modeling (HLM, Bryk & Raudenbush 
1987, 1992),  random effects modeling (Rovine & Molenaar 1998, Longford,  
1993) and mixed-effects modeling (MacCulloch & Searle, 2001). These statistical 
methods have some features that make it suitable for some data structures (for 
example varying measurement points of individuals) and are favorable in some 
areas of research, for example, in econometrics, biometrics or human behavior. 
Linear LGM in section 2.1. can estimate using all of the above methods and yield 
comparative results. For example, the comparison of using HLM- and LGM- 
methods yielded the same results when estimating the same function of growth 
(Chou, Bentler & Pentz 1998). Although in their article McArdle and Nesselroade 
(2002) wrote “the term latent growth models seem appropriate for any technique 
that describes the underlying growth in terms of latent changes using classical 
assumptions (e.g., independence of residual errors)”, the term LGM referred to in 
this study means that the latent growth model is defined within the structural 
equation context. 
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An LGM consisting of only a single variable for each repeated measure can extend 
to latent components with many indicators in each measurement time (see Anstey, 
Hofer, Luszcz, 2003, Hancock, Kuo, Lawrence, 2001, Tolvanen, 2000). In this 
study, an LGM with one indicator for each repeated measure is used.  
 
 
2.1. Linear latent growth model 
 
 
In the LG modeling, an average development over time and individual variation 
around this average are of interest. The pattern of slope component is the same for 
each individual, but the strength of this pattern may vary individually. The 
following consists of the basic theory of the LGM. In this work, the slope 
component of the LGM is linear and the comparison time point is the first one. 
 
The latent growth model with linear slope component is defined with two parts: 
 
 
I Measurement part 
 
 
 itiiit ty εηη +−+= 10 )1( ,  i  = 1,2,…,n  and  t = 1,2,…,T,  (2.1) 
 
where 
 
 ity  is the observation of individual i at the time point t 

 oiη  is the intercept component of individual i , 

 i1η  is the linear slope component for individual i, 

 itε  is the measurement error for individual i at the time point t, 

 n  is the number of observations, 

 T  is the number of measurements. 
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II Latent part  
 

 
⎩
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⎧
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ζαη
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 (2.2)  

 
where  

0α  and 1α  are expected values (fixed part of the model) of latent 
growth factors 0η  and 1η , respectively,  

 
0ζ  and 1ζ  are random variables that configure individual growth.  

 
 
Denote the covariance matrix of ε  and T),( 10 ηη=η   as follows 
 
 ),...,,()cov( 21 Tdiag θθθ==Θε  
and 

 ⎥
⎦

⎤
⎢
⎣

⎡
==

1101

0100)cov(
ψψ
ψψ

Ψη , (2.3)  

respectively. 
 
The model in this study consists of the first two polynomial functions, but it is 
possible to define the model by using higher order polynomials as well (see Bollen 
& Curran, 2006; Tolvanen, 2000). In the above LGM, repeated measures are 
defined to be of equal interval. This interval can vary along successive 
measurements and along individuals. In the LG model, coding some time point to 
zero fixes the comparison of growth to that time point (Biesanz, Deeb-Sossa, 
Papadakis, Bollen & Curran, 2004).  
 
The latent linear growth model (2.1) can be presented by using a general SEM 
framework;  
 

 
⎩
⎨
⎧

+=
+=
ζαη
εΛηy

,  (2.4) 
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⎥
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⎡
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Λ , 

 
where 
 
 y is a 1T×  vector of the observed variables, 

 η  is a 12× vector of the latent components,  

 ε  is a 1T×  vector of measurement errors, 

 α  is a 12× vector of expected values of η . 

 
The expected values of measurement errors ε  are zeros and covariance matrix of 
ε  is denoted by Θ .  
 
Assuming that 0ε =E  and 0ζ =E  the expectation vector and the covariance 
matrix of the latent components η  are 
  

αμη η ==E , 

Ψη =)cov( , 
 
and the expectation vector and the covariance matrix of observed variables y  are 
 
 ( ) ΛαηΛμy === EE y , (2.5)

 ΘΛΨΛΣy +== T)cov( ,  (2.6) 

 
respectively.  
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For example, when T = 3, 
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and   
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⎣
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++++++
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2.2. Building latent growth models 
 
 
Building an LGM is similar to the traditional structural equation modeling. The 
distinguishable stages in modeling are 1) specification of the model, 2) checking 
the identifiability of the model, 3) estimation of the model, 4) testing and 
evaluating overall fit of the model, and 5) doing diagnostics of parameters of the 
model. If the model fits the data poorly, parameters are non-significant, or the 
model needs some modification, it is possible to re-specify the model or to test 
alternative models. In this case, the process is repeated through the stages 1-5.  
 
When the model is specified as a linear LGM in equation 2.1 and 2.2, individual 
growth is modeled with a very parsimonious model consisting of two parameters 
to describe the overall growth, two parameters to describe individual variation in 
growth and one parameter to describe covariance between the intercept and slope. 
One advantage in the LGM is that the measurement error can be isolated by 
estimating error variances.  
 
 
2.2.1. Identification of latent growth model parameters 
 
 
In order to get an identifiable model, the model must be identifiable both in the 
covariance and expectation structure. Because equations of expectation and 
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covariance parameters do not depend on each other (see equations 2.5 – 2.6), the 
identifiability of the model can be considered separately for both model parts 
(Bollen & Curran, 2006).  
 
When modeling expectations of latent factors, there are only two parameters, 0α  
and 1α , to be estimated. If there is, for example, three time points, this leads, 
according to equation 2.5 to, 
 

.2 103

102

01

ααμ
ααμ

αμ

+=
+=

=

 

 
From these equations, the identification of the mean of the intercept component 
and the mean of the slope component can be established, for example, 
 
  10 μα =  
  121 μμα −= . 
 
The modeling covariance structure with the linear LGM in equation 2.6 has two 
parameters for the variances of latent components, one parameter for the 
covariance between components, and one parameter for the variance of 
measurement error at each time point. For example, a linear LGM with three 
repeated measurements have six parameters to be estimated, and in a covariance 
matrix, there are six equations to resolve these parameters, 
 

31101003

11010032

21101002

010031

010021

1001

44)var(
23),cov(

2)var(
2),cov(

),cov(
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ψψψ
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ψψ
ψψ
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+++=
++=
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+=

y
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y
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From these equations, the identification of the variances and covariance of latent 
components can be established by, 
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),cov(),cov(2 312100 yyyy −×=ψ  
),cov(),cov( 213101 yyyy −=ψ  

 [ ] 2/),cov(2),cov(),cov( 31213211 yyyyyy ×−+=ψ . 
 
 
The identification of error variances can then be established by, 
 

 
.44)var(

2)var(
)var(

11010033

11010022

0011

ψψψθ
ψψψθ

ψθ

++−=
++−=

−=

y
y
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In order to have an identifiable linear LG model, three measurements are necessary 
and sufficient. However, to be able to test that a linear LG model appropriately fits 
the covariance structure, at least four measurements are required. 
 
 
2.2.2. Estimation of latent growth model 
 
 
Suppose that in the LGM defined in equations 2.4, latent components and errors 
are normally distributed 
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Then the observations of 1T× vector y  according equations 2.5-2.7 are multi-
normally distributed 
 
 ),(~ Σμy Ti N ,   n,...,2,1=i , 
 
where 
 
 Λαμ =  
and 
 ΘΛΨΛΣ += T .  
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Denote ),,( ΘΨατ vec=  is 1P×  vector, which consists of all free parameters in 
α , Ψ  and Θ . The parameters τ can be estimated using the maximum likelihood 
estimation (ML), whose log-likelihood can be expressed as 
 
 AcL )2/1()(log)2/n(log −−−= τΣ ,  (2.8) 
where 
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where  
 
y is the sample mean vector and  
S is the sample covariance matrix. 
The theoretical model is compared with an unrestricted model that has a log-
likelihood function,  
 
 ( ) T)2/n(log2/nlog −−−= ScLu . (2.9) 
 
The minimization of the likelihood ratio of log L and log Lu models, the fit 
function  
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produces ML estimates for parameter vector τ . 
 
Asymptotical standard errors of parameter estimators are on the diagonal of 
inverse of approximated Fisher information matrix, 
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2.2.3. Testing and diagnostics of the latent growth model 
 
 
Investigating the sufficiency of a specified linear LGM is based on the hypotheses: 
 
 H0: specified LG model fit to the data sufficiently 

 H1: unrestricted model. 
 
If the null hypothesis is true, the estimated fit function of model, )(τMLF ,  
multiplied with two times the number of observations is distributed as chi square 
 
 ,)(~)ˆ(2 2 dfnFML χτ  (2.13)     
where  

 
P2/)( 2 −++= TTTdf . 

 
Another way to evaluate the overall fit of the model is to use various fit indices. If 
the data consists of a large number of observations, the 2χ  -test is usually, in 
practice, statistically significant even when the fit of the model to the data is good 
enough from a practical point of view.  Alternative fit indices that can be used 
alongside the 2χ  -test are, for example, the root mean square error of 
approximation (RMSEA), Tucker Lewis index (TLI), comparative fit index (CFI), 
and standardized root mean square residual (SRMR). The model fits the data well 
if RMSEA is lower than .06, TLI and CFI are higher than .95, and SRMR is lower 
than .08 (Hu & Bentler, 1999). 
 
If the fit of the model is poor, alternative models can be tested or the model can be 
modified on the basis of the diagnostics of parameters. Checking t-values of 
parameters identifies those parameters that are not statistically significant. These 
non-significant parameters are then fixed to zero. The other possibility to modify 
the model is to add some parameters into the model. The parameters that should be 
added can be found with the help of modification indices. In both of the above 
mentioned cases, the modified model should be estimated over again. After 
modifying the model, the process is repeated through stages 1-5. 
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3. Latent growth mixture modeling  
 
 
 
In Chapter 2, the data was supposed to consist of observations from one 
population. The theory and model building of LGM can now be extended to two or 
more subpopulations, where the number of subpopulations and members of these 
subpopulations are unknown beforehand (see McLahlan & Peel, 2000; Yung, 
1997). The collected data is one sample, consisting of many subpopulations with 
unknown proportions, and therefore, the distribution of observations is a mixture 
of distributions of many subpopulations. The parameters for the decided number of 
latent classes can be estimated from mixture data using EM algorithm (see Muthén 
& Shedden, 1999; McLahlan & Krishnan, 1997). This theory is also appropriate 
for estimating a latent growth mixture model. 
 
 
3.1. Latent growth mixture model  
 
 
Suppose the linear LG model for each subpopulation k. Then the model is the 
following form  
 

 
⎪⎩

⎪
⎨
⎧

+=

+=

,)()()(

)()()(

kkk

kkk

ζαη
εηΛy

 (3.1)    

   
where 
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Possible differences between classes are the differences in expectation vectors 
)(kα of latent components, covariance matrices )(kΨ  of latent components or  

covariance matrices of measurement errors )(kΘ . The most interesting differences 
between classes are the differences in expectations of latent components, which 
differences mean different developmental trajectories between classes.  
 
When estimating the LGMM parameters, there are additional parameters compared 
to the LGM, namely proportions kp  of latent classes k=1,2,..,K. The number of 
these free parameters is K-1, because they have the restriction 

 

 ∑
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K

k

kp
1

)( 1. 

 
 
3.2. Building latent growth mixture model 
 
 
Building a LGMM is a closely similar process to the building of the LGM, with 
the difference of deciding the number of latent classes, instead of testing and 
evaluating the overall fit of the model. The distinguishable stages in the LGM 
modeling are 1) specification of the model, 2) checking identification of  the 
model, 3) estimation of the model for 1,2,..,K class solutions, 4) testing the right 
number of latent classes and 5) doing diagnostics of parameters. 
 
Specification 
 
Specification of LGMM can be started by fixing covariance matrix equal between 
classes Ψ=Ψ )(k  and fixing the error covariance matrix of measurement errors 
equal between classes K,...,2,1,)( =Θ=Θ kk . These ensure that the model is 
simple enough to be empirically identifiable and estimable. By using modification 
indices as a guide, the excess constraints can be found and freed. Sometimes the 
covariance matrices of latent factors are also fixed to zero  Kkk ,...,2,1,0)( ==Ψ  
in which case the differences between individuals are in the mean trajectories of 
classes, and the differences between individuals are supposed to come from 
random error, ε  (Nagin, 1999; Jones et al., 2001). This stringent model is shown 
to have a statistically significantly poor fit against the above model (3.1) in real 
data (Bauer & Curran, in press). 
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Identification 
 
After specifying the LGM, the first step is to ensure that the model is also 
identifiable in the case of several classes. This identifiability can be checked by 
considering the LGMM parameters, as in the case of the previously presented one-
sample LGM. The LGMM also includes parameters for class sizes. The parameters 
of class sizes are not always identifiable, especially if the model contains more 
classes than the sample has in reality. In this context, the model is not necessarily 
empirically identifiable. After estimating models with a different number of latent 
classes, these models are compared and the decision about the right number of 
latent classes is made. To ensure the identifiability of LGMM empirically, one has 
to start from a model that is known to be identified and check if the observed-data 
log likelihood changes when adding a parameter (Muthén & Shedden, 1999; 
Muthén & Muthén, 1998-2006). 
 
The next two important steps when building an LGMM, are discussed in their own 
sections. The section 3.2.1 contains more detailed information concerning the 
estimation of LGMM, and section 3.2.2 discusses the evaluation of number of 
latent classes further. 
 
Diagnostics of parameters 
 
Parameters that are not statistically significant are identified by checking the t-
values of the parameters. These non-significant parameters are then fixed to zero. 
The other possibility to modify the model is to free some constraints between 
classes, or to add some parameters into the model with the help of modification 
indices. In both of the above mentioned cases, the modified model should be 
estimated over again and, therefore, the process is repeated through stages 1-5. 
 
 
3.2.1 Estimation of latent growth mixture model 
 
 
In the LGMM, the parameter estimation using the ML estimation method is 
implemented through an EM algorithm (Muthén & Shedden, 1999; McLahlan & 
Krishnan, 1997; Yung, 1997). The estimation of LGMM consists of two parts: the 
estimation of parameters related to the LGM and the estimation of class 
proportion. Thus, the log-likelihood function of observed data for the LGMM is 
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where density function  f  is mixed from K density functions 
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where 
 
  )(kp  is the proportion of subpopulation k in the population. 
 
The density function for class k is  
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where 
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  )()()()()( kTkkkk ΘΛΨΛΣ +=  . 
 
Denote the class information with the vector T

iKiii ccc ),...,,( 21=c , where 1=ikc , if 
observation i belongs to class k and 0=ikc  otherwise. 
 
The conditional density function is  
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When the class information ikc  is known, the complete-data log likelihood is 
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The above equation consists of two independent parts to maximize the complete-
data log-likelihood, namely the sum of the weighted K class probabilities 

)1( =ikcP and the sum of the weighted K density function )|( iki cf y  (Muthén & 
Shedden, 1999). 
 
When maximizing the log-likelihood with EM algorithm, the latent class 
information ikc is considered missing.  The EM algorithm includes E-step 
(expectation step) and M-step (maximization step). With E-step, the expected 
values of observations belonging to each latent class are calculated respecting the 
starting values at the first step, and the value from M-step in further iterations. 
These posterior probabilities (from a Bayesian point of view) for observation i 
belonging to class k is calculated with E step using formula 
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These posterior probabilities are then used in M-step when maximizing expected 
values in equation 3.6. This leads to maximize  
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resulting in the values of )(kp  parameters in equations 3.3. or 3.6 and to maximize  
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resulting in )()( ykf  in equations 3.3 or 3.6 with the values of  )()()( ,, kkk ΨΛ α  and 

)(kΘ , where k = 1,…, K.  
 
After M-step, the algorithm returns to E-step to calculate new posterior 
probabilities and then again to M-step. This iteration continues until the 
convergence criterion related to the complete-data log-likelihood is met. 
 
It is a known feature that the LGMM estimation may often stop to the local 
maximum of log-likelihood producing biased parameter estimates (Hipp & Bauer, 
2006). The solution to get the highest value of likelihood in data is to use many 
different starting values for parameters (Muthén, 2004). 
 
This estimation method, called MLR (Muthèn 1998-2006), produces ML estimates 
and standard errors which are robust for nonnormality (McLahlan & Peel, 2000), 
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and iL  is a value of an observed data log-likelihood for observation i defined in 
equation 3.2. 
 
The estimates of standard errors can be calculated using MLI , MLFI  or MLRI . In this 
study, the MLR method, which is more robust for smaller sample sizes (Muthén, & 
Shedden, 1999), is used.  
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Before the examination of the estimation results, it is important to evaluate the 
number of latent classes. This can be based on well-known information criteria or 
statistical tests. Because this is a very important stage in the LGMM, the next 
chapter, 3.2.2, concentrates on this. 
 
 
3.2.2 Evaluating the number of latent classes of latent growth mixture 
model 
 
 
Testing and evaluating the overall fit is not possible, in the context of the mixture 
model, as it is in the framework of conventional structural equation models. Also, 
the use of the likelihood ratio test to evaluate the right number of latent classes is 
not possible in mixture analyses. This because likelihood ratio test value is not 
distributed as chi-square with degrees of freedom equal to the difference between 
the number of parameters under the null and alternative hypotheses. For this 
purpose the following criteria are proposed: Akaike’s information criteria (AIC), 
Bayes information criteria (BIC), adjusted BIC (aBIC), Vuong, Lo, Mendell & 
Rubin (VLMR) test and adjusted VLMR (called Lo, Mendell & Rubin, LMR) test. 
The most recent possibility included in the Mplus program is to use the parametric 
bootstrapped likelihood ratio test BLRT. 
 
AIC (Akaike’s informaation criteria) (Akaike, 1987) is defined as a function of 
log-likelihood and number of estimated parameters P 
 
 P2log2 +−= LAIC . (3.11) 
 
When comparing two competitive models, the better one is the model that has the 
lower AIC. 
 
BIC (Bayes information criteria) (Schwartz, 1978) is defined as follows 
 
 )log(Plog2 nLBIC +−= .  (3.12) 
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Sclove (1987) proposed that the sample size n replaces with (n+2)/24 resulting  
aBIC (adjusted BIC): 
 

 )
24

2log(Plog2 +
+−=

nLaBIC . (3.13) 

 
As in AIC, the lower BIC and aBIC means a better fitting model.  
 
In the case of one population without any subpopulation, minimizing the 
likelihood ratio in equation 2.10 produces maximum likelihood estimates.  This 
likelihood ratio distributes asymptotically as a χ2 distribution, as presented in 
equation 2.13, and it is called later, an ordinary likelihood ratio test (OLRT). In the 
LGM modeling, the use of a likelihood ratio requires that the distribution and its 
degrees of freedom are defined differently than in OLRT. This is because the 
parameter values are on the boundary of parameter space in the null hypothesis 
with one class less than in an alternative hypothesis (McLahlan & Peel, 2000). 
Therefore, Vuong (1989) proposes (as an extension to Whites (1982) theorem, 
which is based on Kullback & Leibler (1951) information criteria), the VLMR 
(Vuong, Lo, Mendell & Rubin test) test, in which the number of latent classes are 
based on hypotheses 

 
H0: number of latent classes is k-1  
H1: number of latent classes is k. 

 
The likelihood ratio of models, respecting the above hypotheses, is compared to its 
theoretical distribution: that is, under the most general regularity conditions, 
weighted 2χ distribution when models are nested or normal distribution when the 
models are nonnested (Vuong, 1989).  
 
Lo, Mendell and Rubin (2001) proposed that the above described VLMR (Vuong-
Lo-Mendell-Rubin) likelihood ratio test should adjust with the numbers of kP  
and 1−kP   of freely estimated parameters in k and k-1 classes, respectively, and 
sample size. The adjusted test, called the LMR test in this study, is then 
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One method of testing the number of latent classes is to use the parametric 
bootstrapped likelihood ratio test (BLRT). In this method, k and k+1 class models 
are estimated in empirical data. Then, the simulated data based on the parameter 
estimates of k class model is randomly generated BR  times. In each of the 
generated data, maximum likelihood estimates are calculated for k and k+1 class 
models resulting in the likelihood ratio of the models. These BR  replications of 
data are used to build a distribution of likelihood ratio for which, the likelihood 
resulting in empirical data, is compared to evaluate the Type I error rate for the 
null hypothesis of the k class model (McLahlan &Peel, 2000; Muthén & Muthén, 
1998-2006). The rules deciding the number of replications ( BR ) are designed by 
ensuring a clear decision at the .05 nominal level. However, the maximum BR  is 
as a default at 100 (Muthén & Muthén, 1998-2006).  
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4. Results of previous simulation studies 
 
 
 
To better understand the limitations as well as the possibilities of the new 
analyzing tool, the LGMM, it is necessary to examine some assumptions behind 
this method.  The assumptions presented by Boomsma and Hoogland (2001) for an 
ordinary factor analysis in the case of continuous observed variables, are relevant 
for the LGM as well, and partly also to LGMM. These assumptions are: 
 
 

a) independently distributed observations 
b) multinormally distributed observed variables  
c) nearly right hypothetical model  
d) estimation based on covariance matrix 
e) large sample size .  

 
 
If some of the above mentioned assumptions are not met, a suspicion of unbiased 
parameter estimates and unbiased standard errors, as well as the indices of model 
fit, is justified. A violation in the assumptions above raises questions about the 
consequences of a violation to the results and, moreover, to the conclusions.  
 
Because an interpretation of the components of LGM is directly related to the 
measurement scale, it is necessary to use a covariance matrix instead of correlation 
matrix in the model estimation that corresponds with the primary scale (see 
example, Tolvanen, 2000). This correspondence with the scale is also achieved by 
using raw data. Raw data is also required, if data has missing observations or if 
analyzing the LGMM.  The basic question is; how many observations are needed 
for a reliable estimation of the model? The next sections describe some previous 
simulation studies of the LG model (section 4.1), as well as simulation studies of 
factor mixture and LGM models (section 4.2 and 4.3). They partly describe an 
answer to this question and give some guidance in designing LGMM simulation 
studies.  
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4.1. Latent growth model simulation studies 
 
 
There are many previous simulation studies for the confirmatory factor analysis, in 
which, for instance, an estimation with small sample size (Bentler & Yuan, 1999) 
related to a misspecified model (Fan, Thompson, & Wang, 1999), comparing 
estimators (Olsson, Troye, & Howell, 1999), the robustness of an estimator against 
non-normality (Beauducel & Herzberg, 2006), are examined.  Impacts on the 
parameter estimate precision or various fit indices are examined. The other effects 
in confirmatory factor analysis are for example low reliability of observed 
variables and model misspecification.  Two meta-analyses (Hoogland & 
Boomsma, 1998; Powell & Schafer, 2001) conclude results from about 50 
simulation studies, where the focus has been in the robustness of estimators and 
the likelihood ratio chi-square test. Because of high sensitivity of the chi-square 
test, to reject the hypothesized model when the sample size is large, the numerous 
fit indices are developed to asses the overall fit of the model. Two important 
simulation studies comparing these indices are by Hu and Bentler (1995, 1999).  
 
The results of the simulations studies for the confirmatory factor analysis can be 
applied to the LGM, which is a special case of confirmatory factor analysis. 
However, the estimation is supposed to be more efficient in the LGM than in the 
confirmatory factor analysis.  This efficiency, as the requirement of observation 
per estimated parameters, could be very small (Jackson, 2001). Unfortunately, 
there are only a few simulation studies in which the LGM is investigated. 
 
In a simulation study with linear and quadratic growth curves (Tolvanen, 2000), 
simulated data with varying sample sizes n = 50, 100 or 500 consisted of four 
measurements and 500 replications. Reliability of measurements was set low (.50) 
or high (.90), alternatively. All growth factors (i.e., intercept, linear slope and 
quadratic curve component) had the same variance, and the intercept and linear 
slope were set to correlate .33. The models fitted to the data were either right, or 
some parameter was wrongly fixed to zero or wrongly freely estimated.  
 
The results showed that when fitting the right model, the overall 2χ -test worked 
well, already with the smallest sample size, n = 50. The parameter estimation was 
unbiased with a low sample size but standard errors of the parameter estimators 
were large, producing non-significant results. In the case of low reliability, 
standard errors were over two times larger for the intercept and over three times 
larger for the linear curve than in the case of higher reliability. When the sample 
size increased from 50 to 100, standard errors of parameters decreased 
approximately to 70 % from the initial value. When the sample size increased from 
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50 or 100 to 500, standard errors of parameters decreased approximately to 31 % 
or 44 % from the initial value, respectively. 
 
Fixing the variance of the quadratic term wrongly to zero, the overall 2χ -test 
rejected the model in all cases, in which the model’s sample size was 500 and 
reliability of observed variables were .90. This wrongly specified model produced 
biased parameter estimates and standard errors increased substantially. For 
example, the standard error of variance estimation for the intercept increased by 
about 5 times. Indeed, if the model is wrongly specified, setting the covariance 
between the intercept and slope to zero, the model was accepted with the 2χ -test 
approximately in 65 % of the samples in nominal p=.05 level. If this model is 
compared with the right specified model, the 2χ -difference test rejects wrongly 
specified models in 53 % of the samples.  
 
When the model consists of freely estimated parameters, whose true values are 
zero, most of the parameter estimates are unbiased but standard errors increase. 
This addition of parameters has no effect to the 2χ -test, as expected. 
 
In empirical studies with small sample size, some parameters are non-significant, 
and therefore, fixed to zero. This can lead to an underparameterized model, whose 
parameter estimates are biased and their standard errors increase even two times 
larger than when compared with the right model.  
 
 
4.2. Mixture model simulation studies 
 
 
There are only a few simulation studies carried out in the context of the factor 
mixture model or latent growth mixture model. First, Lubke and Muthén (2007) 
reported their results of a mixture model simulation study consisting of two latent 
classes. The examined models in their study were latent profile analysis with eight 
observed variables and three different factor models, where the number of factors 
varied from one to three with 4-8 observed variables. The results showed the 
extent to which observations were classified into the right classes and in how many 
cases the estimated 95 % confidence interval consisted of the true parameter value.  
Lubke and Muthén (2007) evaluated average class probabilities and, more 
extensively, how entropy measure works as an indicator of the correct class 
assignment. In the study, the models were examined with three distances between 
the latent class means, that is, MD is 1, 1.5 or 2 (definition of MD, Mahalanobis 
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distance, is presented in Chapter 6). Class probabilities were .5 for each of two 
latent classes, and 120 repeated samples with sample size n =300 were generated.  
 
Lubke and Muthén (2007) concluded that the parameter coverage of the factor 
mixture model are good, even for small class separation, whereas the correct class 
assignment is satisfactory only when the classes are well separated. The 
complexity of the within-class model with respect of the factor structure, or the 
number of observed variables within class, does not seem to greatly influence 
model performance. Further, Lubke and Muthén (2007) also pointed out that the 
covariates, that predict class membership, are important to include in the model 
when examining the number of latent classes. This is obvious, because it is 
comparable to a situation where groups are known and, therefore, the power of test 
is strong. One important proposition is to use a two-step analysis where loadings 
are estimated in the first step and fixed to the estimates in the second step. The 
conclusion is that fixed factor loadings can be a considerable improvement to the 
model performance, which is the case when fitting the LGMM.  
 
Another simulation study carried out by Nylund, Asparouhov and Muthen (in 
press) compared the statistical indicators to resolve the number of latent classes for 
the LGMM and for the latent class analysis (LCA) with continuous and categorical 
variables. The examined statistical indicators consisted of four information criteria, 
i.e., AIC, BIC, aBIC and CAIC (CAIC=BIC+P where P is the number of freely 
estimated parameters), and three statistical tests, i.e., LMR, BLRT and ordinary 
likelihood ratio test (OLRT). The theory for the OLRT requires that compared 
models are nested, which in the case of mixture models, is not met.  
 
For the linear LGMM, there were four indicators with three latent classes, whose 
true sizes were 18, 29 and 53 percents. The results of the simulation study for this 
model were based on 100 replications. The low replication number was due to the 
long computing time when calculating the BLRT test value. For the LCA, three 
different models for continuous variables were examined. First, a model with 8 
items and 4 latent classes, whose proportions were equal, was examined. Second, a 
model with 15 items with equal class sizes was examined. For these two models, 
the number of replications was 100. Third, a model with 10 items and 4 latent 
classes was examined. The class proportions for four classes were .05, .10, .15 and 
75. Because of the smallest class sizes, replication for this model was 500, in order 
to get more reliable results. The examined sample sizes were n = 200, 500 or 1000.  
Despite of the small number of replications and few examined statistical models, 
the results of the simulation study carried out by Nylund et al. revealed important 
information. 
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First, the results revealed that the 95 % coverage for all of the models, with all of 
the examined sample sizes, were found to be very good the 95 % coverage being 
between .92 and .98, with one exception. The exception was a 10-item categorical 
LCA model, in which the coverage was .54, .79 and .91 when sample size was 
200, 500 and 1000, respectively. This result is obvious, because the expected 
numbers of cases for the smallest class sizes are 10, 25 and 50 cases with those 
sample sizes (5 percent of cases). These results point out that the estimation of 
parameters and their standard errors are successfully measured by the coverages in 
these models.  
  
Second, examination of Type I error at .05 nominal level revealed that the BLRT 
test behaved very well producing .02 - .06 error rates for the examined models. 
The LMR test behaved quite well for the LCA model with continuous variables 
producing .02-.06 error rates, except the 8-item model with a sample size of 200, 
in which case the error rate was .11. For the LGM model, the LMR test produced 
.06, .12 and .25 error rates, when sample sizes were 200, 500 and 1000, 
respectively.  These results for the LMR test mean that the behavior of the test is 
dependent on the examined model. As can be assumed, the error rates for OLRT 
seem to be large (.13 - .99) which warns against using this test when aiming to find 
the right number of latent classes. 
 
Third, power of the BLRT and LMR tests was between .90 – 1.0 for most of the 
models. Small power was found in the LCA 10-item model with a sample size of 
200 and in the LGM model with sample sizes of 200 and 500. In the case of the 
LCA model, power of LMR was .62 for categorical variables and .67 for 
continuous variables and for BLRT .84 and .98, respectively. In the case of the 
GMM with sample sizes of 200, 500 or 1000, power for the LMR and BLRT tests 
was .32 and .12, .76 and .66, or .97 and .97, respectively. These results mean that 
the BLRT test has more power in the LCA models and the LMR more power in the 
LGMM.  When taking the results of higher Type I error rate for the LMR test into 
account, these results suggest that the BLRT is the best behaved test.  
 
Fourth, a comparison of information criteria revealed that BIC behaves most 
consistently when deciding the number of latent classes (comparing 2 - 6 class 
solutions). When using AIC and adjusted BIC, conclusions tend to be biased to a 
larger number of latent classes. When comparing CAIC with BIC they behaved 
equally well for most of the models, except for the LGM model. In this case, BIC 
concluded in 6, 44 and 99 percent, and CAIC in 1, 22 and 97 percent of samples,  
true number of latent classes with sample sizes of 200, 500 or 1000, respectively. 
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Fifth, comparing the best information criteria BIC with the LMR and BLRT tests, 
the results were not so obvious: there appeared to be more than one significant 
result when comparing across different number of classes. Using the rule that the 
first non-significant result reveals the number of latent classes, the comparison 
revealed some differences. First, in the 8-item model, the BIC index behaved 
slightly better than the BLRT and this, in turn, behaved better than the LMR, 
especially when sample sizes were 200 or 500.  In the 15-item model, all three 
compared indicators produced a high proportion (over .90) of true number of 
classes, when for BIC, this proportion was highest .99 – 1.0. For the 10-item 
categorical model, the BLRT behaved clearly better than the LMR test or BIC 
index when sample sizes were 200 or 500. In these cases, BIC produced .8 and .76 
proportions for the right number of classes, LMR produced .43 and .72 proportions 
and BLRT produced .78 and .94. For the LGM model, all three indicators 
produced a low proportion of right number of classes. When a sample size was 
200, 500 or 1000, BIC produced .06, .44 or .99 proportions, LMR produced .22, 
.63 or .73 proportions and VLMR produced .10, .58 or .87 proportions, 
respectively.  
 
To conclude, the results of this second simulation study, the BIC index seems to 
behave well compared to other information criteria and is slightly better than 
BLRT or LMR for some models, whereas BLRT seems to behave best on average. 
For the LGM model, all the tests used did not produce satisfying results. 
Consequently, these results need to be more carefully examined in further 
simulation studies.  
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5.   Monte Carlo simulation study 
 
 
 
A statistical theory usually provides information concerning the asymptotic 
properties of estimation methods but not, however, information how the estimators 
or test statistics behave with small sample sizes. Monte Carlo research is typically 
used to complement this lack of theoretical knowledge and, therefore, this method 
is also used in this study, described in Section 5.1. Monte Carlo simulations make 
it possible to get information of factors that have effects on the estimation of 
defined statistical models. The effects of different factors on the estimation are 
examined from three different viewpoints:   

 
 
(1) problems in the estimation of model parameters (Section 5.4.),  
(2) increasing or decreasing the ability to decide the number of latent 

classes (Section 5.5.), 
(3) a successful parameter estimation which is evaluated using different 

criteria (Section 5.6.) . 
 
 
5.1. Monte Carlo method 
 
 
In the Monte Carlo method, a statistical model with fixed parameter values and 
observations with known distribution is defined. Observations are randomly 
generated according to these predefined model parameters. The data generated in 
this way simulates the sample and the defined model parameters represent the 
parameters in the population. The data are generated by this way R times. The 
parameters are estimated for each generated data by using a decided statistical 
model with a chosen estimation method. Information from each R replication, for 
example, information concerning the parameter values and standard errors, are 
then gathered together and averaged across the samples to get information of the 
bias and standard error of the estimation (Muthén & Muthén, 2002). 
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Designing a Monte Carlo study, there are several decisions to be made. In the 
following, the suggested steps to carry out a Monte Carlo study are listed.  These 
steps are important when aiming to find practically meaningful and essential 
information about the factors related to modeling.  According to Paxton, Curran, 
Bollen, Kirby, and Chen (2001) these steps are: 
 
 
1) Setting a theoretically limited and well-grounded research question 
2) Setting the model under investigation to represent as accurately as possible 

the model often found in practice 
3) Defining specific research questions, such as sample sizes used and possible 

model misspecification 
4) Defining parameter values in population 
5) Choosing the suitable program 
6) Carrying out a simulation study 
7) Saving results 
8) Finding out the possible problems and checking out the results 
9) Presenting the results. 
 
 
The following sections, 5.2 - 5.6, present an implementation of a Monte Carlo 
simulation study according to the steps presented above. The research questions 
and defined models are presented in section 5.2 respecting the first four steps.  
Then, the implementation of the simulation study is presented in section 5.3 
respecting steps 5-7. When presenting results and answering to the research 
questions, the simulation study concentrates on three important aspects in the 
estimation of the LGM model a) problems in the parameter estimation, b) deciding 
the number of latent classes, and c) criteria used to evaluate the parameter 
estimation. These aspects are presented in sections 5.4 - 5.6. respecting steps 8 - 9. 
 
 
5.2. Research questions and model under investigation 
 
 
The research aim of this study is to examine the functionality of the LGM model 
with a limited sample size, in which case asymptotic results are not in use. In 
practice, the LGM model usually has few measurement points. Consequently, the 
basic model of the present simulation study is limited to the linear LGM with four 
measurement points and two latent classes 
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   (5.1) 

  

in which )(k
ity is i’s observation at time t from population k. This linear LG model 

(see Rovine & Molenaar, 1998) is often used in empirical studies (see for example 
Anstey, Hofer, Luszcz, 2003; Aunola, Leskinen, Lerkkanen & Nurmi, 2004; 
Colder, Mehta, Balanda, Campbell,  Mayhew, Stanton, Pentz & Flay, 2001; 
Fuzhong, Barrera, Hops, Fisher, 2002; Duncan, Duncan, Alpert, Hops, Stoolmiller 
& Muthén, 1997; Li, Barrera,  Hops, & Fisher, 2002; Muthén,  Khoo, Francis, & 
Boscardin, 2003; Parrila, Aunola, Leskinen, Nurmi & Kirby, 2005). 
 
In the present simulation study, the effects of the following five factors (a- e) on 
estimation are of interest and their values are, therefore, varied 
 

a)  sample size is 50, 100, 200, 500 or 1000,    
b) the difference between expectations of latent components measured 

as SMD is 0.5, 1, 2, 3, 4 or 5,  where SMD is the square root of 
Mahalanobis distance (McLahlan, 1999). SMD for latent 
components is    

 
)()()( )2()1(1)2()1(

ηηηη μμΨμμη −−== −TSMDSMD ,   
where 
  

)1(
ημ  and )2(

ημ  are expectation vectors of the latent components η  
for classes 1 and 2 and the covariance matrix Ψof η  is equal in 
both latent classes, 

c) reliability of observed variables 
4,3,2,1),var(/)var(1)( =−= tyyrel ttt ε   

is low 0.5 or high 0.8,  
d) correlation between latent intercept and slope components is zero 

or 0.50,  
e)  the number of measurements are four or seven, 
f) the proportion of class sizes are 1/3 and 2/3. 
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The effects on the estimation are examined in three ways:   
 

1) the effect on problems appearing in estimation (see section 5.4), 
2) the effect on deciding the number of latent classes (see section 5.5), 
3) the effect on criteria used to evaluate parameter estimation (see  

section 5.6). 
 
To examine the effect of these five factors described above, six different variations 
of the LGM model in equation 5.1 are used. In all models, sample size and SMD 
are varied according to a) and b). In the models named A.8 and A.5, the 
differences between two latent classes are in the mean of intercept component 
( )(

0
kα ), and in the models named B.8 and B.5, also in the mean of slope component 

( )(
1

kα ). In models A.8, A.5, B.8 and B.5, the correlation between the intercept and 
slope components is zero. The number in the model name indicates reliability of 
observed variables, which is high (.80) or low (.50). Model C.8 is similar to model 
A.8, except that the correlation between the intercept and slope is 0.50.  Model 
A.5* differs from the model A.5 in that this model has three additional 
measurement points locate in the middle of the four measurement times in A.5. 
 
Table 5.1 presents the square root of the Mahalanobis distance for the observed 
and latent components. The square root of the Mahalanobis distance is also defined 
for the observed variables y  in the same way as for the latent components and is  
 
  

)()()( )2()1(1)2()1(
yy

T
yySMD μμΣμμy −−= − ,   

 
where 
 

)1(
yμ  and )2(

yμ  are expectation vectors of the observed variables y , for latent 
classes 1 and 2 and 
Σ  is covariance matrix of y  which is equal in both latent classes.  
 
 

To refer to the distance of latent components )(ηSMD , the term SMD is used, 
whereas when referring to the distance of observed variables, the term )(ySMD  is 
used. In the following Table 5.1, the square root of  the Mahalanobis distance of 
observed variables are presented for all models A.8 – C.8 with different SMD . 
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Table 5.1. Square root of the Mahalanobis distance of observed variables 
)(ySMD  as a function of SMD . 

 
 SMD  
Model  1 2 3 4 5 
A.8 0.93 1.85 2.78 3.71 4.64 
A.5 0.81 1.62 2.44 3.25 4.06 
B.8 0.93 1.86 2.71 3.56 4.40 
B.5 0.81 1.63 2.30 2.96 3.62 
C.8 0.82 1.61 2.42 3.22 4.03 
A.5* 0.86 1.72 2.58 3.44 4.30 

 
 
The expected values of the latent and observed variables respecting SMD are 
presented in Table 5.2. For model A.5*, the expected values are equal with the 
expected values for model A.5 in the time points 1, 2, 3 and 4.  
 
 
Table 5.2.  Expected values of latent components (α ) and observed variables (μ ) 
for model A.8, A.5, B.8, B.5 and C.8 with a five-set of parameter values used in 
the two latent classes. 
 
 Time 
Model A.8 and A.5 1 2 3 4 
SMD )1(

0α  )1(
1α  )2(

0α  )2(
1α  )1(

1μ  )2(
1μ  )1(

2μ  )2(
2μ

)1(
3μ  )2(

3μ  )1(
4μ  )2(

4μ
1 0 .2 1 .2 0 1 .2 1.2 .4 1.4 .6 1.6 
2 0 .2 2 .2 0 2 .2 2.2 .4 2.4 .6 2.6 
3 0 .2 3 .2 0 3 .2 3.2 .4 3.4 .6 3.6 
4 0 .2 4 .2 0 4 .2 4.2 .4 4.4 .6 4.6 
5 0 .2 5 .2 0 5 .2 5.2 .4 5.4 .6 5.6 
 
 Time 
Model B.8 and B.5 1 2 3 4 
SMD )1(

0α  )1(
1α  )2(

0α  )2(
1α  )1(

1μ
)2(

1μ
)1(

2μ
)2(

2μ  )1(
3μ

)2(
3μ  )1(

4μ  )2(
4μ  

1 0 .2 1 0.200 0 1 .2 1.200 .4 1.400 .6 1.600
2 0 .2 1 0.975 0 1 .2 1.975 .4 2.950 .6 3.925
3 0 .2 1 1.465 0 1 .2 2.465 .4 3.930 .6 5.395
4 0 .2 1 1.932 0 1 .2 2.932 .4 4.864 .6 6.796
5 0 .2 1 2.391 0 1 .2 3.391 .4 5.782 .6 8.173

table continues 
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table continues 
 Time 
Model C.8 1 2 3 4 
SMD )1(

0α  )1(
1α  )2(

0α  )2(
1α

)1(
1μ

)2(
1μ  )1(

2μ
)2(

2μ  )1(
3μ

)2(
3μ  )1(

4μ  )2(
4μ  

1 0 .2 0.866 .2 0 0.866 .2 1.066 .4 1.266 .6 1.466
2 0 .2 1.732 .2 0 1.732 .2 1.932 .4 2.132 .6 2.332
3 0 .2 2.598 .2 0 2.598 .2 2.798 .4 2.998 .6 3.198
4 0 .2 3.464 .2 0 3.464 .2 3.664 .4 3.864 .6 4.064
5 0 .2 4.330 .2 0 4.330 .2 4.530 .4 4.730 .6 4.930
 
 
By using presented values of )2(

1
)1(

1
)2(

0
)1(

0 ,,, αααα  (Table 5.2), the models A.8, A.5, 
A.5*, B.8, B.5 and C.8 are comparable in terms of square root of the Mahalanobis 
distance measured with latent components.  
 
Theoretical covariance matrices of latent variables in the model A.8, A.5, A.5*, 
B.8, B.5 and C.8 are same for both latent classes  
 

 ΘΛΨΛy += T)cov( , 
  
where 
 

⎥
⎦

⎤
⎢
⎣

⎡
==

2.0
1

)cov( Ψη   

 
 
for models A.8, A.5, A.5*, B.8 and B.5,  
 

⎥
⎦

⎤
⎢
⎣

⎡
==

2.224.
1

)cov( Ψη   

 
for model C.8, 

 
)70.45.30.25(.diag=Θ   

 
for models A.8 and B.8, 
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 )80.280.120.100.1(diag=Θ   
 
for models A.5 and B.5, 
 
 )80.225.280.145.120.105.100.1(diag=Θ   
 
for model A.5* and 
 
 )036.1674.412.25(.diag=Θ   
 
for model C.8. 
 
 
Then the values of the covariance matrices for the models A.8 and B.8 in both 
latent classes are 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

50.320.260.100.1
25.240.100.1

50.100.1
25.1

)cov( Σy
. 

 
 
The values of the covariance matrices for the models A.5 and B.5 in both latent 
classes are 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

60.520.260.100.1
60.340.100.1

40.200.1
00.2

)cov( Σy
. 

 
 
 
 
 
For model A.5*, the covariance matrix is 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

60.550.220.290.160.130.100.1
50.400.275.150.125.100.1

60.360.140.120.100.1
90.230.115.100.1

40.210.100.1
10.200.1

00.2

)cov( Σy
 

 
 
and for model C.8 the covariance matrix is 
 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

180.5320.3496.2672.1
370.3072.2448.1

060.2224.1
250.1

)cov( Σy
. 

 
The LGM models above are the models used in the simulation study of this 
research. For simulated data, either a true two-latent-class model using true 
starting values or, alternatively, a wrong three-latent-class model using random 
starting values is estimated. Sample sizes of the simulation study for each model 
are n = 50, 100, 200, 500 or 1000.  
 
 
5.3. Implementation of the simulation study  
 
 
The simulated data are produced and analysed by using the Mplus program 
(Muthén & Muthén, 1998-2006). The first simulation is carried out using version 
3.01 and the latest simulation using version 4.2. Some simulations, which were in 
the first place carried out using the earlier version, were repeated afterwards using 
version 4.2 to ensure that results are non-changeable. These results are presented 
later in the section. 
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For each defined model, A.8, A.5, A.5*, B.8, B.5 and C.8, random data are 
generated using the Mplus program. This generated data are then estimated  using 
the MLR estimator and the results of the parameter estimates, standard errors of 
the parameter estimates and the log-likelihoods are saved. This process is 
replicated 10000 times and information of replications is saved successively to two 
files. The data generation and estimation is defined with one script. An example of 
this type of script is presented in Appendix 1.  
 
The example run (Appendix 1) generates and estimates data according to the 
parameter values of model A.8 when SMD is 3 and the sample size is 500. The run 
produces two files in which the results of 10000 replications are saved. The first 
output file has tabled information for criteria to evaluate parameter estimation. 
This file also has information related to the number of latent classes from each 
replication. This text file is cleaned with written macro using text editor and 
analysed after that using the SPSS program (see Appendix 2).  
 
The other file produced by script (see Appendix 1) includes replication number, 
information concerning convergence, the value of log-likelihood, and the 
parameter estimates for each replication. This file is analyzed with the SPSS script 
shown in Appendix 3 by producing the number of negative variance estimates in 
all and for each parameter separately.  
 
The results are then gathered to the tables, including information about the 
problems in estimation (see section 5.4), deciding the number of latent classes (see 
section 5.5) and the criteria used to evaluate the parameter estimation (see section 
5.6). 
 
 
5.4. Problems in estimation of latent growth mixture model  
    
 
A situation where an estimation of the model is not convergent is not unusual in 
empirical research with SEM. The reasons behind nonconvergence are usually 
poor data, a misspecified model, or poor starting values of the parameters.  For 
example, if the model includes very weak associations, or if the variances of 
observed variables in the model are at totally different scales, the role of the 
starting values on convergence is particularly important.  
 
The model estimation can also produce parameter estimates which are not 
admissible, that is, the estimated correlation may be larger than one, or the 
estimated variance can be negative. The appearance of negative variance estimates 
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may also be due to normal variations in sampling, the model’s unidentification, or 
outliers (Chen, Bollen, Paxton, Curran & Kirby, 2001).  The problem of negative 
variance estimates, in particular, has been under discussion. This discussion can be 
summarized into the next three questions (Chen et al., 2001): 
 

a) when are negative variance estimates most likely to appear? 
b) what are their consequences? 
c) what would be the most appropriate way to proceed with negative 

variance estimates? 
 
According to Chen et al. (2001), the negative variance estimates have been shown 
to appear typically with small sample sizes, which can be related to the variation of 
sampling. The probability of negative variance estimates was not directly related to 
the degree of misspecified model, but rather the misspecified model influenced the 
values of parameter estimates, their standard errors and the distribution of error 
variances. The conclusion is that negative variances should not be interpreted as a 
misspecified model. On the other hand, acceptable values do not automatically tell 
that the model is properly specified either.   
 
According to Chen et al. (2001), the challenge of future research is; how the 
overparametrized model, either defined by extra paths or covariance structure of 
error, impact on the success of the model estimation.  On the basis of research 
(Tolvanen, 2000) it seems that in the context of LGM, the overparametrized model 
produces, on average, more negative variance estimates than a true model. This is 
also due to growing standard errors of parameter estimates. 
 
 
5.5. Deciding on the number of latent classes 
 
 
In mixture analysis, the evaluation of the overall fit of the estimated model is not 
possible in the same way that it usually is in the SEM framework. Also, the use of 
the likelihood ratio test to evaluate the right number of latent classes, is not 
appropriate in mixture analyses. Instead, to evaluate the model fit and the right 
number of latent classes in mixture analysis, the following three information 
criteria and three statistical tests are used (see section 3.2.2):  
 

1) Akaike’s information criteria (AIC) (Akaike, 1987),  
2) Bayes information criteria (BIC) (Schwartz, 1978),  
3) adjusted BIC (aBIC) (Sclove, 1987),  
4) Vuong, Lo, Mendell & Rubin (VLMR) (Vuong, 1989) test,  
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5) adjusted VLMR (LMR) (Lo, Mendell and Rubin, 2001) test and 
6) parametric bootstrapped likelihood ratio test (BLRT) (McLahlan & 

Peel, 2000; Muthén & Muthén, 1998-2006). 
 

In this study, ending up to a certain number of latent classes is presented as a 
proportion of replications for all of the above mentioned six possibilities. The 
failed estimations are out of calculation of this proportion, but the negative 
variance estimates are included, because they are seen to represent normal 
variation in sampling (Chen et. al., 2001). 
 
In this study, there are three questions related to deciding the right number of 
latent classes, namely:  
 

a) what is the proportion of replications ending up to the right two-class 
solution when the data have in truth two-latent classes? 

b) what is the proportion of replications ending up to wrong three number 
of classes when the data have in truth two-latent classes? 

 
The answers to these two questions will give information about what sample size 
is the needed sample size to achieve .70, .80 or even .90 power in order to detect 
the right number of latent classes using the three information criteria 1-3 or 
statistical tests 4-6, and which of them are most useful when deciding the number 
of latent classes in a linear LGMM.  
 
 
5.6. Criteria used to evaluate parameter estimation 
     
 
The following four criteria (c1, c2, c3 and c4) are generally used to evaluate the 
goodness and the validity of the LGMM estimation and the properties of  MLR 
estimator.  
 
Denote freely estimated parameters as a 1P×  vector  
 
 ),,( Θψατ vec= . 
 
First criterion (c1) is the MSE (mean square error) of the estimator pτ̂  
 

 
2)ˆ()ˆ( ppp EMSE τττ −= ,  .P,...,2,1=p  
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It is well known that 
 

 )ˆ()ˆvar()ˆ( 2
ppp BMSE τττ += , 

 
in which bias of parameter estimator is 
 
 ppp EB τττ −= )ˆ()ˆ( . 
 
Estimates of MSE and its components are defined as follows 
 

 )ˆ(ˆ)ˆ(var)ˆ(1)ˆ( 2
^

1

2
pp

R

r
pprp B

R
MSE τττττ +=−= ∑

=

^

, (c1) 

 
where 
 

 
2

1

^
))ˆ(ˆ(1)ˆ(var p

R

r
prp E

R
τττ −= ∑

=
, 

 ppp EB τττ −= )ˆ()ˆ(ˆ   
and 

∑
=

=
R

r

r
pp R

E
1

)(ˆ1)ˆ( ττ . 

 
Second criterion (c2) is the proportion of bias in the MSE 
 

 PpMSEB pp ,...,2,1),ˆ(/)ˆ(2 =ττ . 
 
The proportion of bias in the MSE is estimated as 
 

 PpMSEBPB pp ,...,2,1),ˆ(/)ˆ(ˆ 2 == ττ
^

. (c2) 
 
Third estimation criterion (c3) is the relative bias of asymptotic standard error of 
parameter estimates.  This relative bias is calculated by dividing the expected 
asymptotic standard error of the parameter estimator by the standard deviation of 
the parameter estimator 
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This relative bias is estimated by dividing the average of estimated standard errors 
across the valid replications, with the estimated standard deviation of the 
parameter estimate calculated across the valid replications 
 

 
)ˆ(

)ˆ(1

)ˆ( 1
^

p

R

r
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p
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τ

τ
τ ^

^

^ ∑
==⎟
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⎞

⎜
⎝
⎛

. (c3) 

 
Because the number of replications is large, the estimated standard deviation  

)ˆ(
^

pSD τ  can accurately approximate the true standard deviation. Therefore, this 

criterion 
^

RB  describes the bias of standard error of parameter estimator as its 
proportion to true standard error. If this proportion is lower than one, the standard 
error is biased downward and produces smaller confidence intervals for parameter 
estimates. If this proportion is greater than one, the standard error is biased upward 
and produces larger confidence intervals for parameter estimates. If standard error 
estimate is violated, this also has consequences to the testing of the true value of 
parameter estimates. When the standard error estimate is biased downward and RB 
= .95, this leads to the change of p-value from nominal .05 level to .063 level, from 
nominal .01 level to .014 level, and from nominal .001 level to .0018 level. When 
the standard error estimate is biased downward and RB = .90 percent from its true 
value, this leads to the change of p-value from nominal .05 level to .078 level, 
from nominal .01 level to .020 level, and from nominal .001 level to .003 level.  
 
The fourth criterion is the 95 % coverage, which gives the proportion of 
replications in which the true value of parameter falls into the estimated 95 % 
confidence interval  
 

 ∑
=

=
R

r
prp CI

R
coverage

1
95 )ˆ(1)ˆ( ττ ,  (c4) 

where 
  1)ˆ(95 =prCI τ , 
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if 

)ˆ(96.1ˆ)ˆ(96.1 prpprprp asease τττττ
^^

×+<<×−   
and 

,elsewhere0)ˆ(95 =prCI τ  
 

.,...,2,1,,...,2,1 RrPp ==   
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6. Results of the simulation study  
 
 
 
Before starting a simulation study, one should decide the complexity of the 
examined models. In the present study, this complexity is first examined by a pilot 
simulation study, using model A.8 with three different equality constraints 
between the latent classes. After this a broader simulation study, including other 
models, is carried out. 
 
To get a more comprehensive view of the factors affecting latent growth mixture 
modeling, the results of basic model A.8 are first described. In this context, the 
impact of sample size (n = 50, 100, 200, 500 or 1000), on one hand, and the impact 
of distance between two groups (SMD = 1, 2, 3, 4 and 5), on the other, on the 
success and validity of estimation are considered. The success and validity of 
LGMM is examined in terms of the number of failed estimations and improper 
solutions (section 6.1), power to find the right number of latent classes (section 
6.2), and the evaluation of parameter estimation (section 6.3).  
 
In addition to sample size and SMD, the effect of reliability of observed variables 
is examined, changing the .80 reliability of observed variables in model A.8 to .50 
in model A.5. Moreover, the effect of additional measurement points is examined 
using additional measurement points in model A.5*. These effects are expressed in 
their own paragraphs in sections 6.1, 6.2 and 6.3. 
 
Finally, the effect of model construct is examined comparing models C.8 vs. A.8, 
B.8 vs. A.8, and B.5 vs. A.5. When in models A.8 and A.5 latent groups differ 
according to the mean of intercept component ( 0α ), in models B.8 and B.5 groups 
differ from each others also according to the mean of slope component ( 1α ). 
Further, model C.8, where latent components correlate with each other, is 
compared with model A.8, where correlation of latent components is zero. These 
effects are also described in their own paragraphs in sections 6.1, 6.2  and 6.3. 
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6.1. Problems in estimation of latent growth mixture model 
 
 
Problems in the estimation are considered from two viewpoints:  the number of 
failed estimations and the number of negative variance estimates. These two 
problems are first mapped with a pilot simulation study. The goal of the pilot 
simulation study, using model A.8, is therefore twofold: On one hand, the aim is to 
find the boundaries for true models, where estimation proceeds successfully. On 
the other hand, the aim is to find boundaries where the estimated parameter values 
of the models are acceptable (e.g., estimated variances of the models used are 
positive in most cases of the samples).  The results of this pilot simulation study 
are presented in section 6.1.1. Based on the pilot simulation study, the 
investigation of the problems in estimation is extended to all other models. These 
results are presented in section 6.1.2. 
 
 
6.1.1. Pilot simulation study 
 
 
The pilot simulation study uses model A.8, in which SMD varies between 0.5 to 5 
depending on the value of )2(

0α .  Sample sizes of generated data are n = 50, 100, 
200, 500 or 1000, in which the observations are received from a random indicator 
for two classes. This random indicator is binomially distributed Bin(n, 1/3). Each 
of the generated data is replicated 10000 times. 
 
LGM model A.8  is estimated for a two group solution in three situations I-III: 
 

I) all parameters  32122121110 ,,,,,,, θθθψψψαα and 4θ are freely estimated in 
both latent classes 

II) the parameters  121110 ,,, ψψαα  and 22ψ  are freely estimated in both 
latent classes and  parameters 321 ,, θθθ  and 4θ  are fixed equal between 
latent classes 

III) the parameters 0α  and 1α  are freely estimated in both latent classes and 
the parameters 321221211 ,,,,, θθθψψψ and 4θ  are fixed equal between latent 
classes. 

 
Because the starting values of the parameters for latent classes are true population 
values and the estimated model has a real number of groups, the reason why the 
convergence of estimation fails may be an empirical non-identification of the 
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model. This, in turn, is probably due to the fact that the  proportion of one of the 
classes is too small. In Table 6.1., the estimation results of 10000 samples are 
presented with different SMDs and with varied sample sizes.   
 
Because simulations are carried out with two different versions of Mplus program 
(i.e., earlier version 3.01 and current version 4.2.), the results concerning failed 
estimation and negative variance estimates in Table 6.1., are presented in two 
columns. As can be seen from Table 6.1., the number of negative variances 
appears frequently in situations I and II, whereas in situation III they are frequent 
only when the sample size is small.  
 
 
Table 6.1. Percentages of failed estimations (FE) and negative variance estimates 
(NV) with varied sample size and SMD. Model A.8, R=10000. 
 

  Situation I Situation II Situation III 
n SMD FE FE* NV NV* FE FE* NV NV* FE FE* NV NV* 
50 0.5 2.38 2.43 78.98 78.93 5.77 5.94 37.48 37.35 0.08 0.07 6.53 6.55 
100 0.5 1.96 2.00 63.73 63.69 4.44 4.44 26.10 26.21 0.19 0.19 0.75 0.71 
200 0.5 1.79 1.79 52.80 52.89 4.16 3.69 20.98 21.33 0.36 0.31 0.03 0.03 
500 0.5 1.44 1.54 37.56 45.38 2.64 2.70 18.62 18.62 0.69 0.67 0 0 
1000 0.5 1.25 1.17 41.79 42.15 2.14 2.19 17.36 17.45 0.87 0.89 0 0 
50 1 2.39 2.36 76.17 76.24 5.48 5.30 34.94 34.95 0.04 0.05 6.95 6.94 
100 1 2.13 1.97 60.50 60.66 3.88 3.90 24.52 26.45 0.16 0.10 0.88 0.88 
200 1 1.63 1.64 49.99 49.98 3.49 3.53 19.07 19.03 0.20 0.20 0.03 0.03 
500 1 1.24 1.29 42.66 42.63 2.01 2.08 17.25 17.24 0.30 0.26 0 0 
1000 1 1.05 1.06 38.52 38.63 1.49 1.53 15.78 15.75 0.23 0.19 0 0 
50 2 2.29 2.32 69.18 69.21 3.98 4.04 29.36 29.51 0 0.01 7.26 7.26 
100 2 1.36 1.41 51.26 51.23 2.66 2.72 16.97 16.95 0.01 0.01 1.04 1.04 
200 2 0.75 0.83 36.11 36.07 0.96 1.06 10.98 10.91 0 0.01 0.02 0.02 
500 2 0.24 0.22 17.67 17.70 0.16 0.15 4.13 4.14 0 0.0 0 0.0 
1000 2 0.05 0.02 6.58 6.58 0.01 0.0 1.19 1.20 0 0 0 0 
50 3 0.71 0.83 58.50 58.38 0.20 1.22 20.35 20.36 0 0 6.39 6.39 
100 3 0.19 0.18 30.63 30.62 0.16 0.18 5.70 5.71 0.01 0 1.10 1.10 
200 3 0 0.02 9.14 9.13 0.01 0.01 0.82 0.82 0 0 0.03 0.03 
500 3 0 0 0.34 0.34 0 0 0.01 0.01 0 0 0 0 
1000 3 0 0.01 0.01 0.01 0 0 0 0 0 0 0 0 
50 4 0.05 0.07 44.85 44.83 0.04 0.04 11.24 11.25 0 0 5.17 5.17 
100 4 0 0 15.52 15.52 0 0 1.33 1.33 0 0 0.81 0.81 
200 4 0 0 3.16 3.16 0 0 0.02 0.02 0 0 0.03 0.03 
500 4 0 0 0.01 0.01 0 0 0 0 0 0 0 0 
1000 4 0 0 0 0 0 0 0 0 0 0 0 0 
50 5 0 0 37.48 37.48 0.01 0.01 7.59 7.59 0 0 4.34 4.34 
100 5 0 0 12.17 12.17 0 0 0.75 0.75 0 0 0.59 0.59 
200 5 0 0 2.15 2.15 0 0 0.01 0.01 0 0 0.02 0.02 
500 5 0 0 0.04 0.04 0 0 0 0 0 0 0 0 
1000 5 0 0 0 0 0 0 0 0 0 0 0 0 

* Estimated with Mplus version 4.2. Note. The values in which the number of negative variances exceed 10 
% are bolded. 
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When the distance between the classes diminishes, the convergence of estimation 
fails more often in situation II, than in other situations. In situation I and II, the 
number of failed estimation decreases when the sample size increases, whereas in 
situation III the number of failed estimation slightly unexpectedly increases. If the 
difference between the groups is small ( 1 SMD ≤ ), the number of failed estimations 
varies depending on the sample size used, up to  5.9 percent of replications when 
using version 4.2, and up to 5.8 percent when using version 3.01. When the 
distance between classes is clear ( 3SMD ≥ ) and the estimated model has few 
parameters (Situation III), the number of failed estimations is lower than 0.01 
percent of replications.  
 
In the most complex situation (Situation I) the number of negative variances is 
high. In this case, the number of negative variances decreases when SMD and 
sample size increase. Despite the high distance between the classes (SMD = 5), the 
number of negative variances is over 12 % when the sample size is 100. 
 
When error variances are fixed to be equal between the classes in situation II, the 
number of negative variance estimates clearly decreases when compared with 
situation I. In this case the number of negative variance estimates is over 10 %, if 
the distance between the groups is small (SMD = 0.5 or 1). If SMD = 2 and the 
number of cases is at minimum 500, the proportion of negative variance estimates 
is less than 5 %. If the difference between the groups is clear ( 3SMD ≥ ), the 
proportion of negative variance estimates is lower than 6 % when the sample size 
is 100 at minimum.  
 
If the model consists of fewer free parameters (Situation III), the number of 
unacceptable models varies from 0% to 7.3 % depending on SMD and sample size.  
 
The results presented above reveal that the problems in LGMM estimation mainly 
appear in negative variance estimates. In situations I and II, this is evident 
particularly with small sample sizes. Because the present simulation study 
concentrates on the behavior of LGMM with small sample sizes, in the following 
simulations using models A.8, A.5, A.5*, B.8, B.5 and C.8, the parameters are 
constrained to be equal between the latent classes, as in situation III. In situation 
III, the numbers of negative variance estimates are rare enough to make it possible 
to examine other criteria of estimation. 
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6.1.2. Problems in estimation of latent growth mixture model in the 
main simulation study 
 
 
In the main simulation study, the parameter estimates are fixed equal between the 
classes, as in situation III in the pilot simulation study. When SMD=1, the 
estimation fails for model A.8, A.5 and C.8, but the number of failed estimations is 
lower than 0.3, 0.5 or 0.4 percent of replications, respectively.  In turn, negative 
variance estimates seem to appear frequently with small sample sizes. These 
results for models A.8, A.5, A.5*, B.8, B.5 and C.8 are shown in Table 6.2. When 
SMD≥ 2, estimation fails only in few cases for all sample sizes and for all tested 
models A.8, A.5, A.5*, B.8, B.5 and C.8. 
 
Negative variance estimates in model A.8 appear in 4.3 – 7.3 percent of 
replications when 50n = , in 0.6 – 1.1 percent of replications when n = 100, and 
are rare when 200n ≥ . 
 
The effect of low reliability (A.8 vs. A.5) on the number of negative variance 
estimates is strong. When reliability decreases, the number of negative variance 
estimates increases. If SMD is small, negative variance estimates appears also with 
larger sample sizes. 
 
With a small sample size n = 50, the proportion of negative variance estimates in 
model A.5 is 38.0 percent of replications, when SMD is 1 and decreases to 11.2 
percent when SMD increases to 5.  These proportions are 2.6 – 5.5 times larger in 
model A.5 than in model A.8. When n = 100, the proportion of negative variance 
estimates rapidly decreases from 20 to 2.2 percent, when SMD increases from 1 to 
5.  Unlike in model A.8, in model A.5, negative variance estimates appear also 
when n = 200, 500 or 1000, in which case the percentage of negative variance 
estimate is 8.7, 3.0 or 0.8 when SMD is 1, and 3.7, 0.5 or 0.03 when SMD is 2, 
respectively. 
 
When adding additional measurement points (A.5* vs. A.5), the number of 
negative variance estimates dramatically decreases. When SMD is 1 or 2, this 
decrease is 60 - 68 percent. When 3SMD ≥ , the number of negative variance 
estimates is even lower than in model A.8 and decreases to 0.6 - 3.7 percent when 
n = 50.  
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Table 6.2. The number of negative variance estimates in model A.8, A.5, A.5*, 
B.8, B.5 and C.8, based on varying numbers of replications.  
 

n SMD A.8 A.5 A.5* B.8 B.5 C.8 
50 1 695 3797 1427 695 3797 854 
100 1 88 1995 622 88 1995 147 
200 1 3 870 171 3 870 7 
500 1 0 295 8 0 295 0 
1000 1 0 83 0 0 83 0 
50 2 726 2842 896 579 3344 894 
100 2 104 1125 309 53 1720 157 
200 2 2 374 52 1 683 12 
500 2 0 52 0 0 73 0 
1000 2 0 3 0 0 2 0 
50 3 639 1941 370 502 2491 878 
100 3 110 484 32 53 972 177 
200 3 3 44 0 1 194 9 
500 3 0 0 0 0 3 0 
1000 3 0 0 0 0 0 0 
50 4 517 1374 115 453 1751 722 
100 4 81 250 2 49 489 126 
200 4 3 15 0 1 54 7 
500 4 0 0 0 0 0 0 
1000 4 0 0 0 0 0 0 
50 5 434 1119 62 420 1325 576 
100 5 59 219 2 48 302 99 
200 5 2 13 0 1 31 6 
500 5 0 0 0 0 0 0 
1000 5 0 0 0 0 0 0 

Note. If the amount of negative variance estimate is greater than 5 
percent, the cell is bolded. 

 
 
The number of negative variance estimates is lower in model B.8 than in model 
A.8. However, the number of negative variances is higher in model B.5 compared 
with model A.5. The differences between the models are largest when SMD is 2, 3 
or 4 and n = 50 or 100. When n = 50, the number of negative variance estimates is 
12 - 21 percent lower and, when n = 100, 40 – 52 percent lower in model B.8 than 
in model A.8. When n = 50, the number of negative variance estimates is 18 - 28 
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percent higher, and when n = 100, 38 – 101 percent higher in model B.5 than in 
model A.5. 
 
The number of negative variance estimates is greater in model C.8 than in model 
A.8 and, as in model A.8, is quite a few also in model C.8 when 200n ≥ . In 
model C.8, the number of negative variance estimates is 23 – 40 percent greater 
when n = 50, and  54 – 68 percent greater when n = 100, than in model A.8.  
 
Negative variance estimates appear most often for 11001 and, ψψθ  parameters. 
However, when the sample size is small n = 50, negative variance estimates appear 
in 11.4 -17.3 percent of replications for 4θ  parameter in model B.8, whereas in 
other models appearance is lower than 0.9 percent of replications. If the number of 
negative variance estimates is greater than one percent of replications, the values 
in the Table 6.3 are written in bold and their distribution is discussed in the 
following three paragraphs. 
 
Negative variance estimates mostly occur in error variance of the first 
measurement in model A.8, especially when 2SMD ≥ . They are rare in variances 
of latent components and, when occurring, they are related to the small sample size 
n = 50, and a low difference between latent classes (SMD = 1 or 2). In this case, 
negative variance estimates appear for variance of slope and are evident in 9.1 - 
17.4 percent of the cases. 
 
The effect of reliability is seen when comparing model A.8 with model A.5: in 
model A.5, negative variance estimates appear in the variances of latent factors 
rather than in error variances. This appearance is mostly seen in the slope 
component, where the results suggest to reject this component from the model, in 
practice. 
 
As in model A.8, in model C.8, negative variance estimates occur mostly in error 
variance of the first measurement. In model C.8, the percentage of negative 
variances of 1θ  parameter is lower, and that of  11ψ  parameter clearly greater, than 
in model A.8. As in model A.8, in model B.8, negative variance estimates occur 
mostly in error variance of the first measurement.  In model B.8, the percentage of 
negative estimates of 1θ  parameter is lower, and that of 11ψ  parameter greater, than 
in model A.8. As in model A.5, in model B.5,  negative variance estimates occur 
mostly in error variance of latent components. In model B.5, the proportion of 
negative estimates of 00ψ  parameter is lower, and that of 11ψ  parameter greater, 
than in model A.5.  
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Table 6.3. The percentages of negative variance estimates for 11001 and, ψψθ  
parameters from the replications in which negative variance estimates appear (see 
Table 6.2). 
 

Model A.8   A.5   A.5*   B.8   B.5   C.8   

n SMD 1θ  00ψ  
11ψ  1θ  00ψ 11ψ  1θ  00ψ 11ψ  1θ  00ψ 11ψ  1θ  00ψ  

11ψ  1θ  00ψ 11ψ  

50 1 75.3 3.6 17.4 3.2 55.1 58.0 0.0 7.3 92.5 75.3 3.6 17.4 3.2 55.1 58.0 63.8 7.1 27.9

100 1 71.6 0.0 28.4 0.2 36.5 69.9 0.0 0.5 99.5 71.6 0.0 28.4 0.2 36.5 69.9 47.6 0.0 52.4

200 1 33.3 0.0 66.7 0.0 17.2 84.1 0.0 0.0 100 33.3 0.0 66.7 0.0 17.2 84.1 14.3 0.0 85.7

500 1 - - - 0.0 0.7 99.3 0.0 0.0 100 - - - 0.0 0.7 99.3 - - - 

1000 1 - - - 0.0 0.0 100 - - - - - - 0.0 0.0 100 - - - 

50 2 86.2 0.1 9.1 5.8 36.4 69.4 0.1 1.00 98.9 67.5 1.0 19.3 2.3 24.5 76.1 76.7 0.4 21.5

100 2 90.4 0.0 9.6 0.7 18.0 84.6 0.0 0.0 100 86.8 0.0 9.4 0.1 14.9 85.1 73.2 0.0 26.8

200 2 100 0.0 0.0 0.0 3.2 97.1 0.0 0.0 100 100 0.0 0.0 0.0 7.0 93.0 41.7 0.0 58.3

500 2 - - - 0.0 0.0 100 - - - - - - 0.0 0.0 100 - - - 

1000 2 - - - 0.0 0.0 100 - - - - - - 0.0 0.0 100 - - - 

50 3 93.6 0.0 2.2 9.7 23.9 74.2 0.0 0.0 100 79.1 0.4 3.0 2.8 19.0 79.7 89.0 0.0 10.1

100 3 99.1 0.0 0.9 2.1 8.9 90.9 0.0 0.0 100 86.8 0.0 9.4 0.2 9.8 90.1 93.8 0.0 6.2 

200 3 100 0.0 0.0 2.3 0.0 97.7 - - - 100 0.0 0.0 0.0 4.6 95.4 100 0.0 0.0 

500 3 - - - - - - - - - - - - 0.0 0.0 100 - - - 

1000 3 - - - - - - - - - - - - 0.0 0.0 0.0 - - - 

50 4 94.8 0.0 0.2 12.0 16.2 77.4 0.0 0.0 100 82.8 0.2 0.9 4.0 14.7 82.8 96.0 0.0 3.3 

100 4 100 0.0 0.0 3.2 6.8 91.2 0.0 0.0 100 98.0 0.0 0.0 0.2 3.5 96.3 100 0.0 0.0 

200 4 100 0.0 0.0 0.0 0.0 100 - - - 100 0.0 0.0 0.0 0.0 100 100 0.0 0.0 

500 4 - - - - - - - - - - - - - - - - - - 

1000 4 - - - - - - - - - - - - - - - - - - 

50 5 94.9 0.0 0.0 9.7 12.9 82.0 0.0 0.0 100 88.1 0.0 0.5 4.7 11.2 86.3 96.0 0.0 2.8 

100 5 100 0.0 0.0 2.3 4.1 94.5 0.0 0.0 100 97.9 0.0 0.0 0.3 1.7 98.0 100 0.0 0.0 

200 5 100 0.0 0.0 0.0 0.0 100 - - - 100 0.0 0.0 0.0 0.0 100 100 0.0 0.0 

500 5 - - - - - - - - - - - - - - - - - - 

1000 5 - - - - - - - - - - - - - - - - - - 

Note 1. If the number of negative variances is greater than one percent of 10000 
replications, the values in the table are in bold. Note 2. The mark ‘–‘ means that 
there are no negative variance estimates. 
 
 
Because negative variances are expected to occur when the sample size is small, 
due to normal variation in sampling (Chen et al., 2001), they are included into the 
next analysis, which estimates the power of the VLMR, LMR and BLRT tests and 
analyzes the behavior of information criteria as well as the behavior of parameter 
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estimates. In the case of failed estimation, they do not provide information related 
to power of tests or information criteria and, therefore, are out of the use.  
 
 
6.2. Results of deciding the number of latent classes 
 
 
The decision concerning the number of latent classes is based on a lower value of 
information criteria for AIC, BIC and adjusted BIC indices, or a nominal value of 
.05 for the VLMR, LMR and BLRT tests. First, the right two-class solution against 
the wrong one-class solution is compared in section 6.2.1. The results of model 
A.8 are first presented. Then, as in the case of results concerning the problems in 
estimation, the effect of reliability (A.8 vs. A.5), the effect of number of additional 
measurements (A.5 vs. A.5*), and the effect of model constructs (C.8 vs. A.8, B8 
vs. A.8 and B.5 vs. A.5) are examined in the context of deciding the number of 
latent classes.  
 
Second, the results examining the wrong three-class solution against the right two-
class solution in model A.8 are presented in section 6.2.2. These results are 
computed using Mplus version 4.2 with  10 or 500 random starting values.  
 
 
6.2.1. Results of comparing two-class solution versus one-class solution 
 
 
This section presents the results concerning the proportion of decisions concluding 
to the right two-class solution instead of the wrong one-class solution. First, in 
section 6.2.1.1., the results using AIC, BIC and aBIC are presented. In section 
6.2.1.2. the results using the VLMR and LMR tests are presented and also 
additional results using BLRT. These results are compared to the empirical 
distribution in section 6.2.1.3 and, finally, these results are summarized in section 
6.2.1.4. 
 
 
6.2.1.1. Results of AIC, BIC and aBIC 
 
The effect of sample size and SMD 
 
The next results describe the ability of AIC, BIC and adjusted BIC indices to 
detect the right number of latent classes in models A.8, A.5, A.5*, B.8, B.5 and 
C.8. The number of latent classes is based on a lower value of information criteria 
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for AIC, BIC and the adjusted BIC indices. The decision is made between one or 
two classes. The focus will be in the cases, where the proportion of right decisions 
comes up to .70, which is the lowest acceptable line for successful use of any 
index or test. The estimates needed for sample sizes to achieve .80 and .90 lines 
are also informative, because these lines could be used as thresholds, when 
planning sample sizes in behavioral studies. 
 
The results of proportions using AIC, BIC and aBIC are presented in Table 6.4. 
From this table one can see how the proportion of right decisions changes when 
the sample size or SMD increases. Based on the values in Table 6.4, some figures 
and linear approximations are used to evaluate the needed sample size to achieve 
.70, .80 or .90 proportions. 
 
The results for model A.8, A.5, A.5*, B.8, B.5 and C.8 show that, when SMD is 1, 
proportions for AIC and BIC are unchangeable and small with respect to n. 
Proportions for AIC varies between .186 and .278 and for BIC between .001 and 
.039. For aBIC, proportions decrease similarly in all models from .724 - .741 to 
.027 - .036 . Next, the more informative results, when SMD ≥  2, are presented. 
 
Model A.8 - AIC 
When SMD is 2, the proportion of right decisions using AIC increases from .348 
to .546 when the sample size increases from 50 to 200, and the proportion is 
approximately .70, .80 or .90 when the sample size is greater than 360, 450 or 670, 
respectively, as can be seen from Figure 6.1. When SMD is 3, the proportion for 
AIC is .703 when n = 50, and is approximately .80 or .90 when the sample size is 
greater than 75,  or 95, respectively. When SMD is 4, the proportion for AIC is 
.977 when n = 50 and 1.0 when 100n ≥ . When SMD is 5, the proportion is 1.0 
when 50n ≥ . 
 
Model A.8 - BIC 
When SMD is 2, the proportion of the right decisions using BIC increases from 
.055 to .442 when the sample size increases from 50 to 1000. When SMD is 3, the 
proportion increases from .263 to .463 when the sample size increases from 50 to 
100 and, as can be seen from Figure 6.2, the sample size needed to achieve .70, .80 
or .90 proportion is about 170, 190 or 330, respectively. When SMD is 4, the 
proportion is .799 when n = 50, and the needed sample size to achieve a .90 
proportion range is 80. When SMD is 5, the proportion is greater than .994 when 

50n ≥ .  
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Table 6.4. The proportions of the right two-latent-class decisions based on AIC, 
BIC and aBIC criteria in models A.8., A.5, A.5*, B.8, B.5 and C.8. 
 
Model A.8   A.5   A.5*   B.8   B.5   C.8   

n SMD AIC BIC aBIC AIC BIC aBIC AIC BIC aBIC AIC BIC aBIC AIC BIC aBIC AIC BIC aBIC

50 1 .270 .036 .737 .278 .038 .736 .253 .032 .724 .270 .036 .737 .278 .038 .736 .275 .039 .741 

100 1 .232 .011 .399 .238 .013 .403 .210 .010 .377 .232 .011 .399 .238 .013 .403 .228 .011 .400 

200 1 .221 .005 .192 .218 .004 .188 .191 .003 .167 .221 .005 .192 .218 .004 .188 .213 .004 .185 

500 1 .228 .001 .070 .210 .001 .064 .186 .001 .057 .228 .001 .070 .210 .001 .064 .210 .001 .066 

1000 1 .241 .001 .036 .217 .001 .029 .197 .000 .027 .241 .001 .036 .217 .001 .029 .220 .001 .031 

50 2 .348 .055 .807 .312 .047 .780 .284 .039 .757 .346 .058 .801 .314 .048 .776 .313 .047 .784 

100 2 .404 .037 .593 .317 .023 .506 .309 .021 .484 .404 .037 .584 .331 .023 .514 .318 .020 .506 

200 2 .546 .046 .508 .396 .018 .357 .411 .020 .372 .549 .045 .510 .398 .018 .360 .387 .017 .354 

500 2 .847 .139 .644 .616 .031 .352 .685 .056 .432 .852 .143 .654 .628 .034 .364 .595 .030 .333 

1000 2 .986 .442 .881 .859 .102 .518 .921 .199 .665 .987 .463 .879 .862 .111 .536 .845 .089 .492 

50 3 .703 .263 .958 .543 .143 .906 .566 .164 .914 .663 .230 .949 .494 .115 .888 .534 .136 .901 

100 3 .914 .463 .962 .745 .201 .866 .794 .274 .894 .879 .389 .947 .659 .142 .803 .731 .193 .858 

200 3 .995 .819 .995 .936 .428 .925 .970 .580 .964 .990 .743 .988 .873 .275 .853 .929 .400 .917 

500 3 1.0 .999 1.0 1.0 .930 .999 1.0 .983 1.0 1.0 .999 1.0 .998 .790 .986 1.0 .917 .996 

1000 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .995 1.0 1.0 1.0 1.0 

50 4 .977 .799 .999 .889 .536 .991 .925 .634 .995 .955 .720 .998 .782 .364 .973 .887 .507 .991 

100 4 1.0 .982 1.0 .992 .841 .998 .997 .921 .999 .999 .957 1.0 .956 .613 .985 .989 .819 .996 

200 4 1.0 1.0 1.0 1.0 .993 1.0 1.0 .998 1.0 1.0 1.0 1.0 .999 .930 .999 1.0 .991 1.0 

500 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1000 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

50 5 1.0 .994 1.0 .996 .927 1.0 .998 .965 1.0 1.0 .980 1.0 .963 .753 .998 .993 .922 1.0 

100 5 1.0 1.0 1.0 1.0 .999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .999 .970 1.0 1.0 .997 1.0 

200 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

500 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1000 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Figure 6.1. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using AIC criteria 
in model A.8 as a function of sample size, SMD = 2 or 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using BIC criteria 
for model A.8 as a function of sample size, SMD = 3 or 4. 
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Model A.8 - aBIC 
When SMD is 1, the proportion of the right decisions using aBIC decreases from 
.737 to .036 when the sample size increases from 50 to 1000. This suspicious 
decrease is seen also when SMD is 2. When the sample size increases from n = 50 
to n = 200 (see Figure 6.3), the proportion decreases from .807 to .508 and, after 
that, the sample size needed to achieve a .70, .80 or .90 proportion line is about  n 
= 620, 840 or > 1000, respectively.  When SMD≥3, the proportion using aBIC is 
in most cases 1.0 and its value is at minimum .958. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using aBIC criteria 
for model A.8 as a function of sample size, SMD = 1 or 2. 
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is lower than 50 as is in model A.8, whereas the sample size needed to achieve a 
.90 proportion is n≥ 55, which n is at least 5 greater than in model A.8. As in 
model A.8, when SMD is 5, in model A.5., the  sample size needed to achieve a 
.70, .80 or .90 proportion is lower than 50. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using AIC criteria 
for model A.5 as a function of sample size, SMD = 2 or 3.  
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When 3SMD ≥ , the proportion in model A.5 is over .90, except when SMD is 3 
and n = 100, in which case the proportion is .87. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5. The proportion of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using BIC criteria 
for model A.5 as a function of sample size, SMD = 3 or 4. 
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950, which n is 250 more than in model A.8. When SMD is 3, the proportion 
increases from .566 to .794 when the sample size increases from 50 to 100 and the 
sample size needed to achieve a .70, .80 or .90 proportion line is 80, 105 or 160, 
respectively, which n is 10, 25 or 20 less, respectively, than in the model A.5 and 
at least 40, 55 or 85 more than in model A.8. When SMD is 4 or 5, the proportion 
in model A.5* is as high as it is in models A.5 and A.8, and is over .90 when 
n≥50.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using AIC index for 
models A.5*,  A5 and A.8  as a function of sample size, SMD = 2. 
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3SMD ≥ , the proportion is over .90, except when SMD is 3 and n = 100 in which 
case the proportion is .894.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using BIC index for 
models A.5*, A.5 and A.8  as a function of sample size, SMD = 3. 
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The results regarding the proportions in model C.8 when using AIC, are more 
similar to the respective proportions in model A.5 than to model A.8. This can be 
explained by the fact that the )(SMD y  in model A.5 is equal with )(SMD y  in 
model C. These results suggest that the proportion to detect two classes versus one 
class is related more to the )(SMD y  than to the SMD of latent components. 
 
Model C.8 vs. model A.8 – BIC 
When SMD is 2, the proportion of the right decisions in model C.8 using BIC is 
low .047 -.089, as in model A.8 or model A.5. When SMD is 3, the sample size 
needed to achieve a .70, .80 or .90 proportion in model C.8 is 375, 430 or 490, 
respectively, which n is 210, 235 or 155, respectively, more than in model A.8 and 
10 more than in model A.5. When SMD is 4, the sample size needed to achieve a 
.70, .80 or .90 proportion in model C.8 is 80, 95 or 145, which n is at least 30, 45 
or 65, respectively, more than in model A.8 and 0-5 more than in model A.5. As in 
model A.8 or A.5, when SMD is 5, the proportion is over .90 when n≥50. 
 
Model C.8 vs. model A.8 – aBIC 
When SMD is 2, the proportion in model C.8 using aBIC decreases from .784 to 
.492 when the sample size increases from 50 to 1000. When SMD≥3, as in A.5, 
the proportions are greater than .90, except when SMD is 3 and n = 100, in which 
case the proportion is .858. 
 
Model B.8 vs. model A.8 – AIC 
When using AIC, the proportions in model B.8 are very similar to that in model 
A.8. When SMD is 2, the sample size needed to achieve a .70, .80 or .90 
proportion in model B.8 is 350, 450 or 680, respectively, which n is 10 less, 
similar, or 10 more, respectively, than in model A.8. When SMD is 3, the sample 
size needed to achieve a .70, .80 or .90 proportion in model B.8 is 60, 80 or 120, 
which n is at least 10, 15 or 25 more, respectively, than in model A.8. As in model 
A.8, in model B.8, the proportions using AIC are over .90 when SMD≥ 4 and 
n≥50. 
 
Model B.8 vs. model A.8 – BIC 
When using BIC, the proportions in model B.8 are very similar to those in model 
A.8. When SMD is 2, the proportion using BIC is small and increases from .058 to 
.463 when the sample size increases from 50 to 1000. When SMD is 3, the sample 
size needed to achieve .70, .80 or .90 proportion in model B.8 is 190, 265 or 385 
which n is 25, 70 or 50 more, respectively, than in model A.8. When SMD is 4, as 
in model A.8, the proportion using BIC is over .70 in model B.8 when n≥50. The 
sample size needed to achieve a .80 or .90 proportion in model B.8 is 65 or 90, 
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which n is 15 or 10 more, respectively, than in model A.8. As in model A.8, in 
model B.8, the proportions using BIC are over .90 when SMD = 5 and n ≥  50. 
 
Model B.8 vs. model A.8 – aBIC 
When using aBIC, the proportions in model B.8 are very similar to those in model 
A.8. When SMD is 2, the proportion in model B.8 first decreases from .801 to .510 
when the sample size increases from 50 to 200 and, after that, increases achieving 
a .70, .80, or .90 proportion when the sample size increases to 595, 805 or greater 
than 1000, respectively. As in model A.8, the proportion in model B.8 is over .90 
when SMD ≥  3 and n ≥  50. 
 
Model B.5 vs. model A.5 – AIC 
When using AIC, the proportions in model B.5 are very similar to those in model 
A.5. When SMD is 2, the sample size needed to achieve .70 or .80 proportion in 
model B.5 is 655 or 870, which n is 20 or 10 less, respectively, than in model A.5. 
When SMD is 3, the sample size needed to achieve a .70, .80 or .90 proportion in 
model B.5 is 120, 165 or 265, which n is 30, 35 or 85 more, respectively, than in 
model A.5. When SMD is 3, the proportion in model B.5 is .782 when n = 50, 
which n is .107 lower than in model A.5. The sample size needed to achieve a .80 
or .90 proportion in model B.5 is 55 or 85, which n is at least 5 or 30 more, 
respectively, than in model A.5. As in model A.5, in model B.5, the proportion is 
greater than .90 when SMD is 5 and n ≥  50. 
 
Model B.5 vs. model A.5 – BIC 
When using BIC, the proportions in model B.5 are very similar to those in model 
A.5. When SMD is 2, the proportion in model B.5 is low varying between .048 - 
.111. When SMD is 3, the sample size needed to achieve a .70, .80 or .90 
proportion in model B.5 is 450, 525 or 770, which n is 85, 105 or 290 more, 
respectively, than in model A.5. When SMD is 4, the sample size needed to 
achieve a .70, .80 or .90 proportion in model B.5 is 120, 160 or 190, which n is 45, 
65 or 50 more, respectively, than in model A.5. When SMD is 5, the proportion in 
model B.5 is .753 when n = 50, which is .174 lower than in model A.5. The sample 
size needed to achieve a .80 or .90 proportion in model B.5 is 60 or 85, which n is 
at least 10 or 35 more, respectively, than in model A.5. As in model A.5, in model 
B.5, the proportion is greater than .90 when SMD is 5 and n ≥  50. 
 
Model B.5 vs. model A.5 – aBIC 
When using aBIC, the proportions in model B.5 are very similar to those in model 
A.5. When SMD is 2, the proportion in model B.5 first decreases from .776 to .360 
when the sample size increases from 50 to 200 and, after that, increases to .536 
when the sample size increases to 1000. When SMD is 3, the proportions are lower 
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in model B.5 than in model A.5, the proportion first decreasing from .888 to .803 
when the sample size increases from 50 to 100 and, after that, increasing to .853 
when the sample size increases to 200. The sample size needed to achieve a .90 
proportion in model B.5 is 305, which n is 145 more than in model A.5. As in 
model A.5, in model B.5, the proportion is greater than .90 when SMD is 4 or 5 
and n≥50. 
 
 
6.2.1.2. Results of VLMR, LMR and BLRT 
 
The next results describe the ability of the VLMR and LMR tests to detect the 
right number of two-latent-classes versus the wrong one-class in nominal .05 level 
in models A.8, A.5, A.5*, B.8, B.5 and C.8. As for AIC, BIC and aBIC, the focus 
will be in the cases where the proportion of right decisions comes up to .70, .80 
and .90. Addition to this, some results using BLRT are also presented in the text.  
  
The results presented in Table 6.5 for models A.8, A.5, A.5*, B.8, B.5 and C.8  
show that, when SMD is 1, the proportion of the right number of latent classes 
using the VLMR or LMR test is unchangeable and small with respect to n. The 
proportion varies between  .027 and .090 when using VLMR and between .021 - 
.086 when using LMR. When SMD ≥  2, the proportions increase when the sample 
size or SMD increases. In the following sections, these results are presented in 
more detail. 
  
Model A.8 - VLMR 
When SMD is 2, the proportion using VLMR increases from .039 to .481 when the 
sample size increases from 50 to 500 and the proportion is .826 when n = 1000 
(see Figure 6.8). The sample size needed to achieve a .70 proportion is then 820. 
When SMD is 3, the sample size needed to achieve a .70, .80 or .90 proportion is 
160, 185 or 300, respectively. When SMD is 4, the sample size needed to achieve 
a .70, .80 or .90 proportion is 70, 80 or 95, respectively. When SMD is 5, the 
proportion is over .90 when n ≥  50. 
 
Model A.8 - LMR 
When SMD is 2, the proportion using LMR increases from .030 to .454 when the 
sample size increases from 50 to 500 and the proportion is .810 when n = 1000 
(see Figure 6.9). The sample size needed to achieve a .70 or .90 proportion is 845 
or 985, respectively. When SMD is 3, the sample size needed to achieve a .70, .80 
or .90 proportion is 170, 190 or 320, respectively. When SMD is 4, the sample size 
needed to achieve a .70, .80 or .90 proportion is 70, 85 or 95, respectively. When 
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SMD is 5, the proportion is .882 when n = 50 and the sample size needed to 
achieve the .90 proportion is 60. 
 
 
Table 6.5. The proportions of the right two-latent-class versus wrong one-class 
decisions based on the VLMR and LMR tests in models A.8, A.5, A.5*, B.8, B.5 
and C.8. 
 
Model A.8  A.5  A.5*  B.8  B.5  C.8  
n SMD VLMR LMR VLMR LMR VLMR LMR VLMR LMR VLMR LMR VLMR LMR 

50 1 .032 .024 .031 .024 .027 .021 .032 .024 .031 .024 .029 .022 

100 1 .043 .033 .040 .033 .045 .037 .043 .033 .040 .033 .044 .035 

200 1 .054 .044 .042 .045 .062 .053 .054 .044 .042 .045 .054 .047 

500 1 .075 .065 .069 .061 .075 .064 .075 .065 .069 .061 .077 .066 

1000 1 .090 .081 .085 .074 .086 .076 .090 .081 .085 .074 .085 .076 

50 2 .039 .030 .034 .025 .028 .022 .039 .030 .031 .024 .033 .027 

100 2 .075 .059 .053 .042 .057 .045 .077 .062 .054 .043 .049 .038 

200 2 .175 .148 .099 .082 .119 .102 .173 .148 .102 .086 .099 .080 

500 2 .481 .454 .254 .231 .384 .351 .502 .472 .272 .248 .245 .220 

1000 2 .826 .810 .525 .499 .753 .729 .836 .822 .545 .521 .504 .476 

50 3 .150 .121 .079 .061 .083 .061 .132 .106 .060 .045 .077 .059 

100 3 .463 .421 .238 .203 .327 .282 .405 .366 .178 .150 .221 .190 

200 3 .850 .834 .585 .550 .790 .762 .818 .792 .465 .427 .570 .536 

500 3 .999 .998 .969 .964 .999 .999 .997 .996 .919 .910 .966 .962 

1000 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .998 .997 1.0 1.0 

50 4 .570 .520 .318 .270 .396 .340 .470 .417 .192 .159 .298 .252 

100 4 .935 .923 .769 .735 .908 .889 .896 .876 .555 .517 .745 .713 

200 4 .998 .998 .984 .981 .999 .999 .997 .997 .928 .919 .981 .979 

500 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1000 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

50 5 .904 .882 .721 .675 .840 .800 .835 .802 .486 .431 .699 .652 

100 5 .997 .997 .978 .973 .999 .998 .992 .991 .901 .884 .976 .972 

200 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .998 .997 1.0 1.0 

500 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1000 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Note. Bootstrapped loglikelihood ratio tests were done only for some of the above models because of heavy calculation (e.g., when 
SMD = 2 and n = 500 calculation time was 33 h 7 min). 

 
Model A.8 - BLRT 
The bootstrapped likelihood ratio is calculated in only three situations. The reason 
for that is that it requires very heavy computation. In model A.8, when SMD is 2 
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and n = 500, the proportion using BLRT is .535. When SMD is 3 and n = 200, the 
proportion is .601, and when SMD is 4, and n = 50, the proportion is .768. These 
proportions are clearly higher than those found when using the VLMR or LMR 
tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using the VLMR 
test for model A.8 as a function of sample size and SMD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using the LMR test 
for model A.8 as a function of sample size and SMD. 
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The effect of reliability on the deciding the number of latent classes 
 
The effect of reliability on the proportion of two-class solutions using the VLMR 
and LMR tests (see Table 6.5) is similar to using BIC. The proportions using the 
VLMR or LMR tests are low in model A.5 when SMD is 1 or 2. In model A.8, 
when SMD is 2 and the sample size is 1000, the proportion is .83 or .81 using the 
VLMR or LMR tests, respectively, whereas in model A.5, the proportion is .53 
using the VLMR test and .50 using the LMR test. The effect of reliability (A.5 vs. 
A.8) using VLMR or LMR is most obvious when SMD is 3 or 4. This is presented 
in the following text. 
 
Model A.5 vs. model A.8 - VLMR 
As can be seen from Figure 6.10, when SMD is 3, the sample size needed to 
achieve a .70, .80 or .90 proportion using VLMR in model A.5 is 290, 370 or 445, 
respectively, which n is 130, 185 or 145 more than in model A.8. When SMD is 4, 
the sample size needed to achieve a .70, .80 or .90 proportion is 90, 115 or 160, 
respectively, which n is 20, 35 or 65 more than in model A.8. When SMD is 5, the 
proportion is .721 when n = 50 and the sample size needed to achieve a .80 or .90 
proportion is 65 or 85, respectively, which n is at least 15 or 35 more, respectively, 
than in model A.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10. The proportions of 10000 replications concluding to the right two- 
latent-class solution instead of to the wrong one-class solution using the VLMR 
test for model A.5 as a function of sample size, SMD = 3, 4 or 5. 
 

0,5

0,6

0,7

0,8

0,9

1

10
0

20
0

30
0

40
0

50
0

SMD=3

SMD=4

Sample size

SMD=5



 66

Model A.5 vs. model A.8 - LMR 
When SMD is 3, the sample size needed to achieve a .70, .80 or .90 proportion 
using LMR in model A.5 is 310, 380 or 455, respectively, which n is 140, 190, 135 
more than in model A.8. When SMD is 4, the sample size needed to achieve a .70, 
.80 or .90 proportion in model A.5 is 95, 125 or 165, respectively, which n is 25, 
40 or 70 more than in model A.8. When SMD is 5, the sample size needed to 
achieve a .70, .80 or .90 proportion is 55, 70 or 90, respectively, which n is at least 
5, 20 or 30 more than in model A.8.  
 
The effect of additional measurement points on deciding the number of latent 
classes 
 
As can be seen from Table 6.5, the proportions using the VLMR or LMR tests in 
model A.5* are greater than the proportions in model A.5.  
 
Model A.5* vs. model A.5 – VLMR 
When SMD is 2, the proportion in model A.5* using VLMR increases from .028 
to .753 when the sample size increases from 50 to 1000 and the proportion is .70 
when n ≥ 930. As can be seen from Figure 6.11., the effect of additional 
measurement points on the proportion is clear and the proportion line in model 
A.5* is near to the proportion line of model A.8. When SMD is 3, the sample size 
needed to achieve a .70, .80 or .90 proportion in model A.5* is 180, 215 or 360, 
respectively, which n is 110, 155 or 85 less, respectively, than in model A.5 and 
20, 30 or 60 more, respectively, than in model A.8. When SMD is 4, the sample 
size needed to achieve a .70, .80 or .90 proportion in model A.5* is 80, 90 or 100, 
respectively, which n is 10, 25 or 60 less, respectively, than in model A.5 and 10, 
10 or 5 more, respectively than in model A.8. When SMD is 5, the proportion is 
.840 when n = 50, which n is .119 greater than in model A.5 and .064 lower than in 
model A.8. The sample size needed to achieve a .90 proportion in model A.5* is 
70, which n is 15 less than in model A.5, and at least 20 more than in model A.8. 
 
Model A.5* vs. model A.5 – LMR 
When SMD is 2, the proportion in model A.5* using LMR increases from .022 to 
.729 when the sample size increases from 50 to 1000 and is .70 when n≥ 960. 
When SMD is 3, the sample size needed to achieve a .70, .80 or .90 proportion in 
model A.5* is 185, 250 or 375, respectively, which n is 125, 130 or 80 less, 
respectively, than in model A.5 and 15, 60 or 55 more, respectively than in model 
A.8. When SMD is 4, the sample size needed to achieve a .70, .80 or .90 
proportion is 85, 90 or 110, respectively, which n is 10, 35 or 45 less, respectively, 
than in model A.5 and 15, 5 or 15 more, respectively than in model A.8. When 
SMD is 5, the proportion in model A.5* is .800 when n = 50, which proportion is 



 67

.125 greater than in model A.5 and .082 lower than in model A.8.  The sample size 
needed to achieve a .90 proportion in model A.5* is 75, which n is 15 less than in 
model A.5 and 15 more than in model A.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11. The proportions of 10000 replications concluding to the right two-
latent-class solution instead of to the wrong one-class solution using the VLMR 
test for models A.5*, A.5 and A.8 as a function of sample size, SMD=3. 
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achieve a .70, .80 or .90 proportion is 50, 70 or 85, respectively, which n is at least 
0, 20 or 35 more, respectively, than in model A.8. 
 
Model C.8 vs. model A.8 - LMR 
When using LMR, the proportions in model C.8 are clearly lower than in model 
A.8. When SMD is 2, the proportion in model C.8 increases from .027 to .476 
when the sample size increases from 50 to 1000 and, when n = 1000, the 
proportion is .334 lower in model C.8 than in model A.8. When SMD is 3, the 
sample size needed to achieve a .70, .80 or .90 proportion in model C.8, is 315, 
385 or 455, respectively, which n is 145, 195 or 135 more, respectively, than in 
model A.8. When SMD is 4, the sample size needed to achieve a .70, .80 or .90 
proportion, is 100, 135 or 170, respectively, which n is 30, 50 or 75 more, 
respectively, than in model A.8. When SMD is 5, the sample size needed to 
achieve a .70, .80 or .90 proportion, is 60, 75 or 90, respectively, which n is at least 
10, 15 or 30 more, respectively, than in model A.8. 
 
Model B.8 vs. model A.8 - VLMR 
When SMD is 2, the sample size needed to achieve a .70 or .80 proportion in 
model B.8 using VLMR, is 800 or 945, respectively, which n is 20 or at least 55 
less, respectively, than in model A.8. When n = 1000, the proportion in model B.8 
is .836, which is .010 greater than in model A.8. When SMD is 3, the sample size 
needed to achieve a .70, .80 or .90 proportion in model B.8 is 170, 195 or 335, 
respectively, which n is 10, 10 or 35 more, respectively, than in model A.8. When 
SMD is 4, the sample size needed to achieve a .70, .80 or .90 proportion is 75, 90 
or 105, respectively, which n is 5, 10 or 10 more, respectively, than in model A.8. 
When SMD is 5, the proportion in model B.8 is . 835 which is .069 lower than in 
model A.8. The sample size needed to achieve a .90 proportion in model B.8 is 70, 
which is at least 20 greater than in model A.8. 
 
Model B.8 vs. model A.8 - LMR 
When SMD is 2, the sample size needed to achieve a .70 or .80 proportion in 
model B.8 using LMR, is 825 or 970, respectively, which n is 20 or 15 less, 
respectively, than in model A.8. When n = 1000, the proportion in model B.8 is 
.822, which is .012 greater than in model A.8. When SMD is 3, the sample size 
needed to achieve a .70, .80 or .90 proportion in model B.8 is 180, 210 or 360, 
respectively, which n is 10, 20 or 40 more, respectively, than in model A.8. When 
SMD is 4, the sample size needed to achieve a .70, .80 or .90 proportion is 80, 90 
or 120, respectively, which n is 10, 5 or 25 more, respectively, than in model A.8. 
When SMD is 5, the proportion in model B.8, is .802 which is .080 lower than in 
model A.8. The sample size needed to achieve a .90 proportion in model B.8, is 75 
which is 15 more than in model A.8. 
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Model B.5 vs. model A.5 -  VLMR 
The proportions in model B.5 using VLMR are clearly lower than in model A.5 
when SMD≥3. When SMD is 2, the proportion in model B.5 increases from .031 
to .545 when the sample size increases from 50 to 1000 and, when n = 1000, the 
proportion in model B.5 is .020 greater than in model A.5. When SMD is 3, the 
sample size needed to achieve a .70, .80 or .90 proportion in model B.5 is 355, 420 
or 485, respectively, which n is 65, 50 or 40 more, respectively, than in model A.5. 
When SMD is 4, the sample size needed to achieve a .70, .80 or .90 proportion is 
140, 165 or 190, respectively, which n is 50, 50 or 30 more, respectively, than in 
model A.5. When SMD is 5, the sample size needed to achieve a .70, .80 or .90 
proportion in model B.5 is 75, 90 or 100, respectively, which n is at least 25, 25 or 
15 more, respectively, than in model A.5. 
 
Model B.5 vs. model A.5 - LMR 
The proportions in model B.5 using LMR are clearly lower than in model A.5 
when SMD≥3. When SMD is 2, the proportion in model B.5 increases from .024 
to .521 when the sample size increases from 50 to 1000 and, when n = 1000, the 
proportion in model B.5 is .022 greater than in model A.5. When SMD is 3, the 
sample size needed to achieve a .70, .80 or .90 proportion in model B.5 is 370, 430 
or 495, respectively, which n is 60, 50 or 40 more, respectively, than in model A.5. 
When SMD is 4, the sample size needed to achieve a .70, .80 or .90 proportion is 
145, 170 or 195, respectively, which n is 50, 45 or 30 more, respectively, than in 
model A.5. When SMD is 5, the sample size needed to achieve .70, .80 or .90 
proportion in model B.5 is 80, 90 or 115, respectively, which n is 25, 20 or 25 
more, respectively, than in model A.5. 
 
 
6.2.1.3. Evaluating information criteria to produce wrong two-class solution 
versus right one-class solution 
 
To shed light on the results concerning information criteria presented above, 
penalties of different information criteria are next compared. This examination is 
done because the only difference between criteria is that they have different 
penalty functions. Deciding the number of classes is based on the smaller value of 
information criteria between two competitive, i.e. k and k+1 class, models. This 
comparison can be expressed as a difference between information criteria in the 
two models.  
 

[ ] [ ])P2(P kkkkkk LLAICAIC −+−−=− +++ 111 )log(log2 , 

[ ] [ ])Plog(n)(P kkkkkk LLBICBIC −+−−=− +++ 111 )log(log2 , 
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where 
 

1P +k and kP  are freely estimated parameters in k+1 and k class models, 
respectively. 

 
As can be seen from the equations presented above, the common -2 times 
likelihood ratio term [ ])log(log2 1 kk LL −− +  is compared to the respective penalty 
(marked with bold), which is specific to each of the information criteria. The 
values of these penalties of information criteria are presented in Table 6.6 below. 
If the abscissa of the common term is greater than the value of the specific term, 
the conclusion is that the data has k+1 latent classes; otherwise the data has k 
classes.  
 
To compare the sufficiency of penalties, the values respecting a certain cumulative 
percentage for empirical distribution of )log(log2 12 LL −  are estimated using one 
class data.  The data is generated by using model A.8 with class 1 parameter values 
and analyzed by fitting a two-class model using 500 starting values to find the  
maximum likelihood. This process is replicated 10000 times. The model 
estimation in each of the replications is completed without any convergence 
problem. The results of these simulations for )log(log2 12 LL −  representing a 
certain percentage of cumulative distribution are presented in Table 6.6.  
 
 
Table 6.6. The penalties of AIC, BIC and aBIC and values of )log(log2 12 LL −  
representing 70, 80, 90, 95, 99 or 99.9 percentages of cumulative distribution when 
using data based on model A.8 with class_1 parameter values.  
 

 Penalties Cumulative percentages and respective values for 
)log(log2 12 LL −  

n AIC BIC aBIC 70 % 80 % 90 % 95 % 99 % 99.9 % 
50 6 11.74 2.32 7.30 8.47 10.40 12.35 15.98 21.98 
100 6 13.82 4.34 6.63 7.79 9.60 11.38 15.27 20.30 
200 6 15.90 6.39 6.28 7.44 9.22 10.79 14.57 20.91 
500 6 18.64 9.12 6.10 7.17 8.85 10.59 14.25 18.34 
1000 6 20.72 11.20 6.04 7.06 8.79 10.45 14.14 19.47 
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As can be seen from Table 6.6, 95 percent of )log(log2 12 LL − values are lower 
than 12.35, 11.38, 10.79, 10.59 or 10.45 when n = 50, 100, 200, 500 or 1000, 
respectively. These critical values are comparable to the .05 type I error rate and 
are 1.74 - 2.06 times larger than penalty values of AIC, and 0.50 – 1.05 times the 
penalty values of BIC. The penalty value of aBIC is small when n = 50, 100 or 200 
but is slightly lower when n = 500, and slightly greater when n = 1000, than the 95 
% cumulative value of  )log(log2 12 LL − . The results indicate that the penalty 
value of AIC is small, too often producing the wrong two-class solutions, whereas 
the penalty value of BIC is high producing lower than 0.1 percent wrong two-class 
solutions, when n = 500 or 1000. The penalty of aBIC is very small with small 
sample sizes, but increases and is useful when the sample size is 500-1000.  
 
The results for AIC, BIC and aBIC, as well as for the VLMR and LMR tests with 
.05 nominal level, using above data, in which the proportions of the wrong two-
class solutions instead of the right one-class solutions are calculated for over 
10000 replications, are presented in Table 6.7. Also, the proportions using the 
ordinary likelihood ratio test (OLRT) are presented. 
 
 
Table 6.7. The proportions of 10000 replications concluding to the wrong two-
class solution instead of to the right one-class solution in model A.8 using class 1 
parameter values. 
 

n AIC BIC aBIC VLMR LMR OLRT 
50 .451 .063 .938 .071 .057 .253 
100 .370 .020 .604 .102 .085 .198 
200 .328 .007 .288 .135 .116 .173 
500 .310 .001 .089 .167 .147 .152 
1000 .303 .0004 .037 .190 .170 .148 

 
 
Using AIC, the proportions are very high and the wrong two-class solution is 
produced in 30.3 - 45.1 percentages of cases. Using BIC, the wrong two-class 
solution instead of the right one-class solution is produced in 6.3 percentage of 
replications when n = 50 and this percentage decreases to 2.0 or 0.7 when the 
sample size increases to 100 or 200, respectively. When the sample size is 500 or 
1000, the proportions are very small, 0.1 or 0.04 percentages, respectively.  
 
The proportions using aBIC are reverse for BIC: the proportion is high when the 
sample size is small and it decreases from .938 to .288 when the sample size 
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increases from 50 to 200. When the sample size is 500 or 1000, the proportions 
using aBIC are .089 or .037, respectively.  
 
As can be seen from the results, the VLMR and LMR tests produce too often the 
wrong two-class solutions. The proportion is high .15 - .19 when n = 500-1000. 
The results mean that Type I error rates for these tests are high, even higher than 
when using the OLRT. 
 
 
6.2.1.4. Summary of the results comparing two-class solution versus one-class 
solution 
 
When combining the results of 6.2.1.1 and 6.2.1.2 concerning the right two-class 
solutions and respecting the evaluation of information criteria on section 6.2.1.3, 
the following conclusions can be made. 
 
In all, the smallest sample sizes needed to achieve the .70, .80 or .90 proportion 
line when concluding to the right two-class solution instead of to the one-class 
solution is found for AIC and aBIC. These results are clearly seen from Tables 6.4 
and 6.5 and Figures 6.12 and 6.13. Unfortunately, AIC with all sample sizes and 
aBIC with n ≤  200 also produce a very high proportion concluding to the wrong 
two-class solution instead of to the right one-class solution (see Table 6.7). These 
results prevent the use of AIC in all, and also the use of aBIC when the sample size 
is small, n ≤  200.  
 
In all, the highest samples sizes needed to achieve the .70, .80 or .90 proportion 
line when concluding to the right two-class solution instead of the one-class 
solution is found for BIC when SMD≤3 and for VLMR when SMD is 4 or 5. 
These results are clearly seen from Tables 6.4 and 6.5 and Figures 6.12 and 6.13. 
When taking the results concerning the proportions concluding to the wrong two-
class solution instead of the right one-class solution into account, it is shown that, 
when n = 50, BIC, VLMR and LMR are useful criteria to decide the number of 
latent classes. With this sample size, the .70 proportion line is achieved when SMD 
is 4 or 5, in which cases BIC needed a smaller sample size than VLMR or LMR. 
When the sample size is 100 or greater, the proportions of the wrong two-class 
solutions increase when using the VLMR and LMR tests, preventing their reliable 
use. In turn, when using BIC, the proportion decreases and is very small, when n is 
greater than 200. The results suggest that BIC is more useful than the VLMR or 
LMR tests when making decisions between the right two-class solutions and the 
wrong one-class solution.  
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As a summary, to conclude to the right two-class solution instead of the wrong 
one-class solution, BIC is reliable and most useful in all models A.8 – C.8 and 
with all sample sizes compared with AIC, VLMR or LMR. When the sample size 
is large, say over 500, instead of the BIC decision can be based on aBIC, which is 
more effective in finding the right two-class solution instead of the one-class 
solution. When n = 500, the proportion using aBIC to conclude to the wrong two-
class solution is still .089, but decreases to .05 when the sample size is 
approximately greater than 875. 
 
The above conclusion and results presented mean that, when SMD is 1, it is not 
possible to identify the right two-class solution instead of the wrong one-class 
solutions using AIC, BIC, aBIC, VLMR or LMR in any of the models A.8 – C.8.   
 
When SMD is 2 , it is possible to identify the true two latent classes if the sample 
size is large n = 500-1000 by using AIC, aBIC, VLMR or LMR, but only aBIC is 
useful because it has acceptably low Type I error rates. When using aBIC, the 
proportion line is greater than .70 only in models A.8 and B.8 and the sample size 
needed for these models to achieve a .70, .80 or .90 proportion is 600, 800-840 or 
greater than 1000, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.12. The sample size needed to achieve a .70, .80 or .90 proportion line 
concluding to the right two-class solution instead of to the wrong one-class 
solution using AIC, BIC, aBIC, VLMR and LMR in models A.8 – C.8, SMD = 3. 
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Figure 6.13. The sample size needed to achieve a .70, .80 or .90 proportion line 
concluding to the right two-class solution instead of to the wrong one-class 
solution using AIC, BIC, aBIC, VLMR and LMR in models A.8 – C.8, SMD = 4. 
 
 
The sample size needed to achieve .70, .80 or .90 proportions when using AIC, 
BIC aBIC, VLMR and LMR are presented in the Figures 6.12 and 6.13 for all 
models A.8 – C.8 when SMD is 3 or 4. As can be seen from the figures, the 
highest sample sizes needed to achieve a .70, .80 or .90 proportion is in model B.5. 
After that comes the lines for model C.8 and A.5, which are very close to each 
other. The lowest sample size needed to achieve a .70, .80 or .90 proportion 
appears in model A.8 and, with a slightly larger sample size, in model B.8 using 
any of the criteria or tests.  In model A.5*, the sample size needed to achieve a .70, 
.80 or .90 proportion is clearly lower than in model A.5, and clearly greater than in 
model A.8 using BIC. It is noteworthy that additional measurements fully 
compensate with the decrease of the reliability of observed variables when using 
the VLMR or LMR tests, as can be seen from Figures 6.12 and 6.13. 
 
When SMD is 3, it is possible to identify the right two-latent-classes with small 
sample sizes, for which purpose BIC is most appropriate. When using BIC, the 
proportion line .70 is achieved in models A.8, A.5* or B.8  when the sample size is 
170, 290 or 190, respectively, in models A.5 or C.8 when the sample size is 365 or 
375, respectively, and in model B.5 when sample size is 450. When the sample 
size is 500, the proportion line for other models than model B.5 are greater than 
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.90 if using BIC and also in model B.5 if using aBIC. For note, when using LMR, 
the sample sizes needed are equal in model A.8 and in model B.8, whereas in 
model A.5* the sample size needed is only 185.  
 
When SMD is 4, the .70 proportion line is achieved with smallest sample size (n = 
50) using BIC in models A.8 and B.8. For model A.5*, A.5, C.8 or B.5 the sample 
size needed to achieve the .70 proportion line is 70, 75, 80 or 120, respectively. As 
can be seen from Figure 6.13, when the sample size is 120, the proportion line of 
.70 is achieved in all models, and the .80 proportion line in all other models than 
model B.8, and the .90 proportion line in A.8, B.8 and A.5*. These results describe 
the strong increase in proportion when the sample size increases. When SMD is 5, 
the proportion using BIC is greater than .90 in all models when n≥50.  
 
 
6.2.2. Results of the wrong three-class solution versus the right two-
class solution for model A.8 
 
 
This section presents the results concerning the proportion of decisions concluding 
to the wrong three-class solution instead of the right two-class solution, using 
model A.8. In 10000 replications, 10 random sets of starting values are produced 
by default by the program. These 10 sets of starting values are used in the 
maximum likelihood optimization with 10 iterations for each set of starting values. 
The ending values of two sets with the highest likelihoods are used as the starting 
values in the final stage of optimization, which uses the default setting for mixture 
analysis. 
 
 
6.2.2.1. Results of AIC, BIC and aBIC 
 
In the following Table 6.8., the proportions of wrong decisions concluding to three 
classes instead of to the right two classes is presented for model A.8.  When using 
AIC, the proportion seems to be rather stable and is between .350 - .178. The 
proportion slightly decreases when SMD or the sample size increases, but when 
SMD is 5 and the sample size is 1000, the proportion is still quite high, .178. 
 
When using BIC, the proportions are quite stable with respect to n and SMD, and 
the values of proportions are very small, between .001 and .066. When the sample 
size is 50 or 100, the proportions are between .053 and .063 or between .019 - 
.033, respectively. When SMD is 3, 4 or 5, the proportions are .034, .024 or .012, 
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respectively, when the sample size is 200 and decrease to .030, .017 or .007 when 
the sample size increases to 1000. 
 
When using aBIC, the proportions are between .173 and .785 when the sample 
sizes are between 50 - 200, these proportions seem to be too large for making 
appropriate conclusions about the right number of latent classes. In turn, when the 
sample size is 500 or 1000, the proportions are smaller being between .060 -.116 
or between .027 - .075, respectively, depending on the model. 
 
It seems that AIC, with all SMDs and ns, and aBIC, with all SMDs when n is 
between 50 – 200, produce too often the wrong three-class solution. When using 
BIC, the proportions are very small and, especially, when the sample size is small, 
the proportions are near to .01 -.05 ranges, which are more suitable values for 
Type I error rates. Consequently, BIC seems to be the most appropriate index to 
evaluate the wrong three-class solution against the right two-class solution. 
 
 
6.2.2.2. Results of VLMR, LMR, BLRT and OLRT 
 
When using the VLMR or LMR test, the proportion of wrong decisions concluding 
to three classes instead of to the right two classes increases when the sample size 
or SMD increase (see Table 6.8). The proportion is lower than nominal .05 level 
with small sample sizes n = 50 or 100,  and is higher than nominal .05 level when 

2≥SMD and the sample size is 500 or 1000.  
 
When using BLRT, the proportion of wrong decisions concluding to three classes 
is lower than the nominal .05 level when SMD is 1. When SMD is 2 or 3, the 
proportion increases when sample size increases, and is .036 or .021 higher, 
respectively, than nominal .05 level when the sample size is 1000. When SMD is 4 
or 5, the proportions are very close to nominal level. 
 
For the VLMR, LMR, BLRT and LRT tests, the expected proportion in nominal 
.05 level, is .05. The VLMR and LMR tests produce low proportions when the 
sample size is small. When SMD is 3-5 and the sample size 500-1000, they 
produce high proportions, whereas BLRT produces nearly .05 proportions.  
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Table 6.8. The proportions of wrong decisions concluding to three classes instead 
of two in model A.8 when using AIC, BIC, aBIC information criteria and the 
VLMR, LMR, BLRT and OLRT (ordinary likelihood ratio test) tests. 
 

n SMD AIC BIC aBIC VLMR LMR BLRT OLRT 
50 1 .350 .061 .785 .022 .017 .032 .209 
100 1 .295 .019 .470 .026 .020 .033 .169 
200 1 .275 .007 .243 .034 .029 .032 .154 
500 1 .249 .002 .084 .041 .034 .031 .133 
1000 1 .236 .001 .039 .050 .044 .033 .125 
50 2 .345 .054 .780 .021 .016 .028 .203 
100 2 .296 .020 .474 .027 .021 .033 .170 
200 2 .277 .009 .246 .041 .034 .034 .151 
500 2 .279 .009 .116 .068 .057 .065 .168 
1000 2 .259 .023 .075 .092 .083 .086 .157 
50 3 .334 .058 .772 .026 .020 .037 .203 
100 3 .290 .033 .457 .042 .035 .054 .174 
200 3 .255 .034 .230 .067 .060 .077 .158 
500 3 .226 .033 .087 .083 .076 .072 .130 
1000 3 .198 .030 .051 .085  .078  .071 .111 
50 4 .308 .066 .728 .035 .027 .051 .188 
100 4 .248 .032 .404 .048 .043 .055 .139 
200 4 .220 .024 .194 .065 .058 .058 .123 
500 4 .197 .017 .071 .077 .069 .056 .106 
1000 4 .186 .017 .038 .082 .074 .058 .101 
50 5 .274 .053 .695 .039 .030 .052 .157 
100 5 .217 .020 .377 .049 .041 .043 .123 
200 5 .199 .012 .173 .064 .056 .046 .103 
500 5 .180 .009 .060 .077 .067 .046 .094 
1000 5 .178 .007 .027 .084 .075 .043 .092 

 
 
 
6.2.2.3. The effect of a larger number of starting values  
 
The former results in Table 6.8 were calculated by using 10 sets of starting values, 
which may not be sufficient to find a highest value of maximum likelihood. 
Therefore, the same data is analyzed using 500 starting values. The maximum 
likelihood optimization is done with 20 iterations for each starting value set. The 
ending values of 20 sets with the highest likelihoods are used as starting values in 
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the final stage of optimization, which uses default settings of iterations for mixture 
analysis. The current results with former results are presented in Table 6.9. 
 
The results show that, when using AIC and adjusted BIC, overly high proportions 
of wrong three-class solutions increases further when starting values increase from 
10 to 500, except when the sample size is high n = 500 – 1000, in which case the 
proportion using aBIC decreases. When using BIC, the proportion decreases and 
this decrease is even stronger when the sample size increases. When the sample 
size or SMD increases, the proportion decreases, even to .001. For the VLMR, 
LMR and BLRT tests, the expected proportion in nominal .05 level is .05. When 
using the VLMR and LMR tests, the proportions increase strongly when the 
sample size is large n = 200 - 1000, producing too high Type I error rate. The 
VLMR and LMR tests produce .09 - .19 proportions when SMD is 3-5 and the 
sample size 500-1000. When using BLRT, the proportions change slightly and 
mostly toward the nominal .05 level, the proportions being between .050 -.061.  
 
 
Table 6.9. The proportions of wrong decisions concluding to three class instead of 
two class in model A.8 when using AIC, BIC, aBIC, VLMR, LMR, BLRT and 
OLRT (ordinary likelihood ratio test). 
 

n SMD AIC BIC aBIC VLMR LMR BLRT OLRT 
50 2 .345 

.478* 
.054 
.069* 

.780 

.939* 
.021 
.038* 

.016 

.029* 
.028 
.044* 

.203 

.280* 
50 3 .334 

.464* 
.058 
.066* 

.772 

.933* 
.026 
.045* 

.020 

.034* 
.037 
.050* 

.203 

.272* 
100 3 .290 

.373* 
.033 
.016* 

.457 

.602* 
.042 
.066* 

.035 

.054* 
.054 
.054* 

.174 

.201* 
200 3 .255 

.318* 
.034 
.005* 

.230 

.279* 
.067 
.106* 

.060 

.091* 
.077 
.060* 

.158 

.171* 
500 3 .226 

.284* 
.033 
.002* 

.087 

.080* 
.083 
.145* 

.076 

.129* 
.072 
.059* 

.130 

.141* 
1000 3 .198 

.270* 
.030 
.001* 

.051 

.032* 
.085  
.174* 

.078  

.157* 
.071 
.061* 

.111 

.128* 
50 4 .308 

.426* 
.066 
.059* 

.728 

.909* 
.035 
.053* 

.027 

.039* 
.051 
.054* 

.188 

.244* 
1000 4 .186 

.270* 
.017 
.001* 

.038 

.032* 
.082 
.190* 

.074 

.172* 
.058 
.061* 

.101 

.134* 
* Same run with settings: STARTS 500 20, STITERATIONS=20  
(It takes 3 - 9 days to calculate each of these results using powerful dual 
processing) 
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6.2.2.4. Evaluating the information criteria to produce the wrong three-class 
solution versus the right two-class solution  
 
To compare the sufficiency of penalties, an empirical distribution of 

)log(log2 23 LL −  is shown in Table 6.10 for model A.8 with SMD = 3 and the 
sample sizes n = 50, 100, 200, 500 or 1000. These results are based on the same 
data and 500 sets of starting values as results in Table 6.9. As can be seen from the 
Table 6.10, the cumulative distribution of 10000 replications for )log(log2 23 LL −  
values lower than 12.42, 11.36, 10.93, 10.35 and 10.03, is 95 percentage when the 
sample size is n = 50, 100, 200, 500 or 1000, respectively. These critical values are 
comparable with the .05 type I error rate and are 1.67 – 2.07 times larger than the 
penalty value of AIC, and 1.06 – 0.49 times larger than those of BIC. 
  
 
Table 6.10.  The empirical two times log-likelihood difference distribution and the 
penalties of information criteria in model A.8. 
 

 
   

   Penalties 

Cumulative percentages and respective critical 
value for )log(log2 23 LL −  

n SMD AIC BIC aBIC 70 % 80 % 90 % 95 % 99 % 99.9 
% 

50 2 6 11.74 2.32 7.59 8.89 10.77 12.49 16.49 23.49 
50 3 6 11.74 2.32 7.52 8.71 10.70 12.42 16.75 23.03 
100 3 6 13.82 4.34 6.67 7.83 9.59 11.36 15.00 20.09 
200 3 6 15.90 6.39 6.17 7.36 9.14 10.93 14.43 20.50 
500 3 6 18.64 9.12 5.86 6.92 8.57 10.35 13.96 19.21 
1000 3 6 20.72 11.20 5.75 6.77 8.52 10.03 14.18 19.75 
50 4 6 11.74 2.32 7.20 8.38 10.29 12.10 15.90 20.95 
1000 4 6 20.72 11.20 5.72 6.75 8.51 10.10 13.70 19.08 

 
 
The penalty value of aBIC is small when n = 50, 100 or 200, but is slightly lower 
when n = 500 and slightly greater when n = 1000 than 95 % cumulative value of  

)log(log2 12 LL − . These results indicate that the penalty value of AIC is small, 
producing the wrong three-class solutions in over 20 percent of cases, whereas the 
penalty value of BIC is high, producing in only 1- 5 percent of cases the wrong 
three-class solutions when the sample size is small n = 50 or 100 and in 0.1 - 1 
percent of cases when n = 200, 500 or 1000. The penalty of adjusted BIC is very 
small with small sample sizes but increases when n = 500, producing in slightly 
over than 5 percent of cases the wrong three-class solutions and, when n = 1000, 
produces in slightly less than 5 percent of cases the wrong three-class solutions.  
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6.3. Results of evaluation of parameter estimation  
 
 
In this section the results of a simulation study concerning the effect of SMD and 
sample size, the effect of reliability, the effect of additional measurements, and the 
effect of model construct on parameter estimation in LGMM are described. The 
results concerning the evaluation of parameter estimation using the MLR estimator 
is presented using the next four criteria (see section 5.6)  
 

1) MSE  - mean square error 

2) PB - the proportion of bias in MSE  

3) RB - the bias of estimated standard error 

4) 95 % coverage of parameter estimates 
 
The results for the four criteria mentioned above are presented in the following 
sections 6.3.1-6.3.4. 
 
 
6.3.1. Results of MSE 
 
 
The results of the MSE for )1(

0α  and )2(
0α  are given in section 6.3.1.1, for )1(

1α  and 
)2(

1α in section 6.3.1.2, for 00ψ , 11ψ  and 01ψ  in section 6.3.1.3, and for 
4321 and,, θθθθ  in section 6.3.1.4. Section 6.3.1.5 summarizes the results of the 

MSE for all parameters. 
 
In each section, the results of MSE consist of four parts. In the first part, the results 
of MSE in model A.8 are presented. The second part presents the effect of 
reliability of observed variables on the MSE, comparing model A.5 with model 
A.8. The third part presents the effect of additional measurement points on the 
MSE, comparing model A.5* with model A.5. Finally, the fourth part outlines the 
effect of model construct comparing models C.8 with model A.8, model B.8 with 
model A.8, and model B.5 with model A.5.  
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6.3.1.1. Results of MSE for intercept parameters )1(
0α and )2(

0α   
 
Effect of sample size and SMD  
 
The MSE of )1(

0α  and )2(
0α  parameter estimation are presented in Table 6.11. The 

main results suggest that these MSEs decrease when sample size or SMD 
increases. Because MLR estimator is consistent, the MSE decreases in all models 
with all SMDs as supposed.  One interesting result is the large effect of SMD on 
the MSE. When sample size is 1000 and SMD is 1, the MSE is 79-89 larger than 
when SMD is 5.  
 
When SMD is 1, the MSE in model A.8 slowly decreases when the sample size 
increases from n = 50 to n = 1000. The MSE of )2(

0α decreases by only 30 percent 
when the sample size grows from 50 to 1000, as can be estimated from Figure 
6.14. The MSE of )1(

0α  decreases by one third when the sample size increases from 
about 50 to 180, from 200 to 500, or from 420 to 1000. When SMD is 2, the MSE 
of )1(

0α  and )2(
0α  in model A.8 clearly decreases as can be seen from Figure 6.14.  

 
When SMD is 2, the MSE of )2(

0α  decreases by one third when the sample size 
increases from about 50 to 80, from 100 to 180, from 200 to 330, or from 500 to 
780. For the )1(

0α  MSE decreases by one third when the sample size increases from 
about 50 to 80, from 100 to 180, from 200 to 400, or from 500 to 800.  
 
When SMD is 3, 4 or 5, both the MSE of )2(

0α and the MSE of )1(
0α  decrease by 

half in model A.8 when the sample size increases from about n = 50 to 90-100, 
from n = 100 to 180-200, from n = 200 to 400-450, or from n = 500 to 1000 (see 
Figure 6.15).   
 
The effect of SMD, comparing the MSE with SMD 1, 2, 3 or 4 on the MSE with 
SMD 5 with equal sample sizes, on the MSE in model A.8 is strong. When n = 50, 
the MSE of )1(

0α  is 11.8, 4.8, 2.1 or 1.2 times larger when SMD is 1, 2, 3 or 4, 
respectively, than the MSE of )1(

0α  when SMD is 5. When SMD is 1, these 
proportional differences increase monotonically to 78.7–fold when the sample size 
increases to n = 1000. When SMD is 2, these proportional differences increase to 
6.8 –fold when the sample size increases to n = 200 and decrease to 5.5 when the 
sample size increases to n = 1000. When SMD is 3 or 4, the proportional 
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differences decrease monotonically to 1.7 or 1.2 when the sample size increases to 
n = 1000. 
 
 
Table 6.11. The MSE of )2(

0
)1(

0 andαα  parameter estimation in models A.8., A.5, 
A.5*, B.8, B.5 and C.8.  
 

Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 
)1(

0α
 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 
50 1 .4687 .4989 .7410 .7307 .7095 .6642 .4687 .4989 .7410 .7307 .5417 .5159 

100 1 .3838 .4722 .6192 .6915 .6303 .6780 .3838 .4722 .6192 .6915 .4502 .4895 

200 1 .2963 .4510 .5332 .6602 .5519 .6449 .2963 .4510 .5332 .6602 .3812 .4614 

500 1 .1973 .3929 .3769 .5828 .3879 .5995 .1973 .3929 .3769 .5828 .2788 .4168 

1000 1 .1495 .3646 .2748 .5667 .3221 .5601 .1495 .3646 .2748 .5667 .2073 .3856 

50 2 .1945 .4406 .3527 .6745 .3457 .6658 .1608 .3567 .2824 .5947 .2465 .4731 

100 2 .1102 .3029 .2123 .5473 .2259 .5342 .0988 .2635 .2011 .4697 .1611 .3780 

200 2 .0650 .1875 .1367 .3904 .1176 .3510 .0558 .1618 .1248 .3481 .0930 .2828 

500 2 .0232 .0528 .0592 .1833 .0446 .1214 .0184 .0595 .0502 .1695 .0407 .1201 

1000 2 .0105 .0205 .0272 .0791 .0175 .0327 .0072 .0218 .0200 .0766 .0207 .0517 

50 3 .0838 .2243 .1648 .4349 .1326 .3824 .0715 .1902 .1530 .4086 .1141 .3172 

100 3 .0381 .0968 .0802 .2279 .0599 .1519 .0316 .0857 .0777 .2290 .0571 .1618 

200 3 .0175 .0413 .0366 .0897 .0260 .0608 .0138 .0359 .0328 .1018 .0262 .0655 

500 3 .0064 .0152 .0124 .0291 .0094 .0212 .0050 .0125 .0106 .0306 .0090 .0205 

1000 3 .0032 .0074 .0061 .0138 .0046 .0105 .0025 .0061 .0049 .0138 .0044 .0099 

50 4 .0486 .1185 .0891 .2240 .0694 .1724 .0435 .1020 .0881 .2237 .0618 .1628 

100 4 .0228 .0532 .0405 .0960 .0321 .0746 .0201 .0459 .0380 .1006 .0280 .0691 

200 4 .0111 .0253 .0190 .0442 .0155 .0357 .0099 .0215 .0173 .0424 .0133 .0313 

500 4 .0043 .0099 .0073 .0169 .0060 .0136 .0012 .0084 .0065 .0155 .0051 .0120 

1000 4 .0022 .0049 .0037 .0083 .0030 .0068 .0020 .0042 .0033 .0077 .0026 .0060 

50 5 .0399 .0887 .0653 .1488 .0540 .1224 .0378 .0806 .0633 .1476 .0448 .1043 

100 5 .0195 .0425 .0309 .0701 .0264 .0588 .0184 .0389 .0293 .0671 .0213 .0482 

200 5 .0096 .0207 .0152 .0337 .0130 .0286 .0091 .0189 .0144 .0314 .0105 .0234 

500 5 .0038 .0081 .0059 .0131 .0051 .0110 .0036 .0075 .0056 .0122 .0041 .0091 

1000 5 .0019 .0041 .0030 .0065 .0026 .0055 .0018 .0038 .0029 .0061 .0021 .0046 

 
 
 
 
 



 83

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14. The MSE of )1(

0α  and )2(
0α  parameter estimation in model A.8, SMD = 

1 or 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.15. The MSE of )1(

0α  and )2(
0α  parameter estimation in model A.8, SMD = 

3, 4 or 5. 
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When n = 50, the MSE of )2(
0α  is 5.62, 4.97, 2.53 or 1.34 times larger in the case 

where SMD is 1, 2, 3 or 4, respectively, than in the case where SMD is 5. When 
SMD is 1, these proportional differences increase monotonically to 88.9–fold 
when the sample size increases to n = 1000. When SMD is 2, these proportional 
differences increase to 9.1 –fold when the sample size increases to n = 200 and 
decrease then to 5.0 when the sample size increases to n = 1000. When SMD is 3 
or 4, these proportional differences decrease monotonically to 1.8 or  to 1.2 when 
the sample size increases to n = 1000. 
 
The results presented above concerning the MSE of )1(

0α  and )2(
0α  parameter 

estimation means that the convergence is slower when SMD is 1 or 2 and is faster 
when SMD is 3 or 4 when compared to the situation when SMD is 5. 
 
The effect of reliability on the MSE of estimation of intercept parameters )1(

0α and 
)2(

0α  
 
The effect of reliability on the MSE is examined by comparing the MSE of model 
A.5 with the MSE of model A.8 (see Table 6.11). In addition to the Figures 6.16 
and 6.17, this effect is demonstrated by calculating the proportions of MSEs, that 
is, by dividing the MSE of model A.5 by the MSE of model A.8.  The increased or 
decreased proportion describes how the convergence behaves as a function of 
sample size in the case of lower reliability than when compared with the case of 
higher reliability. The decreased proportion tells that the convergence is more 
powerful in the case of lower reliability, than in the case of higher reliability. The 
increased proportion tells the conversed pattern of results.  
 
When the reliability of observed variables decreases from .80 to .50 (model A.8 vs. 
model A.5), the MSE of )1(

0α and )2(
0α strongly increase (see Table 6.11). The 

largest proportions in the MSE are seen when SMD is 2 or 3. When SMD is 2, the 
largest proportion for )1(

0α and )2(
0α  parameters are 2.6 or 3.9, respectively. When 

SMD is 3 and n = 200, the MSE in model A.5, is 2.1 – 2.2 times larger than in 
model A.8. When SMD is 5, the MSE in model A.5, is 1.6 times larger than in 
model A.8. These results mean that the sample size has to be two times larger in 
model A.5 than in model A.8, in order to get approximately equal MSE of )1(

0α and 
)2(

0α  . 
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Figure 6.16. The MSE of )1(

0α  parameter estimation in models A.8 and A.5, SMD 
= 2 or 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.17. The MSE of  )2(

0α  parameter estimation in models A.8 and A.5,  SMD 
= 2 or 3. 
 
The pattern of clearly decreasing MSE with different SMD = 2, 3, 4 or 5 is very 
similar to model A.5 and model A.8, as can be seen, for example, from Figures 
6.16 and 6.17. When n = 50, the MSE of )1(

0α  in model A.5, is 1.6, 1.8, 2.0, 1.8 or 
1.6 times larger with SMD = 1, 2, 3, 4 or 5, respectively, than the MSE of )1(

0α  in 
model A.8 (see Table 6.11). When SMD is 1 or 2, these proportions increase 
monotonically to 1.8 or 2.6 –fold when the sample size increases to n = 1000. 
When SMD is 3, these proportions increase to 2.1 –fold when the sample size 
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increases to n = 100, and then decrease to 1.9 when the sample size increases to n 
= 1000. When SMD is 4, these proportions decrease monotonically to 1.7 when the 
sample size increases to n = 1000.  When SMD is 5, the proportion is very stable, 
being 1.6. 
 
When n = 50, the MSE of )2(

0α  in model A.5, is 1.5, 1.5, 1.9, 1.9 or 1.7 times larger 
when SMD is 1, 2, 3, 4 or 5, respectively, than the MSE of )2(

0α  in model A.8. 
When SMD is 1 or 2, these proportions increase monotonically to 1.6 or 3.9 –fold 
when the sample size increases to n = 1000. When SMD is 3, these proportions 
increase to 2.4 –fold when the sample size increases to n = 100 and decrease then 
to 1.9 when the sample size increases to n = 1000. When SMD is 4, these 
proportions decrease monotonically to 1.7 when the sample size increases to n = 
1000.  When SMD is 5, proportion is very stable, being 1.6. 
 
The results mean that the convergence of )1(

0α and )2(
0α parameter estimates is more 

rapid in model A.8 than in model A.5 when SMD is 1 or 2. When SMD is 3, the 
convergence of )1(

0α and )2(
0α parameter estimates is first slower in model A.5 than 

in model A.8, but after the sample size is 100 or larger, it is more rapid in model 
A.5 than in model A.8. When SMD is 4, the convergence for )1(

0α and 
)2(

0α parameter estimates is more rapid in model A.5 than in model A.8. When 
SMD is 5, the convergence is equal and the effect of reliability stabilizes, the MSE 
being 1.6 times larger in model A.5 than in model A.8. 
 
The effect of additional measurements on the MSE of estimation of intercept 
parameters )1(

0α and )2(
0α  

 
The effect of additional measurement points on the MSE is examined by 
comparing the MSE in model A.5* with the MSE in model A.5 (see Table 6.11). 
Additional measurement points can compensate the lack of reliability and, 
therefore, the MSE of  parameters in model A.5* are mainly located between the 
MSE of model A.8 and the MSE of model A.5., as can be seen, for example, from 
Figures 6.18  and 6.19.  
 
The effect of additional measurement points is described in the following 
percentage: 
 

 100*
)5.()8.(
)5.(*)5.(

AMSEAMSE
AMSEAMSEPercentage

−
−

=  (6.1) 
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By this way, the distance of the MSE in A.5* from the MSE in A.5 is described as 
a percentage of the distance of the MSE in A.8 from the MSE in A.5.  This 
percentage is 0 or 100 if the MSE in model A.5* is equal with the MSE in model 
A.5 or equal with the MSE in A.8, respectively.  The percentage can be negative, 
meaning that the MSE in model A.5* is greater than in model A.5 and greater than 
100, meaning that the MSE in model A.5* is lower than in model A.8. 
 
For )1(

0α  parameter, the MSE in model A.5* is almost equal with that in model A.5 
when SMD is 1. When the sample size increases from n = 50 to n = 1000, the 
distance between the MSE in model A.5* and the MSE in model A.5 increases for 

)1(
0α  parameter from 4 % to 58 % when SMD is 2, or from 40 % to 52 % when 

SMD is 3, and decreases from 49 % to 47% when SMD is 4 or from 44 % to 36 % 
when SMD is 5.  
 
For )2(

0α  parameter, the MSE in model A.5* is almost equal to that in model A.5 
when SMD is 1. When the sample size increases from n = 50 to n = 1000, the 
distance between the MSE in model A.5* and the MSE in model A.5 increases for 

)2(
0α  parameter from 4 % to 79 %  when SMD is 2, or from 25 % to 52 % when 

SMD is 3, and decreases when SMD is 4 or 5 from 49 % to 44% or from 44 % to 
42 %, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.18. The MSE of )1(

0α  parameter estimation as a function of sample size in 
models A.8, A.5 and A.5*, SMD = 3. 
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Figure 6.19. The MSE of )2(

0α  parameter estimation as a function of sample size in 
models A.8, A.5 and A.5*, SMD = 3. 
 
 
When SMD is 1, the MSE decreases slowly in model A.5*.  When SMD is 2, the 
MSE decreases for )1(

0α  and )2(
0α  parameters in model A.5* more rapidly than in 

model A.5, and when SMD is 4 or 5, the MSE decreases almost equally in both 
models. 
 
The effect of model construct on the MSE of estimation of intercept parameters 

)1(
0α and )2(

0α  
 
The construct of the model has a clear effect on the MSE of )1(

0α  and )2(
0α  

parameters and is examined through comparing model C.8 with model A.8, model 
B.8 with model A.8, and model B.5 with model A.5 (see Table 6.11).  The effect 
of the construct is described by using the proportion of the MSEs. For example, the 
proportion comparing model B.8 and A.8, is calculated by dividing the MSE of 
model B.8 by the MSE of model A.8.  
 
Model C.8 vs. model A.8 - )1(

0α  
The estimation of parameter )1(

0α  is more effective in model A.8 than in model C.8, 
and when n = 50, the MSE in model C.8 is 1.16, 1.27, 1.36, 1.27 and 1.12 times 
larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, respectively. The 
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proportion increases to 1.97 when SMD is 1 and to 1.97 when SMD is 2 when the 
sample size increases to n = 1000. If SMD is 3, the proportion first increases from 
1.36 to 1.50 when the sample size increases from 50 to 100 and, after that, 
decreases to 1.38 when the sample size increases to 1000.  When SMD is 4, the 
proportion decreases from 1.27 to 1.18 when the sample size increases from n = 50 
to n = 1000. When SMD is 5, the proportion is very stable, being 1.11.  
 
Model B.8 vs. model A.8 - )1(

0α  
For parameter )1(

0α , the estimation is more effective in model B.8 than in model 
A.8. When n = 50, the MSE in model B.8 is 0.83, 0.85, .90 or .95 times the MSE 
in model A.8 when SMD is 2, 3, 4 or 5, respectively. When SMD is 2, the 
proportion of the MSEs first increases to .90 when the sample size increases to 100 
and decreases after that to .69 when the sample size increases to 1000.  When 
SMD is 3, the proportion decreases to .78 when the sample size increases to n = 
1000. When SMD is 4 or 5, the proportion is very stable with different sample 
sizes and ranges between .89 - .91 or between .94 -.95, respectively.   
 
Model B.5 vs. model A.5 - )1(

0α  
Comparing the MSE in model B.5 with the MSE in model A.5, the effect is similar 
as in the case of higher reliability. The estimation of parameter )1(

0α  is more 
effective in model B.5 than in model A.5. When n = 50, the MSE in model B.8 is 
0.80, 0.93, .99 or .97 times the MSE in model A.8 when SMD is 2, 3, 4 or 5, 
respectively. When SMD is 2, the proportion first increases to .95 when the sample 
size increases to n = 100, and decreases after that to .74 when the sample size 
increases to n = 1000. When SMD is 3, the proportion first increases from .97 
when the sample size increases to n = 100, and decreases after that to .80 when the 
sample size increases to n = 1000.  When SMD is 4, the proportion decreases to 
.89 when the sample size increases to n = 1000. When SMD is 5, the proportion is 
very stable and decreases to .95 when the sample size increases from n = 50 to n = 
200 and increases after that to .97 when the sample size increases to n = 1000. 
 
Model C.8 vs. model A.8 - )2(

0α  
The estimation of parameter )2(

0α  is more effective in model A.8 than in model C.8,  
and when the sample size is 50, the MSE in model C.8 is 1.03, 1.07, 1.41, 1.37 and 
1.18 times larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, 
respectively. When SMD is 1, the proportion increases to 1.06 when the sample 
size increases to n = 1000. When SMD is 2, the proportion increases to 2.52 when 
the sample size increases to n = 1000. When SMD is 3, the proportion increases to 
1.67 when the sample size increases to 100 and, after that, decreases to 1.34 when 
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the sample size increases to 1000. When SMD is 4, the proportion decreases to 
1.22 when the sample size increases to n = 1000. When SMD is 5, the proportion 
decreases to 1.13 when the sample size increases to n = 100 and is very stable, 
1.12, when the sample size is greater or equal to n = 200.  
 
Model B.8 vs. model A.8 - )2(

0α  
For parameter )2(

0α , the estimation is more effective in model B.8 than in model 
A.8. When the sample size is 50, the MSE in model B.8 is .81, .85, .86 or .91 times 
the MSE in model A.8 when SMD is 2, 3, 4 or 5, respectively. When SMD is 2, 
the proportion increases to 1.06 when the sample size increases to n = 1000. When 
SMD is 3, 4 or 5, the proportion is very stable with all sample sizes and, when the 
sample size is n = 1000, the proportion is .82, .86 or .93, respectively.  
 
Model B.5 vs. model A.5 - )2(

0α  
For parameter )2(

0α , the estimation is slightly more effective in model B.5 than in 
model A.5 when SMD is 4 or 5 and n = 200, 500 or 1000. The proportion is 
between 0.88-1.14 when comparing the MSE in model B.5 with the MSE in model 
A.5. When SMD is 2, the proportion increases from .88 to .97 when the sample 
size increases from n = 50 to n = 1000. When SMD is 3, the proportion increases 
from .94 to 1.13 when the sample size increases from n = 50 to n = 200, and 
decreases after that to 1.0 when the sample size increases to n = 1000. When SMD 
is 4, the proportion increases from 1 to 1.05 when the sample size increases from n 
= 50 to n = 100 and decreases to .93 when the sample size increases to n = 1000. 
When SMD is 5, the proportion decreases from .99 to.94 when the sample size 
increases from n = 50 to n = 1000.  
 
 
6.3.1.2. Results of MSE for slope parameters )1(

1α  and )2(
1α  

 
The results of the MSE for )1(

1α  and )2(
1α  parameter estimation are presented in 

Table 6.12. The running order is the same as for )1(
0α and )2(

0α parameters in section 
6.3.1.1. The results suggest that the value of MSE depends on both SMD and 
sample size. The effect of sample size with different SMDs is described in Figures 
6.20 and 6.21. 
 
When SMD is 1, the MSE in model A.8 slowly decreases when the sample size 
increases from n = 50 to n = 1000. For )1(

1α  parameter, the MSE decreases by one 
third when the sample size grows from about 50 to 320, from 200 to 750, or from 
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500 to 1000, whereas the MSE of )2(
1α decreases only by 35 percent when the 

sample size grows from 50 to 1000. When SMD is 2, the MSE of )1(
1α  parameter 

decreases by one third when the sample size grows from about 50 to 95, from 100 
to 180, from 200 to 340, or from 500 to 750 (see Figure 6.20).  For )2(

1α  
parameter, the MSE decreases by one third when the sample size grows from about 
50 to 120, from 100 to 200, from 200 to 360, or from 500 to 750.  When SMD is 3, 
4 or 5, both the MSE of )1(

1α  and the MSE of )2(
1α  decrease by half when the 

sample size grows from about 50 to 90-100, from 100 to 180-200, from 200 to 
400-450, or from 500 to 1000 (see figure 6.21), which are similar to results found 
for )1(

0α  and )2(
0α   parameters in model A.8.   

 
The effect of SMD, comparing the MSE with SMD 1, 2, 3 or 4 to the MSE with 
SMD 5 with equal sample sizes, on the MSE in model A.8 is strong. When n = 50, 
the MSE of )1(

1α  is 7.1, 3.9, 1.7 or 1.1 times larger when SMD is 1, 2, 3 or 4, 
respectively, than the MSE of )1(

1α  when SMD is 5. When SMD is 1, these 
proportional differences increase monotonically to 70.3–fold when the sample size 
increases to n = 1000. When SMD is 2, these proportional differences increase to 
6.6 –fold when the sample size increases to n = 200, and decrease then to 4.0 when 
the sample size increases to n = 1000. When SMD is 3 or 4, the proportional 
difference decreases to 1.25 or 1.0, respectively, when the sample size increases to 
n = 1000. 
 
When n = 50, the MSE of )2(

1α  is 5.0, 4.5, 2.1 or 1.2 times larger when SMD is 
1,2,3 or 4, respectively, than the MSE of )2(

1α  when SMD is 5. When SMD is 1, 
these proportional differences increase monotonically to 69.1 –fold when the 
sample size increases to n = 1000. When SMD is 2, these proportional differences 
increase to 8.8 –fold when the sample size increases to n = 200 and decrease then 
to 6.2 when the sample size increases to n = 1000. When SMD is 3 or 4, the 
proportional difference decreases to 1.6 or 1.1, respectively, when the sample size 
increases to n = 1000. 
  
These results for )1(

1α  and )2(
1α  parameter estimates in model A.8 mean that the 

convergence is slower when SMD is 1, faster when SMD is 3, and equal when 
SMD is 4, compared with the convergence when SMD is 5.  
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Table 6.12. The MSE of )2(

1
)1(

1 andαα  parameter estimation in models A.8., A.5, 
A.5*, B.8, B.5 and C.8.  
 

Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 
)1(

1α
 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 
50 1 .0653 .0956 .1328 .1781 .5417 .5159 .0653 .0956 .1328 .1781 .0750 .1001 

100 1 .0564 .0855 .1149 .1592 .4502 .4895 .0564 .0855 .1149 .1592 .0651 .0919 

200 1 .0480 .0778 .0979 .1511 .3812 .4614 .0480 .0778 .0979 .1511 .0548 .0867 

500 1 .0366 .0725 .0784 .1367 .2788 .4168 .0366 .0725 .0784 .1367 .0474 .0752 

1000 1 .0281 .0622 .0593 .1214 .2073 .3856 .0281 .0622 .0593 .1214 .0390 .0737 

50 2 .0358 .0848 .0869 .1700 .2465 .4731 .0431 .0989 .0933 .1935 .0490 .0982 

100 2 .0234 .0602 .0588 .1367 .1611 .3780 .0244 .0689 .0624 .1533 .0351 .0817 

200 2 .0145 .0406 .0390 .1020 .0930 .2828 .0140 .0445 .0398 .1144 .0205 .0627 

500 2 .0039 .0143 .0148 .0543 .0407 .1201 .0055 .0146 .0160 .0536 .0092 .0310 

1000 2 .0016 .0056 .0062 .0235 .0207 .0517 .0022 .0051 .0069 .0221 .0038 .0141 

50 3 .0156 .0397 .0403 .1050 .1141 .3172 .0202 .0556 .0526 .1427 .0229 .0614 

100 3 .0071 .0187 .0203 .0592 .0571 .1618 .0096 .0246 .0276 .0798 .0119 .0319 

200 3 .0032 .0081 .0083 .0246 .0262 .0655 .0043 .0101 .0123 .0338 .0049 .0143 

500 3 .0011 .0028 .0027 .0074 .0090 .0205 .0016 .0037 .0041 .0108 .0015 .0044 

1000 3 .0005 .0014 .0013 .0035 .0044 .0099 .0008 .0019 .0019 .0047 .0007 .0020 

50 4 .0102 .0227 .0221 .0545 .0618 .1628 .0172 .0304 .0312 .0831 .0129 .0312 

100 4 .0048 .0105 .0102 .0244 .0280 .0691 .0058 .0134 .0141 .0353 .0058 .0137 

200 4 .0024 .0051 .0048 .0111 .0133 .0313 .0029 .0063 .0065 .0153 .0028 .0064 

500 4 .0009 .0020 .0018 .0042 .0051 .0120 .0011 .0025 .0025 .0058 .0011 .0025 

1000 4 .0004 .0010 .0009 .0021 .0026 .0060 .0006 .0013 .0012 .0029 .0005 .0012 

50 5 .0092 .0190 .0182 .0392 .0448 .1043 .0102 .0223 .0227 .0542 .0104 .0222 

100 5 .0045 .0093 .0087 .0186 .0213 .0482 .0049 .0107 .0105 .0240 .0049 .0105 

200 5 .0022 .0046 .0043 .0091 .0105 .0234 .0024 .0052 .0051 .0115 .0025 .0052 

500 5 .0009 .0018 .0017 .0036 .0041 .0091 .0010 .0021 .0020 .0045 .0010 .0021 

1000 5 .0004 .0009 .0008 .0018 .0021 .0046 .0005 .0010 .0010 .0023 .0005 .0010 
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Figure 6.20. The MSE of )1(

1α  and )2(
1α  parameter estimation as a function of 

sample size, SMD=1 or 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.21. The MSE of )1(

1α  and )2(
1α  parameter estimation as a function of 

sample size, SMD=3, 4 or 5. 
 
 
 

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0,02

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

 SMD=3 Class 1

 SMD=4 Class 1

 SMD=5 Class 1

 SMD=3 Class 2

 SMD=4 Class 2

 SMD=5 Class 2

Sample size

.023
.040

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

 SMD=1 Class  1  SMD=2 Class  1

 SMD=1 Class  2  SMD=2 Class  2

Sample size



 94

The effect of reliability on the MSE of slope parameter )1(
1α and )2(

1α estimation 
 
The effect of reliability on the MSE of slope parameter estimation is examined 
comparing the MSE of model A.5 with the MSE of model A.8 using proportions of 
MSEs (see Table 6.12). These proportions are calculated by dividing the MSEs of 
slope parameter estimation in model A.5 by the MSEs of slope parameter 
estimation in model A.8.    
 
When the reliability of observed variables decreases from .80 to .50 (model A.8 vs. 
model A.5), the MSE of )1(

1α and )2(
1α parameter estimation strongly increases. The 

largest proportions are seen when SMD is 2 or 3. When SMD is 2, the largest 
proportion for )1(

1α or )2(
1α  parameter is 3.9 or 4.2, respectively. When SMD is 3 

and n = 100, the MSE for )1(
1α or )2(

1α  parameters is 2.9 or 3.2 times larger, 
respectively, in model A.5 than in model A.8. When SMD is 5, the MSE in model 
A.5, is 2 times larger than in model A.8. These results mean that the sample size 
has to be at least two times larger in model A.5 than in model A.8 for the result on 
the MSE of )1(

1α and )2(
1α parameter estimation in model A.5 to be near the MSE in 

model A.8. 
 
When n = 50, the MSE of )1(

1α  in model A.5 is 2.0, 2.4, 2.6, 2.2 or 2.0 times larger 
when SMD is 1,2,3,4 or 5, respectively, than the MSE of )1(

1α  in model A.8. When 
SMD is 1 or 2, these proportions increase monotonically to 2.1 or 3.9 –fold when 
the sample size increases to n = 1000. When SMD is 3, these proportional 
differences increase to 2.9 –fold when the sample size increases to n = 100, and 
decrease then to 2.6 when the sample size increases to n = 1000. When SMD is 4 
or 5, the proportion is very stable being about 2.0. 
 
When n = 50, the MSE of )2(

1α  in model A.5 is 1.9, 2.0, 2.6, 2.4 or 2.1 times larger 
when SMD is 1, 2, 3, 4 or 5, respectively, than the MSE of )2(

1α  in model A.8. 
When SMD is 1, the proportion of MSEs is very stable, whereas when SMD is 2, 
this proportion increases monotonically and is 4.2 –fold when the sample size 
increases to n = 1000. When SMD is 3, this proportion increases to 3.2 –fold when 
the sample size increases to n = 100 and decreases to 2.5 -fold when the sample 
size increases to n = 1000. When SMD is 4, this proportion decreases 
monotonically to 2.1 when the sample size increases to n = 1000.  When SMD is 5, 
the proportion is very stable being 2.0. 
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The results mean that when SMD is 2, the convergence of )1(
1α and )2(

1α parameter 
estimates is more rapid in model A.8 than in model A.5. When SMD is 3, the 
convergence of )1(

1α and )2(
1α  is first slower in model A.5 than in model A.8, but 

after the sample size increases to n = 100 or over, it is more rapid in model A.5 
than in model A.8. When SMD is 4, the convergence of )2(

0α  is more rapid in 

model A.5 than in model A.8, whereas that of )1(
0α   is equal in both models. When 

SMD is 5, the convergences are equal in both models. In this case, the effect of 
reliability stabilizes and the MSE in model A.5 is 2.0 times larger than in model 
A.8. 
 
The effect of additional measurements on the MSE of slope parameter )1(

1α and 
)2(

1α estimation 
 
The effect of additional measurement points on the MSE of slope parameter 
estimates is examined by comparing the MSE in model A.5* with the MSE in 
model A.5 (see Table 6.12). As before for )1(

0α and )2(
0α , the effect of additional 

measurement points is described as percentages of distance.  
 
The MSE of )1(

1α  parameter is lower in model A.5* than in model A.5 with all 
sample sizes and SMDs, except when SMD is 1 and n =  1000. When SMD is 2, 
the distance between the MSE of  )1(

1α in model A.5* and the MSE of  )1(
1α in 

model A.5 increases from 10 % to 109 % when the sample size increases from n = 
50 to n = 1000. When SMD is 3, the distance first increases from 54 % to 80 % 
when the sample size increases from n = 50 to n = 100 and, after that, decreases to 
69 % when the sample size increases to n = 500 and again increases to 113 % 
when the sample size increases to n = 1000. When SMD is 4, the distance 
decreases from 54 % to 40 % when the sample size increases from n = 50 to n = 
1000 and when SMD is 5, the distance decreases in this case from 47 % to 25%.  
 
The parameter estimation of )2(

1α is more effective in model A.5* than in model 
A.5. The MSE of )2(

1α  in model A.5* is lower than MSE of )2(
1α  in model A.5 

and, when the sample size increases from n = 50 to n = 1000, the percentage of 
distance increases from 8 % to 49 % when SMD is 1, from 45 % to 105 % when 
SMD is 2, and from 52 % to 81 % when SMD is 3. When SMD is 4 or 5, the 
distance slightly varies and is 55 % or 44 %, respectively, when the sample size is 
n = 1000. 
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When SMD is 1, the convergence of )1(
1α  or )2(

1α  is slow in model A.5*. When 
SMD is 2 or 3, the convergence of )1(

1α  and )2(
1α  is more rapid in model A.5* than 

in model A.5. When SMD is 3 and n = 1000, the MSE in model A.5* is even lower 
than in model A.8. When SMD is 4 or 5, the convergence of )2(

1α  parameter is 
slower in model A.5* than in model A.5, whereas the convergence of  )1(

1α  
parameter is equal in models A.5 and A.5* 
 
The effect of model construct on the MSE of intercept parameter )1(

1α and 
)2(

1α estimation 
 
The construct of the model has a clear effect on the MSE of )1(

1α  and )2(
1α  

parameter estimation. This effect is examined comparing model C.8 with model 
A.8, model B.8 with model A.8, and model B.5 with model A.5 (see Table 6.12).  
As before, the effect of construct is described using the proportion of the MSEs for 

)1(
1α  and )2(

1α  parameters. For example, the proportion comparing model B.8 and 
model A.8 is calculated by dividing the MSE of model B.8 by the MSE of model 
A.8.  
 
The estimation of parameter )1(

1α  is more effective in model A.8 than in model C.8, 
and, when n = 50, the  MSE in model C.8 is 1.15, 1.37, 1.47, 1.26 and 1.13 times 
larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, respectively. When 
the sample size increase to n = 1000, the proportion increases to 1.39 when SMD 
is 1 and to 2.38 when SMD is 2. When SMD is 3, the proportion first increases to 
1.69 when the sample size increases to 100 and, after that, decreases to 1.40 when 
the sample size increases to 1000.  When SMD is 4 or 5, the proportion slightly 
varies and is 1.25 when n = 1000.  
 
The estimation of parameter )1(

1α  is more effective in model A.8 than in model B.8, 
and when n = 50, the MSE in model B.8 is 1.20, 1.29, 1.69 and 1.11 times larger 
than the MSE in model A.8 when SMD is 2,3,4 or 5, respectively. When SMD is 
2, the proportion first decreases to .97 when the sample size increases to n = 200 
and, after that, increases to 1.38 when the sample size increases to n = 1000. When 
SMD is 3, the proportion increases to 1.60 when the sample size increases to n = 
1000. When SMD is 4, the proportion decreases first to 1.21 when the sample size 
increases to n = 200 and, after that, increases to 1.5 when the sample size increases 
to n = 1000. When SMD is 5, the proportion increases to 1.25 when the sample 
size increases to n = 1000.  
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The estimation of parameter )1(
1α  is more effective in model A.5 than in model B.5, 

and when n = 50, the MSE in model B.5 is 1.07, 1.31, 1.41 and 1.25 times larger 
than the MSE in model A.5 when SMD is 2, 3, 4 or 5, respectively. When SMD is 
2, the proportion slightly varies and is 1.11 when n = 1000. When SMD is 3, the 
proportion first increases to 1.52 when the sample size increases to n = 500 and, 
after that, decreases to 1.46 when the sample size increases to n = 1000.  When 
SMD is 4, the proportion decreases to 1.33 when the sample size increases to n = 
1000. When SMD is 5, the proportion is very stable and is 1.25 when n = 1000. 
 
The estimation of parameter )2(

1α  is more effective in model A.8 than in model C.8, 
and when the sample size is 50, the MSE in model C.8 is 1.05, 1.16, 1.55, 1.37 or 
1.17 times larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, 
respectively. When SMD is 1, the proportion increases to 1.18 when the sample 
size increases to n = 1000. When SMD is 2, the proportion increases to 2.52 when 
the sample size increases to n = 1000. When SMD is 3, the proportion first 
increases to 1.77 when the sample size increases to 200 and, after that, decreases to 
1.43 when the sample size increases to 1000. When SMD is 4 or 5, the proportion 
decreases to 1.20 or 1.11, respectively. 
 
The estimation of parameter )2(

1α  is more effective in model A.8 than in model B.8, 
and when n = 50, the MSE in model B.8 is 1.16, 1.40, 1.34 or 1.17 times larger 
than the MSE in model A.8 when SMD is 2, 3, 4 or 5, respectively. When SMD is 
2, the proportion decreases to 0.91 when the sample size increases to n = 1000. 
When SMD is 3, the proportion first decreases to 1.25 when the sample size 
increases to n = 200 and, after that, increases to 1.36 when the sample size 
increases to n = 1000. When SMD is 4 or 5, the proportion slightly varies and is 
1.30 or 1.11, respectively, when n = 1000.  
 
The estimation of parameter )2(

1α  is more effective in model A.5 than in model B.5, 
and when n = 50, the MSE in model B.5 is 1.14, 1.36, 1.52 or 1.38 times larger 
than the MSE in model A.5 when SMD is 2,3,4 or 5, respectively. When SMD is 
2, the proportion decreases to 0.94 when the sample size increases to n = 1000. 
When SMD is 3, 4 or 5, the proportion slightly varies and is 1.34, 1.38 or 1.28, 
respectively, when n = 1000.  
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6.3.1.3. Results of MSE of variances 00ψ , 11ψ  and covariance 01ψ  parameter 
estimation 
 
The results of MSE for 00ψ , 11ψ  and 01ψ  parameter estimation are presented in 
Table 6.13. The running order is the same as for the intercept and slope parameters 
in sections 6.3.1.1 and 6.3.1.2. The results suggest that the value of the MSE 
depends on both SMD and sample size. The effect of sample size in model A.8 
with different SMD is described in Figures 6.22, 6.23 and 6.24. 
 
When SMD is 1, the MSE of 00ψ  in model A.8 clearly decreases when the sample 
size increases from n = 50 to n = 1000. For 00ψ  parameter, the MSE decreases by 
one third when the sample size grows from about 50 to 95, from 100 to 180, from 
200 to 400, or from 500 to 930.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.22. The MSE of the 00ψ  parameter estimation as a function of sample 
size, SMD=1, 2, 3, 4 and 5. 
 
When SMD is 2, the MSE of 00ψ  decreases by one third when the sample size 
grows from about 50 to 95, from 100 to 220, from 200 to 380 or from 500 to 780 
(see Figure 6.22). When SMD is 3, the MSE of 00ψ  decreases by half when the 
sample size grows from about 50 to 110, from 100 to 180, from 200 to 420 or from 
500 to 1000. When SMD is 4, the MSE of 00ψ  decreases by half when the sample  
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size grows from about 50 to 95, from 100 to 200, from 200 to 430 or from 500 to 
1000. When SMD is 5, the MSE of 00ψ  decreases by half when the sample size 
grows from about 50 to 100, from 100 to 230, from 200 to 480 or from 500 to over 
1000. 
 
Table 6.13. The MSE of 011100 ,, ψψψ  parameter estimation in models A.8., A.5, 
A.5*, B.8, B.5 and C.8.  
 
Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

50 1 .2380 .0070 .0196 .5869 .0299 .0718 .2911.0169 - .2380.0070.0196 .5869.0299.0718 .2612 .0084 .0218

100 1 .1433 .0045 .0140 .3559 .0190 .0468 .1839.0097 - .1433.0045.0140 .3559.0190.0468 .1612 .0054 .0153

200 1 .0880 .0029 .0097 .2216 .0116 .0314 .1140.0053 - .0880.0029.0097 .2216.0116.0314 .1002 .0035 .0104

500 1 .0459 .0016 .0059 .1168 .0064 .0179 .0628.0025 - .0459.0016.0059 .1168.0064.0179 .0524 .0020 .0064

1000 1 .0291 .0010 .0040 .0718 .0040 .0118 .0421.0013 - .0291.0010.0040 .0718.0040.0118 .0322 .0013 .0044

50 2 .1668 .0060 .0243 .4543 .0280 .0841 .2439.0138 - .1348.0097.0181 .3554.0378.0628 .1807 .0079 .0267

100 2 .1082 .0033 .0162 .2714 .0156 .0520 .1628.0068 - .0797.0060.0122 .2067.0224.0389 .1127 .0045 .0179

200 2 .0752 .0016 .0102 .1761 .0083 .0331 .1050.0031 - .0454.0038.0074 .1189.0136.0234 .0770 .0024 .0117

500 2 .0319 .0005 .0045 .0935 .0031 .0160 .0491.0009 - .0194.0017.0029 .0540.0066.0102 .0418 .0009 .0060

1000 2 .0146 .0002 .0021 .0512 .0013 .0084 .0220.0004 - .0090.0008.0011 .0267.0035.0044 .0229 .0004 .0033

50 3 .1473 .0046 .0220 .4316 .0238 .0839 .2202.0101 - .0945.0091.0185 .2846.0378.0652 .1741 .0063 .0267

100 3 .0771 .0022 .0113 .2473 .0114 .0458 .1047.0043 - .0479.0048.0094 .1474.0220.0353 .1028 .0031 .0155

200 3 .0337 .0010 .0052 .1219 .0051 .0226 .0466.0020 - .0224.0022.0041 .0703.0113.0167 .0489 .0014 .0077

500 3 .0120 .0004 .0019 .0419 .0019 .0081 .0163.0008 - .0085.0008.0015 .0263.0041.0058 .0165 .0005 .0028

1000 3 .0060 .0002 .0009 .0200 .0010 .0039 .0082.0004 - .0042.0004.0007 .0126.0020.0027 .0081 .0002 .0013

50 4 .1006 .0040 .0150 .3450 .0206 .0670 .1297.0079 - .0732.0064.0143 .2309.0331.0588 .1314 .0053 .0207

100 4 .0449 .0020 .0068 .1608 .0099 .0318 .0567.0037 - .0358.0029.0063 .1117.0163.0278 .0600 .0026 .0096

200 4 .0212 .0010 .0032 .0726 .0047 .0145 .0274.0018 - .0176.0014.0030 .0536.0075.0127 .0269 .0012 .0045

500 4 .0085 .0004 .0012 .0282 .0019 .0056 .0104.0007 - .0070.0005.0012 .0210.0028.0049 .0105 .0005 .0017

1000 4 .0042 .0002 .0006 .0137 .0009 .0027 .0053.0004 - .0035.0003.0006 .0104.0014.0024 .0052 .0002 .0008

50 5 .0745 .0039 .0109 .2577 .0192 .0522 .0908.0072 - .0665.0047.0109 .2065.0269.0506 .0908 .0050 .0148

100 5 .0363 .0020 .0052 .1180 .0096 .0241 .0442.0034 - .0333.0023.0051 .1006.0126.0232 .0431 .0025 .0069

200 5 .0179 .0010 .0025 .0574 .0046 .0115 .0220.0017 - .0166.0011.0025 .0495.0059.0110 .0211 .0012 .0034

500 5 .0072 .0004 .0010 .0231 .0018 .0046 .0084.0007 - .0067.0004.0010 .0197.0023.0044 .0084 .0005 .0013

1000 5 .0036 .0002 .0005 .0112 .0009 .0022 .0043.0003 - .0034.0002.0005 .0098.0011.0022 .0042 .0002 .0006

 
 
When SMD is 1, the MSE of 11ψ  in model A.8 clearly decreases when the sample 
size increases from n = 50 to n = 1000 (see Figure 6.23). For 11ψ , the  MSE 
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decreases by one third when the sample size grows from about 50 to 95, from 100 
to 190, from 200 to 420, or from 500 to 890. When SMD is 2, the MSE of 11ψ   
decreases by one third when the sample size grows from about 50 to 90, from 100 
to 170, from 200 to 330 or from 500 to 850. As can be seen from Figure 6.23, the 
MSE of 11ψ  is almost the same with all sample sizes when SMD is 3, 4 or 5, 
decreasing by half when the sample size grows from about 50 to 100, from 100 to 
190-200, from 200 to 440 or from 500 to 1000.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.23. The MSE of the 11ψ  parameter estimation as a function of sample 
size, SMD=1, 2, 3, 4 and 5. 
 
When SMD is 1, the MSE of 01ψ  in model A.8 clearly decreases when the sample 
size increases from n = 50 to n = 1000. For 01ψ  parameter, the MSE decreases by 
one third when the sample size grows from about 50 to 120, from 100 to 230, from 
200 to 450, or from 500 to over 1000 (see Figure 6.24). When SMD is 2, the MSE 
of 01ψ  decreases by one third when the sample size grows from about 50 to 100, 
from 100 to 180, from 200 to 380 or from 500 to over than 1000. When SMD is 3, 
the MSE of 01ψ  decreases by half when the sample size grows from about 50 to 
105, from 100 to 190, from 200 to 380 or from 500 to 980. When SMD is 4, the 
MSE of 01ψ  decreases by half when the sample size grows from about 50 to 95, 
from 100 to 195, from 200 to 430 or from 500 to 1000. When SMD is 5, the MSE 
of 01ψ  parameter decreases by half when the sample size grows from about 50 to 
105, from 100 to 190, from 200 to 450 or from 500 to 1000. 
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Figure 6.24. The MSE of the 01ψ  parameter estimation as a function of sample 
size, SMD=1, 2, 3, 4 and 5. 
 
The effect of SMD, when comparing the MSE of 00ψ  with SMD 1, 2, 3 or 4 to the 
MSE with SMD 5 with equal sample sizes, on the MSE of 00ψ  in model A.8, is 
strong. When n = 50, the MSE of 00ψ  is 3.19, 2.24, 1.98 or 1.35 times larger when 
SMD is 1, 2, 3 or 4, respectively, than when SMD is 5. When SMD is 1, this 
proportional difference increases monotonically to 8.08 –fold when the sample 
size increases to n = 1000. When SMD is 2, this proportional difference increases 
to 4.43 –fold when the sample size increases to n = 200 and then decreases to 4.06 
when the sample size increases to n = 1000. When SMD is 3, the proportional 
difference first increases to 2.12 when the sample size increases to n = 100 and, 
after that, decreases to 1.17 when the sample size increases to n = 1000.  When 
SMD is 4, the proportional difference decreases to 1.17 when the sample size 
increases to n = 1000. The effect of SMD, comparing the MSE with SMD 1, 2, 3 
or 4 to the MSE with SMD 5 with equal sample sizes, on the MSE in model A.8, is 
weaker for 11ψ  than for 00ψ . When n = 50, the MSE of 11ψ  is 1.79, 1.54, 1.18 or 
1.03 times larger when SMD is 1, 2, 3 or 4, respectively, than when SMD is 5. 
When SMD is 1, this proportional difference increases monotonically to 5.0 –fold 
when the sample size increases to n = 1000. When SMD is 2, 3 or 4, the 
proportional differences decrease and the MSE of 11ψ  is equal with the MSE of 

11ψ  when SMD is 5.  
 
The effect of SMD, when comparing the MSE with SMD 1, 2, 3 or 4 to the MSE 
with SMD 5 with equal sample sizes, on the MSE of  01ψ  in model A.8, is strong. 
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When n = 50, the MSE of 01ψ  is 1.80, 2.23, 2.02, 1.38 times larger when SMD is 
1, 2, 3 or 4, respectively, than when SMD is 5. When SMD is 1, this proportional 
difference increases monotonically to 8.0 –fold when the sample size increases to 
n = 1000. When SMD is 2, this proportional difference increases to 4.50 –fold 
when the sample size increases to n = 500 and decreases to 4.20 when the sample 
size increases to n = 1000. When SMD is 3, the proportional difference first 
increases to 2.18 when the sample size increases to n = 100 and, after that, 
decreases to 1.80 when the sample size increases to       n = 1000.  When SMD is 
4, the proportional difference decreases to 1.20 when the sample size increases to n 
= 1000. 
 
These results for 00ψ , 11ψ and 01ψ  parameter estimates means that the convergence 
is clearly lower when SMD is 1 than in the case when SMD is 5. When SMD is 2 
or 3, the convergence of 00ψ  and 01ψ  parameter estimates is slower with smaller 
sample sizes n = 50, 100 or 200, but faster when the sample size increases from     
n = 500 to n = 1000, when compared with the case when SMD is 5. The 
convergence of 00ψ  and 01ψ  parameter estimates is faster when SMD is 4 than 
when SMD is 5. The convergence of 11ψ  parameter estimate is faster when SMD is 
2, 3 or 4, than when SMD is 5. When the sample size is n = 1000, the MSE of 11ψ  
parameter is equal to the cases when SMD is 2, 3, 4 or 5. 
 
The effect of reliability on the MSE of variances 00ψ , 11ψ  and covariance 01ψ  
parameter estimation 
 
The effect of reliability on the MSE of 00ψ , 11ψ or 01ψ  is examined comparing the 
MSE in model A.5 with the MSE in model A.8, using proportions of MSEs in 
these models. As for intercept parameters, these proportions are calculated by 
dividing the MSE in model A.5 by the MSE in model A.8.  When reliability of the 
observed variables decreases from .80 to .50 (model A.8 vs. model A.5), the MSEs 
of  00ψ , 11ψ and 01ψ  parameter estimates strongly increase (see Table 6.13). 
 
When n = 50, the MSE of 00ψ  in model A.5 is 2.47, 2.72, 2.93, 3.43 or 3.46 times 
larger when SMD is 1, 2, 3, 4 or 5, respectively, than the MSE of 00ψ  in model 
A.8. When SMD is 1, this proportional difference increases to 2.54 when sample 
size increases to n = 500 and decreases to 2.47 when the sample size increases to n 
= 1000. When SMD is 2, the proportional difference decreases to 2.34 when the 
sample size increases to n = 200 and increases then to 3.51 when the sample size 
increases to n = 1000. When SMD is 3, the proportional difference increases to 
3.62 when the sample size increases to n = 200 and decreases then to 3.33 when 
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the sample size increases to n = 1000. When SMD is 4 or 5, the proportional 
difference decreases to 3.26 or 3.11 when the sample size increases to  n = 1000. 
 
When n = 50, the MSE of 11ψ  in model A.5 is 4.27, 4.67, 5.17, 5.15 or 4.92 times 
larger when SMD is 1, 2, 3, 4 or 5, respectively, than the MSE of 11ψ  in model 
A.8. When SMD is 1, this proportional difference decreases to 4.0 when the 
sample size increases to n = 1000. When SMD is 2, the proportional difference 
increases to 6.5 when the sample size increases to n = 1000. When SMD is 3, the 
proportional difference decreases to 4.75 when the sample size increases to n = 
500 and increases to 5.0 when the sample size increases to n = 1000. When SMD 
is 4 or 5, the proportional difference decreases to same value 4.50 when the sample 
size increases to  n = 1000. 
 
When n = 50, the MSE of 01ψ  in model A.5 is 3.66, 3.46, 3.81, 4.47 or 4.79 times 
larger when SMD is 1, 2, 3, 4 or 5, respectively, than the MSE of 01ψ  in model 
A.8. When SMD is 1, this proportional difference decreases to 2.95 when the 
sample size increases to n = 1000. When SMD is 2, the proportional difference 
decreases to 3.25 when the sample size increases to n = 200 and increases then to 
4.0 when the sample size increases to n = 1000. When SMD is 3, the proportional 
difference increases to 4.35 when the sample size increases to n = 200 and 
decreases then to 4.33 when the sample size increases to n = 1000. When SMD is 
4, the proportional difference increases to 4.68 when the sample size increases to n 
= 100 and decreases then to 4.50 when the sample size increases to n = 1000. 
When SMD is 5, the proportional difference decreases to 4.40 when the sample 
size increases to n = 1000.  
 
The results means that the effect of reliability on the MSE of  00ψ , 11ψ or 01ψ  
parameter estimates are strong. When SMD is 5 and n = 1000, the MSE of 00ψ , 

11ψ or 01ψ  parameter estimates in model A.5 are 3.1, 4.5 or 4.4 times larger than in 
model A.8. The difference between the convergence rates behaves regularly only 
when SMD is 4 or 5, and for 00ψ , 11ψ or 01ψ  parameter estimates, the convergence 
is slightly more rapid in model A.8 than in model A.5. A small difference in the 
convergence rates is seen with all SMD=1, 2, 3, 4 or 5, and the largest difference 
in the MSE of  00ψ , 11ψ or 01ψ  parameter is 3.6, 6.5 or 4.8, respectively. 
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The effect of additional measurements on the MSE of variances 00ψ  and 11ψ  
parameter estimation 
 
The effect of additional measurement points on the MSE of 00ψ  and 11ψ  is 
examined by comparing the MSE in model A.5* to the MSE in model A.5. As 
before for the intercept and slope parameters, the effect of additional measurement 
points is described as percentages of distance (see Table 6.13).  
 
The MSE of 00ψ  parameter is clearly lower in model A.5* than in model A.5. 
When SMD is 1, the distance decreases from 85 % to 70 % when the sample size 
increases from n = 50 to n = 1000. When SMD is 2, the distance increases from 73 
% to 80 % when the sample size increases from n = 50 to n = 1000. When SMD is 
3, the distance increases from 74 % to 86 % when the sample size increases from n 
= 50 to n = 500, and decreases after that to 84 % when the sample size increases to 
n = 1000.  When SMD is 4 or 5, the distance varies slightly and is 88 % or 91 %, 
respectively, when the sample size is n = 1000. 
 
The MSE of 11ψ  parameter is clearly lower in model A.5* than in model A.5. 
When SMD is 1, the distance increases from 57 % to 90 % when the sample size 
increases from n = 50 to n = 1000. When SMD is 2, the distance increases from 65 
% to 85 % when the sample size increases from n = 50 to n = 500, and decreases 
after that to 82 % when the sample size increases to n = 1000. When SMD is 3, the 
distance increases from 71 % to 75 % when the sample size increases from n = 50 
to n = 1000. When SMD is 4, the distance increases from 77 % to 80 % when the 
sample size increases from n = 50 to n = 500, and decreases after that to 71 % 
when the sample size increases to n = 1000. When SMD is 5, the distance varies 
and increases from .78 % to .86 % when the sample size increases from n = 50 to n 
= 1000. 
 
The convergence rate of 00ψ  and  11ψ  parameters is very similar in model A.5* 
than in model A.5, in spite of  that the MSE in model A.5* is near to the MSE in 
model A.8 and the difference from the MSE in model A.5 is at least 57 %.  The 
convergence rate of 00ψ  parameter is slightly more rapid in model A.5* than in 
model A.5 when SMD was 3. The convergence rate of 11ψ  parameter is slightly 
more rapid in model A.5* than in model A.5 when SMD was 2. 
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The effect of model construct on the MSE of variances 00ψ , 11ψ  and covariance 
01ψ  parameter estimation 

 
The estimation of parameter 00ψ  is more effective in model A.8 than in model C.8 
(see Table 6.13), and when n = 50, the MSE in model C.8 is 1.10, 1.08, 1.18, 1.31 
and 1.22 times larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, 
respectively. When SMD is 1, the proportion increases to 1.14 when the sample 
size increases to n = 500, and decreases after that to 1.11 when the sample size 
increases to n = 1000. When SMD is 2, the proportion decreases to 1.02 when the 
sample size increases to n = 200 and increases after that to 1.57 when the sample 
size increases to n = 1000. When SMD is 3, the proportion increases to 1.45 when 
the sample size increases to n = 200, and decreases after that to 1.35 when the 
sample size increases to n = 1000. When SMD is 4 or 5, the proportion decreases 
to 1.24 or 1.17, respectively, when the sample size increases to n = 1000. 
 
The estimation of parameter 00ψ  is more effective in model B.8 than in model A.8 
(see Table 6.13), and when n = 50, the MSE in model B.8 is .81, .64, .73 or .89 
times the MSE in model A.8 when SMD is 2,3,4 or 5, respectively. When SMD is 
2, the proportion decreases to .62 when the sample size increases to n = 1000. 
When SMD is 3, the proportion increases to .70 when the sample size increases to 
n = 1000. When SMD is 4 or 5, the proportion increases to .83 or .94, respectively, 
when the sample size increases to n = 1000. 
 
The estimation of parameter 00ψ  is more effective in model B.5 than in model A.5 
(see Table 6.13), and when n = 50, the MSE in model B.5 is .78, .66, .67 or .80 
times the MSE in model A.5 when SMD is 2, 3, 4 or 5, respectively. When SMD is 
2, the proportion decreases to .52 when the sample size increases to n = 1000. 
When SMD is 3, the proportion decreases to .58 when the sample size increases to 
n = 200 and, after that, increases to .63 when the sample size increases to n = 1000. 
When SMD is 4 or 5, the proportion increases to .76 or .88, respectively, when the 
sample size increases to n = 1000. 
 
The estimation of parameter 11ψ  is more effective in model A.8 than in model C.8, 
and when n = 50, the MSE in model C.8 is 1.20, 1.32, 1.37, 1.33 and 1.28 times 
larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, respectively. When 
SMD is 1 or 2, the proportion increases to 1.30 or 2.0, respectively, when the 
sample size increases to n = 1000. When SMD is 3, the proportion increases to 
1.45 when the sample size increases to n = 200 and, after that, decreases to 1.415 
when the sample size increases to n = 500 and then decreases again to 1 when the 
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sample size increases to n = 1000. When SMD is 4 or 5, the proportion decreases 
to 1.0 when the sample size increases to n = 1000. 
 
The estimation of parameter 11ψ  is more effective in model A.8 than in model B.8, 
and when n = 50, the MSE in model B.8 is 1.61, 1.98, 1.60 or 1.21 times larger 
than the MSE in model A.8 when SMD is 2, 3, 4 or 5, respectively. When SMD is 
2, the proportion increases to 4.0 when the sample size increases to n = 1000. 
When SMD is 3, the proportion increases to 2.20 when the sample size increases to 
n = 200 and, after that, decreases to 2.0 when the sample size increases to n = 
1000. When SMD is 4, the proportion decreases to 1.25 when the sample size 
increases to n = 500 and, after that, increases to 1.50 when the sample size 
increases to n = 1000. When SMD is 5, the proportion decreases to 1.0 when the 
sample size increases to n = 1000. 
 
The estimation of parameter 11ψ  is more effective in model A.5 than in model B.5, 
and when n = 50,  the MSE in model B.5 is 1.35, 1.59, 1.61 or 1.40 times larger 
than the MSE in model A.5 when SMD is 2, 3, 4 or 5, respectively. When SMD is 
2, the proportion increases to 2.69 when the sample size increases to n = 1000. 
When SMD is 3, the proportion increases to 2.22 when the sample size increases to 
n = 200 and, after that, decreases to 2.0 when the sample size increases to n = 
1000. When SMD is 4, the proportion decreases to 1.47 when the sample size 
increases to n = 500 and, after that, increases to 1.56 when the sample size 
increases to n = 1000. When SMD is 5, the proportion decreases to 1.22 when the 
sample size increases to n = 1000. 
 
The estimation of parameter 01ψ  is more effective in model A.8 than in model C.8, 
and when n = 50, the MSE in model C.8 is 1.11, 1.10, 1.21, 1.38 and 1.36 times 
larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, respectively. When 
SMD is 1, the proportion is very stable and is 1.10 when n = 1000. When SMD is 
2, the proportion increases to 1.57 when the sample size increases to n = 1000. 
When SMD is 3, the proportion increases to 1.48 when the sample size increases to 
n = 200 and, after that, decreases to 1.44 when the sample size increases to n = 
1000. When SMD is 4, the proportion increases to 1.42 when the sample size 
increases to n = 500 and, after that, decreases to 1.33 when the sample size 
increases to n = 1000.When SMD is 5, the proportion decreases to 1.20 when the 
sample size increases to n = 1000. 
 
The estimation of parameter 01ψ  is more effective in model B.8 than in model A.8, 
and when n = 50,  the MSE in model B.8 is .74, .84, .95 or 1.0 times the MSE in 
model A.8 when SMD is 2,3,4 or 5, respectively. When SMD is 2, the proportion 
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increases to .75 when the sample size increases to n = 100 and, after that, decreases 
to .52 when the sample size increases to n = 1000. When SMD is 3, the proportion 
decreases to .78 when the sample size increases to n = 1000. When SMD is 4 or 5, 
the proportion varies slightly and is 1.0 when n = 1000. 
 
The estimation of parameter 01ψ  is more effective in model B.5 than in model A.5, 
and when n = 50, the MSE in model B.5 is .75, .78, .88 or .97 times the MSE in 
model A.5 when SMD is 2, 3, 4 or 5, respectively. When SMD is 2 or 3, the 
proportion decreases to .52 or .69, respectively, when the sample size increases to 
n = 1000. When SMD is 4, the proportion is very stable and is .89 when n = 1000. 
When SMD is 5, the proportion increases to 1.0 when the sample size increases to 
n = 1000. 
 
 
6.3.1.4. Results of MSE of error variances 4321 and,, θθθθ estimation 
 
The results of the MSE for 4321 and,, θθθθ parameter estimation are presented in 
Table 6.14. The running order is the same as for other parameters in sections 
6.3.1.1 - 6.3.1.3. The results suggest that in model A.8 the value of the MSE 
depends only on sample size. The effect of sample size on 4321 and,, θθθθ  parameter 
estimates in model A.8 when  SMD is 3 is described in figure 6.25. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.25. The MSE of 4321 and,, θθθθ  parameter estimation as a function of 
sample size in model A.8, SMD=3. 
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When SMD is 3, the MSE of 4321 or,, θθθθ   in model A.8 decreases clearly when 
the sample size increases from n = 50 to n = 1000. The MSE of these parameter 
estimates decreases by half when the sample size grows from about 50 to 95-100, 
from 100 to 195-200, from 200 to 440-450, or from 500 to 940-1000, respectively. 
 
The effect of reliability on the MSE of error variances 4321 ,, θθθθ and estimation 
 
The effect of reliability on the MSE of 4321 or,, θθθθ is examined by comparing the 
MSEs in model A.5 to the MSEs in model A.8, using the proportions of the MSE. 
As before for other parameters, these proportions are calculated by dividing the 
MSE of model A.5 by the MSE of model A.8 (see Table 6.14).  For error 
variances, the proportions of MSEs are not absolutely comparable, because of 
different true values. For the first measurement, the proportions are between 8.5 
and 9.3, for the second measurement, they are between 12.2 and 13.5, for the third, 
between 12.2 and 12.7, and for the last measurement, between 10.6 and 11.0. For 
error variances, the proportions are very stable suggesting that the convergence is 
nearly the same in model A.5 as in model A.8. 
 
The effect of additional measurements on the MSE of error variances 

4321 ,, θθθθ and  estimation 
 
The effect of additional measurement points on the MSE of 4321 or,, θθθθ  is 
examined by comparing the MSEs in model A.5* with the MSEs in model A.5 
(see Table 6.14). As before for other parameters, the effect of additional 
measurement points is described as percentages of distance. The MSEs of 1θ , 2θ , 

3θ  and 4θ  parameters in model A.5* are clearly closer with the MSEs in model 
A.5 than the MSEs in model A.8. The distances from the MSEs of these 
parameters in model A.5 are very stable, and when SDM is 5 and n = 1000,  they 
are 64 %, 25 %, 22 % and 38 %, respectively.  
 
The effect of model construct on the MSE of error variances 4321 ,, θθθθ and  
estimation 
 
The estimation of parameter 1θ  is more effective in model A.8 than in model C.8 
(see Table 6.14), and when n = 50, the MSE in model C.8 is 1.02, 1.08, 1.16, 1.19 
and 1.14 times larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, 
respectively. When SMD is 1, the proportion is stable decreasing to 1.0 when the 
sample size increases to n = 1000. When SMD is 2, the proportion decreases to 
1.05 when the sample size increases to n = 100 and, after that, increases to 1.09 
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Table 6.14. The MSEs of 4321 and,, θθθθ  parameter estimation in models A.8., A.5, A.5*, B.8, B.5 and C.8. 
Model A.8 A.5 A.5*1) B.8 B.5 C.8  

n SMD 1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  3θ  5θ  7θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  

50 1 .0251 .0091 .0203 .0831 .2160 .1139 .2508 .9002 .0978 .0836 .1935 .5525 .0251 .0091 .0203 .0831 .2160 .1139 .2508 .9002 .0257 .0149 .0405 .1521 

100 1 .0113 .0043 .0098 .0391 .0978 .0550 .1211 .4154 .0453 .0406 .0456 .2640 .0113 .0043 .0098 .0391 .0978 .0550 .1211 .4154 .0114 .0072 .0194 .0707 

200 1 .0054 .0021 .0048 .0184 .0469 .0264 .0586 .1946 .0221 .0201 .0456 .1308 .0054 .0021 .0048 .0184 .0469 .0264 .0586 .1946 .0054 .0035 .0095 .0333 

500 1 .0021 .0008 .0019 .0073 .0178 .0103 .0233 .0779 .0086 .0080 .0181 .0523 .0021 .0008 .0019 .0073 .0178 .0103 .0233 .0779 .0021 .0014 .0038 .0132 

1000 1 .0010 .0004 .0009 .0036 .0089 .0051 .0114 .0391 .0044 .0040 .0091 .0258 .0010 .0004 .0009 .0036 .0089 .0051 .0114 .0391 .0010 .0007 .0018 .0067 

50 2 .0278 .0097 .0201 .0823 .2396 .1220 .2530 .8981 .1006 .0847 .1933 .5486 .0217 .0085 .0226 .0977 .1921 .1109 .2852 1.0703 .0301 .0158 .0405 .1528 

100 2 .0126 .0047 .0098 .0388 .1085 .0589 .1222 .4161 .0470 .0412 .0950 .2650 .0102 .0041 .0109 .0451 .0899 .0543 .1354 .4812 .0132 .0076 .0194 .0710 

200 2 .0060 .0022 .0048 .0183 .0520 .0284 .0594 .1956 .0230 .0204 .0457 .1307 .0049 .0020 .0052 .0210 .0436 .0263 .0649 .2243 .0063 .0037 .0095 .0337 

500 2 .0023 .0009 .0019 .0072 .0197 .0110 .0236 .0785 .0089 .0081 .0182 .0521 .0019 .0008 .0021 .0082 .0170 .0103 .0256 .0885 .0024 .0014 .0038 .0134 

1000 2 .0011 .0004 .0009 .0036 .0098 .0055 .0115 .0394 .0045 .0040 .0091 .0257 .0010 .0004 .0010 .0041 .0085 .0051 .0125 .0445 .0012 .0007 .0018 .0067 

50 3 .0274 .0096 .0199 .0806 .2480 .1270 .2520 .8884 .0987 .0845 .1917 .5409 .0218 .0083 .0237 .1030 .1879 .1094 .3044 1.1523 .0319 .0162 .0398 .1495 

100 3 .0127 .0047 .0097 .0382 .1138 .0612 .1222 .4156 .0461 .0414 .0949 .2626 .0103 .0041 .0113 .0480 .0892 .0538 .1450 .5242 .0143 .0078 .0193 .0708 

200 3 .0061 .0023 .0048 .0182 .0546 .0294 .0594 .1958 .0225 .0250 .0457 .1302 .0050 .0020 .0054 .0223 .0432 .0260 .0686 .2447 .0068 .0038 .0095 .0336 

500 3 .0024 .0009 .0019 .0072 .0207 .0114 .0236 .0788 .0088 .0082 .0182 .0520 .0020 .0008 .0021 .0087 .0171 .0102 .0269 .0958 .0026 .0015 .0038 .0134 

1000 3 .0012 .0004 .0009 .0036 .0103 .0056 .0115 .0395 .0045 .0041 .0091 .0257 .0010 .0004 .0010 .0044 .0085 .0051 .0132 .0485 .0013 .0007 .0018 .0068 

50 4 .0248 .0090 .0196 .0791 .2310 .1212 .2468 .8658 .0911 .0837 .1910 .5329 .0216 .0082 .0228 .0976 .1845 .1076 .3043 1.1512 .0294 .0157 .0393 .1463 

100 4 .0117 .0044 .0096 .0380 .1072 .0588 .1209 .4103 .0430 .0411 .0948 .2610 .0103 .0040 .0109 .0456 .0887 .0531 .1441 .5239 .0134 .0076 .0192 .0698 

200 4 .0056 .0022 .0047 .0181 .0521 .0285 .0591 .1948 .0213 .0203 .0457 .1296 .0050 .0020 .0053 .0214 .0432 .0257 .0685 .2455 .0064 .0037 .0095 .0333 

500 4 .0022 .0009 .0019 .0072 .0202 .0111 .0235 .0785 .0083 .0081 .0182 .0518 .0020 .0008 .0021 .0084 .0172 .0101 .0268 .0964 .0025 .0015 .0038 .0134 

1000 4 .0011 .0004 .0009 .0036 .0099 .0055 .0115 .0393 .0043 .0040 .0091 .0256 .0010 .0004 .0010 .0042 .0086 .0050 .0132 .0490 .0012 .0007 .0018 .0067 

50 5 .0224 .0085 .0195 .0785 .2086 .1126 .2433 .8486 .0854 .0826 .1903 .5300 .0212 .0082 .0213 .0891 .1834 .1055 .2878 1.0660 .0256 .0147 .0389 .1432 

100 5 .0107 .0042 .0096 .0380 .0982 .0554 .1195 .4050 .0406 .0406 .0947 .2604 .0102 .0040 .0102 .0422 .0882 .0524 .1364 .4912 .0119 .0072 .0191 .0690 

200 5 .0052 .0021 .0047 .0181 .0481 .0270 .0586 .1931 .0201 .0201 .0456 .1292 .0049 .0020 .0050 .0199 .0432 .0255 .0659 .2315 .0057 .0035 .0094 .0330 

500 5 .0021 .0008 .0019 .0072 .0190 .0106 .0233 .0779 .0079 .0080 .0181 .0518 .0020 .0008 .0020 .0078 .0172 .0101 .0259 .0917 .0023 .0014 .0038 .0133 

1000 5 .0010 .0004 .0009 .0036 .0093 .0052 .0114 .0390 .0040 .0040 .0091 .0256 .0010 .0004 .0010 .0040 .0086 .0050 .0127 .0466 .0011 .0007 .0018 .0067 

      1) 473523 ,, θθθθθθ ===   
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when the sample size increases to n = 1000. When SMD is 3, the proportion 
decreases to 1.08 when the sample size increases to n = 1000. When SMD is 4 or 
5, the proportion decreases to 1.09 or 1.10, respectively, when the sample size 
increases to n = 1000. 
 
The estimation of parameter 1θ  is more effective in model B.8 than in model A.8, 
and when n = 50, the MSE in model B.8 is .78, .80, .87 or .95 times the MSE in 
model A.8 when SMD is 2,3,4 or 5, respectively. When SMD is 2, 3, 4 or 5, the 
proportion increases to .91, .83, .91 or 1.0, respectively when the sample size 
increases to n = 1000.  
 
The estimation of parameter 1θ  is more effective in model B.5 than in model A.5, 
and when n = 50, the MSE in model B.5 is .80, .76, .80 or .88 times the MSE in 
model A.5 when SMD is 2, 3, 4 or 5, respectively.  When SMD is 2, 3, 4 or 5, the 
proportion increases to .87, .83, .87 or .92, respectively when the sample size 
increases to n = 1000. 
 
The estimation of parameter 2θ  is more effective in model A.8 than in model C.8, 
and when n = 50, the MSE in model C.8 is 1.64, 1.63, 1.69, 1.74 and 1.73 times 
larger than the MSE in model A.8 when SMD is 1, 2, 3, 4 or 5, respectively. When 
SMD is 1, 2, 3, 4 or 5, the proportion varies slightly, but increases in all cases to 
1.75 when the sample size increases to n = 1000.  
 
The estimation of parameter 2θ  is more effective in model B.8 than in model A.8, 
and when n = 50, the MSE in model B.8 is .88, .86, .91 or .99 times the MSE in 
model A.8 when SMD is 2, 3, 4 or 5, respectively. When SMD is 2, 3, 4 or 5, the 
proportion varies slightly, but increases in all cases to 1.0 when the sample size 
increases to n = 1000. 
 
The estimation of parameter 2θ  is more effective in model B.5 than in model A.5, 
and when n = 50, the MSE in model B.5 is .91, .86, .89 or .94 times the MSE in 
model A.5 when SMD is 2,3,4 or 5, respectively.  When SMD is 2, 3, 4 or 5, the 
proportion varies slightly, but increases to .93, .91, .91 or .96, respectively, when 
the sample size increases to n = 1000. 
 
The estimation of parameter 3θ  is more effective in model A.8 than in model C.8, 
and the proportion varies slightly being 1.98 – 2.02 with all sample sizes and 
SMDs.  
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The estimation of parameter 3θ  is more effective in model A.8 than in model B.8, 
and when n = 50, the MSE in model B.8 is 1.12, 1.19, 1.16 or 1.09 times larger 
than the MSE in model A.8 when SMD is 2, 3, 4 or 5, respectively. When SMD is 
2, 3, 4 or 5, the proportion varies slightly, but decreases in all cases to 1.11 when 
the sample size increases to n = 1000. 
 
The estimation of parameter 3θ  is more effective in model B.5 than in model A.5, 
and when n = 50,  the MSE in model B.5 is 1.13, 1.21, 1.23, 1.18 times larger than 
the MSE in model A.5 when SMD is 2, 3, 4 or 5, respectively.  When SMD is 2, 3, 
4 or 5, the proportion varies slightly and decreases to 1.09, 1.15, 1.15 or 1.11, 
respectively, when the sample size increases to n = 1000. 
 
The estimation of parameter 4θ  is more effective in model A.8 than in model C.8, 
and the proportion varies slightly being 1.81 – 1.86 with all sample sizes and 
SMDs.  
 
The estimation of parameter 4θ  is more effective in model A.8 than in model B.8, 
and when n = 50, the MSE in model B.8  is 1.19, 1.28, 1.23 or 1.14 times larger 
than the MSE in model A.8 when SMD is 2, 3, 4 or 5, respectively. When SMD is 
2, 3, 4 or 5, the proportion varies slightly, but decreases to 1.14, 1.22, 1.17 or 1.11, 
respectively, when the sample size increases to n = 1000. 
 
The estimation of parameter 4θ  is more effective in model B.5 than in model A.5, 
and when n = 50, the MSE in model B.5 is 1.19, 1.30, 1.33, 1.26 times larger than 
the MSE in model A.5 when SMD is 2, 3, 4 or 5, respectively.  When SMD is 2, 3, 
4 or 5, the proportion varies slightly but decreases to 1.13, 1.23, 1.25 or 1.19, 
respectively, when the sample size increases to n = 1000. 
 
 
6.3.1.5. Summary of the results of MSE 
 
The effects of sample size and SMD 
 
The MSE decreases for all parameters and in all models as a function of sample 
size when SMD is large enough. The effect of SMD on the MSE seems to be very 
strong. The comparison of MSEs when SMD is large; SMD = 4 or 5, reveals that 
the effect of SMD disappears when SMD increases.  
 
When SMD is 1, the MSEs of )1(

0α , )2(
0α , )1(

1α  and )2(
1α  parameter estimates in 

model A.8 slowly decrease, when the sample size increases. When the sample size 
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is 50, the MSE of these parameter estimates is 5.0-11.8 times larger when SMD is 
1, than when compared to the situation where SMD is 5. The difference between 
the MSEs in these two situations increases when the sample size increases. When n 
= 1000, the MSE is 69.1 - 88.9 larger when SMD is 1, than when compared to the 
situation where SMD is 5.  In turn, the MSEs of 00ψ , 11ψ  and 01ψ  parameter 
estimates show a clear decrease when the sample size increases. When the sample 
size is 50, the MSEs of these parameter estimates are 1.79-3.19 times larger when 
SMD is 1, than when compared to the situation where SMD is 5. This difference 
between the MSEs increases being 5.0-8.08 when the sample size increases to 
1000. The MSEs of 1θ , 2θ , 3θ  , 4θ  parameter estimates are almost equal to all 
SMDs and the respective sample sizes.  
 
When SMD is 2, the MSE of all parameter estimates in model A.8 decreases by 
one third when the sample size increases by 1.6 – 2.4 times. When the sample size 
is small (n = 50 or 100), the MSE decreases most rapidly for )1(

0α , )2(
0α  and  11ψ  

parameters in which case the MSE decreases by one third when the sample size 
increases by 1.6 – 1.8 times. For )2(

1α parameter, in turn, the sample size must 
increase by 2.0 -2.4 times in order to achieve the same decrease in the MSE. When 

200n ≥ , the decrease in the MSE is rapid for )2(
0α , )1(

1α  and 11ψ  parameters. This 
decrease is one third when the sample size increases by 1.5 - 1.7 times.  When 

500n ≥ , the decrease in the MSE is also rapid for )1(
0α , )2(

1α  and 00ψ  parameters. 
For these parameters, the MSE decreases by one third when the sample size 
increases by 1.5 - 1.6 times. The decrease in the MSE is slowest for 01ψ  parameter. 
When n = 50, 100, or 200, the MSE of 01ψ  decreases by one third when the sample 
size increases by 1.8 – 1.9 times, and when n = 500, the sample size must increase 
by over two times.  
 
When SMD is 3, 4 or 5, the MSE of all parameter estimates in model A.8 
decreases by half when the sample size increases by two times. This amount of 
decrease is seen for all mean parameters, for the variance of intercept, for the 
covariance between intercept and slope, and for the variance of slope. This amount 
of decrease is seen for all error variances ( 1θ , 2θ , 3θ , 4θ ) also in the case when 
SMD is 1 or 2.  
 
The pattern of convergence is similar with different values of SMD=2, 3, 4 or 5, 
but the effect of SMD on the MSE is large for all other parameters except for 11ψ , 

1θ , 2θ , 3θ , 4θ . When n = 1000, the MSE is 4 – 6 times larger for )1(
0α , )2(

0α , )1(
1α , 

)2(
1α , 00ψ , 01ψ  parameters when SMD is 2, when compared with the case when 
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SMD is 5. If n = 50, the MSE of these parameters is 1.7- 2.5 times larger when 
SMD is 3 than when SMD is 5. If n = 1000, the MSEs of )1(

0α , )2(
0α ,  )2(

1α and 01ψ  
parameter estimates are 1.6 – 1.8 larger, and those of other parameters 1.0 - 1.25 
larger,  in the situation where SMD is 3, when compared with the situation where 
SMD is 5. The MSE of )2(

0α  or )2(
1α  is about two times larger than the MSE of )1(

0α  
or )1(

1α , respectively. This result is obvious, because the expected size of class 1 is 
two times larger than that of class 2.  
 
The effect of reliability 
 
When reliability of observed variables decreases from .80 to .50 (model A.8 vs. 
model A.5), the MSEs of all parameter estimation increase. The pattern of the 
decreasing MSE with different SMDs is similar in model A.5 as in model A.8. 
Larger proportions between the MSEs when comparing model A.5 with model A.8 
are most obvious when SMD is 2 or 3. For example, when SMD is 3 and n = 200, 
the MSEs are 2.1 – 3.0 times larger for mean parameters, and 3.6 – 5.1 times larger 
for the variances and covariance of latent components, in model A.5 than in model 
A.8. When SMD is 5, the MSEs are 1.6 – 2.0 times larger for mean parameters, 
and 3 - 4.9 times larger for the variances and covariance of latent components, in 
model A.5 than in model A.8. These differences between the MSEs are very stable 
with different sample sizes. These results mean that when the sample size 
increases to two or five times larger in model A.5, the MSEs of mean parameters, 
or the MSEs of variances and covariance of latent components, decrease to the 
same level as these values in model A.8. 
 
The effect of additional measurement points 
 
The effect of additional measurement points (described as percentage of distance, 
presented in equation 6.1) on the MSE is, on average, strong and usually greater 
than 50%. However, this effect is weak for the mean of latent components when 
SMD is 1 or when SMD is 2 and the sample size is small. When SMD is 2 and the 
sample size is 1000, the effect on )1(

0α  and )2(
0α  is 58% or 79%, respectively, and 

on )1(
1α  and  )2(

1α  109% or 105%, respectively. This result suggests that, when the 
sample size is large and SMD is 2, additional measurement points have a very 
strong effect, especially, on the MSE of mean of slope. This kind of effect on mean 
parameters is shown also when SMD is 3, although this effect is in this case 
slightly weaker. When SMD is 4 or 5, this effect becomes weaker and is on )1(

0α , 
)2(

0α ,  )1(
1α , )2(

1α  only 36%, 43%, 25% or 44%, respectively, when the sample size is 
1000. 
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The effect of additional measurement points on the MSE of 00ψ  is strong and 
rather stable. When SMD increases, this effect slightly increases and is between 73 
– 91 %. The effect of additional measurement points on the MSE of 11ψ increases 
from 57% to 90%, or from 65% to 82%, when SMD is 1 or 2, respectively, and is 
rather stable (71-86%) when SMD is 3, 4 or 5. The effect on the MSE of error 
variances is very stable. This effect is strongest on the error variance of the first 
measurement, 64%, and on the error variance of the last measurement, 38%, 
whereas the effect is weak on error variances of the second and third 
measurements, 25% and 22%, respectively.  
 
The effect of construct 
 
The construct of the model has a clear effect on the MSE. This was examined by 
comparing model C.8 with model A.8, model B.8 with model A.8, and model B.5 
with A.5, respectively. The results suggest, first, that the MSEs in model C.8 are 
greater than the MSEs in model A.8 for all parameters. The MSEs of parameters in 
model C.8 are between the MSEs in model A.8 and A.5. When SMD is large and 
the sample size increases, the MSEs in model C.8 approaches the MSEs in model 
A.8. The difference in the MSE is clearest, on average, when SMD is 3 and the 
sample size is 200. In this case, the MSEs are 1.5 - 1.8 times larger for mean 
parameters, and 1.4 – 1.5 times larger for the variance and covariance parameters 
of latent components, in model C.8 than in model A.8. When SMD is 5 and the 
sample size is 1000, the MSEs of latent component parameters are about 1.1 – 1.2 
times larger in model C.8 than in model A.8, except that the MSE of variance of 
slope in model C.8 is equal to the respective MSE in model A.8.  
 
Second, the MSE in model B.8 or B.5 is smaller than the MSE in model A.8 or 
A.5, respectively, for the mean of intercept component, the variance of intercept 
component, the covariance of intercept and slope components, and the first and 
second error variances. For other parameters, the MSE is larger in model B.8 and 
B.5 than in model A.8 and A.5, respectively. The differences in the MSEs are 
greater between models B.5 and A.5 than between models B.8 and A.8, with few 
exceptions. The differences in the MSEs are most evident when SMD is 3. When 
the sample size is 1000 and SMD is 3 or 5, the MSE is about 13-22 or 3-7 percent 
lower for the mean of intercept, 34-46 or 11-28 percent greater for the mean of 
slope, 30-37 or 12-20 percent lower for the variance of intercept, 100 or 0-22 
percent greater for the variance of slope, and 22-31 or near to zero for the 
covariance of intercept and slope, respectively, in model B.5 than in model A.5. 
The MSE of the first and second error variance is 4 -8 percent lower, and the MSE 
of the third and fourth error variances 11 - 19 percent larger, in model B.5 than in 
model A.5. 
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6.3.2. Results of proportion of parameter bias in MSE (PB) 
 
 
The next chapter describes what is the proportion of parameter bias in MSE (PB). 
As for MSE, the results of PB are first expressed in A.8 model for sample size n 
and SMD. If the PB is lower than .01, the proportion of parameter bias is one 
percent and is seen to be negligible when estimating the true value of parameter.  
 
 
6.3.2.1. Results of PB for )1(

0α  and )2(
0α  

 
The effects of sample size and SMD 
 
As can be seen from Table 6.15., the PB in model A.8 is large when SMD is 1 and 
for )1(

0α , the PB decreases from .403 percent to .105 percent when the sample size 
increases from n=50 to n=1000. The cells of Table 6.15 are highlighted in grey if 
the PB is greater than .01. When SMD is 2, the PB decreases from .096 to .037 
when the sample size increases from n=50 to n=100 and, when 200n ≥ , the PB is 
lower than .01. When 3SMD ≥ , the PB is lower than .01 with all sample sizes 
n=50, 100, 200, 500 or 1000. When SMD is 1, the PB for )2(

0α  decreases from .170 
to .054 when the sample size increases from 50 to 1000. When SMD is 2,  the PB 
is .010 when n=50, and is lower than .01 when 100n ≥ . When SMD is 3, 4 or 5, 
the PB for )2(

0α  is lower than .01 with all sample sizes. 
 
The effect of reliability on the PB for )1(

0α  and )2(
0α  

 
The effect of reliability on the PB for  )1(

0α  and )2(
0α  is small and the PB in model 

A.5 is slightly greater than in model A.8. As can be seen from Table 6.15, the PB 
in model A.5 is large when SMD is 1, and for )1(

0α , the PB decreases from .410 to 
.147 when the sample size increases from 50 to 1000 and the difference to the PB 
in model A.8 increases from  .008 to .042. When SMD is 2, the PB in model A.5 
decreases from .146 to .024 when the sample size increases from 50 to 200 and the 
difference to the PB in model A.8 decreases from .012 to .002, respectively. As in 
model A.8, in model A.5, the PB is lower than .01 when 3SMD ≥  with all sample 
sizes, except when SMD is 3 and n=50, the PB in model A.5 is .024. 
 
For )2(

0α , when SMD is 1, the PB decreases in model A.5 from .204 to .066 when 
the sample size increases from 50 to 1000. The difference to the PB in model A.8 
decreases from .034 to .012, respectively. When SMD is 2,  the PB in model A.5 
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decreases from .023 to lower than .013 when the sample size increases from 50 to 
100 and the difference to the PB in model A.8 decreases from .013 to .006. As in 
model A.8, the PB is lower than .01 when 200n ≥ . When 3SMD ≥ , as in model 
A.8, in model A.5, the PB is lower than .01 when 3SMD ≥  with all sample sizes. 
 
Table 6.15. The PB for )2(

0
)1(

0 ,αα  parameters in models A.8., A.5, A.5*, B.8, B.5 
and C.8. 
 

Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 
)1(

0α
 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 
50 1 .4028 .1699 .4103 .2040 .3347 .1175 .4028 .1699 .4103 .2040 .4364 .2249 
100 1 .3341 .1246 .3474 .1500 .2862 .0946 .3341 .1246 .3474 .1500 .3770 .1664 
200 1 .2612 .0886 .2856 .1161 .2367 .0793 .2612 .0886 .2856 .1161 .3008 .1271 
500 1 .1738 .0619 .2048 .0802 .1659 .0705 .1738 .0619 .2048 .0802 .2318 .0877 
1000 1 .1054 .0537 .1473 .0657 .1104 .0618 .1054 .0537 .1473 .0657 .1586 .0720 
50 2 .0961 .0101 .1455 .0233 .1021 .0103 .0240 .0029 .0415 .0073 .1592 .0240 
100 2 .0372 .0067 .0720 .0130 .0415 .0119 .0085 .0021 .0190 .0040 .0834 .0153 
200 2 .0068 .0036 .0243 .0091 .0099 .0143 .0011 .0010 .0051 .0025 .0274 .0119 
500 2 .0003 .0012 .0005 .0057 .0000 .0147 .0000 .0004 .0001 .0014 .0015 .0063 
1000 2 .0000 .0016 .0002 .0028 .0000 .0052 .0000 .0005 .0001 .0012 .0000 .0050 
50 3 .0060 .0001 .0142 .0017 .0049 .0020 .0002 .0000 .0023 .0002 .0183 .0013 
100 3 .0021 .0001 .0029 .0008 .0010 .0011 .0001 .0002 .0006 .0003 .0044 .0006 
200 3 .0014 .0000 .0010 .0000 .0005 .0002 .0001 .0003 .0001 .0003 .0019 .0000 
500 3 .0007 .0002 .0005 .0006 .0004 .0000 .0000 .0002 .0000 .0002 .0011 .0005 
1000 3 .0004 .0000 .0003 .0002 .0005 .0000 .0000 .0000 .0000 .0001 .0006 .0001 
50 4 .0004 .0000 .0011 .0000 .0002 .0002 .0000 .0000 .0000 .0000 .0016 .0000 
100 4 .0008 .0001 .0011 .0001 .0002 .0001 .0002 .0002 .0000 .0001 .0012 .0001 
200 4 .0007 .0000 .0008 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0010 .0000 
500 4 .0002 .0000 .0003 .0001 .0000 .0000 .0000 .0001 .0000 .0001 .0004 .0001 
1000 4 .0002 .0000 .0001 .0000 .0002 .0002 .0000 .0000 .0000 .0000 .0002 .0000 
50 5 .0000 .0000 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0000 
100 5 .0003 .0001 .0007 .0001 .0000 .0001 .0002 .0003 .0002 .0002 .0005 .0001 
200 5 .0002 .0000 .0005 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0003 .0000 
500 5 .0000 .0000 .0001 .0001 .0000 .0000 .0000 .0001 .0000 .0001 .0001 .0000 
1000 5 .0000 .0000 .0001 .0000 .0000 .0001 .0000 .0000 .0000 .0000 .0001 .0001 

 
Note. The cell is highlighted in grey when the proportion of bias in the MSE is greater 
than one percent. 
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The effect of additional measurements on the PB for )1(
0α  and )2(

0α  
 
The PB for )1(

0α  and )2(
0α  is slightly lower in model A.5* than in model A.5. When 

SMD is 1, the PB of )1(
0α decreases in model A.5 from .335 to .110 when the 

sample size increases from 50 to 1000 and the difference to the PB in model A.5 
decreases from .075 to .037 percent. When SMD is 2, the PB decreases from .102 
to .042 when the sample size increases from 50 to 100 and the difference decreases 
from .043 to .005, respectively. As in model A.5, in model A.5*, the PB is lower 
than .01 when 200n ≥ . As in model A.5, in model A.5*, the PB is lower than .01 
when 3SMD ≥ . Other than in model A.5, the PB is also lower than .01 when 

3SMD =  and n=50. 
 
For )2(

0α , the PB decreases in model A.5* from .118 to .062 percent when the 
sample size increases from 50 to 1000 and the difference to the PB in model A.5 
decreases from  .087  to .004, respectively. When SMD is 2, the PB is slightly over 
.01 when n=50, 100, 200 or 500 and is lower than .01 when n=1000. These values 
are .013 or .001 lower when n=50 or 100, respectively, and .004 or .015 greater 
when n=200 or 500, respectively. As in model A.5, in model A.5*, the PB is lower 
than .01 when 3SMD ≥  with all sample sizes. 
 
The effect of model construct on the PB for )1(

0α  and )2(
0α  

 
The PB in model C.8 for )1(

0α  and )2(
0α  is slightly greater than the PB in model A.8. 

As can be seen from Table 6.15, when SMD is 1, the PB in model C.8 for )1(
0α  

decreases from .436 to .159 when the sample size increases from 50 to 1000 and 
the difference to the PB in model A.8 varies between .034 and .058. When SMD is 
2, the PB decreases from .159 to .083 when the sample size increases from 50 to 
100 and the difference to the PB in model A.8 decreases from .063 to 0.046, 
respectively. When n=200, the PB is .027 and is .021 greater than the PB in model 
A.8. As in model A.8, the PB in model C.8 is lower than .01 when 500n ≥ .  
 
As in model A.8, in model C.8, the PB is lower than .01 when 200n ≥ . As in 
model A.8, the PB for )1(

0α  in model C.8 is lower than .01 when 3SMD ≥ . Other 
than in model A.8, the PB is greater than .01 and is .018 when 3SMD =  and 
n=50. As in model A.8, the PB for )1(

0α  in model C.8 is lower than .01 when 
4SMD ≥  with all sample sizes.  
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When SMD is 1, the PB in model C.8 for )2(
0α  is lower than the PB in model A.8. 

The PB decreases from .225 to .072 when the sample size increases from 50 to 
1000 and the difference to the PB in model A.8 decreases from .055 to .018 
percent. When SMD is 2, the PB is .024 when n=50 and is .014 greater than in 
model A.8. Other than in model A.8, the PB for )2(

0α  in model C.8 is greater than 
.01 when n=100 or 200. These values are .015 and .012, respectively. As in model 
A.8, the PB for )2(

0α  in model C.8 is lower than .01 when 3SMD ≥  with all 
sample sizes. 
 
When SMD is 1, model B.8 is equal to the model A.8. When SMD is 2, the PB in 
model B.8 for )1(

0α  is .024 and is .072 lower than the PB in model A.8. Other than 
in model A.8, the PB for )1(

0α   is lower than 0.1 percent when n=100 and is .029 
lower than the PB in model A.8. As in model A.8, the PB in model B.8 is lower 
than .01 when  SMD is 2 and 200n ≥  or when 3SMD ≥  with all sample sizes.  
 
As in model A.8, the PB for )2(

0α  in model B.8 is lower than .01 when 3SMD ≥  
with all sample sizes, with one exception. When SMD is 2 and n=50, the PB in 
model A.8 is .010, whereas the PB in model B.8 is .003.  
 
When SMD is 1, model B.5 is equal to the model A.5. the PB in model B.5 for )1(

0α  
and )2(

0α  is lower than the PB in model A.5. When SMD is 2, the PB in model B.5 
for )1(

0α  decreases from .042 to .019 when the sample size increases from 50 to 100 
and the difference to the PB in model A.5 decreases from .104 to .053. Other than 
in model A.5, the PB for )1(

0α  is lower than 0.1 percent when n=200, and is .019 
lower than the PB in model A.5. As in model A.5, the PB in model B.5 is lower 
than .01 when  200n ≥ .   
 
As in model A.5, the PB for )2(

0α  in model B.5 is lower than .01 when 3SMD ≥  
with all sample sizes, with two exceptions. Other than in model A.5, the PB in 
model B.5 is lower than .01 when SMD is 2 and n=50 or 100 and the PB is .016 or 
.009 lower, respectively, than the PB in model A.5. 
 
 
6.3.2.2. Results of PB for )1(

1α  and )2(
1α  

 
As can be seen from Table 6.16, the PB for )1(

1α  and )2(
1α  parameters is lower than 

.01 in model A.8 with all SMD=1, 2, 3, 4 or 5 and with all sample sizes. 
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Table 6.16. The PB for )2(
1

)1(
1 ,αα  parameters in models A.8., A.5, A.5*, B.8, B.5 

and C.8. 
 

Model A.8  A.5  A.5*  B.8  B.5  C.8  

N SMD )1(
1α  

)2(
1α  

)1(
1α  

)2(
1α  

)1(
1α  

)2(
1α  

)1(
1α  

)2(
1α  

)1(
1α  

)2(
1α  

)1(
1α  

)2(
1α  

50 1 .0000 .0000 .0002 .0000 .0021 .0020 .0000 .0000 .0002 .0000 .0003 .0000 
100 1 .0002 .0000 .0001 .0001 .0027 .0018 .0002 .0000 .0001 .0001 .0003 .0000 
200 1 .0001 .0000 .0000 .0001 .0108 .0014 .0001 .0000 .0000 .0001 .0000 .0001 
500 1 .0001 .0000 .0000 .0000 .0016 .0006 .0001 .0000 .0000 .0000 .0000 .0005 
1000 1 .0000 .0000 .0000 .0000 .0006 .0005 .0000 .0000 .0000 .0000 .0001 .0000 
50 2 .0002 .0000 .0005 .0001 .0024 .0024 .0589 .0087 .0679 .0126 .0003 .0000 
100 2 .0002 .0000 .0000 .0001 .0031 .0022 .0195 .0052 .0313 .0071 .0000 .0001 
200 2 .0002 .0000 .0000 .0000 .0036 .0025 .0022 .0033 .0106 .0052 .0001 .0001 
500 2 .0000 .0000 .0001 .0000 .0008 .0003 .0001 .0025 .0003 .0046 .0000 .0001 
1000 2 .0001 .0000 .0001 .0004 .0007 .0006 .0000 .0015 .0000 .0022 .0000 .0000 
50 3 .0005 .0000 .0005 .0000 .0016 .0028 .0033 .0011 .0130 .0032 .0005 .0001 
100 3 .0000 .0000 .0000 .0000 .0010 .0017 .0004 .0006 .0021 .0012 .0001 .0001 
200 3 .0000 .0001 .0001 .0002 .0006 .0009 .0002 .0005 .0001 .0010 .0000 .0000 
500 3 .0000 .0000 .0000 .0000 .0002 .0001 .0002 .0006 .0002 .0013 .0000 .0000 
1000 3 .0000 .0000 .0000 .0000 .0025 .0004 .0001 .0004 .0003 .0009 .0000 .0000 
50 4 .0003 .0000 .0002 .0000 .0001 .0008 .0001 .0000 .0013 .0007 .0003 .0000 
100 4 .0000 .0000 .0000 .0000 .0001 .0007 .0003 .0000 .0003 .0004 .0000 .0001 
200 4 .0000 .0000 .0000 .0000 .0001 .0066 .0001 .0002 .0001 .0004 .0000 .0000 
500 4 .0000 .0000 .0000 .0000 .0002 .0001 .0000 .0001 .0001 .0003 .0000 .0001 
1000 4 .0000 .0000 .0000 .0000 .0004 .0002 .0000 .0002 .0000 .0003 .0000 .0000 
50 5 .0001 .0000 .0002 .0000 .0000 .0004 .0000 .0000 .0001 .0001 .0002 .0000 
100 5 .0000 .0001 .0000 .0000 .0000 .0003 .0001 .0000 .0001 .0000 .0001 .0002 
200 5 .0001 .0001 .0000 .0000 .0001 .0002 .0001 .0000 .0000 .0001 .0001 .0001 
500 5 .0000 .0001 .0000 .0000 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0001 
1000 5 .0000 .0000 .0000 .0000 .0004 .0002 .0000 .0000 .0000 .0000 .0000 .0000 

Note. The cell is highlighted in grey when the proportion of bias in the MSE is greater 
than one percent.  
 
The effect of reliability on the PB for )1(

1α  and )2(
1α  

 
The effect of reliability is not seen in Table 6.16. As in model A.8, the PB for )1(

1α  
and )2(

1α  parameters is lower than .01 in model A.5 with all SMD=1, 2, 3, 4 or 5 
and with all sample sizes.  
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The effect of additional measurements on the PB for )1(
1α  and )2(

1α  
 
The effect of additional measurement is not seen in Table 6.16. As in model A.8, 
the PB for )1(

1α  and )2(
1α  parameters is lower than .01 in model A.5 with all 

SMD=1, 2, 3, 4 or 5 and with all sample sizes, with one exception.  When SMD is 
1 and n=200, the PB for )1(

1α  is .011. 
 
The effect of model construct on the PB for )1(

1α  and )2(
1α  

 
The effect of model construct is not seen in Table 6.16 when comparing model  
C.8 and A.8. As in model A.8, the PB for )1(

1α  and )2(
1α  parameters is lower than 

.01 in model C.8 with all SMD=1, 2, 3, 4 or 5 and with all sample sizes. Other than 
in model A.8, the PB for )1(

1α  in model B.8 is greater than .01 in two of the cases; 
namely, when SMD is 2, the PB is .059 or .020 when n=50 or 100, respectively.  
 
Other than in model A.5, the PB for )1(

1α  in model B.5 is greater than .01 in some 
of the cases. Namely, when SMD is 2, the PB decreases from .068 to .011 when 
the sample size increases from 50 to 200. When SMD is 3 and n=50, the PB is 
.013. Other than in model A.5, the PB for )2(

1α  in model B.5 is greater than .01 in 
one of the cases; namely, when SMD is 2 and n=50, the PB is .013. 
 
 
6.3.2.3. Results of PB for 1100 ,ψψ  and 01ψ  
 
The results of the PB for 1100 ,ψψ  and 01ψ  can be seen in Table 6.17. When SMD is 
1, the PB is large for 00ψ  parameter in model A.8, and decreases from .61 to .118 
when the sample size increases from 50 to 1000. When SMD is 2, the PB 
decreases from .115 to .024 when the sample size increases from 50 to 100, and is 
lower than .01 when the sample size is 200n ≥ . When SMD is 3, the PB is lower 
than .01 with all sample sizes. When SMD is 4, the PB decreases from .013 to .011 
when the sample size increases from 50 to 100, and is lower than .01 when 

200n ≥ . When SMD is 5, the PB decreases from .026 to .014 when the sample 
size increases from 50 to 100, and is lower than .01 when 200n ≥ . 
 
When SMD is 1, the PB is large for 11ψ  parameter in model A.8 and increases 
from .264 to .317 when the sample size increases from 50 to 1000. When SMD is 
2, the PB is also large, and decreases from .186 to .031 when the sample size 
increases from 50 to 1000. When SMD is 3, the PB decreases from .081 to .014 
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when the sample size increases from 50 to 200, and is lower than .01 when the 
sample size is 500n ≥ . When SMD is 4, the PB decreases from .042 to .016 when 
the sample size increases from 50 to 100, and is lower than .01 when the sample 
size is 200n ≥ . When SMD is 5, the PB decreases from .034 to .013 when the 
sample size increases from 50 to 100, and is lower than .01 when 200n ≥ . 
 
When SMD is 1, the PB for 01ψ  parameter in model A.8 is lower than .01 when 
SMD is 1, 2, 3, 4, or 5 with all sample sizes, except with two of the cases. Namely, 
when SMD is 1, the PB is .013 when the sample size is n=50 or 100. 
 
The effect of reliability on the PB for 1100 ,ψψ  and 01ψ   
 
The effect of reliability on the PB for  00ψ  is clear when SMD is 1 or 2. When 
SMD is 1, the PB in model A.5 decreases from .538 to .222 when the sample size 
increases from 50 to 1000. The PB is lower in model A.5 when the sample size is 
50 or 100, and the difference to the PB in A.8 model is  .072 or .031, respectively. 
The PB is greater in model A.5 when the sample size is 200n ≥ , and the 
difference to the PB in model A.8 increases from .023 to .103 percent when the 
sample size increases from 200 to 1000. When SMD is 2, the PB in model A.5 
decreases from .172 to .068 when the sample size increases from 50 to 200, and 
the difference to the PB in model A.8 decreases from .057 to .044, respectively. 
Other than in model A.8, the PB in model A.5 for 00ψ , is greater than .01, and is 
.013 greater than the PB in model A.8. As in model A.8, the PB in model A.5 for 

00ψ  is lower than .01 when  500n ≥ . When SMD is 3, 4 or 5, the PB in model 
A.5 is lower than .01 with all sample sizes, except with two cases. When SMD is 3 
and n=50, the PB in model A.5 is .013, and is .005 greater than the PB in model 
A.8. When SMD is 5, the PB in model A.5 is .012, and is .015 lower than the PB 
in model A.8. Other than in model A.8, the PB in model A.5 is lower than .01 
when SMD is 4 and sample sizes are 50 or 100, or when SMD is 5 and the sample 
size is 100. 
 
The effect of reliability on the PB for  11ψ  is weak when SMD is 1 or 2. When 
SMD is 1, the PB in model A.5 increases from .230 to .308 percent when the 
sample size increases from 50 to 1000. The PB is lower in model A.5, and the 
difference decreases from .034 to .009, respectively. When SMD is 2, the PB in 
model A.5 decreases from .170 to .067 when the sample size increases from 50 to 
1000. The PB in model A.8 is .016 greater than the PB in model A.5 when n=50. 
The PB in model A.5 is greater than the PB in model A.8 when 100n ≥ . When 
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the sample size increases from 100 to 500, the difference increases from .008 to 
.043 and is .035 when n=1000.   
 
Table 6.17. The PB for 011100 ,, ψψψ  parameters in models A.8., A.5, A.5*, B.8, B.5 
and C.8. 
 

Model A.8  A.5  A.5* B.8  B.5  C.8  

N SMD 00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

50 1 .6099 .2641 .0097 .5378 .2298 .0451 .4754 .2378 .6099 .2641 .0097 .5378 .2298 .0451 .6467 .2607 .0187

100 1 .5228 .2832 .0132 .4921 .2557 .0517 .3947 .2051 .5228 .2832 .0132 .4921 .2557 .0517 .5763 .2759 .0169

200 1 .4076 .3042 .0127 .4303 .2850 .0541 .3104 .1698 .4076 .3042 .0127 .4303 .2850 .0541 .4870 .3018 .0194

500 1 .2370 .3164 .0085 .3166 .3053 .0537 .1820 .1354 .2370 .3164 .0085 .3166 .3053 .0537 .3577 .3150 .0236

1000 1 .1184 .3168 .0068 .2215 .3080 .0460 .0928 .1202 .1184 .3168 .0068 .2215 .3080 .0460 .2394 .3264 .0180

50 2 .1153 .1859 .0050 .1724 .1700 .0287 .0905 .1500 .1481 .1109 .0096 .1683 .1528 .0247 .2211 .2056 .0110

100 2 .0242 .1645 .0052 .0677 .1720 .0230 .0166 .1056 .0941 .0400 .0305 .1308 .0969 .0514 .0831 .2013 .0085

200 2 .0001 .1406 .0031 .0134 .1623 .0200 .0008 .0554 .0454 .0095 .0377 .0824 .0482 .0674 .0113 .1855 .0056

500 2 .0003 .0720 .0007 .0000 .1152 .0084 .0003 .0187 .0156 .0021 .0194 .0395 .0149 .0584 .0002 .1344 .0049

1000 2 .0000 .0313 .0002 .0003 .0665 .0035 .0001 .0064 .0077 .0015 .0057 .0180 .0055 .0333 .0008 .0756 .0027

50 3 .0082 .0810 .0027 .0129 .0828 .0101 .0046 .0701 .0662 .0112 .0135 .0854 .0345 .0312 .0161 .1065 .0044

100 3 .0028 .0376 .0013 .0014 .0505 .0057 .0020 .0308 .0334 .0019 .0082 .0514 .0082 .0290 .0015 .0632 .0029

200 3 .0022 .0144 .0010 .0002 .0220 .0015 .0020 .0115 .0134 .0012 .0022 .0224 .0025 .0149 .0007 .0275 .0009

500 3 .0026 .0042 .0001 .0012 .0057 .0004 .0017 .0045 .0045 .0013 .0002 .0072 .0018 .0035 .0018 .0088 .0005

1000 3 .0016 .0013 .0000 .0009 .0017 .0001 .0016 .0000 .0029 .0009 .0000 .0041 .0013 .0008 .0014 .0041 .0005

50 4 .0129 .0416 .0017 .0059 .0370 .0043 .0086 .0370 .0436 .0103 .0039 .0449 .0107 .0159 .0079 .0489 .0028

100 4 .0110 .0157 .0006 .0044 .0138 .0021 .0059 .0177 .0213 .0055 .0013 .0213 .0035 .0077 .0067 .0188 .0014

200 4 .0054 .0063 .0005 .0023 .0049 .0006 .0035 .0072 .0079 .0023 .0005 .0080 .0019 .0026 .0041 .0070 .0004

500 4 .0027 .0020 .0000 .0015 .0013 .0002 .0020 .0041 .0033 .0010 .0000 .0034 .0010 .0006 .0025 .0029 .0005

1000 4 .0017 .0008 .0000 .0009 .0004 .0000 .0018 .0016 .0022 .0003 .0000 .0022 .0005 .0002 .0016 .0013 .0006

50 5 .0261 .0339 .0013 .0116 .0252 .0035 .0174 .0300 .0388 .0192 .0015 .0308 .0107 .0078 .0186 .0338 .0029

100 5 .0143 .0125 .0004 .0084 .0086 .0019 .0081 .0152 .0195 .0080 .0006 .0147 .0045 .0031 .0122 .0125 .0019

200 5 .0054 .0048 .0003 .0033 .0033 .0007 .0047 .0060 .0070 .0029 .0003 .0058 .0020 .0012 .0045 .0048 .0007

500 5 .0023 .0016 .0000 .0000 .0009 .0001 .0024 .0037 .0029 .0012 .0000 .0026 .0006 .0003 .0023 .0020 .0008

1000 5 .0016 .0005 .0001 .0010 .0002 .0000 .0021 .0021 .0018 .0005 .0000 .0016 .0002 .0001 .0016 .0008 .0006

Note. Cell is highlighted when the proportion of bias in the MSE is greater than one 
percent.  
 
When SMD is 3, the PB in model A.5 decreases and is .083, .051 or .022 when the 
sample size increases and is 50, 100 or 200, respectively. The PB in model A.5 is 
.002, .013 or .008 greater, respectively, than the PB in model A.8.  As in model 
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A.8, the PB in model A.5 is lower than .01 when the sample size is 500n ≥ . 
When SMD is 4, the PB in model A.5 decreases and is .037 or .014 when the 
sample size increases and is 50 or 100, respectively. The PB in model A.5 is .005 
or .004 lower, respectively, than the PB in model A.8.  As in model A.8, the PB in 
model A.5 is lower than .01 when the sample size is 200n ≥ . When SMD is 5, 
the PB in model A.5 decreases and is .025 or .009 when the sample size increases 
and is 50 or 100, respectively. The PB in model A.5 is .009 or .004 lower, 
respectively, than the PB in model A.8. As in model A.8, the PB in model A.5 is 
lower than .01 when the sample size is 200n ≥ .  
 
The effect of reliability on the PB for  01ψ  is clear when SMD is 1 or 2. When 
SMD is 1, the PB in model A.5 is between .045 and .054 with all sample sizes and 
is clearly greater than the PB in model A.8. When the PB in model A.8 is lower 
than .01 when 2SMD ≥  with all sample sizes, the PB in model A.5 is greater 
than .01 in four cases. Namely, when SMD is 2, the PB decreases from .029 to 
.020 when the sample size increases from 50 to 200, and when SMD is 3 and 
n=50, the PB is .010. 
 
The effect of additional measurements on the PB for 00ψ  and 11ψ   
 
The effect of additional measurements on the PB for  00ψ  is clear when SMD is 1 
or 2 and the PB for  00ψ  in model A.5* is lower than in model A.5. When SMD is 
1, the PB in model A.5* decreases from .475 to .093 when the sample size 
increases from 50 to 1000 and the difference to the PB in model A.5 increase from 
.062 to .129. When SMD is 2, the PB is greater than .01 when n=50 or 100 and is 
.091 or .017. These values are .082 or .051 greater, respectively, than in model 
A.5. When SMD is 3 or 4, other than in model A.5, the PB is in model A.5* lower 
than .01 with all sample sizes. When SMD is 5, as in model A.5, the PB is greater 
than .01 when n=50 and the value is .017, which is .006 greater than in model A.5. 
 
The effect of additional measurements on the PB for  11ψ  is clear when SMD is 1 
or 2 and the PB for  11ψ  in model A.5* is lower than in model A.5, on average. 
When SMD is 1, the PB in model A.5* decreases from .238 to .120 when the 
sample size increases from 50 to 1000, and the difference to the PB in model A.5 
increases from equal values to .188, respectively. When SMD is 2, the PB 
decreases from .150 to .019 when the sample size increases from 50 to 500. The 
difference to the PB in model A.5 increases from .02 to .10, respectively. As in 
model A.5, the PB in model A.5* is lower than .01 when n=1000. When SMD is 3, 
the PB in model A.5* decreases from .070 to .012 when the sample size increases 
from 50 or 200, and the difference decreases from .013 to .011, respectively. When 
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SMD is 4, the PB in model A.5* is .037 or .018 when the sample size is 50 or 100, 
respectively, and these values of PB are .013 or .020, respectively, lower than in 
model A.5. When SMD is 5 and  when n=50, the PB in model A.5* is .030, and is 
.005 greater than in model A.5. Other than in model A.5, the PB in model A.5* is 
greater than .01 and is .015 when n=100. As in model A.5, the PB in model A.5* is 
lower than .01 when 200n ≥  
 
The effect of model construct on the PB for 1100 ,ψψ  and 01ψ   
 
When comparing model C.8 to model A.8, the PB for 00ψ  in model C.8 is slightly 
greater than in model A.8. When SMD is 1, the PB decreases from .647 to .239 
when the sample size increases from 50 to 1000, and the difference to the PB in 
model A.8 increases from .037 to .121, respectively. When SMD is 2, the PB 
decreases from .221 to .083 when the sample size increases from 50 to 100, and 
the difference from PB in model A.8 decreases from .106 to .059, respectively. 
Other than in model A.8, the PB in model C.8 is greater than .01, and is .011 when 
the sample size is n=200. As in model A.8, the PB is lower than .01 when 

500n ≥ .  When SMD is 3, the PB in model A.5 is .016 when n=50, whereas the 
PB is lower than .01 in model A.8. Other than in model A.8, the PB in model C.8  
is lower than .01 when SMD is 4 also when n=50.  As in model A.8, the PB is 
greater than .01 when SMD is 5 and the sample size is 50 or 100. The PB is then 
.019 or .012, respectively, and is .008 or .002 lower than the PB in model A.8. 
 
The PB for 11ψ  in model C.8 is slightly greater than in model A.8. When SMD is 
1, the PB increases from .261 to .326 when the sample size increases from 50 to 
1000 and differs slightly from the PB in model A.8. When SMD is 2, the PB 
decreases from .206 to .076 when the sample size increases from 50 to 1000 and 
the difference from the PB in model A.8 varies between .020 and .062. As in 
model A.8, the PB in model C.8 is greater than .01 when SMD is 3 and n=50, 100 
or 200, and the PB decreases from .107 to .028 when the sample size increases 
from 50 to 200, and the difference from the PB in model A.8 decreases from .025 
to .013, respectively. As in model A.8, the PB in model C.8 is greater than .01 
when SMD is 4 and n=50 or 100, and the PB decreases from .049 to .019 when the 
sample size increases from 50 to 100 and the difference from PB in model A.8 
decreases from .008 to .003, respectively. As in model A.8, the PB in model C.8 is 
greater than .01 when SMD is 5 and n=50 or 100, and the PB decreases from .034 
to .013 when the sample size increases from 50 to 100 and there are no differences 
to the PB in model A.8.  
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Model B.8 is equal to model A.8 when SMD is 1. The PB for 00ψ  in model B.8 is 
slightly greater than in model A.8. When SMD is 2, other than in model A.8, the 
PB in model B.8 is greater than .01 when n=200 or n=500. The PB decreases in 
model B.8 from .148 to .016 when the sample size increases from 50 to 500. When 
the sample size is 50 or 100, the difference from the PB in model A.8 is .033 or 
.070, respectively. When the PB in model A.8 is lower than .01 with all sample 
sizes, the PB in model B.8 decreases from .066 to .013 when the sample size 
increases from 50 to 200. As in model A.8, the PB in model B.8 is greater than .01 
when SMD is 4 or 5 and the sample size is 50 or 100. When SMD is 4, the PB 
decreases from .045 to .021 when the sample size increases from 50 to 100, and 
the difference decreases from .032 to .010, respectively. When SMD is 5, the PB 
decreases from .031 to .015 when the sample size increases from 50 to 100, and 
the difference decreases from .012 to .0004, respectively. 
 
PB for 11ψ  in model B.8 is slightly lower than in model A.8. When SMD is 2, 
other than in model A.8, the PB in model B.8 is greater than .01 only when n=50 
or n=100. The PB decreases in model B.8 from .111 to .040 when the sample size 
increases from 50 to 100. These values are .075 and .125 lower than in model A.8. 
Other than in model A.8, when SMD is 3, 4 or 5, the PB is lower than .01 only 
when n=50. These values are then .011, .010 and .019 and are .070, .031 and .015 
lower, respectively, than values in model A.8.  
 
As in model A.8, the PB for 01ψ  in model B.8 is lower than .01 when SMD is 2, 3, 
4 or 5 and with all sample sizes, except with four cases. Three of these exceptions 
appear when SMD is 2 and the PB in model B.5 is .031, .038 or .019 when the 
sample size is 100, 200 or 500, respectively. The fourth exception appears when 
SMD is 3 and the sample size is 50, in which case the PB in model B.8 is .014. 
 
Model B.5 is equal to model A.5 when SMD is 1. The PB for 00ψ  in model B.5 is 
close to the PB in model A.5, but appears to be over .01 more often than in model 
A.5. When SMD is 2, other than in model A.5, the PB in model B.5 is greater than 
.01 also when n=200 or n=500. The PB decreases in model B.5 from .168 to .018 
when the sample size increases from 50 to 1000. When the sample size is 50, 100 
or 200, the difference from the PB in model A.5 is .004, 063 or .069, respectively. 
When 3SMD ≥ , the PB in model A.5 is greater than .01 only in two cases. 
Namely, when SMD is 3 or 5 and the sample size is 50, in which cases the PB in 
model B.5 is .073 or .019 greater than the PB in model A.5. Addition to these 
cases, the PB in model B.5 is greater than .01 in many cases. First, when SMD is 
3, the PB in model B.5 decreases from .085 to .022 when the sample size increases 
from 50 to 200. Secondly, when SMD is 4, the PB decreases from .045 to .021 
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when the sample size increases from 50 to 100. Thirdly, when SMD is 5, the PB in 
model B.5 decreases from .031 to .015 when the sample size increases from 50 to 
100. 
  
The PB for 11ψ  in model B.5 is lower than in model A.5. When SMD is 2, other 
than in model A.5, the PB in model B.5 is lower than .01 when n=1000. The PB 
decreases in model B.5 from .153 to .015 when the sample size increases from 50 
to 500. These values, when n=50, 100, 200 or 500, are .017, .075, .114, .100 lower, 
respectively, than in model A.5. Other than in model A.5, when SMD is 3, 4 or 5, 
the PB is greater than .01 only when n=50. These values are .035, .011 or .011, 
respectively, and are .047, .031 or .023 lower, respectively,  than the values in 
model A.5.  
 
The PB for 01ψ  in model B.5 is slightly greater than in model A.5. When SMD is 
2, other than in model A.5, the PB in model B.5 is greater than .01 also when 
n=500 or n=1000. The PB increases in model B.5 from .025 to .067 when the 
sample size increases from 50 to 200 and decreases after that to .033 when the 
sample size increases to 1000. These values, when n=100 or 200, are .028 or .054 
greater, respectively, than in model A.5. Other than in model A.5, when SMD is 3, 
the PB is lower than .01 in addition to the case when n=50, also when n=100 or 
200. The PB in model B.5 decreases from .031 to .015. When n=50, the PB is .021 
greater than in model A.5. When the PB in model A.5 is lower than .01 with all 
sample sizes when SMD is 4 or 5, in model B.5 there is one difference. Namely, 
when SMD is 4 and the sample size is 50, the PB is .016.  
 
 
6.3.2.4. Results of PB for 1θ , 2θ , 3θ  and 4θ  
 
As can be seen from Table 6.18, the PBs for 1θ , 2θ , 3θ  and 4θ parameters are lower 
than .01 in model A.8 with all SMD=1, 2, 3, 4 or 5 and with all sample sizes. 
  
The effect of reliability on the PB for 1θ , 2θ , 3θ  and 4θ  
 
The effect of reliability is not evident in Table 6.18. As in model A.8, the PBs for 

1θ , 2θ , 3θ  and 4θ  parameters are lower than .01 in model A.5 with all SMD=1, 2, 
3, 4 or 5 and with all sample sizes.  
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Table 6.18. The PB for 4321 and,, θθθθ  parameters in models A.8., A.5, A.5*, B.8, B.5 and C.8. 
Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  3θ  5θ  7θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  

50 1 .0001 .0007 .0000 .0000 .0001 .0006 .0000 .0000 .0030 .0003 .0003 .0001 .0001 .0007 .0000 .0000 .0001 .0006 .0000 .0000 .0001 .0006 .0002 .0000 

100 1 .0001 .0005 .0001 .0001 .0002 .0003 .0000 .0002 .0019 .0000 .0004 .0002 .0001 .0005 .0001 .0001 .0002 .0003 .0000 .0002 .0002 .0005 .0001 .0002 

200 1 .0001 .0004 .0001 .0003 .0001 .0002 .0001 .0006 .0020 .0000 .0000 .0002 .0001 .0004 .0001 .0003 .0001 .0002 .0001 .0006 .0001 .0003 .0002 .0004 

500 1 .0002 .0000 .0002 .0001 .0001 .0000 .0002 .0003 .0003 .0002 .0000 .0000 .0002 .0000 .0002 .0001 .0001 .0000 .0002 .0003 .0001 .0000 .0009 .0002 

1000 1 .0003 .0001 .0001 .0002 .0001 .0000 .0001 .0004 .0000 .0000 .0001 .0003 .0003 .0001 .0001 .0002 .0001 .0000 .0001 .0004 .0003 .0000 .0001 .0003 

50 2 .0003 .0008 .0000 .0000 .0000 .0009 .0001 .0000 .0010 .0003 .0002 .0000 .0002 .0011 .0000 .0001 .0004 .0008 .0000 .0001 .0001 .0006 .0002 .0000 

100 2 .0003 .0006 .0001 .0001 .0003 .0005 .0000 .0000 .0006 .0000 .0001 .0001 .0001 .0005 .0001 .0001 .0002 .0005 .0000 .0003 .0003 .0006 .0001 .0002 

200 2 .0003 .0006 .0002 .0003 .0002 .0004 .0001 .0007 .0009 .0000 .0000 .0001 .0001 .0004 .0001 .0003 .0001 .0003 .0001 .0007 .0003 .0005 .0002 .0004 

500 2 .0002 .0000 .0002 .0001 .0001 .0000 .0002 .0003 .0001 .0001 .0000 .0000 .0001 .0000 .0002 .0001 .0000 .0000 .0001 .0003 .0003 .0000 .0002 .0002 

1000 2 .0003 .0001 .0001 .0002 .0001 .0000 .0001 .0004 .0000 .0000 .0001 .0002 .0002 .0000 .0002 .0001 .0001 .0000 .0001 .0003 .0003 .0001 .0001 .0003 

50 3 .0001 .0004 .0001 .0000 .0005 .0006 .0002 .0000 .0002 .0002 .0002 .0000 .0002 .0010 .0000 .0001 .0003 .0009 .0001 .0000 .0002 .0006 .0002 .0001 

100 3 .0001 .0004 .0001 .0001 .0003 .0004 .0000 .0004 .0003 .0000 .0001 .0001 .0001 .0006 .0001 .0002 .0002 .0006 .0000 .0006 .0002 .0005 .0001 .0002 

200 3 .0003 .0004 .0002 .0003 .0003 .0004 .0001 .0007 .0009 .0000 .0000 .0001 .0001 .0003 .0001 .0005 .0000 .0003 .0000 .0010 .0004 .0005 .0002 .0004 

500 3 .0002 .0000 .0002 .0001 .0001 .0000 .0001 .0003 .0000 .0001 .0000 .0000 .0001 .0000 .0001 .0002 .0000 .0000 .0001 .0004 .0002 .0000 .0002 .0001 

1000 3 .0003 .0001 .0001 .0002 .0001 .0000 .0001 .0004 .0000 .0000 .0001 .0002 .0002 .0000 .0002 .0001 .0001 .0000 .0001 .0002 .0004 .0001 .0001 .0003 

50 4 .0001 .0004 .0000 .0000 .0003 .0005 .0001 .0000 .0003 .0001 .0002 .0000 .0001 .0007 .0000 .0000 .0003 .0008 .0001 .0000 .0001 .0004 .0001 .0000 

100 4 .0001 .0003 .0002 .0001 .0002 .0004 .0000 .0003 .0005 .0000 .0001 .0001 .0001 .0006 .0001 .0002 .0002 .0006 .0000 .0007 .0001 .0003 .0001 .0002 

200 4 .0001 .0003 .0002 .0002 .0002 .0003 .0001 .0007 .0012 .0000 .0000 .0001 .0001 .0003 .0001 .0004 .0000 .0003 .0000 .0010 .0003 .0004 .0002 .0003 

500 4 .0002 .0000 .0002 .0001 .0001 .0000 .0001 .0004 .0000 .0001 .0000 .0000 .0001 .0000 .0001 .0002 .0000 .0000 .0001 .0005 .0003 .0000 .0002 .0001 

1000 4 .0003 .0001 .0001 .0002 .0002 .0000 .0000 .0004 .0000 .0000 .0001 .0002 .0002 .0000 .0001 .0001 .0000 .0000 .0001 .0003 .0004 .0001 .0001 .0003 

50 5 .0001 .0004 .0000 .0000 .0004 .0005 .0001 .0000 .0005 .0001 .0002 .0000 .0000 .0005 .0000 .0000 .0002 .0006 .0001 .0000 .0001 .0004 .0000 .0000 

100 5 .0002 .0005 .0002 .0001 .0003 .0004 .0001 .0003 .0007 .0000 .0001 .0002 .0001 .0005 .0001 .0002 .0002 .0005 .0000 .0007 .0001 .0004 .0001 .0002 

200 5 .0002 .0003 .0002 .0002 .0002 .0003 .0001 .0006 .0013 .0000 .0000 .0001 .0001 .0003 .0001 .0004 .0000 .0003 .0000 .0009 .0002 .0003 .0002 .0003 

500 5 .0002 .0000 .0002 .0001 .0002 .0000 .0001 .0004 .0000 .0001 .0000 .0000 .0001 .0000 .0002 .0002 .0000 .0000 .0001 .0005 .0002 .0000 .0002 .0001 

1000 5 .0003 .0000 .0001 .0002 .0002 .0000 .0000 .0005 .0000 .0000 .0001 .0002 .0002 .0000 .0001 .0002 .0000 .0000 .0001 .0003 .0003 .0000 .0001 .0003 
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The effect of additional measurements on the PB for 1θ , 2θ , 3θ  and 4θ  
 
The effect of additional measurement is not evident in Table 6.18. As in model 
A.5, the PBs for 1θ , 2θ , 3θ  and 4θ  parameters are lower than .01 in model A.5*  
with all SMD=1, 2, 3, 4 or 5 and with all sample sizes with one exception.   
 
The effect of model construct on the PB for 1θ , 2θ , 3θ  and 4θ  
 
The effect of model construct is not evident in Table 6.18. As in model A.8, the 
PBs for 1θ , 2θ , 3θ  and 4θ  parameters are lower than .01 in model C.8  with all 
SMD=1, 2, 3, 4 or 5 and with all sample sizes. As in model A.8, the PBs for 1θ , 

2θ , 3θ  and 4θ  parameters are lower than .01 in model B.8  with all SMD=1, 2, 3, 4 
or 5 and with all sample sizes. As in model A.5, the PBs for 1θ , 2θ , 3θ  and 4θ  
parameters are lower than .01 in model B.5 with all SMD=1, 2, 3, 4 or 5 and with 
all sample sizes. 
 
 
6.3.2.5. Summary of the results of PB 
 
Parameter estimates are unbiased for )1(

1α , )2(
1α  and for 1θ , 2θ , 3θ  and 4θ  

parameters with all SMD and with all sample sizes. For these parameters, the MSE 
is then approximately the size of standard error. Instead, for )1(

0α ,  )2(
0α , 00ψ , 11ψ  

and 01ψ  parameters, the parameter estimates are biased when SMD is 1. When 
SMD is 2, the bias for these parameters is very small, and decreases strongly when 
the sample size increases. The above results are similar in all models A.8, A.5, 
A.5*, B.8, B.5 and C.8. 
 
When SMD is 1, the PB decreases strongly when the sample size increases from 
50 to 1000. Even when the sample size is 1000, the PB is greater than .05 for )1(

0α  
and  )2(

0α  parameters, and greater than .09 for 00ψ  and 11ψ parameters, in all tested 
model A.8 – C.8.  
 
When SMD is 2, the PB is greater than .01 for )1(

0α  and  )2(
0α  parameters in model 

A.8 when the sample size is 50 or 100. When reliability of observed variables 
decreases, the PB slightly increases, and the PB is greater than .01 when the 
sample size is 50, 100 or 200 for these parameters. In model C.8, the PB is slightly 
greater than in model A.8 and the PB is lower than .01 when n=50, 100 or 200, 
whereas in model B.8 or B.5, the PB is lower than in model A.8 or A.5, 
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respectively, and the PB is greater than .01 when n=50 or 100. When SMD is 3, 
the PB is negligible for )1(

0α  and  )2(
0α  parameters in all models A.8, A.5, .A.5*, 

B.8, B.5 and C.8. 
 
When SMD is 2, the PB for 00ψ , 11ψ , 01ψ  parameters is highest for 00ψ  and 
decreases from .19 to .03 when the sample size increases from 50 to 1000. The PB 
is largest for that parameter also when SMD is 3, 4 or 5. When the sample size is 
50, the PB is .09, .04 or .03 when SMD is 3, 4 or 5, respectively, but decreases 
strongly.  
 
When reliability of observed variables decreases, the PB increases, on average, for 

00ψ , 11ψ , 01ψ  parameters. As in model A.8, the PB is highest for 00ψ . When SMD 
is 2, the PB decreases from .17 to .07 when the sample size increases from 50 to 
1000. When the sample size is 50, the PB is .08, .04 or .03 when SMD is 3, 4 or 5, 
respectively, but decreases strongly when the sample size increases.  
 
The PB in model C.8 for to A.8 00ψ , 11ψ , 01ψ  parameters is slightly greater than in 
model A.8, and the effect of model construct is weak. Instead, when comparing 
model B.8 to model A.8, or model B.5 to model A.5, the construct effect is clearly 
seen. When in models A.8 and A.5, the greatest PB appears for 00ψ , in model B.8 
or B.5, the greatest PB appears for 11ψ  parameter. From this point of view, the PB 
is greater than .01 in model A.8 or A.5 as well as in model B.8 or B.5, when SMD 
is 3 and the sample size is lower than 200 or when SMD is 4 or 5 and the sample 
size is lower than 100. 
 
 
6.3.3. Results of relative bias of asymptotic standard error (RB) 
 
Next, the behaviour of standard errors of parameter estimators as a function of 
sample size with different SMD is examined. As described previously in section 
5.6, RB – the relative bias of asymptotic standard error of parameter estimates - is 
used. When the standard error estimate is downward biased this leads to the bias of 
p-value described earlier in section 5.6. 
 
6.3.3.1. Results of RB for )1(

0α  and )2(
0α  

 
In model A.8, when SMD is 1, the standard error estimates for )1(

0α  and )2(
0α  

parameters are strongly downward biased and the RB is between .53 - .60 (see 
Table 6.19). When SMD is 2, the bias of standard error rapidly decreases when the 
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sample size increases. As can be seen from Figure 6.26, the RB is, on average, 
greater than .95 for )1(

0α  when 420n ≥ , and for )2(
0α  when 500n ≥ . It is 

noticeable that the RB increases over 1 when the sample size increases to n=1000, 
the RB being 1.03-1.04. This happens also when SMD is 3, 4 or 5, in which cases 
the greatest RB is 1.03. When SMD is 3, the sample size needed to achieve 
RB=.95 is for )1(

0α  parameter n=70, and for )2(
0α  parameter n=90. The RB is greater 

than .90 for )1(
0α  when n=50, and for )2(

0α  when n=70. When SMD is 4 or 5, the RB 
is greater than .95 with smallest sample size n=50. As discussed in section 5.6, 
when the RB is lower than .90, the p-value for testing the null hypotheses that the 
parameter value is zero is, for example, .078 instead of nominal .05 level, or .02 
instead of .01 level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.26. The RB in model A.8 for mean )1(

0α  and )2(
0α  parameters when SMD is 

1, 2 or 3.  
 
The effect of reliability on the RB for )1(

0α  and )2(
0α  

 
When reliability of observed variables decreases (A.5 vs. A.8), the bias of standard 
error increases (see Table 6.19.). As in model A.8, when SMD is 1, the standard 
errors of )1(

0α  and )2(
0α  parameters are strongly downward biased also in model A.5, 

with the RB varying between .52 - .58. 
 
When SMD is 2, the bias of standard error rapidly decreases when the sample size 
increases. As can be seen and estimated from Table 6.19., the RB for )1(

0α  is greater 
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than .90 when 500n ≥ , and greater than .95 when 860n ≥ . The standard error of 
)2(

0α  is more downward biased and the RB for )2(
0α  is only .84 when n=1000. The 

required sample sizes to achieve RB > .90 or .95 is about two times larger for )1(
0α  

in Model A.5 than in model A.8, whereas for  )2(
0α , a two-times larger sample size 

is not enough. 
 
Table 6.19. The RB for )2(

0
)1(

0 ,αα  parameters in models A.8., A.5, A.5*, B.8, B.5 
and C.8. 
 

Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 
)1(

0α
 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 

)1(
0α

 

)2(
0α

 
50 1 .5962 .5566 .5650 .5508 0.5807 0.5683 .5962 .5566 .5650 .5508 .5590 .5492 

100 1 .5837 .5496 .5687 .5365 0.566 0.5399 .5837 .5496 .5687 .5365 .5542 .5354 

200 1 .5676 .5343 .5311 .5219 0.5517 0.5515 .5676 .5343 .5311 .5219 .5437 .5554 

500 1 .6015 .5688 .5496 .5415 0.5496 0.5515 .6015 .5688 .5496 .5415 .5700 .5478 

1000 1 .6021 .5667 .5803 .5370 0.6079 0.5431 .6021 .5667 .5803 .5370 .5364 .5425 

50 2 .7370 .6540 .6825 .6192 0.7185 0.6576 .6832 .6290 .6425 .5790 .6824 .6128 

100 2 .8177 .7438 .7343 .6517 0.7333 0.692 .7168 .6763 .6292 .6110 .7211 .6676 

200 2 .8520 .7830 .7602 .7010 0.8028 0.7203 .7666 .7458 .6913 .6569 .7931 .7118 

500 2 .9908 .9517 .8984 .8074 0.8651 0.8075 .9287 .8577 .7964 .7560 .9256 .8101 

1000 2 1.0380 1.0294 .9697 .8362 0.9585 0.9817 1.0200 .9973 .9391 .8430 .9687 .8717 

50 3 .9269 .8666 .8588 .7950 0.9235 0.8287 .8646 .8047 .7590 .6924 .8638 .7820 

100 3 1.0164 .9707 .9413 .8585 0.9538 0.9281 .9668 .9320 .8406 .7877 .9441 .8608 

200 3 1.0348 1.0118 1.0131 .9756 0.9932 0.9817 1.0111 .9989 .9448 .8988 1.0130 .9633 

500 3 1.0270 1.0049 1.0314 1.0117 1.0041 1.0027 1.0227 1.0143 1.0204 1.0051 1.0307 1.0119 

1000 3 1.0088 1.0035 1.0167 1.0102 1.0059 1.002 1.0020 1.0013 1.0156 1.0060 1.0120 1.0091 

50 4 1.0077 .9614 .9769 .9294 0.989 0.8511 .9712 .9286 .8966 .8493 .9899 .9182 

100 4 1.0172 .9935 1.0164 .9874 0.9916 0.9736 1.0078 .9874 .9897 .9480 1.0311 .9882 

200 4 1.0152 .9987 1.0189 1.0033 0.9944 0.98 1.0050 1.0027 1.0167 1.0087 1.0199 .9994 

500 4 1.0182 1.0020 1.0200 1.0046 1.0013 0.9966 1.0000 1.0033 1.0149 1.0080 1.0196 1.0018 

1000 4 1.0021 1.0029 1.0066 1.0010 1.0018 0.9952 1.0000 .9985 1.0000 .9989 1.0020 1.0000 

50 5 .9895 .9580 .9933 .9673 0.9785 0.944 .9829 .9574 .9686 .9302 1.0019 .9666 

100 5 1.0000 .9811 1.0085 .9838 0.984 0.9625 .9978 .9812 1.0140 .9873 1.0117 .9923 

200 5 1.0051 .9917 1.0081 .9924 0.9912 0.9746 1.0010 .9934 1.0058 1.0000 1.0107 .9961 

500 5 1.0147 1.0011 1.0143 1.0017 0.9972 0.9905 1.0100 1.0000 1.0107 1.0027 1.0172 1.0031 

1000 5 1.0000 1.0000 1.0036 1.0075 0.9961 0.9919 1.0000 .9967 .9981 .9974 1.0000 .9985 
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When SMD is 3 (see Figure 6.27), in model A.5, the RB for )1(
0α  is greater than .90 

when 80n ≥ , and greater than .95 when 120n ≥ . These sample sizes are 1.6 – 
1.7 times larger than in model A.8. For )2(

0α , the RB is greater than .90 when 
130n ≥ , and greater than .95 when 180n ≥ . These sample sizes are 1.9 – 2.0 

times larger than in model A.8. 
 
As in model A.8, the RB is greater than .95  for )1(

0α  when SMD is 4 or 5, and for 
)2(

0α  when SMD is 5. When SMD is 4, the RB for  )2(
0α  is .93 when n=50 and 

greater than .95 when 70n ≥ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.27. The RB for )1(

0α  and )2(
0α  parameters in models A.8 and A.5 when 

SMD is 3.  
 
The effect of additional measurements on the RB for )1(

0α  and )2(
0α  

 
In model A.5*, the bias of standard error estimates slightly change when compared 
to the model A.5 (see Table 6.19). As in model A.5, when SMD is 1, the standard 
errors of )1(

0α  and )2(
0α  are strongly downward biased also in model A.5*, in which 

the RB varies between .54 - .61. 
 
When SMD is 2, the bias of standard error rapidly decreases when the sample size 
increases. As can be seen from Figure 6.28., the RB for )1(

0α is greater than .90 
when 680n ≥ , and greater than .95 when 950n ≥ . These sample sizes in model 
A.5* are 180 and 90 greater, respectively, than in model A.5. The RB for )2(

0α  in 
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model A.5* is greater than .90 when 770n ≥ , and greater than .95 when 
920n ≥ , whereas in model A.5, the RB is only .84 when n=1000.  

 
When SMD is 3 (see Figure 6.28), the RB for )1(

0α  in model A.5* is greater than 
.90 when 50n ≥ , and greater than .95 when 95n ≥ . In model A.5, these sample 
sizes were 25 or over 30 larger, respectively, than in model A.5*. For )2(

0α , the RB 
is greater than .90 when 85n ≥ , and greater than .95 when 140n ≥ . In model 
A.5, these sample sizes were 40 - 45 larger than in model A.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.28. The RB in model A.5* for )1(

0α  and )2(
0α  parameters when SMD is 2 

or 3.  
 
As in model A.5, the RB for )1(

0α  in model A.5* is greater than .95 when SMD is 4 
or 5. When SMD is 4, the RB for )2(

0α  is only .85 when n=50, and is greater than 
.90 when 70n ≥ , and greater than .95 when 90n ≥ . When SMD is 5, the RB 
for )2(

0α  is .94 when n=50, and greater than .95 when the sample size is 
approximately 65n ≥ . 
 
The effect of model construct on the RB for )1(

0α  and )2(
0α  

 
To examine the effect of the construct on standard error estimates, model C.8 is 
first compared with model A.8. Model C.8 has, on average, clearly more 
downward biased standard errors of parameter estimates than model A.8.  As in 
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model A.8, when SMD is 1, standard errors of )1(
0α  and )2(

0α  are strongly 
downward biased also in model C.8, with the RB varying in model C.8 between 
.54 - .57.   
 
In the case when SMD is 2, the bias of standard error rapidly decreases when the 
sample size increases. As can be seen from Figure 6.29., the RB for )1(

0α  is greater 
than .90 when 440n ≥ , and greater than .95 when 780n ≥ . These sample sizes 
for )1(

0α  are 120 or 360 greater, respectively, than in model A.8. For )2(
0α , the RB is 

only .87 when n=1000. 
 
As in model A.8, when SMD is 3, 4 or 5, standard error is slightly biased upward, 
also in model C.8, in which the greatest RB is 1.03. When SMD is 3, the RB for 

)1(
0α  is greater than .90 when 75n ≥ , and for )2(

0α  when 140n ≥ . These sample 
sizes for )1(

0α  and )2(
0α  parameters are over 25 or 70 greater, respectively, than in 

model A.8. The RB is greater than .95 for )1(
0α  when 110n ≥ , and for )2(

0α  when 
180n ≥ . These sample sizes for )1(

0α  and )2(
0α  parameters are 40 or 90 greater, 

respectively, than in model A.8. 
 
As in model A.8, the RB for )1(

0α in model C.8 is greater than .95 when SMD is 4 or 
5. When SMD is 4, the RB for )2(

0α  is .92 when n=50, and greater than .95 when 
85n ≥ . When SMD is 5, the RB for )2(

0α is greater than .95 with all sample sizes. 
 
Model B.8 has, on average, clearly more downward biased standard errors of 
parameter estimates than model A.8.  As in model A.8, when SMD is 1, standard 
errors of )1(

0α  and )2(
0α  parameters are strongly downward biased also in model B.8, 

with the RB varying in model B.8 between .53 - .60. 
 
In the case when SMD is 2, the bias of standard error rapidly decreases when the 
sample size increases. As can be seen from Figure 6.29. and Figure 6.30., the RB 
is greater than .90 for )1(

0α  when 450n ≥ , and for )2(
0α  when 650n ≥ . These 

sample sizes for )1(
0α  and )2(

0α  are 30 or 150 greater, respectively, than in model 
A.8.  The RB is greater than .95 for )1(

0α  when 620n ≥ , and for )2(
0α  when 

830n ≥ . These sample sizes for )1(
0α  and )2(

0α  are 200 or 330 greater, respectively, 
than in model A.8.  
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Figure 6.29. The RB for )1(

0α  parameter in model B.8, B.5 and C.5 when SMD is 2 
or 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.30. The RB for )2(

0α  parameter in model B.8, B.5 and C.8 when SMD is 2 
or 3.  
 
 
When SMD is 3, the RB is greater than .90 for )1(

0α  when 70n ≥  and for )2(
0α  

when 85n ≥ . These sample sizes for )1(
0α  and )2(

0α  are over 20 or 25 greater, 
respectively, than in model A.8. The RB is greater than .95 for )1(

0α  when 90n ≥  
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and for )2(
0α  when 135n ≥ . These sample sizes for )1(

0α  and )2(
0α  are 20 or 45 

greater, respectively, than in model A.8.  
 
As in model A.8, the RB for )1(

0α  in model B.8 is greater than .95 when SMD is 4 
or 5. When SMD is 4, the RB for )2(

0α  is .93 and greater than .95 when 70n ≥ . 
When SMD is 5, the RB for )2(

0α  is greater than .95 when 50n ≥ .  
 
Model B.5 has, on average, slightly more downward biased standard errors of 
parameter estimates than model A.5. As in model A.5, when SMD is 1, the 
standard errors of )1(

0α  and )2(
0α  are strongly downward biased also in model B.5, 

with the RB varying in model B.5 between .52 - .58. 
 
When SMD is 2, the bias of standard error rapidly decreases when the sample size 
increases. As can be seen from Figure 6.29, the RB for )1(

0α  is greater than .90 
when 860n ≥ . This sample size for )1(

0α  is 360 greater than in model A.5. As in 
model A.5, the RB is only .84 for )2(

0α  when n=1000. 
 
When SMD is 3, the RB is greater than .90 for )1(

0α  when 160n ≥ , and for )2(
0α  

when 200n ≥ . These sample sizes for )1(
0α  and )2(

0α  are over 80 or 70 greater, 
respectively, than in model A.5. The RB is greater than .95 for )1(

0α  when 220n ≥ , 
and for )2(

0α  when 340n ≥ . These sample size for )1(
0α  and )2(

0α  are 100 or 160 
greater, respectively, than in model A.5.  
 
When SMD is 4, the RB for )1(

0α  is greater than .90 when 50n ≥  and greater than 
.95 when 80n ≥ . For )2(

0α  parameter, the RB is greater than .90 when 75n ≥  and 
greater than .95 when 100n ≥ .   
 
As in model A.5, the RB for )1(

0α  in model B.5 is greater than .95  when SMD is 5. 
For )2(

0α , the RB is .93 when n=50 and greater than .95 when 70n ≥ . 
 
 
6.3.3.2. Results of RB for )1(

1α  and )2(
1α  

 
In the model A.8, the standard error estimates for )1(

1α  and )2(
1α  parameters are 

strongly downward biased when SMD is 1, the RB varying between .51 - .56 (see 
the next Table 6.20). In the case SMD is 2, the bias of standard error rapidly 
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decreases when the sample size increases.  As can be seen from Figure 6.31, the 
RB is greater than .90 for )1(

1α  when 490n ≥ , and for )2(
1α  when 620n ≥ . The RB 

is greater than .95 for )1(
1α  when 700n ≥ , and for )2(

1α  when 820n ≥ . When SMD 
is 3, the RB is greater than .90 for )1(

1α  when 75n ≥ , and for )2(
1α  when 85n ≥ , 

and the RB is greater than .95 for )1(
1α  when 100n ≥ , and for )2(

1α  when 130n ≥ . 
When SMD is 4 or 5, the RB for )1(

1α is greater than .95 with all sample sizes. 
When SMD is 4, the RB for )2(

1α  is .93 when n=50, and is greater than .95 when 
65n ≥ . When SMD is 5, the RB for )2(

1α  is .94 when n=50 and is greater than .95 
when 60n ≥ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.31. The RB for mean )1(

1α  and )2(
1α  parameters in model A.8 when SMD is 

1, 2 or 3.  
 
The effect of reliability on the RB for )1(

1α  and )2(
1α  

 
When reliability of observed variables decreases (A.5 vs. A.8), the bias of standard 
error increases (see Table 6.20). As in model A.8, when SMD is 1, the standard 
errors of )1(

1α  and )2(
1α  parameters in model A.5 are strongly downward biased, 

with the RB varying in model A.5 between .50 - .54. 
 
When SMD is 2, the bias of standard error rapidly decreases when the sample size 
increases. As can be seen from Table 6.20., when n=1000, the RB is .88 and .86 
for )1(

1α  and )2(
1α  parameters, respectively. 
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Table 6.20. The RB for )2(
1

)1(
1 ,αα  parameters in models A.8., A.5, A.5*, B.8, B.5 

and C.8. 
 

Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD )1(
1α  )2(

1α  )1(
1α  )2(

1α  )1(
1α  )2(

1α  )1(
1α  )2(

1α  )1(
1α  )2(

1α  )1(
1α  )2(

1α  

50 1 .5597 .5170 .5361 .5068 0.4996 0.5036 .5597 .5170 .5361 .5068 .5557 .5053 
100 1 .5278 .5222 .5227 .5148 0.4809 0.4807 .5278 .5222 .5227 .5148 .5145 .5118 
200 1 .5139 .5156 .5133 .5014 0.4879 0.4879 .5139 .5156 .5133 .5014 .5117 .4956 
500 1 .5212 .5202 .5070 .5031 0.4221 0.4778 .5212 .5202 .5070 .5031 .5170 .5394 
1000 1 .5277 .5443 .5406 .5395 0.3883 0.4572 .5277 .5443 .5406 .5395 .4944 .5131 
50 2 .6579 .5862 .5969 .5629 0.5926 0.6074 .7052 .6429 .6447 .5943 .6037 .5530 
100 2 .6736 .6470 .6002 .5862 0.5896 0.595 .7784 .7087 .6627 .6189 .5924 .5887 
200 2 .7438 .6943 .6263 .6331 0.6177 0.6374 .8173 .7417 .7092 .6801 .6570 .6282 
500 2 .9092 .8677 .7737 .7439 0.7705 0.6818 .8977 .8739 .8250 .7666 .7427 .7513 
1000 2 1.0101 .9987 .8761 .8592 0.946 0.8489 1.0043 .9958 .9410 .8627 .8613 .8668 
50 3 .8366 .8162 .7769 .7198 0.8421 0.774 .9232 .8503 .7963 .7312 .7864 .7115 
100 3 .9573 .9298 .8387 .7912 0.9281 0.8561 .9857 .9483 .8627 .8023 .8333 .8181 
200 3 1.0018 .9978 .9737 .9452 0.9492 0.9602 1.0015 1.0070 .9523 .9118 .9685 .9482 
500 3 1.0090 1.0038 1.0214 1.0139 0.995 1.0033 1.0000 .9967 1.0062 .9634 1.0179 .9954 
1000 3 1.0173 .9946 1.0141 1.0051 1.000 1.000 .9964 .9791 1.0000 .9927 1.0187 1.0044 
50 4 .9555 .9344 .9354 .8856 0.9561 0.9328 .9778 .9432 .9377 .8658 .9287 .8925 
100 4 .9884 .9814 .9891 .9680 0.9789 0.9675 .9987 .9845 .9949 .9638 .9974 .9829 
200 4 .9836 .9804 .9986 .9914 0.98 0.9862 .9888 .9912 1.0062 1.0016 .9924 .9900 
500 4 .9934 .9821 1.0023 .9922 0.992 1.000 .9880 .9840 1.0020 .9895 .9969 .9779 
1000 4 1.0095 .9841 1.0100 .9912 0.9887 0.9974 .9915 .9802 .9943 .9796 1.0000 .9855 
50 5 .9604 .9428 .9600 .9394 0.9662 0.9331 .9812 .9638 .9754 .9330 .9523 .9490 
100 5 .9806 .9678 .9861 .9743 0.9818 0.9641 .9871 .9758 1.0010 .9839 .9886 .9786 
200 5 .9810 .9721 .9878 .9790 0.9829 0.9844 .9818 .9820 .9888 .9860 .9820 .9833 
500 5 .9932 .9767 .9976 .9832 0.9891 0.9981 .9871 .9781 .9933 .9836 .9904 .9780 
1000 5 1.0048 .9834 1.0070 .9857 0.9885 0.9919 .9954 .9783 .9968 .9789 .9954 .9843 

 
 
When SMD is 3 (see Figure 6.32), in model A.5, the RB for )1(

1α is greater than .90 
when 145n ≥  and greater than .95 when 180n ≥ . These sample sizes for  )1(

1α  
are 65 or 80 larger, respectively, than in model A.8. For )2(

1α  parameter, the RB is 
greater than .90 when 170n ≥  and greater than .95 when 220n ≥ . These sample 
sizes for  )1(

1α  are 95 or 90 larger than in model A.8. 
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Contrary to the results in model A.8, in model A.5, the RB for )1(
1α  and )2(

1α  is 
lower than .95 when SMD is 4 or 5 and n=50. When SMD is 4, the RB for )1(

1α  is 
greater than .95 when 55n ≥ . When SMD is 4, the RB for )2(

1α  is greater than .90 
when 60n ≥ , and greater than .95 for )2(

1α  when 90n ≥ . When SMD is 5, the RB 
for )2(

1α  is greater than .95 when 65n ≥ .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.32. The RB for )1(

1α  and )2(
1α  parameters in model A.8 and A.5 when 

SMD is 3.  
 
The effect of additional measurements on the RB for )1(

1α  and )2(
1α  

 
In model A.5*, the bias of standard error estimates slightly changes compared with 
model A.5 (see Table 6.20). As in model A.5, when SMD is 1, the standard errors 
of )1(

1α  and )2(
1α  parameters are strongly downward biased also in model A.5*, with 

the RB varying in model A.5* between .54 - .61. 
 
When SMD is 2, the bias of standard error rapidly decreases when the sample size 
increases. As can be seen from Figure 6.33., the RB for )1(

1α  is greater than .90 
when 870n ≥  and is greater than .95 when 1000n ≥ . In model A.5, the  RB for 

)1(
1α  was lower than .90 when n=1000. The RB for )2(

1α  in model A.5* is .85 when 
n=1000. 
 
When SMD is 3 (see Figure 6.33), in model A.5*, the RB for )1(

1α  is greater than 
.90 when 80n ≥  and greater than .95 when 200n ≥ . In model A.5, these sample 
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sizes were 65 larger or 20 lower, respectively, than in model A.5*. The RB for )2(
1α  

is greater than .90 when 140n ≥  and greater than .95 when 190n ≥ . In model 
A.5, these sample sizes were 30 larger than in model A.5*. 
 
Contrary to the results in model A.5, the RB  for )1(

1α  in model A.5* is greater than 
.95 when SMD is 4 or 5 and n=50. When SMD is 4 or 5, the RB for )2(

1α  parameter 
is only .93 when n=50 and greater than .95 when 75n ≥ .  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.33. The RB for )1(

1α  and )2(
1α  parameters in model A.5* when SMD is 2 

or 3.  
 
The effect of model construct on the RB for )1(

1α  and )2(
1α  

 
To examine the effect of the construct on the standard error estimate, model C.8 is 
first compared with model A.8. Model C.8 has, on average, clearly more 
downward biased standard errors of parameter estimates than model A.8.  As in 
model A.8, the standard errors of )1(

1α  and )2(
1α  parameters are strongly downward 

biased in model C.8 when SMD is 1, with the RB varying in model C.8 between 
.49 - .56. 
 
When SMD is 2, the bias of standard error of )1(

1α  and )2(
1α  parameters rapidly 

decreases when the sample size increases (see Figure 6.34 and Figure 6.35). When 
n=1000, the RB is only .86 and .87, respectively.  
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Figure 6.34. The RB for )1(

1α  parameter in model B.8, B.5 and C.8 when SMD is 2 
or 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.35. The RB for )2(

1α  parameter in model B.8, B.5 and C.8 when SMD is 2 
or 3.  
 
Contrary to the results in model A.8, in model C.8 the standard error is slightly 
biased upward in only a few cases when SMD is 3 or 4 and the greatest RB is 1.02. 
When SMD is 3, the RB is greater than .90 for )1(

1α  when 150n ≥ , and for )2(
1α  

when 165n ≥ . These sample sizes for )1(
1α  and )2(

1α  are 75 or 80 greater, 
respectively, than in model A.8. The RB for )1(

1α  is greater than .95 when 185n ≥ , 
and for )2(

1α  when 165n ≥ . These sample sizes for )1(
1α  and )2(

1α  parameters are 85 
or 35 greater, respectively, than in model A.8. 
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When SMD is 4, the RB for )1(
1α  in model C.8 is .93 when n=50 and greater than 

.95  when 65n ≥ . The RB for )2(
1α  is .89 when n=50, greater than .90 when 

55n ≥  and greater than .95 when 80n ≥ . When SMD is 5, the RB for )1(
1α  and 

)2(
1α  is .95 when .50n ≥  

 
Model B.8 has, on average, slightly lower downward biased standard errors of 
parameter estimates than model A.8. As in model A.8, in model B.8 the standard 
errors of )1(

1α  and )2(
1α  are strongly downward biased when SMD is 1, the RB 

varying in model B.8 between .51 - .56. 
 
When SMD is 2, the bias of standard error rapidly decreases when the sample size 
increases. As can be seen from Figure 6.34, the RB is greater than .90 for )1(

1α  
when 510n ≥ , and for )2(

1α  when 600n ≥ . These sample sizes for )1(
1α  and )2(

1α  
are 10 greater or 20 lower, respectively, than in model A.8. The RB is greater than 
.95 for )1(

1α  when 750n ≥ , and for )2(
1α  when 810n ≥ . These sample sizes for 

)1(
1α  and )2(

1α  are 50 greater or 10 lower, respectively, than in model A.8.  
 
When SMD is 3, the RB for )1(

1α  is greater than .92 when n=50. The RB for )2(
1α  is 

greater than .90 when 75n ≥ . This sample size is 10 smaller than in model A.8. 
The RB is greater than .95 for )1(

1α  when 70n ≥ , and for )2(
1α  when 100n ≥ . 

These sample sizes for )1(
0α  and )2(

0α  are 30 smaller than in model A.8.  
 
As in model A.8, the RB for )1(

1α  in model B.8 is greater than .95 when SMD is 4 
or 5 and 50n ≥ . When SMD is 4, the RB for )2(

1α  parameter is .94 and greater than 
.95 when 60n ≥ . When SMD is 5, the RB for )2(

1α  is greater than .95 when 
50n ≥ .  

 
As in model A.5, the standard errors of )1(

1α  and )2(
1α  parameters are strongly 

downward biased also in model B.5 when SMD is 1, the RB varying in model B.5 
between .50 - .54. 
 
When SMD is 2, the bias of standard error in model B.5 rapidly decreases when 
the sample size increases. As can be seen from Figure 6.34., in model B.5, the RB 
for )1(

1α  is greater than .90 when 810n ≥ , whereas in model A.5 the RB was .88 
when n =1000. Whereas in model A.5 the RB for )2(

1α  was .94 when n=1000, in 
model B.5 this RB is only .86.  
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When SMD is 3, the RB is greater than .90 for )1(
1α  when 140n ≥ , and for )2(

1α  
when 190n ≥ . These sample sizes for )1(

1α  and )2(
1α  are only 5 or 10 greater, 

respectively, than in model A.5. The RB is greater than .95 for )1(
1α  when 195n ≥ , 

and for )2(
1α  when 425n ≥ . These sample sizes for )1(

1α  and )2(
1α  are 25 greater 

than in model A.5.  
 
When SMD is 4, the RB for )1(

1α  is greater than .95 when 60n ≥ . For )2(
1α , the RB 

is greater than .90 when 65n ≥  and greater than .95 when 95n ≥ . When SMD is 
5, the RB for )1(

1α  is greater than .97 when 50n ≥ , and for )2(
1α greater than .95 

when 65n ≥  
 
 
6.3.3.3. Results of RB for 00ψ , 11ψ  and 01ψ  
 
In model A.8, the standard error estimates for 00ψ , 11ψ  and 01ψ  parameters when 
SMD is 1 are clearly downward biased (see Table 6.21). For  00ψ , the RB 
increases from .85 to .96 when the sample size increases from n=50 to 500≥n ; 
for 11ψ  the RB is stable and lower than .85; and for 01ψ  the RB slightly increases 
from .72 to .76 when the sample size increases from n=50 to n=1000.  
 
When SMD is 2, the bias of standard error decreases when the sample size 
increases.  As can be seen from Figure 6.36, the RB is greater than .90 for 

00ψ when 80n ≥ , for 11ψ when 85n ≥ , and for 01ψ  when 340n ≥ . The RB is 
greater than .95 for 00ψ when 385n ≥ , for 11ψ  when 255n ≥ , and for 01ψ  when 

480n ≥ . 
 
When SMD is 3, the RB is greater than .90 for 00ψ  when 60n ≥ , and for 01ψ  
when 75n ≥ .  For 11ψ  parameter the RB is .93 when n=50. The RB is greater than 
.95 for 00ψ when 130n ≥ , for 11ψ  when 75n ≥ , and for 01ψ  when 100n ≥ .  
 
When SMD is 4, the RB is .91 for 00ψ , slightly lower than .95 for 11ψ , and .92 for 

01ψ  when n=50. The RB is greater than .95 for 00ψ when 85n ≥ , for 11ψ  when 
65n ≥ , and for 01ψ  when 70n ≥ . When SMD is 5, the RB is .94 for 00ψ , 11ψ  and 

01ψ  parameters when n=50. The RB is greater than .95 for 00ψ when 75n ≥ , for 

11ψ  when 70n ≥ , and for 01ψ  when 65n ≥ . 
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The effect of reliability on the RB for 00ψ , 11ψ  and 01ψ  
 
When reliability of observed variables decreases (A.5 vs. A.8), the bias of standard 
error changes only slightly (see Table 6.21). When SMD is 1, the RB for 00ψ  in 
model A.5 increases from .84 to .95 when the sample size increases from n=50 to 
n=1000. For 11ψ , the RB is stable and lower than .89, and for 01ψ  it slightly 
increases from .76 to .80 when the sample size increases from n=50 to n=1000. 
 
Table 6.21. The RB for 011100 ,, ψψψ  parameters in models A.8., A.5, A.5*, B.8, B.5 
and C.8. 
 
Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

50 1 .8546 .8490 .7186 .8370 .8754 .7632 .7764 .7192 .8546 .8490 .7186 .8370 .8754 .7632 .8447 .8530 .7207 

100 1 .9106 .8460 .7226 .8833 .8762 .7723 .8298 .7568 .9106 .8460 .7226 .8833 .8762 .7723 .8925 .8392 .7219 

200 1 .9216 .8438 .7248 .8897 .8860 .7707 .8677 .7714 .9216 .8438 .7248 .8897 .8860 .7707 .9387 .8388 .7381 

500 1 .9551 .8408 .7458 .9161 .8746 .7746 .8967 .7462 .9551 .8408 .7458 .9161 .8746 .7746 .9749 .8685 .7541 

1000 1 .9644 .8409 .7603 .9484 .8762 .8004 .8971 .7304 .9644 .8409 .7603 .9484 .8762 .8004 .9527 .8228 .7511 

50 2 .8607 .8725 .7413 .8457 .8845 .7771 .8395 .7952 .8081 .8209 .8297 .8334 .8257 .8379 .8577 .8660 .7355 

100 2 .9258 .9136 .7860 .8929 .9033 .7950 .8695 .8553 .8508 .8690 .8523 .8497 .8483 .8554 .9157 .8767 .7624 

200 2 .9121 .9390 .8491 .9144 .9363 .8273 .8901 .8858 .9030 .8967 .8830 .8880 .8813 .8992 .9348 .9038 .8173 

500 2 .9737 1.0000 .9568 .9683 .9828 .9095 .9201 .9705 .9675 .9562 .9452 .9412 .9404 .9286 .9692 .9468 .9119 

1000 2 1.008 1.020 1.026 .9704 1.029 .9564 .9636 1.0049 1.025 1.007 1.027 .9926 .9831 .9892 .9828 1.000 .9494 

50 3 .8896 .9320 .8366 .8865 .9324 .8352 .8663 .8976 .9047 .8870 .8534 .8769 .8571 .8556 .8633 .9176 .8192 

100 3 .9358 .9716 .9558 .9131 .9615 .8983 .9143 .9644 .9628 .9436 .9358 .9318 .8992 .9146 .9073 .9459 .8883 

200 3 .9831 .9905 1.021 .9699 1.000 .9860 .9578 .9909 .9960 .9785 .9953 .9851 .9613 .9587 .9674 1.000 .9966 

500 3 .9936 1.000 1.016 .9961 1.000 1.007 .9984 .9964 .9957 1.007 1.005 1.005 1.009 .9987 .9992 1.005 1.010 

1000 3 .9871 1.000 1.013 .9979 1.003 1.000 .9901 1.000 .9938 .9949 1.011 1.006 1.007 1.008 .9933 1.000 1.025 

50 4 .9147 .9454 .9198 .9049 .9545 .9094 .9219 .9415 .9437 .9161 .9070 .9293 .9099 .8965 .9141 .9480 .8969 

100 4 .9635 .9619 .9915 .9530 .9717 .9708 .968 .9685 .9738 .9738 .9849 .9746 .9717 .9609 .9582 .9643 .9980 

200 4 .9807 .9840 1.004 .9855 .9927 1.000 .9812 .9881 .9818 .9864 1.002 .9918 1.005 .9956 .9835 .9857 1.0015

500 4 .9783 1.000 .9972 .9809 .9954 .9933 .9892 .9962 .9809 1.000 1.000 .9910 1.000 1.000 .9844 1.000 .9928 

1000 4 .9846 1.000 1.008 .9906 1.000 .9981 .9959 .9947 .9814 .9938 1.0084 .9941 .9973 1.000 .9834 1.000 1.018 

50 5 .9384 .9448 .9377 .9303 .9569 .9316 .9511 .9294 .9454 .9516 .9530 .9435 .9302 .9219 .9467 .9523 .9481 

100 5 .9635 .9595 .9806 .9749 .9672 .9832 .9757 .9657 .9652 .9666 .9888 .9740 .9812 .9849 .9685 .9618 .9964 

200 5 .9768 .9839 .9981 .9833 .9912 .9953 .9831 .9902 .9758 .9850 .9980 .9833 .9948 .9971 .9772 .9856 .9948 

500 5 .9764 1.000 .9937 .9770 .9977 .9853 .988 .9923 .9780 1.005 1.000 .9857 .9958 .9895 .9782 1.000 .9945 

1000 5 .9833 .9928 1.000 .9915 1.000 1.002 1.000 1.000 .9775 1.000 1.005 .9909 .9971 1.000 .9829 .9935 1.008 
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Figure 6.36. The RB for 00ψ , 11ψ  and 01ψ  parameters in model A.8 when SMD is 2 
or 3.  
 
When SMD is 2, the bias of standard error decreases when the sample size 
increases.  As can be seen from Figure 6.37, the RB is greater than .90 for 

00ψ when 135n ≥ , for 11ψ  when 90n ≥ , and for 01ψ  when 465n ≥ . These sample 
sizes for 00ψ , 11ψ  and 01ψ  parameters are 55, 5 and 125 larger, respectively, in 
model A.5 than in model A.8. The RB is greater than .95 for 00ψ  when 400n ≥ , 
for 11ψ  when 290n ≥ , and for 01ψ  when 930n ≥ . These sample sizes for 00ψ , 11ψ  
and 01ψ  parameters are 15, 35 and 455 larger, respectively, in model A.5 than in 
model A.8. 
 
When SMD is 3, the RB is greater than .90 for 00ψ  when 75n ≥ , and for 01ψ  
when 100n ≥ . These sample sizes for 00ψ  and 01ψ  are 15 and 25 larger, 
respectively, in model A.5 than in model A.8. For 11ψ , the RB is .93 when n=50. 
The RB is greater than .95 for 00ψ when 165n ≥ , for 11ψ  when 80n ≥ , and for 

01ψ  when 160n ≥ . These sample sizes for 00ψ , 11ψ  and 01ψ  parameters are 35, 5 
and 60 larger, respectively, in model A.5 than in model A.8. 
 
As in model A.8, when SMD is 4, the RB is high in model A.5 being .91 for 00ψ , 
.95 for 11ψ , and .91 for 01ψ  when n=50. The RB is greater than .95 for 00ψ when 

100n ≥ , and for 01ψ  when 85n ≥ . When SMD is 5, the RB is .93 for 00ψ , .96 for 
11ψ , and .93 for 01ψ  when n=50. The RB is greater than .95 for  both 00ψ  and 01ψ  
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when 70n ≥ . This sample size for 00ψ  and 01ψ  parameters is 10-15 larger in 
model A.5 than in model A.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.37. The RB for 00ψ , 11ψ  and 01ψ  parameters in model A.5 when SMD is 2 
or 3.  
 
The effect of additional measurements on the RB for 00ψ  and 11ψ  
 
When the reliability of observed variables decreases (A.5 vs. A.8), the bias of 
standard error changes only slightly (see Table 6.21). When SMD is 1, the RB for 

00ψ in model A.5* increases from .78 to .90 when the sample size increases from 
n=50 to n=1000. For 11ψ  parameter, the RB varies and is between .72 and .77. 
 
When SMD is 2, the bias of standard error rapidly decreases when the sample size 
increases. As can be seen from Figure 6.38, the RB is greater than .90 for 00ψ when 

300n ≥ , and for 11ψ  when 250n ≥ . These sample sizes for 00ψ  and 11ψ  
parameters are 165 and 160 greater, respectively, in model A.5* than in model 
A.5. The RB is greater than .95 for 00ψ  when 845n ≥  and for 11ψ  when 425n ≥ . 
These sample sizes for 00ψ  and 11ψ  parameters are 445 and 135 greater, 
respectively, in model A.5* than in model A.5. 
 
 
 
 

0,7

0,75

0,8

0,85

0,9

0,95

1

1,05

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

SMD=2      

SMD=3      

SMD=2      

SMD=3      

SMD=2      

SMD=3      

Sample size

00ψ

00ψ

11ψ

11ψ

01ψ

01ψ



 147

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.38. The RB for 00ψ  and 11ψ  parameters in model A.5* when SMD is 2 or 
3.  
 
When SMD is 3, the RB is greater than .90 for 00ψ when 85n ≥ , and for 11ψ  
when 50n ≥ . These sample sizes for 00ψ  are 10 larger in model A.5* than in 
model A.5. The RB is greater than .95 for 00ψ when 180n ≥ , and for 11ψ  
when 90n ≥ . These sample sizes for 00ψ  and 11ψ  parameters are 15 and 10 larger, 
respectively, in model A.5* than in model A.5. 
 
As in model A.5, when SMD is 4, the RBs are high in model A.5*, being .92 for 

00ψ  and .94 for 11ψ  when n=50. The RB is greater than .95 for 00ψ when 80n ≥ , 
and for 11ψ  when 65n ≥ . These sample sizes for 00ψ  and 11ψ  parameters 20 larger 
in model A.5* than in model A.5. When SMD is 5, the RB is .95 for 00ψ , and .93 
for 11ψ , when n=50. The RB for  11ψ  is greater than .95 when 80n ≥ . 
 
The effect of model construct on the RB for 00ψ , 11ψ  and 01ψ  
 
To examine the effect of the construct on the standard error estimate model C.8 is 
first compared to A.8 (see Table 6.21. above). When SMD is 1, the RB for  00ψ  in 
model C.8 increases from .84 to .97, when the sample size increases from n=50 to 
n=500, the RB staying a .95 when the sample size increases to n=1000. For 11ψ , 
the RB varies and is between .82 - .87, and for 01ψ  the RB slightly increases from 
.72 to .75 when the sample size increases from n=50 to n=1000. 
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When SMD is 2, the bias of standard error decreases when the sample size 
increases.  As can be seen from Figure 6.39., the RB is greater than .90 for 

00ψ when 85n ≥ , for 11ψ  when 185n ≥ , and for 01ψ  when 460n ≥ . These sample 
sizes for 00ψ , 11ψ  and 01ψ  parameters are 5, 100 and 120 larger, respectively, in 
model C.8 than in model A.8. The RB is greater than .95 for 00ψ when 335n ≥ ,  
for 11ψ  when 530n ≥ ,  and for 01ψ  when 1000n ≥ . These sample sizes for 00ψ , 

11ψ  and 01ψ  parameters are 50 lower, 275 and over 500 larger, respectively, in 
model C.8 than in model A.8. 
 
When SMD is 3, the RB is greater than .90 for 00ψ when 90n ≥ , and for 01ψ  when 

110n ≥ . These sample sizes for 00ψ  and 01ψ  are 30 and 10 larger, respectively, in 
model C.8 than in model A.8. For 11ψ  parameter, the RB is .92 when the sample 
size is n=50. The RB is greater than .95 for 00ψ  when 170n ≥ , for 11ψ  
when 105n ≥ , and for 01ψ  when 155n ≥ . These sample sizes for 00ψ , 11ψ  and 01ψ  
parameters are 10, 30 and 55 larger, respectively, in model C.8 than in model A.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.39. The RB for 00ψ  parameter in model B.8, B.5 and C.5 when SMD is 2 
or 3.  
 
As in model A.8, when SMD is 4, the RBs are high in model C.8, being .91 for 

00ψ , .95 for 11ψ , and .90 for 01ψ  when n=50. The RB is greater than .95 for 

00ψ when 90n ≥ , for 11ψ  when 55n ≥ , and for 01ψ  when 75n ≥ . These sample 
sizes for 00ψ , 11ψ  and 01ψ  parameters are 5 larger, 10 smaller and 5 larger, 
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respectively, in model C.8 than in model A.8. When SMD is 5, as in model A.8, 
the standard errors of 00ψ , 11ψ  and 01ψ  parameters are slightly downward biased 
and the RB is .95 for 00ψ , 11ψ  and 01ψ  parameters when 50n ≥ . 
 
Second, the effect of construct on the RB is examined, comparing the RB in model 
B.8 with the RB in model A.8 (see Table 6.21 before). When SMD is 1, the RB for 

00ψ in model B.8 increases from .85 to .96 when the sample size increases from 
n=50 to n=1000. For 11ψ  parameter, the RB is stable and lower than .85, and for 

01ψ  it slightly increases from .72 to .76 when the sample size increases from n=50 
to n=1000. 
 
When SMD is 2, the bias of standard error decreases when the sample size 
increases.  As can be seen from Figures 6.39., 6.40 and 6.41, the RB is greater than 
.90 for 00ψ when 195n ≥ , for 11ψ  when 215n ≥ , and for 01ψ  when 280n ≥ . 
These sample sizes for 00ψ , 11ψ  and 01ψ  parameters are 115 and 130 larger and 60 
smaller, respectively, in model B.8 than in model A.8. The RB is greater than .95 
for 00ψ  when 420n ≥ , for 11ψ  when 470n ≥ , and for 01ψ  when 525n ≥ . These 
sample sizes for 00ψ , 11ψ  and 01ψ  parameters are 35, 215 and 45 larger, 
respectively, in model B.8 than in model A.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.40. The RB for 11ψ  parameter in model B.8, B.5 and C.5 when SMD is 2 
or 3.  
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When SMD is 3, the RB is greater than .90 for 11ψ  when 60n ≥  and for 01ψ  
when 80n ≥ .  The sample size for 01ψ  parameter is 5 larger in model B.8 than in 
model A.8. For 00ψ  parameter, the RB is .90 when n=50. The RB is greater than 
.95 for 00ψ when 90n ≥ , for 11ψ  when 120n ≥ , and for 01ψ  when 125n ≥ . These 
sample sizes for 00ψ , 11ψ  and 01ψ  parameters are 40 smaller, 50 and 25 larger, 
respectively, in model B.8 than in model A.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.41. The RB for 01ψ  parameter in model B.8, B.5 and C.5 when SMD is 2 
or 3.  
 
As in model A.8, when SMD is 4, the RBs are high in model B.8, being .94 for 

00ψ , .92 for 11ψ , and .91 for 01ψ  when n=50. The RB is greater than .95 for 

00ψ when 60n ≥ , for 11ψ  when 80n ≥ , and for 01ψ  when 80n ≥ . These sample 
sizes for 00ψ , 11ψ  and 01ψ  parameters are 25 lower, 15 and 5 larger, respectively, in 
model B.8 than in model A.8. As in model A.8, when SMD is 5, the standard 
errors of 00ψ , 11ψ  and 01ψ  in model B.8 are slightly downward biased when 

50n ≥ , the RBs for 00ψ , 11ψ  and 01ψ  in model B.8 being .95. 
   
Third, the effect of construct on the RB is examined, comparing the RB in model 
B.5 to the RB in model A.5 (see Table 6.21 above). When SMD is 1, the RB for  

00ψ  in model B.5 increases from .84 to .95 when the sample size increases from 
n=50 to n=1000. For 11ψ , the RB is stable and lower than .89, and for 01ψ  it 
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slightly increases from .76 to .80 when the sample size increases from n=50 to 
n=1000. 
 
When SMD is 2, the bias of standard error decreases when the sample size 
increases.  As can be seen from Figures 6.39. - 6.41., the RB is greater than .90 for 

00ψ when 270n ≥ , for 11ψ  when 295n ≥ , and for 01ψ  when 210n ≥ . These 
sample sizes for 00ψ , 11ψ  and 01ψ  parameters are 135 and  205 larger and 255 
smaller, respectively, in model B.5 than in model A.5. The RB is greater than .95 
for 00ψ when 585n ≥ , for 11ψ  when 610n ≥ , and for 01ψ  when 675n ≥ . These 
sample sizes for 00ψ , 11ψ  and 01ψ  parameters are 185 and 320 larger and 255 
smaller, respectively, in model B.5 than in model A.5. 
 
When SMD is 3, the RB is greater than .90 for 00ψ  when 70n ≥ , for 11ψ  
when 100n ≥ , and for 01ψ  when 90n ≥ . The sample sizes for 00ψ  and 01ψ  
parameters are 5-10 smaller in model B.5 than in model A.5. The RB is greater 
than .95  for 00ψ when 135n ≥ , for 11ψ  when 180n ≥ , and for 01ψ  when 180n ≥ . 
These sample sizes for 00ψ , 11ψ  and 01ψ  parameters are 30 smaller, 60 and 20 
larger, respectively, in model B.5 than in model A.5. 
 
As in model A.5, when SMD is 4, the RBs are high in model B.5, being .92 for 

00ψ , .91 for 11ψ , and .90 for 01ψ  when n=50. The RB is greater than .95 for 

00ψ when 75n ≥ , for 11ψ  when 80n ≥ , and for 01ψ  when 90n ≥ . The sample 
sizes for 00ψ  and 01ψ   parameters are 20 smaller and 5 larger, respectively, in 
model B.5 than in model A.5. As in model A.5, when SMD is 5, the standard 
errors of 00ψ , 11ψ  and 01ψ  are slightly downward biased in model B.5, and the RB 
for 00ψ , 11ψ  and 01ψ  in model B.5 is .95 when 50n ≥ . 
  
 
6.3.3.4. Results of RB for 1θ , 2θ , 3θ  and 4θ  
 
The standard errors of  1θ , 2θ , 3θ  and 4θ  parameters (see Table 6.22.) are mainly 
downward biased in model A.8, but the RB is mainly greater than .95 and always 
greater than .93. In model A.8, the RB for 1θ  is lower than .95 when SMD is 1, 2 
or 5 and n=50, and the RB for 4θ  is lower than .95 when n=50. 
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The effect of reliability on the RB for 1θ , 2θ , 3θ  and 4θ  
 
When comparing the RBs for 1θ , 2θ , 3θ  and 4θ  parameters in model A.5, the 
results are very similar to those in model A.8. The standard errors of  1θ , 2θ , 3θ  
and 4θ  are mainly downward biased also in model A.5, as was the case in model 
A.8, but in model A.5 the RBs are mainly greater than .95 and always greater than 
.92. In model A.5, the RB for 1θ  is lower than .95 when SMD is 1 or 2 and n=50, 
and the RB for 4θ  is lower than .95 when n=50. 
 
The effect of additional measurements on the RB for 1θ , 2θ , 3θ  and 4θ  
 
When comparing the RBs for 1θ , 2θ , 3θ  and 4θ  in model A.5*, the results are very 
similar to those in model A.5. The standard errors of  1θ , 2θ , 3θ  and 4θ  are mainly 
downward biased also in model A.5*, as is the case in model A.5, but in model 
A.5* the RBs are mainly greater than .95 and always greater than .93. In model 
A.5*, the RB for 1θ  is lower than .95 when SMD is 1, 2 or 5 and n=50, and the RB 
for 3θ  and 4θ  is between .94 and .95  when n=50. 
 
The effect of model construct on the RB for 1θ , 2θ , 3θ  and 4θ  
 
When comparing the RBs for 1θ , 2θ , 3θ  and 4θ  parameters in model C.8, the 
results are very similar to those in model A.8. The standard errors of  1θ , 2θ , 3θ  
and 4θ  are mainly downward biased in model C.8, as was the case in model A.8, 
but in model C.8  the RBs are mainly greater than .95 and always greater than .92. 
In model C.8., the RB for 1θ  is lower than .95 when SMD is 1, 2 or 3 and n=50, 
and the RB for 4θ  is between .93 and .95 when n=50. 
 
 
When comparing the RBs for 1θ , 2θ , 3θ  and 4θ  parameters in model B.8, the 
results are very similar to those in model A.8. The standard errors of 1θ , 2θ , 3θ  and 

4θ  are mainly downward biased in model B.8, as was the case in model A.8, but in 
model B.8, the RB is mainly greater than .95 and always greater than .93. In model 
B.8., the RB is lower than .95 for 1θ  when n=50 and for 4θ  when SMD is 1 or 2 
and n=50. 
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Table 6.22. The RB for 4321 and,, θθθθ  parameters in models A.8., A.5, A.5*, B.8, B.5 and C.8. 
 

Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  3θ  5θ  7θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  

50 1 .9319 .9529 .9557 .9369 .9307 .9555 .9567 .9293 .9308 .9533 .9482 .9473 .9319 .9529 .9557 .9369 .9307 .9555 .9567 .9293 .919 .9541 .9533 .9338 
100 1 .9699 .9727 .9707 .9616 .9693 .9646 .9753 .9638 .9779 .9762 .9637 .9739 .9699 .9727 .9707 .9616 .9693 .9646 .9753 .9638 .9729 .9717 .9728 .9635 
200 1 .985 .9891 .987 .9911 .9811 .9852 .9901 .9918 .9953 .9866 .9906 .9859 .985 .9891 .987 .9911 .9811 .9852 .9901 .9918 .985 .9898 .9856 .9912 
500 1 .9956 .9965 .9931 .9965 1.000 .9961 .9954 .9932 1.0075 .9933 .9985 .9899 .9956 .9965 .9931 .9965 1.000 .9961 .9954 .9932 1.000 .9946 .9935 .9974 
1000 1 1.000 1.000 1.0099 .9967 .9979 .9972 1.0094 .9899 1.0045 .9984 1.000 1.0006 1.000 1.000 1.0099 .9967 .9979 .9972 1.0094 .9899 1.0063 1.000 1.0117 .9914 
50 2 .9358 .9573 .9584 .9362 .9254 .9542 .9614 .9342 .9473 .9546 .9454 .9464 .945 .963 .9667 .9434 .9477 .9598 .9627 .931 .9227 .9538 .9538 .9345 
100 2 .976 .9736 .9717 .9619 .9733 .9679 .9737 .9634 .988 .9783 .9633 .9699 .9702 .9735 .9779 .968 .9700 .9657 .9755 .964 .9817 .9714 .9742 .9662 
200 2 .9871 .9894 .9855 .9896 .9842 .9846 .9893 .9937 .9941 .9881 .9902 .9834 .9857 .9911 .9903 .9931 .9837 .9846 .9945 .9939 .9861 .9868 .9857 .9902 
500 2 .9979 .9966 .9931 .9965 1.0029 .9943 .9954 .9929 1.0053 .9933 .997 .989 .9886 .9929 .9978 1.000 .9931 .9941 .9988 .9953 1.0041 .9974 .9919 .9948 
1000 2 1.006 1.0048 1.0099 .9967 1.001 .9973 1.0093 .9914 .9926 .9984 .999 .9969 .9968 1.0051 1.0095 .9953 .9946 .9986 1.0089 .991 1.0117 1.0038 1.0093 .9915 
50 3 .9595 .9684 .956 .9342 .954 .9624 .9612 .9362 .9609 .9563 .9463 .9466 .9445 .9594 .9681 .9567 .9472 .9562 .9618 .9423 .949 .9646 .9579 .9403 
100 3 .9831 .978 .9725 .9621 .9769 .9701 .974 .9629 .9837 .9769 .9627 .9688 .9685 .9718 .9774 .9721 .9702 .9659 .9769 .9742 .9825 .974 .9727 .9647 
200 3 .9872 .9895 .9855 .9889 .9859 .9854 .9901 .9921 .988 .9881 .9897 .9817 .9844 .991 .9918 .996 .9836 .9845 .9958 .9949 .9903 .9902 .9856 .9913 
500 3 .9938 .9933 .9954 .9965 1.000 .9944 .9961 .9922 1.0011 .9945 .9963 .9882 .9843 .9929 1.0022 1.0021 .9893 .9941 .9994 .9968 1.000 .9948 .9935 .994 
1000 3 1.0059 1.0048 1.0099 .9967 1.003 .9987 1.0102 .9919 .9925 .9984 .9979 .9963 .9936 1.000 1.0093 .994 .9913 1.000 1.007 .9882 1.0113 1.0074 1.007 .9915 
50 4 .9568 .9705 .9536 .9342 .9617 .9681 .9618 .9361 .9612 .9533 .9451 .9474 .9463 .9592 .9695 .9587 .9488 .9555 .9665 .952 .961 .9672 .9551 .9391 
100 4 .975 .9789 .9704 .9595 .9801 .972 .9727 .961 .9822 .9758 .9623 .9685 .9656 .9717 .977 .9714 .9664 .964 .9789 .9789 .9879 .9805 .9733 .9652 
200 4 .9827 .9871 .984 .9881 .9842 .9852 .9885 .99 .9863 .9888 .9888 .9819 .9844 .9888 .989 .9945 .9832 .9838 .9935 .9933 .985 .9868 .9856 .9901 
500 4 .9873 .9898 .9931 .9965 .9944 .9953 .9974 .9918 1.0022 .9945 .997 .9881 .9844 .9929 1.000 1.0011 .9878 .994 1.0006 .9968 .992 .9921 .9935 .9948 
1000 4 1.0061 1.0098 1.0099 .9967 1.004 1.0027 1.0112 .9924 .9923 .9984 .998 .9963 .9936 1.000 1.0126 .9954 .9903 1.000 1.0078 .986 1.0087 1.0037 1.0093 .9927 
50 5 .9479 .9653 .952 .9322 .9575 .966 .9556 .931 .9490 .9506 .9448 .9459 .943 .9568 .963 .9558 .9442 .952 .9644 .9555 .955 .9686 .9553 .9395 
100 5 .9691 .9769 .9684 .9589 .978 .9728 .9728 .9607 .9801 .9747 .962 .9682 .9673 .9732 .9783 .9669 .9673 .9646 .98 .9772 .978 .9788 .9718 .9634 
200 5 .9847 .9912 .9855 .9881 .985 .9872 .9884 .9902 .9873 .9887 .9888 .9822 .9844 .991 .9887 .9929 .9832 .9837 .9899 .9927 .9855 .9916 .9856 .9901 
500 5 .9803 .993 .9931 .9965 .9891 .9951 .9974 .9925 1.0045 .9933 .9978 .9877 .9843 .9929 .9978 1.0011 .9871 .994 .9981 .9957 .9874 .9920 .9919 .9939 
1000 5 1.000 1.005 1.0099 .9967 1.001 1.0028 1.0122 .9924 .9937 .9953 .9979 .9969 .9968 1.000 1.0096 .9968 .9903 .9986 1.0089 .987 1.0091 1.0076 1.0093 .9914 
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When comparing the RBs for 1θ , 2θ , 3θ  and 4θ  parameters in model B.5, the 
results are very similar to those in model A.5. The standard errors of 1θ , 2θ , 

3θ  and 4θ  are mainly downward biased in model B.5, as is the case in model 
A.5, but in model B.5, the RB is mainly greater than .95 and always greater 
than .929. In model B.5, the RB is lower than .95 for 1θ  when n=50 and for 4θ  
when SMD is 1, 2 or 3 and n=50. 
 
 
6.3.3.5. A summary of the results of RB 
 
In model A.8, the standard error estimates for mean, variance and covariance 
parameters are badly downward biased when SMD is 1. In the case SMD is 2, 
the bias of standard error rapidly decreases when the sample size increases 
and the RB is, on average, greater than .95 when the sample size is 400-500 
for the intercept means, 700-800 for the slope means, 450 for the intercept 
variance, 250 for the slope variance and 470 for the covariance of intercept 
and slope. It is noticeable that the RB increases over 1 when the sample size 
increases to 1000, and is greatest (1.03-1.04) for the mean of intercept. This 
happens also when SMD is 3, 4 or 5, but in these cases the greatest RB is 
1.03.  
 
When SMD is 3, the sample size needed to achieve RB=.95 is 70-130 for 
parameters of latent components, which can also be seen from Figures 6.42 
and 6.43. When SMD is 4 or 5, the critical range for the mean parameters is 
achieved already with the smallest sample size n=50 and for the variance and 
covariance parameters when n=75. For the error variances, the standard errors 
are slightly downward biased and the RB values are .95, except in the first 
and the last measurements with n=50 in which cases the RB is at least .93. 
 
When reliability of observed variables decreases (A.5 vs. A.8), the bias of 
standard error increases. This increase is significant when SMD is 2 and is 
shown for all mean parameters and covariance parameter. The sample size 
n=1000 is not enough to achieve RB=.95 in the case of three of the mean 
parameters and their RB is only .84 - .88. When SMD is 3, the required 
sample size to achieve RB=.95 is 1.5 – 2.0 times larger for mean parameters 
in class 2 in model A.5 than in model A.8 as can also be seen from Figure 
6.42. The required sample size to achieve RB=.95 in model A.5 for the mean, 
variance and covariance parameters of latent components is between 130 and 
220, whereas in model A.8, the required sample size is 80 – 130. When SMD 
is 4 and the sample size is n=50, the RB is on average .02 - .05 smaller in 
model A.5 than in model A.8. This difference decreases and is nonsignificant 
when the sample size increases to n=100. When SMD is 5, the differences in 
the RB between model A.5 and A.8 are small and nonsignificant. The effect 
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of reliability on the RB of variances of intercept, slope and error variances are 
nonsignificant. 
 
The effect of construct on the RB was examined, comparing model C.8 with 
A.8, B.8 with A.8 and  B.5 with A.5. As in model C.8, RB = .95 for mean 
parameters are not achieved when SMD is 2 in models A.5 and B.5, even 
when the sample size increases to n=1000. Instead, for the mean of intercept 
and the variance of slope in the model B.8, the sample size needed to achieve 
RB=.95 is 1.5 times larger in the model B.8 than in model A.8, whereas for 
the mean of slope, the variance of intercept and the covariance of intercept 
and slope, the required sample size is same in both models. When SMD is 3, 
the sample size needed to achieve RB = .95 in model B.8 or B.5 is 1.1 – 2.3 
times larger than in model A.8 or A.5. This proportion is for the mean of 
intercept 1.3 – 1.9, for the variance of slope 1.6 -2.3 and for the covariance of 
intercept and slope 1.1 -1.2, whereas for the mean of slope, the required 
sample size is 0.7 – 1.1, and for the variance of intercept it is 0.7-0.8.  When 
SMD is 4 or 5, differences between models B.8 vs. A.8 or B.5 vs. A.5 in the 
RB are small (0.01- 0.08). The largest differences are evident when SMD is 4 
or 5 and the sample size is 50, in which case the RB in model B.5 is .08 
smaller than the RB in model A.5. With all SMDs and with all sample sizes, 
standard errors of error variances are small.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.42. The required sample size to achieve RB=.95 when SMD is 3 
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Figure 6.43. The required sample size to achieve RB=.90 when SMD is 3 
 
 
6.3.4. Results of 95 % coverage for parameters  
 
 
Because the standard error estimates variate around its average value, it is 
worthwhile to examine the 95 % coverage (referred to later as ‘coverage’) of 
parameter estimates to evaluate further success of estimation (see section 5.6). 
Because the standard error was in most cases downward biased, the 95 % 
coverage is lower than expected .95 value. For unbiased parameter estimation, 
an expected value of coverage is .937, .922 or .904, with 5, 10 or 15 % 
downward biased standard error, respectively. Two cut-off values, .90 and 
.92, are chosen for the 95 % coverage constituting the results. If the 95 % 
coverage is lower than .92, estimation is seen to be suspicious and if this 
value is lower than .90, estimation is seen to be poor. In addition to this, linear 
approximation is produced for sample sizes in which the 95 % coverage is 
greater than .93. This cut-off value is assumed to be a sign of good estimation. 
 
6.3.4.1. Results of 95 % coverage for )1(

0α  and )2(
0α  

 
As can be seen from Table 6.23, when SMD is 1, coverages for parameters 

)1(
0α  and )2(

0α  are low and vary between .61 and .79 in all models A.8 – C.8. 
When SMD is 2, coverage is lower than .90 when the sample size is n≤  200 
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in all models A.8 – C.8. When SMD is 3, coverage is lower than .90 when n = 
50 in all models except A.8, whereas when the sample size is 500 or 1000, 
coverage is greater than .93 in all models A.8 – C.8. When SMD is 4 or 5 and 

100n ≥ , coverage is greater than .93 in all models A.8 – C.8, except in one 
case in which coverage is .92. 
 
Table 6.23. 95% coverage for )2(

0
)1(

0 ,αα  parameters in models A.8., A.5, A.5*, 
B.8, B.5 and C.8. 
 

Model A.8 A.5 A.5* B.8 B.5 C.8 
n SMD )1(

0α  )2(
0α  )1(

0α  )2(
0α  )1(

0α  )2(
0α  )1(

0α  )2(
0α  )1(

0α  )2(
0α  )1(

0α  )2(
0α  

50 1 .626 .711 .607 .691 .673 .703 .626 .711 .607 .691 .597 .691 
100 1 .646 .726 .623 .696 .677 .675 .646 .726 .623 .696 .609 .703 
200 1 .641 .746 .610 .706 .672 .645 .641 .746 .610 .706 .606 .715 
500 1 .664 .770 .623 .720 .650 .681 .664 .770 .623 .720 .622 .741 
1000 1 .687 .788 .653 .740 .634 .713 .687 .788 .653 .740 .641 .758 
50 2 .792 .773 .765 .751 .793 .736 .802 .746 .774 .715 .759 .747 
100 2 .833 .832 .793 .793 .807 .798 .818 .789 .783 .743 .786 .795 
200 2 .859 .872 .806 .833 .837 .866 .839 .837 .795 .781 .805 .836 
500 2 .916 .934 .870 .902 .896 .935 .905 .895 .846 .846 .869 .902 
1000 2 .940 .947 .911 .931 .936 .951 .934 .928 .904 .899 .909 .935 
50 3 .902 .877 .864 .848 .890 .870 .895 .857 .853 .799 .870 .840 
100 3 .932 .923 .907 .898 .922 .924 .927 .902 .887 .849 .907 .895 
200 3 .947 .940 .931 .931 .941 .941 .942 .933 .918 .902 .931 .930 
500 3 .952 .949 .949 .949 .949 .948 .951 .944 .946 .934 .951 .948 
1000 3 .950 .949 .948 .951 .951 .949 .951 .950 .951 .945 .951 .951 
50 4 .938 .920 .919 .904 .932 .923 .930 .907 .908 .874 .927 .891 
100 4 .947 .940 .943 .934 .940 .933 .944 .932 .935 .918 .944 .936 
200 4 .951 .947 .947 .946 .945 .942 .948 .949 .947 .940 .950 .946 
500 4 .953 .950 .951 .949 .952 .947 .951 .948 .951 .945 .952 .951 
1000 4 .949 .950 .948 .952 .951 .948 .948 .949 .949 .950 .951 .948 
50 5 .939 .924 .938 .924 .937 .923 .937 .919 .930 .910 .941 .922 
100 5 .949 .939 .950 .938 .942 .937 .945 .936 .943 .932 .947 .942 
200 5 .944 .946 .949 .945 .946 .941 .948 .946 .947 .946 .951 .946 
500 5 .952 .948 .951 .947 .951 .947 .952 .948 .951 .948 .954 .950 
1000 5 .949 .951 .949 .951 .947 .949 .950 .947 .948 .949 .950 .948 

Note. Cells highlighted in grey indicate that the 95 % coverage is lower than 
.92. If the value in the grey-coloured cell is bolded, this means that the value 
is lower than .90.  
 
Model A.8 - )1(

0α  
In  model A.8, when SMD is 2, coverage for )1(

0α  increases from .792 to .916, 
when the sample size increases from 50 to 500 and is greater than .93 when 
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790n ≥ . When SMD is 3, coverage is .902 when n = 50 and is greater than 
.93 when 95n ≥ . When SMD is 4 or 5, coverage is greater than .93 when 

50n ≥ . 
 
Model A.8 - )2(

0α  
When SMD is 2, coverage for )2(

0α  increases from .773 to .872 when the 
sample size increases from 50 to 200 and is greater than .93 when 480n ≥ . 
When SMD is 3, coverage increases from .877 to .923 when the sample size 
increases from 50 to 100 and is greater than .93 when 140n ≥ . When SMD is 
4, coverage is .92 when n = 50 and is greater than .93 when 75n ≥ . When 
SMD is 5, coverage is .924 when n = 50 and is greater than .93 when 70n ≥ . 
 
The effect of reliability on the coverage for )1(

0α  and )2(
0α   

 
In model A.5 (see Table 6.23), coverage for )1(

0α  and )2(
0α  parameters are 

lower than in model A.8.  This is also seen when comparing model B.5 with 
model B.8. 
 
Model A.5 vs. model A.8  - )1(

0α  
When SMD is 2, coverage for )1(

0α  in model A.5 increases from .765 to .911 
when the sample size increases from 50 to 1000 and is .03 - .05 lower than in 
model A.8. When SMD is 3, coverage increases from .864 to .907 when the 
sample size increases from 50 to 100 and is .025 - .038 lower than in model 
A.8. Coverage is greater than .93 when 195n ≥ , which n is 100 greater than 
in model A.8. When SMD is 4, coverage is .919 when n = 50 which coverage 
is .019 lower than in model A.8. Coverage is greater than .93 when 75n ≥ , 
which n is at least 25 greater than in model A.8. As in model A.8, when SMD 
is 5, coverage in model A.5 is greater than .93 when 50n ≥ . 
 
Model A.5 vs. model A.8  - )2(

0α  
When SMD is 2, coverage for )2(

0α   in model A.5 increases from .751 to .931 
when the sample size increases from 50 to 1000 and is .016 - .039 lower than 
in model A.8. When SMD is 3, coverage increases from .848 to .931 when the 
sample size increases from 50 to 200 and is .009 - .029 lower than in model 
A.8. Coverage is greater than .93 when 195n ≥ , which n is 55 greater than in 
model A.8. When SMD is 4, coverage is .904 when n = 50 which coverage is 
.016 lower than in model A.8. Coverage is greater than .93 when 95n ≥ , 
which n is 20 greater than in model A.8. As in model A.8, when SMD is 5, 
coverage is .924 when n = 50 and is greater than .93 when 70n ≥ . 
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The effect of additional measurements on the coverage for )1(
0α  and )2(

0α  
 
In model A.5* (see Table 6.23), coverage for )1(

0α  and )2(
0α  parameters are 

clearly greater than in model A.5.   
 
Model A.5* vs. model A.5  - )1(

0α  
When SMD is 2, coverage for )1(

0α  in model A.5* increases from .793 to .896 
when the sample size increases from 50 to 500 and is .028 - .031 greater than 
in model A.5. When 925n ≥ , coverage in model A.5* is greater than .93. 
When SMD is 3, coverage increases from .890 to .922 when the sample size 
increases from 50 to 100 and is .026 - .015 greater than in model A.5. 
Coverage is greater than .93 when 140n ≥ , which n is 55 lower than in 
model A.5. When SMD is 4, coverage in model A.5* is greater than .93, with 
the smallest sample size n = 50, whereas in model A.5, the required sample 
size is at least 25 greater. As in model A.8, when SMD is 5, coverage in 
model A.5 is greater than .93 when 50n ≥ . 
 
Model A.5* vs. model A.5  - )2(

0α  
When SMD is 2, coverage for )2(

0α  in model A.5* increases from .736 to .866 
when the sample size increases from 50 to 200. When n = 50 this coverage is 
.015 lower, and when n = 200 it is .033 greater, than in model A.5. Coverage 
in model A.5* is greater than .93 when 480n ≥ , which sample size is over 
520 lower than in model A.5. When SMD is 3, coverage increases from .870 
to .924 when the sample size increases from 50 to 100 and is .022 - .026 
greater than in model A.5. Coverage is greater than .93 when 135n ≥ , which 
n is 60 lower than in model A.5. When SMD is 4, coverage is .923 which 
coverage is .019 greater than in model A.5. Coverage is greater than .93 when 

65n ≥ , which n is 30 lower than in model A.5. When SMD is 5, coverage is 
.923 which coverage is .001 lower than in model A.5. Coverage is greater 
than .93 when 75n ≥ , which n is 5 greater than in model A.5.  
 
The effect of model construct on the coverage for )1(

0α  and )2(
0α  

 
When comparing coverages for )1(

0α  and )2(
0α  between different models, they 

are clearly lower in model C.8 than in model A.8. On the contrary, coverages 
for )1(

0α  and )2(
0α  are slightly lower in model B.8 than in model A.8. This is 

also seen when comparing coverages between models B.5 and A.5. 
 
Model C.8 vs. model A.8  - )1(

0α  
When SMD is 2, coverage for )1(

0α  in model C.8 increases from .759 to .909 
when the sample size increases from 50 to 1000 and is .031 - .054 lower than 
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in model A.8. When SMD is 3, coverage increases from .870 to .907 when the 
sample size increases from 50 to 100 and is .025 - .032 lower than in model 
A.8. Coverage is greater than .93 when 195n ≥ , which n is 100 greater than 
in model A.8. When SMD is 4, coverage is .927 when n = 50, which coverage 
is .011 lower than in model A.8, and the coverage is greater than .93 when 

60n ≥ , which n is 10 greater than in model A.8. As in model A.8, when 
SMD is 5, coverage in model C.8 is greater than .93 when 50n ≥ . 
 
Model C.8 vs. model A.8  - )2(

0α  
When SMD is 2, coverage for )2(

0α  in model C.8 increases from .747 to .902 
when the sample size increases from 50 to 500 and is .026 - .037 lower than in 
model A.8. Coverage in model C.8 is greater than .93 when 925n ≥ , which n 
is 445 greater than in model A.8. When SMD is 3, coverage increases from 
.840 to .930 when the sample size increases from 50 to 200 and is .010 - .037 
lower than in model A.8. Coverage is greater than .93 when n = 200, which n 
is  105 greater than in model A.8. When SMD is 4, coverage is .891 when n = 
50, which coverage is .029 lower than in model A.8. The coverage is greater 
than .93 when 95n ≥ , which n is 20 greater than in model A.8. When SMD 
is 5, coverage is .922 when n = 50, which coverage is .002 lower than in 
model A.8. The coverage is greater than .93 when 70n ≥ , which n is the 
same than in model A.8. 
 
Model B.8 vs. model A.8  - )1(

0α  
When SMD is 2, coverage for )1(

0α  in model B.8 increases from .802 to .905 
when the sample size increases from 50 to 500 and is .032 – 0.043 lower than 
in model A.8. Coverage in model B.8 is greater than .93 when 930n ≥ , 
which n is 140 greater than in model A.8. When SMD is 3, coverage increases 
from .895 to .927 when the sample size increases from 50 to 100 and is .020 - 
.025 lower than in model A.8. Coverage is greater than .93 when 120n ≥ , 
which n is 25 greater than in model A.8. As in model A.8, when SMD is 4 or 
5, coverage in model B.8 is greater than .93 when 50n ≥ . 
 
Model B.8 vs. model A.8  - )2(

0α  
When SMD is 2, coverage for )2(

0α  in model B.8 increases from .747 to .902 
when the sample size increases from 50 to 500 and is .026 - .037 lower than in 
model A.8. Coverage is greater than .93 when 925n ≥ , which n is 445 
greater than in model A.8. When SMD is 3, coverage increases from .840 to 
.930 when the sample size increases from 50 to 200 and is .010 - .037 lower 
than in model A.8. Coverage is greater than .93 when the sample size is 200 
greater than in model A.8. When SMD is 4, coverage is .891 when n = 50, 
which coverage is .029 lower than in model A.8. The coverage is greater than 
.93 when 95n ≥ , which n is 20 greater than in model A.8. When SMD is 5, 
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coverage is .922 when n = 50, which coverage is .002 lower than in model 
A.8. The coverage is greater than .93 when 70n ≥ , which n is the same than 
in model A.8. 
 
Model B.5 vs. model A.5  - )1(

0α  
When SMD is 2, coverage for )1(

0α  in model B.5 increases from .774 to .904 
when the sample size increases from 50 to 1000 and is .009 – .024 lower than 
in model A.5. When SMD is 3, coverage increases from .853 to .918 when the 
sample size increases from 50 to 200 and is .011 - .020 lower than in model 
A.5. Coverage is greater than .93 when 330n ≥ , which n is 135 greater than 
in model A.5.  When SMD is 4, coverage is .908, which coverage is .011 
lower than in model A.5 when n = 50. Coverage increases to .93 when the 
sample size increases to 90n ≥ , which n is 15 greater than in model A.5. As 
in model A.5, when SMD is 5, coverage in model B.5 is greater than .93 when 

50n ≥ . 
 
Model B.5 vs. model A.5  - )2(

0α  
When SMD is 2, coverage for )2(

0α  in model B.5 increases from .715 to .899 
when the sample size increases from 50 to 1000 and is .032 – .056 lower than 
in model A.5. When SMD is 3, coverage increases from .799 to .902 when the 
sample size increases from 50 to 200 and is .029 - .049 lower than in model 
A.5. Coverage is greater than .93 when 460n ≥ , which n is 265 greater than 
in model A.5.  When SMD is 4, coverage increases from .874 to .918 when 
the sample size increases from 50 to 100 and is .016 - .030 lower than in 
model A.5. Coverage is greater than .93 when 155n ≥ , which n is 60 greater 
than in model A.5. When SMD is 5, coverage is .910, which coverage is .014 
lower than in model A.5 when n = 50. Coverage increases to .93 when the 
sample size increases to 95n ≥ , which n is 15 greater than in model A.5.  
 
 
6.3.4.2. Results of 95 % coverage for )1(

1α  and )2(
1α  

 
As can be seen from Table 6.24, when SMD is 1, coverages for parameters 

)1(
1α  and )2(

1α  are low and vary between .641 and .874 in all of the models A.8 
– C.8. When SMD is 2, coverage is lower than .90 when n = 50, 100 or 200 in 
all models A.8 – C.8, with one exception. When SMD is 3, coverage is lower 
than .90 when n = 50 in all models A.8 – C.8 with one exception, whereas 
when n = 500 or 1000 coverage is greater than .93 in all models A.8 – C.8. 
When SMD is 4 or 5 and 100n ≥ , coverage is greater than .93 in all models 
A.8 – C.8. 
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Model A.8 - )1(
1α  

In  model A.8, when SMD is 2, coverage for )1(
1α  increases from .805 to .910 

when the sample size increases from 50 to 500 and is greater than .93 when 
720n ≥ . When SMD is 3, coverage is .894 when n = 50 and greater than .93 

when 125n ≥ . When SMD is 4, coverage is .924 when n = 50 and greater 
than .93 when 65n ≥ . When SMD is 5, coverage is greater than .93 when 

50n ≥ . 
 
Model A.8 - )2(

1α  
In  model A.8, when SMD is 2, coverage for )2(

1α  increases from .737 to .928 
when the sample size increases from 50 to 1000. When SMD is 3, coverage 
increases from .856 to .905 when the sample size increases from 50 to 100 
and is greater than .93 when 140n ≥ . When SMD is 4, coverage is .909 
when n = 50 and greater than .93 when 95n ≥ . When SMD is 5, coverage is 
.920 when n = 50 and greater than .93 when 85n ≥ .  
 
The effect of reliability on the coverage for )1(

1α  and )2(
1α  

 
In model A.5 (see Table 6.24), coverages for )1(

1α  and )2(
1α  parameters are 

lower than in model A.8.  This effect of reliability is seen also when 
comparing model B.5 with model B.8. 
 
Model A.5 vs. model A.8  - )1(

1α  
When SMD is 2, coverage for )1(

1α  in model A.5 increases from .781 to .902 
when the sample size increases from 50 to 1000 and is .024 - .045 lower than 
in model A.8. When SMD is 3, coverage increases from .867 to .926 when the 
sample size increases from 50 to 200 and is .012 - .027 lower than in model 
A.8. Coverage is greater than .93 when 215n ≥ , which n is 90 greater than in 
model A.8. When SMD is 4, coverage is .917 when n = 50, which coverage is 
.007 lower than in model A.8. Coverage is greater than .93 when 80n ≥ , 
which n is at least 15 greater than in model A.8. When SMD is 5, coverage is 
.926 when n = 50, which coverage is .004 lower than in model A.8. Coverage 
is greater than .93 when 60n ≥ , which n is 10 greater than in model A.8. 
 
Model A.5 vs. model A.8  - )2(

1α  
When SMD is 2, coverage for )2(

1α  in model A.5 increases from .712 to .879, 
when the sample size increases from 50 to 1000 and is .025 - .066 lower than 
in model A.8. When SMD is 3, coverage increases from .808 to .909 when the 
sample size increases from 50 to 200 and is .027 - .049 lower than in model 
A.8. Coverage is greater than .93 when 265n ≥ , which n is 140 greater than 
in model A.8. When SMD is 4, coverage increases from .888 to .925 when the 
sample size increases from 50 to 100 and is .008 - .021 lower than in model 
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A.8. Coverage is greater than .93 when 105n ≥ , which n is 40 greater than in 
model A.8. When SMD is 5, coverage is .915 when n = 50, which coverage is 
.005 lower than in model A.8. Coverage is greater than .93 when 90n ≥ , 
which n is  5 greater than in model A.8.  
 
Table 6.24. 95% coverage for )2(

1
)1(

1 ,αα  parameters in models A.8., A.5, A.5*, 
B.8, B.5 and C.8. 
 
Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 
)1(

1α
 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 

)1(
1α

 

)2(
1α

 
50 1 .725 .686 .715 .680 .733 .718 .725 .686 .715 .680 .720 .675 
100 1 .708 .666 .691 .653 .773 .749 .708 .666 .691 .653 .700 .668 
200 1 .704 .653 .681 .641 .809 .791 .704 .653 .681 .641 .693 .655 
500 1 .719 .659 .702 .654 .853 .834 .719 .659 .702 .654 .701 .664 
100
0 1 .737 .665 .721 .668 .874 .856 .737 .665 .721 .668 .715 .659 

50 2 .805 .737 .781 .712 .833 .785 .800 .763 .774 .719 .778 .701 
100 2 .820 .763 .787 .717 .881 .841 .823 .816 .775 .765 .786 .721 
200 2 .850 .799 .805 .741 .915 .896 .849 .858 .794 .799 .804 .742 
500 2 .910 .889 .866 .823 .950 .944 .904 .916 .851 .870 .860 .823 
100
0 2 .937 .928 .902 .879 .951 .956 .932 .938 .901 .913 .904 .883 

50 3 .894 .856 .867 .808 .911 .873 .890 .867 .850 .815 .861 .812 
100 3 .922 .905 .897 .856 .937 .925 .921 .917 .882 .878 .895 .865 
200 3 .938 .936 .926 .909 .943 .946 .940 .942 .917 .916 .925 .908 
500 3 .946 .946 .950 .942 .949 .951 .946 .944 .943 .938 .944 .936 
100
0 3 .947 .947 .950 .945 .948 .951 .945 .943 .941 .941 .952 .946 

50 4 .924 .909 .917 .888 .932 .912 .922 .910 .905 .880 .915 .892 
100 4 .942 .933 .938 .925 .942 .931 .937 .938 .932 .925 .939 .925 
200 4 .945 .941 .947 .942 .944 .944 .945 .943 .946 .940 .943 .940 
500 4 .947 .946 .950 .946 .949 .949 .946 .943 .948 .945 .950 .942 
100
0 4 .950 .945 .952 .944 .949 .950 .947 .943 .949 .941 .952 .945 

50 5 .930 .920 .926 .915 .931 .917 .930 .924 .929 .910 .905 .917 
100 5 .940 .934 .943 .933 .943 .934 .941 .935 .942 .937 .942 .936 
200 5 .946 .941 .946 .943 .944 .942 .944 .944 .946 .944 .945 .942 
500 5 .946 .944 .949 .944 .947 .947 .948 .943 .947 .943 .948 .940 
100
0 5 .949 .946 .950 .945 .949 .948 .948 .943 .951 .943 .951 .944 

Note. Cells highlighted in grey indicate that the 95 % coverage is lower than 
.92. If the value in the grey-coloured cell is bolded, this means that the value 
is lower than .90. 
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The effect of additional measurements on the coverage for )1(
1α  and )2(

1α  
 
In model A.5* (see Table 6.24), coverages for )1(

1α  and )2(
1α  parameters are 

clearly greater than in model A.5.   
 
Model A.5* vs. model A.5  - )1(

1α  
When SMD is 2, coverage for )1(

1α  in model A.5* increases from .833 to .915 
when the sample size increases from 50 to 200 and is .052 - .110 greater than 
in model A.5. In model A.5*, coverage is greater than .93 when 245n ≥ , 
whereas in model A.5 when n = 1000, which is not enough to reach this 
coverage. When SMD is 3, coverage is .911 when n = 50, which coverage is 
.044 greater than in model A.5. Coverage is greater than .93 when 85n ≥ , 
which n is 130 lower than in model A.5. When SMD is 4 or 5, coverage is 
greater than .932 or .931, respectively, with the smallest sample size n = 50. 
These coverages are .015 or .005 greater, respectively, than in model A.5.  
 
Model A.5* vs.model  A.5  - )2(

1α  
When SMD is 2, coverage for )2(

1α  in model A.5* increases from .785 to .896 
when the sample size increases from 50 to 200 and is .073 - .155  greater than 
in model A.5. In model A.5* coverage is greater than .93 when 270n ≥ , 
whereas in model A.5 n = 1000, which is not enough to reach that coverage. 
When SMD is 3, coverage in model A.5* increases from .873 to .925 when 
the sample size increases from  50 to 100 and is .065 - .069  greater than in 
model A.5. In model A.5*, coverage is greater than .93 when 110n ≥ , which 
n is 160 lower than in model A.5. When SMD is 4, coverage is .912 when n = 
50, which coverage is .024 greater than in model A.5. Coverage is greater 
than .93 when 95n ≥ , which n is 10 lower than in model A.5. When SMD is 
5, coverage is .917 when n = 50, which coverage is .004 greater than in model 
A.5. Coverage is greater than .93 when 90n ≥ , which n is the same as in 
model A.5. 
 
The effect of model construct on the coverage for )1(

1α  and )2(
1α  

 
When comparing coverages for )1(

1α  and )2(
1α  between different models, they 

are clearly lower in model C.8 than in model A.8. Coverage for )1(
1α  is almost 

equal in model A.8 and in model B.8, whereas coverage for )2(
1α  is greater in 

model B.8 than in model A.8. This is seen also when comparing coverages in 
model B.5 with model A.5. 
 
Model C.8 vs. model A.8  - )1(

1α  
When SMD is 2, coverage for )1(

1α  in model C.8 increases from .778 to .904 
when the sample size increases from 50 to 1000 and is .027 - .053 lower than 
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in model A.8. When SMD is 3, coverage increases from .861 to .925 when the 
sample size increases from  50 to 200 and is .013 - .033  lower than in model 
A.8. In model C.8, coverage is greater than .93 when 225n ≥ , which n is 100 
greater than in model A.8. When SMD is 4, coverage is .915 when n = 50, 
which coverage is .009 greater than in model A.8. Coverage is greater than 
.93 when 80n ≥ , which n is 15 lower than in model A.8. When SMD is 5,  
coverage is .905 when n = 50, which coverage is .025 lower than in model 
A.8. Coverage is greater than .93 when 85n ≥ , which n is 30 greater than in 
model A.8. 
 
Model C.8 vs. model A.8  - )2(

1α  
When SMD is 2, coverage for )2(

1α  in model C.8 increases from .701 to .883 
when the sample size increases from 50 to 1000 and is .036 - .066  lower than 
in model A.8. When SMD is 3, coverage increases from .812 to .908 when the 
sample size increases from  50 to 200 and is .028 - .044  lower than in model 
A.5. In model C.8, coverage is greater than .93 when 280n ≥ , which n is 140 
greater than in model A.8. When SMD is 4, coverage is .892 when n = 50, 
which coverage is .017 lower than in model A.8. Coverage is greater than .93 
when 115n ≥ , which n is 20 greater than in model A.8. When SMD is 5, 
coverage is .917 when n = 50, which coverage is .003 lower than in model 
A.8. Coverage is greater than .93 when 85n ≥ , which n is the same as in 
model A.8. 
 
Model B.8 vs. model A.8  - )1(

1α  
When SMD is 2, coverage for )1(

1α  in model B.8 increases from .800 to .904 
when the sample size increases from 50 to 500 and is .001 - .006  lower than 
in model A.8. Coverage is greater than .93 when 780n ≥ , which n is 60 
greater than in model A.8. When SMD is 3, coverage increases from .890 to 
.921 when the sample size increases from 50 to 100 and is .001 - .004 lower  
than in model A.8. Coverage is greater than .93 when 125n ≥ , which n is the 
same as in model A.8. When SMD is 4, coverage is .922 when n = 50, which 
coverage is .002 lower than in model A.8. Coverage is greater than .93 when 

75n ≥ , which n is 10 greater than in model A.8. When SMD is 5, coverage 
is .930 when n = 50, which coverage is equal to the coverage in model A.8.  
 
Model B.8 vs. A.8  - )2(

1α  
When SMD is 2, coverage for )2(

1α  in model B.8 increases from .763 to .916 
when the sample size increases from 50 to 500 and is .007 - .012 greater than 
in model A.8. Coverage is greater than .93 when 690n ≥ , which n is 30 
lower than in model A.8. When SMD is 3, coverage increases from .867 to 
.917 when the sample size increases from 50 to 100 and is .015 - .017  greater 
than in model A.8. Coverage is greater than .93 when 125n ≥ , which n is 15 
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lower than in model A.8. When SMD is 4, coverage is .910 when n = 50, 
which coverage is .001 greater than in model A.8. Coverage is greater than 
.93 when 85n ≥ , which n is 10 lower than in model A.8. When SMD is 5, 
coverage is .924 when n = 50, which coverage is .004 lower than in model 
A.8. Coverage is greater than .93 when 75n ≥ , which n is 10 lower than in 
model A.8. 
 
 
6.3.4.3. Results of 95 % coverage for 00ψ , 11ψ   and 01ψ  
 
As can be seen from Table 6.25, when SMD is 1, coverages for parameters 

00ψ , 11ψ  and 01ψ  are low and vary between .641 and  .864 in all of the models 
A.8 – C.8, with one exception concerning 11ψ  parameter in model A.5*. 
When SMD is 2 and n = 50, coverage is lower than .90 in all models A.8 – 
C.8 with one exception. When SMD is 2 and the sample size 100n ≥  or 

200n ≥ , coverage in all models is greater than .90 or .92, respectively. When 
SMD is 4 or 5, coverage is greater than .90 when 100n ≥ , and greater than 
.92 when 200n ≥ , in all models A.8 – C.8 . 
 
Model A.8 - 00ψ  
When SMD is 2, coverage for 00ψ  in model A.8 increases from .753 to .907 
when the sample size increases from 50 to 500 and coverage is greater than 
.93 when 710n ≥ . When SMD is 3, coverage increases from .843 to .920 
when the sample size increases from 50 to 200 and is greater than .93 when 

250n ≥ . When SMD is 4, coverage increases from .880 to .913 when the 
sample size increases from 50 to 100 and is greater than .93 when 145n ≥ . 
When SMD is 5, coverage increases from .889 to .917 when the sample size 
increases from  50 to 100 and is greater than .93 when 140n ≥ . 
 
Model A.8 - 11ψ  
When SMD is 2, coverage for 11ψ  in model A.8 increases from .818 to .896 
when the sample size increases from 50 to 200 and coverage is greater than 
.93 when 445n ≥ . When SMD is 3, coverage increases from .879 to .917 
when the sample size increases from 50 to 100 and is greater than .93 when 

135n ≥ . When SMD is 4, coverage increases from .896 to .921 when the 
sample size increases from  50 to 100 and is greater than .93 when 125n ≥ . 
When SMD is 5, coverage increases from .899 to .921 when the sample size 
increases from 50 to 100 and is greater than .93 when 130n ≥ . 
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Model A.8 - 01ψ  
When SMD is 2, coverage for 01ψ  in model A.8 increases from .781 to .924 
when the sample size increases from 50 to 1000. When SMD is 3, coverage 
increases from .847 to .896 when the sample size increases from 50 to 100 
and is greater than .93 when 150n ≥ . When SMD is 4, coverage is .903 
when n = 50 and is greater than .93 when 90n ≥ . When SMD is 5, coverage 
is .926 when n = 50 and is greater than .93 when 65n ≥ . 
 
The effect of reliability on the coverage for 00ψ , 11ψ  and 01ψ  
 
Coverages for 00ψ , 11ψ  and 01ψ  parameters are, on average, slightly lower in 
model A.5 than in model A.8, as can be seen from the grey-coloured cells in 
Table 6.25.  This effect of reliability is seen also when comparing model B.5 
with model B.8. The results are not consistent suggesting that results depend 
on the parameter and SMD. 
  
Model A.5 vs. model A.8  - 00ψ  
When SMD is 2, coverage for 00ψ  in model A.5 increases from .759 to .901 
when the sample size increases from 50 to 1000 and is .004 - .039 lower than 
in model A.8. When SMD is 3, coverage increases from .841 to .916 when the 
sample size increases from 50 to 200 and is .002 - .013 lower than in model 
A.8. Coverage is greater than .93 when 265n ≥ , which n is 10 greater than in 
model A.8. When SMD is 4, coverage increases from .884 to .916 when the 
sample size increases from 50 to 100 and is unexceptionally .003 - .004 
greater than in model A.8. Coverage is greater than .93 when 135n ≥ , which 
n is 10 lower than in model A.8. When SMD is 5, coverage increases from 
.901 to .925 when the sample size increases from 50 to 100 and is also 
unexceptionally .008 - .012 greater than in model A.8. Coverage is greater 
than .93 when 120n ≥ , which n is 20 lower than in model A.8. 
 
Model A.5 vs. A.8  - 11ψ  
When SMD is 2, coverage for 11ψ  in model A.5 increases from .841 to .928 
when the sample size increases from 50 to 500. When n = 50, coverage in 
model A.5 is .023 greater than in model A.8 and, when the sample size 
increase to n =  200, coverage changes to be .010 lower in model A.5 than in 
model A.8. Coverage in model A.5 is greater than .93 when 590n ≥ , which 
n is 145 greater than in model A.8. When SMD is 3, coverage increases from 
.886 to .919 when the sample size increases from 50 to 100 and is .002 - .007 
greater than in model A.8. Coverage is greater than .93 when 125n ≥ , which 
n is 10 lower than in model A.8. When SMD is 4, coverage is .913 when n = 
50, which coverage is .017 greater than in model A.8. Coverage is greater 
than .93 when 90n ≥ , which n is even 35 lower than in model A.8.  When 
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SMD is 5, coverage is .921 when n = 50, which coverage is .022 greater than 
in model A.8. Coverage is greater than .93 when 80n ≥ , which n is even 50 
lower than in model A.8. 
 
Model A.5 vs. model A.8  - 01ψ  
When SMD is 2, coverage for 01ψ  in model A.5 increases from .814 to .892 
when the sample size increases from 50 to 1000. When n = 50, coverage in 
model A.5 is .033 greater than in model A.8, and when the sample size 
increases to 1000, coverage changes to be .032 lower than in model A.8.  
When SMD is 3, coverage increases from .848 to .914 when the sample size 
increases from 50 to 200. When n = 50, coverage in model A.5 is .001 greater 
than in model A.8 and, when the sample size increases to 200, coverage 
changes to be .017 lower than in model A.8.  Coverage is greater than .93 
when 255n ≥ , which n is 105 greater than in model A.8. When SMD is 4, 
coverage increases from .890 to .923 when the sample size increases from 50 
to 100 and is .012- .013 lower than in model A.8. Coverage is greater than .93 
when 120n ≥ , which n is 30 greater than in model A.8. When SMD is 5, 
coverage is .915 when n = 50, which coverage is .011 lower than in model 
A.8. Coverage is greater than .93 when 90n ≥ , which n is 25 greater than in 
model A.8.   
 
The effect of additional measurements on the coverage for 00ψ  and 11ψ  
 
Coverages for 00ψ  and 11ψ  parameters are slightly lower in model A.5* than 
in model A.5, as can be seen from the grey-coloured cells in Table 6.25. The 
results are not consistent, suggesting that results depend on SMD. 
 
Model A.5* vs. model A5  - 00ψ  
When SMD is 2, coverage for 00ψ  in model A.5* increases from .729 to .923 
when the sample size increases from 50 to 1000. When n = 50, coverage in 
model A.5* is .030 lower than in model A.5 and, when n = 1000, coverage 
changes to be .022 greater than in model A.5. When SMD is 3, coverage 
increases from .829 to .920 when the sample size increases from 50 to 200. 
When n = 50, coverage in model A.5* is .012 lower than in model A.5, and  
when n = 200, coverage changes to be .004 greater than in model A.5.  
Coverage is greater than .93 when 255n ≥ , which n is 10 lower than in 
model A.5. When SMD is 4, coverage increases from .883 to .915 when the 
sample size increases from 50 to 100 and is .001 lower than in model A.5. 
Coverage is greater than .93 when 145n ≥ , which n is 10 greater than in 
model A.5. When SMD is 5, coverage increases from .894 to .921 when the 
sample size increases from 50 to 100 and is .004 - .007 lower than in model 
A.5. Coverage is greater than .93 when 130n ≥ , which n is 10 greater than in 
model A.5. 
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Table 6.25. 95% coverage for 011100 ,, ψψψ  parameters in models A.8., A.5, 
A.5*, B.8, B.5 and C.8. 
 

Model A.8 A.5 A.5* B.8 B.5 C.8 

n SMD 00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

00ψ
 

11ψ
 

01ψ
 

50 1 .545 .775 .765 .614 .814 .805 .570 .716 .545 .775 .765 .614 .814 .805 .515 .784 .762 

100 1 .644 .801 .750 .666 .823 .803 .658 .787 .644 .801 .750 .666 .823 .803 .611 .800 .752 

200 1 .715 .817 .743 .721 .838 .798 .731 .839 .715 .817 .743 .721 .838 .798 .687 .817 .755 

500 1 .774 .841 .749 .771 .849 .801 .755 .882 .774 .841 .749 .771 .849 .801 .753 .837 .747 

1000 1 .782 .861 .753 .788 .864 .799 .723 .904 .782 .861 .753 .788 .864 .799 .773 .844 .757 

50 2 .753 .818 .781 .759 .841 .814 .729 .792 .771 .752 .859 .793 .785 .862 .724 .810 .774 

100 2 .810 .864 .788 .814 .870 .829 .775 .867 .824 .806 .869 .829 .814 .875 .793 .842 .778 

200 2 .839 .896 .816 .828 .895 .830 .813 .912 .863 .827 .895 .864 .838 .891 .816 .876 .794 

500 2 .907 .938 .888 .871 .928 .859 .882 .943 .899 .891 .932 .888 .865 .919 .866 .922 .840 

1000 2 .940 .948 .924 .901 .946 .892 .923 .951 .931 .925 .948 .916 .897 .943 .905 .942 .879 

50 3 .843 .879 .847 .841 .886 .848 .829 .865 .851 .838 .887 .849 .832 .875 .865 .865 .831 

100 3 .890 .917 .896 .877 .919 .879 .881 .915 .894 .884 .922 .891 .860 .906 .869 .907 .862 

200 3 .920 .936 .931 .916 .941 .914 .920 .939 .928 .920 .943 .924 .901 .931 .906 .932 .907 

500 3 .939 .946 .946 .938 .947 .942 .939 .939 .942 .942 .949 .942 .935 .946 .935 .947 .937 

1000 3 .942 .947 .951 .944 .949 .946 .942 .948 .943 .943 .951 .947 .943 .951 .941 .946 .950 

50 4 .880 .896 .903 .884 .913 .890 .883 .888 .885 .885 .914 .888 .875 .897 .868 .896 .890 

100 4 .913 .921 .935 .916 .935 .923 .915 .919 .917 .916 .941 .919 .915 .930 .908 .924 .928 

200 4 .931 .938 .943 .936 .943 .942 .932 .938 .933 .936 .947 .936 .938 .945 .929 .938 .941 

500 4 .941 .947 .950 .942 .949 .947 .946 .940 .941 .948 .951 .944 .948 .948 .940 .947 .946 

1000 4 .944 .950 .950 .948 .949 .948 .944 .948 .943 .946 .952 .948 .947 .948 .944 .948 .951 

50 5 .889 .899 .926 .901 .921 .915 .894 .891 .888 .900 .931 .900 .902 .911 .890 .905 .916 

100 5 .917 .921 .941 .925 .935 .934 .921 .921 .917 .925 .943 .922 .930 .936 .916 .927 .943 

200 5 .934 .937 .944 .939 .944 .942 .935 .937 .933 .939 .948 .937 .941 .942 .933 .939 .945 

500 5 .939 .947 .948 .941 .948 .947 .948 .941 .939 .948 .948 .943 .948 .947 .940 .947 .947 

1000 5 .942 .948 .950 .946 .951 .949 .948 .947 .941 .950 .950 .949 .951 .947 .942 .948 .953 

Note. Cells highlighted in grey indicate that the 95 % coverage is lower than 
.92. If the value in the grey-coloured cell is bolded, this means that the value 
is lower than .90. 
  
Model A.5* vs. A5  - 11ψ  
When SMD is 2, coverage for 11ψ  in model A.5* increases from .792 to .912 
when the sample size increases from 50 to 200. When n = 50, coverage in 
model A.5* is .049 lower than in model A.5 and, when n = 200, coverage 
changes to be .017 greater than in model A.5. Coverage is greater than .93 
when 375n ≥ , which n is 215 lower than in model A.5.  When SMD is 3, 
coverage increases from .865 to .915 when the sample size increases from 50 
to 100 and is .004 - .021 lower than in model A.5.  Coverage is greater than 
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.93 when 130n ≥ , which n is 5 greater than in model A.5. When SMD is 4, 
coverage increases from .888 to .919 when the sample size increases from 50 
to 100 and is .016 - .025 lower than in model A.5. Coverage is greater than 
.93 when 130n ≥ , which n is 40 greater than in model A.5. When SMD is 5, 
coverage increases from .891 to .921 when the sample size increases from 50 
to 100 and is .014 - .030 lower than in model A.5. Coverage is greater than 
.93 when 130n ≥ , which n is 50 greater than in model A.5.  
 
The effect of model construct on the coverage for 00ψ , 11ψ  and 01ψ  
 
When comparing coverages for 00ψ , 11ψ  and 01ψ  between different models, 
they are mainly lower in model C.8 than in model A.8. Also, the effect of 
construct is evident when comparing coverages between models B.8 vs. A.8 
and between models B.5 vs. A.5.  
 
Model C.8 vs. model A.8  - 00ψ  
When SMD is 2, coverage for 00ψ  in model C.8 increases from .724 to .905 
when the sample size increases from 50 to 1000 and is .017 - .041 lower than 
in model A.8. When SMD is 3, coverage increases from .865 to .906 when the 
sample size increases from 50 to 200. When n = 50, coverage in model C.8 is 
.022 greater than in model A.8, and when n = 200, coverage changes to be 
.014 lower than in model A.8. Coverage is greater than .93 when 285n ≥ , 
which n is 30 greater than in model A.8. When SMD is 4, coverage increases 
from .868 to .929 when the sample size increases from 50 to 200 and is .001 - 
.012 lower than in model A.8. Coverage is greater than .93 when 210n ≥ , 
which n is 65 greater than in model A.8. When SMD is 5, coverage increases 
from .890 to .916 when the sample size increases from 50 to 100 and is .001 
greater when n = 50, and .001 lower when n = 100, than in model A.8. 
Coverage is greater than .93 when 140n ≥ , which n is the same as in model 
A.8. 
 
Model C.8 vs. model A.8  - 11ψ  
When SMD is 2, coverage for 11ψ  in model C.8 increases from .810 to .922 
when the sample size increases from 50 to 500 and is .008 - .022 lower than in 
model A.8. Coverage is greater than .93 when 620n ≥ , which n is 175 
greater than in model A.8. When SMD is 3, coverage increases from .865 to 
.907 when the sample size increases from 50 to 100 and is .010 – 0.14 lower 
than in model A.8. Coverage is greater than .93 when 145n ≥ , which n is 10 
greater than in model A.8. When SMD is 4, coverage increases from .896 to 
.924 when the sample size increases from 50 to 100 and is 0 - .003 greater 
than in model A.8. Coverage is greater than .93 when 120n ≥ , which n is 5 
lower than in model A.8. When SMD is 5, coverage is .905 when the sample 
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size is 50 and is .006 greater than in model A.8. Coverage is greater than .93 
when 115n ≥ , which n is 15 lower than in model A.8. 
 
Model C.8 vs. model A.8  - 01ψ  
When SMD is 2, coverage for 01ψ  in model C.8 increases from .774 to .879 
when the sample size increases from 50 to 1000 and is .007 - .048 lower than 
in model A.8. When SMD is 3, coverage increases from .831 to .907 when the 
sample size increases from 50 to 200 and is .016 – .034 lower than in model 
A.8. Coverage is greater than .93 when 275n ≥ , which n is 125 greater than 
in model A.8. When SMD is 4, coverage increases from .890 to .928 when the 
sample size increases from 50 to 100 and is .007 - .013 lower than in model 
A.8. Coverage is greater than .93 when 110n ≥ , which n is 20 greater than in 
model A.8. When SMD is 5, coverage is .916 when n = 50 and is .010 lower  
than in model A.8. Coverage is greater than .93 when 75n ≥ , which n is 10 
greater than in model A.8. 
 
Model B.8 vs. model A.8  - 00ψ  
When SMD is 2, coverage for 00ψ  in model B.8 increases from .771 to .899 
when the sample size increases from 50 to 500. When n = 50, 100 or 200, 
coverage is .018, .014 or .024 greater, respectively, and when n = 500 it is 
.008 lower, than in model A.8. Coverage is greater than .93 when 790n ≥ , 
which n is 80 greater than in model A.8. When SMD is 3, coverage increases 
from .851 to .928 when the sample size increases from 50 to 200 and is .004 - 
.008 greater than in model A.8. Coverage is greater than .93 when 215n ≥ , 
which n is 40 lower than in model A.8. When SMD is 4, coverage increases 
from .885 to .917 when the sample size increases from 50 to 100 and is .004 - 
.005 greater than in model A.8. Coverage is greater than .93 when 140n ≥ , 
which n is 5 lower than in model A.8. When SMD is 5, coverage increases 
from .888 to .917 when the sample size increases from 50 to 100 and is 0 - 
.001 lower than in model A.8. Coverage is greater than .93 when 140n ≥ , 
which n is the same as in model A.8. 
 
Model B.8 vs. model A.8  - 11ψ  
When SMD is 2, coverage for 11ψ  in model B.8 increases from .752 to .925 
when the sample size increases from 50 to 1000 and is .024 - .081 lower than 
in model A.8. When SMD is 3, coverage increases from .838 to .920 when the 
sample size increases from 50 to 200 and is .012 - .040 lower than in model 
A.8. Coverage is greater than .93 when 250n ≥ , which n is 115 greater than 
in model A.8. When SMD is 4, coverage increases from .885 to .916 when the 
sample size increases from 50 to 100 and is .006 - .011 lower than in model 
A.8. Coverage is greater than .93 when 135n ≥ , which n is 10 greater than in 
model A.8. When SMD is 5, coverage increases from .900 to .925 when the 
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sample size increases from 50 to 100 and is .002 - .005 greater than in model 
A.8. Coverage is greater than .93 when 120n ≥ , which n is 10 lower than in 
model A.8. 
 
Model B.8 vs. model A.8  - 01ψ  
When SMD is 2, coverage for 01ψ  in model B.8 increases from .859 to .895 
when the sample size increases from 50 to 200 and is .078 - .081 greater than 
in model A.8. In model B.8, coverage is greater than .93 when 485n ≥ , 
whereas in model A.8, coverage is lower than .93 with the highest sample size 
n = 1000. When SMD is 3, coverage in model B.8 increases from .887 to .922 
when the sample size increases from 50 to 100 and is .026 - .040 greater than 
in model A.8. Coverage is greater than .93 when 120n ≥  and is 30 lower 
than in model A.8. When SMD is 4, coverage is .914 when n = 50, which 
coverage is .011 greater than in model A.8. Coverage is greater than .93 when 

100n ≥ , which n is 10 greater than in model A.8.  When SMD is 5, coverage 
is .931 with the smallest sample size n = 50, which coverage is .005 greater 
than in model A.8.  
 
Model B.5 vs. model A.5  - 00ψ  
When SMD is 2, coverage for 00ψ  in model B.5 increases from .793 to .916 
when the sample size increases from 50 to 1000 and is .015 - .036 greater than 
in model A.5. When SMD is 3, coverage increases from .849 to .924 when the 
sample size increases from 50 to 200 and is .008 - .014 greater than in model 
A.5. Coverage is greater than .93 when 235n ≥ , which n is 30 smaller than 
in model A.5. When SMD is 4, coverage increases from .888 to .919 when the 
sample size increases from 50 to 100 and is .003 - .004 greater than in model 
A.5. Coverage is greater than .93 when 130n ≥ , which n is 5 lower than in 
model A.5. When SMD is 5, coverage increases from .900 to .922 when the 
sample size increases from 50 to 100 and is .001 - .003 lower than in model 
A.5. Coverage is greater than .93 when 125n ≥ , which n is 5 greater than in 
model A.5. 
 
Model B.5 vs. model A.5  - 11ψ  
When SMD is 2, coverage for 11ψ  in model B.5 increases from .785 to .897 
when the sample size increases from 50 to 1000 and is .049 - .063 lower than 
in model A.5. When SMD is 3, coverage increases from .832 to .901 when the 
sample size increases from 50 to 200 and is .040 - .059 lower than in model 
A.5. Coverage is greater than .93 when 285n ≥ , which n is 160 greater than 
in model A.5. When SMD is 4, coverage increases from .875 to .915 when the 
sample size increases from 50 to 100 and is .020 - .038 lower than in model 
A.5. Coverage is greater than .93 when 135n ≥ , which n is 45 greater than in 
model A.5.  When SMD is 5, coverage increases from .902 to .930 when the 
sample size increases from 50 to 100 and is .005 - .019 lower than in model 
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A.5. Coverage is greater than .93 when 100n ≥ , which n is 20 greater than in 
model A.5. 
 
Model B.5 vs. model A.5  - 01ψ  
When SMD is 2, coverage in model B.5 for 01ψ  increases from .862 to .919 
when the sample size increases from 50 to 500 and is .046 - .061 greater than 
in model A.5. In model B.5, coverage is greater than .93 when 730n ≥ ,  
whereas in model A.5, coverage is lower than .93 with the highest sample size 
n = 1000.  When SMD is 3, coverage in model B.5 increases from .875 to 
.906 when the sample size increases from 50 to 100 and is .027 greater than in 
model A.5. Coverage is greater than .93 when 150n ≥  and is 105 lower than 
in model A.5.  When SMD is 4, coverage increases from .897 to .930 when 
the sample size increases from 50 to 100 and is .007 greater than in model 
A.5. Coverage is greater than .93 when 100n ≥ , which n is 20 lower than in 
model A.5. When SMD is 5, coverage is .911 when n = 50, which coverage is 
.004 lower than in model A.5. Coverage is greater than .93 when 90n ≥ , 
which n is the same as in model A.5.   
 
 
6.3.4.4. Results of 95 % coverage for 1θ , 2θ , 3θ ,  and 4θ  
 
As can be seen from Table 6.26, coverages for parameters 1θ , 2θ , 3θ  and 4θ   
are over .92 in all of the models A.8 – C.8 when 1SMD≥  and 100n ≥ . The 
few cases in which coverage is lower than .90 are seen when SMD is 1 and n 
= 50.  
 
A.8 - 1θ , 2θ , 3θ ,  and 4θ  
Coverage is, approximately, greater than .93 for 1θ  when the sample size is 
75-95, for 2θ  when the sample size is 85-100, for 3θ  when the sample size is 
100 – 105, and for 4θ  when the sample size is 110 – 115. The trend of these 
sample sizes depends on SMD: the sample sizes decrease when SMD 
increases. 
 
The effect of reliability on the coverage for 1θ , 2θ , 3θ ,  and 4θ  
 
Model A.5 vs. model A.8 - 1θ , 2θ , 3θ ,  and 4θ  
Coverage is, approximately, greater than .93 for 1θ  when the sample size is 
95-120, for 2θ  when the sample size is 95-105, for 3θ  when the sample size is 
110, and for 4θ  when the sample size is 100 – 115. The trend of these sample 
sizes depends on SMD: the sample sizes decrease when SMD increases. 
These sample sizes in model A.8 and A.5 are almost equal. The greatest 
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differences in coverages are for 3θ  and 4θ  parameters. Coverages in model 
A.5 are greater than .93 when the sample sizes are 5 – 10 greater than in 
model A.8. 
 
The effect of additional measurements on the coverage for 1θ , 2θ , 3θ ,  and 4θ  
 
Model A.5* ( 1θ , 3θ , 5θ ,  and 7θ )  vs. model A.5 - 1θ , 2θ , 3θ ,  and 4θ  
Coverage is, approximately, greater than .93 for 1θ  when the sample size is 
95-120, for 2θ  when the sample size is 95-105, for 3θ  when the sample size is 
110, and for 4θ  when the sample size is 100 – 115. These sample sizes in 
model A.5* are 0 - 20 greater for 1θ  in model A.5* than in model A.5. For 2θ  
the sample size is 5 smaller when SMD is 1, and 0 - 20 greater when SMD is 
2 in model A.5* than in model A.5. For 3θ , the sample size to achieve .93 
coverage is equal or 5 smaller in model A.5* than in model A.5. For 4θ , the 
sample size is 0 -15 lower than in model A.5. 
 
 
The effect of model construct on the coverage for 1θ , 2θ , 3θ ,  and 4θ  
 
Model C.8  vs. model A.8 - 1θ , 2θ , 3θ ,  and 4θ  
Coverage is, approximately, greater than .93 for 1θ  when the sample size is 
70-100, for 2θ  when the sample size is 90-95, for 3θ  when the sample size is 
95-110, and for 4θ  when the sample size is 105 – 110. These sample sizes are 
smaller or greater in model C.8 than in model A.8, and the greatest 
differences are lower than 5. 
 
 
Model B.8  vs. model A.8 - 1θ , 2θ , 3θ ,  and 4θ  
Coverage is, approximately, greater than .93 for 1θ  when the sample size is 
70-95, for 2θ  when the sample size is 90-100, for 3θ  when the sample size is 
90-105, and for 4θ  when the sample size is 95 – 110. These sample sizes in 
model B.8 are for 1θ  0-5 lower, for 2θ  5-10 greater, and for 3θ  and 4θ  5-10 
lower than in model A.8. 
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Table 6.26. 95% coverage for 4321 and,, θθθθ  parameters in models A.8., A.5, A.5*, B.8, B.5 and C.8. 
 
Model A.8 A.5 A.5* B.8 B.5 C.8 
n SMD 1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  3θ  5θ  7θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  1θ  2θ  3θ  4θ  

50 1 .906 .913 .917 .913 .904 .911 .911 .907 .896 .915 .913 .905 .906 .913 .917 .913 .904 .911 .911 .907 .902 .913 .915 .910 
100 1 .932 .930 .929 .926 .930 .929 .927 .925 .926 .930 .928 .930 .932 .930 .929 .926 .930 .929 .927 .925 .931 .933 .928 .927 
200 1 .939 .942 .938 .943 .942 .938 .938 .939 .935 .941 .941 .942 .939 .942 .938 .943 .942 .938 .938 .939 .942 .942 .938 .941 
500 1 .945 .946 .948 .949 .948 .945 .947 .946 .947 .948 .946 .947 .945 .946 .948 .949 .948 .945 .947 .946 .945 .944 .946 .948 
1000 1 .948 .947 .950 .947 .947 .949 .952 .947 .944 .948 .949 .948 .948 .947 .950 .947 .947 .949 .952 .947 .949 .946 .953 .947 
50 2 .909 .918 .919 .917 .908 .910 .913 .910 .904 .915 .909 .910 .916 .920 .915 .914 .918 .918 .913 .905 .899 .915 .918 .913 
100 2 .936 .932 .930 .926 .936 .932 .927 .925 .931 .929 .928 .929 .935 .931 .931 .927 .933 .930 .930 .925 .935 .931 .930 .929 
200 2 .942 .945 .937 .942 .941 .939 .938 .940 .939 .942 .940 .941 .942 .943 .940 .944 .943 .939 .939 .940 .942 .941 .938 .939 
500 2 .946 .947 .948 .949 .948 .946 .947 .945 .949 .944 .946 .948 .945 .948 .947 .947 .946 .945 .945 .947 .948 .946 .947 .946 
1000 2 .950 .949 .950 .948 .949 .948 .952 .946 .946 .949 .950 .948 .947 .949 .953 .945 .946 .949 .953 .943 .952 .948 .952 .946 
50 3 .918 .923 .918 .917 .918 .915 .916 .914 .910 .915 .910 .910 .921 .919 .918 .914 .922 .917 .910 .908 .911 .919 .921 .915 
100 3 .938 .933 .930 .928 .936 .933 .928 .926 .932 .930 .927 .928 .936 .932 .933 .931 .935 .931 .933 .928 .937 .933 .931 .928 
200 3 .941 .942 .938 .943 .942 .939 .940 .939 .938 .940 .941 .939 .941 .942 .941 .944 .943 .940 .939 .941 .943 .941 .938 .941 
500 3 .947 .946 .948 .949 .948 .944 .947 .946 .945 .945 .946 .947 .945 .947 .948 .947 .947 .945 .947 .946 .948 .945 .947 .945 
1000 3 .951 .949 .950 .948 .949 .948 .951 .945 .947 .949 .949 .948 .947 .949 .951 .944 .947 .947 .951 .943 .953 .949 .952 .946 
50 4 .924 .922 .918 .921 .924 .919 .917 .914 .913 .917 .910 .910 .925 .919 .918 .918 .923 .918 .912 .914 .918 .920 .918 .917 
100 4 .937 .933 .929 .927 .936 .932 .928 .926 .932 .931 .927 .929 .938 .931 .931 .932 .936 .931 .933 .932 .939 .932 .930 .928 
200 4 .944 .941 .938 .945 .945 .940 .940 .939 .940 .940 .940 .939 .942 .942 .940 .944 .943 .938 .939 .940 .944 .940 .939 .940 
500 4 .945 .946 .948 .949 .947 .945 .946 .945 .945 .947 .946 .947 .945 .946 .949 .946 .947 .945 .947 .945 .945 .946 .946 .946 
1000 4 .950 .948 .950 .947 .949 .949 .950 .945 .948 .948 .948 .948 .948 .949 .951 .945 .947 .948 .951 .943 .952 .947 .953 .948 
50 5 .924 .919 .918 .918 .926 .918 .916 .914 .913 .915 .910 .910 .925 .919 .918 .920 .922 .917 .912 .917 .925 .921 .916 .919 
100 5 .936 .934 .929 .927 .936 .933 .928 .927 .932 .931 .927 .927 .938 .932 .931 .930 .936 .931 .932 .930 .938 .932 .929 .928 
200 5 .944 .941 .938 .945 .942 .940 .939 .940 .938 .941 .940 .939 .944 .942 .938 .943 .943 .939 .940 .941 .946 .940 .938 .941 
500 5 .944 .947 .947 .949 .945 .946 .947 .945 .947 .947 .946 .947 .945 .946 .948 .946 .947 .947 .946 .945 .944 .947 .947 .946 
1000 5 .950 .950 .950 .948 .948 .949 .952 .947 .947 .946 .948 .948 .947 .950 .952 .946 .947 .948 .953 .945 .950 .948 .952 .948 
Note. Cells highlighted in grey indicate that the 95 % coverage is lower than .92. If the value in the grey-coloured cell is bolded, this means that the value is lower than  .90. 
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Model B.5  vs. model A.5 - 1θ , 2θ , 3θ ,  and 4θ  
Coverage is, approximately, greater than .93 for 1θ  when the sample size is 
75-100, for 2θ  when the sample size is 95-105, for 3θ  when the sample size is 
95-115, and for 4θ  when the sample size is 95 – 120. These sample sizes in 
model B.5 are for 1θ  0 - 5 greater, for 2θ  5 greater, for 3θ  5 lower, and for 4θ  
0-10 lower than in model A.5. 
 
 
6.3.4.5 Summary of results of 95 % coverage  
 
When estimation, in terms of the 95 % coverage, is poor (95 % coverage 
lower than .90) or suspicious (95 % coverage lower than .92), it is seen most 
clearly for 00ψ , 11ψ  and 01ψ  parameters and almost as poor or suspicious for 

)1(
1α  and )2(

1α  parameter. For )1(
0α  and )2(

0α  parameters, estimation is slightly 
better, whilst for error variances estimation is clearly better. 
 
The estimation for all parameters, except error variances, are poor (95 % 
coverage lower than .90) with all sample sizes when SMD is 1. Estimation is 
poor also when SMD is 2 and the sample size lower than 200, and suspicious 
(95 % coverage lower than .92) when the sample size is 500 for some of the 
parameters. Estimation is poor even when the sample size is 1000 in model 
A.5, B.5 and C.8. When SMD is 3, estimation is poor when the sample size is 
50 or 100 in all models A.8 – C.8 and suspicious when sample size is 200 in 
model A.5, B.5 and C.8. When SMD is 4, estimation is poor when the sample 
size is 50 in all models A.8 – C.8 and suspicious when the sample size is 100 
for at least one parameter in all models A.8 – C.8. When SMD is 5, estimation 
is poor or at least suspicious when the sample size is 50 in all models A.8 – 
C.8 and suspicious when the sample size is 100 for at least one parameter in 
all models A.8, B.8 or C.8. 
 
As can be seen from Figures 6.44 and 6.45, the required sample sizes are in 
most cases largest for 00ψ  parameter. When SMD is 3, the required sample 
size to achieve good estimation is between 200 – 300 and in model B.8 even 
450. When SMD is 4, the required sample size to achieve good estimation is 
between 130 – 160 and, in model A.5, exceptionally 220. When SMD is 4, the 
required sample size to achieve good estimation is between 130 – 140. 
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Figure 6.44. The required sample size to achieve the value .93 of the 95 % 
coverage, SMD=3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.45. The required sample size to achieve the value .93 of the 95 % 
coverage, SMD=4. 
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6.3.5. Results of estimated class proportion 
 
 
The next Table 6.27 shows the average of estimated class proportions (p(1)) 
for latent class one in the models A.8 – C.8 and standard deviation of p(1) 

resulting of 10000 replications. In the simulation study number of  
observations in class one is binomially distributed B(n, 2/3). The expected 
proportion p(1) is .667 and when sample size is 50, 100, 200, 500 or 1000, 
expected standard deviations of p(1) are .067, .047, .033, .021 or .015, 
respectively. 
 
As in the Table  6.27 can see average proportion is very similar for each of 
the model A.8 – C.8.  When SMD is 1, proportion is strongly downward 
biased increasing from .528 - .545 to .593 - .616 when sample size increase 
from 50 to 1000. When SMD is 2, proportion is clearly downward biased  
when 200n ≤ and increase from .603 - .623 to .645 - .659 when sample size 
increase from 50 to 200 and increase to .667 - .668 when  sample size 
increase to 1000. When SMD is 3 and sample size is 50, proportion is slightly 
downward biased varying between .648 and  .658. Proportion is greater than 
.66 when SMD is 3 and sample size is greater than 100 or when SMD is 4 or 
5 with all sample sizes. 
 
Standard deviation of estimated proportion p(1)  is large when SMD is 1 
varying between .217 and .271 in models A.8 – C.8. When SMD is 2. 
standard deviation of p(1)  is large when sample size is small but decrease 
strongly from .176 - .210 to .049 - .077 when sample size increase from 50 to 
1000. When SMD is 3, standard deviation of p(1) is between .105 - .141 in 
models A.8 – C.8 and is lower than .10 when 100n ≥ . When SMD is 4 or 5, 
standard deviations of p(1) are slightly greater than expected. 
 
For summary, the bias of estimated class proportion p(1) is clear when SMD is 
1 or when SMD is 2 and 200n ≤ . The bias is in other cases  nonsignificant 
when the goal is to find accurate estimate of p(1) . This because the standard 
deviation of p(1) is large especially when sample size is 50 or 100. Even when 
standard deviation with these sample sizes are almost equal to expected value 
when SMD is 4 or 5, the expected standard deviation is .067 or .047, 
respectively. These large standard deviation should taken into account, if one 
is willing to estimate the near exact value of p(1) . 
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Table 6.27. Estimated class proportion p(1) for the first class and standard 
deviations of p(1) in models A.8., A.5, A.5*, B.8, B.5 and C.8. 
 

Model A8 A.5 A.5* B.8 B.5 C.8 

n SMD exp. 
sd p sd p sd p sd p sd p sd p sd 

50 1 .067 .545 .225 .537 .228 .528 .252 .545 .225 .537 .228 .536 .228 

100 1 .047 .555 .229 .546 .231 .537 .263 .555 .229 .546 .231 .543 .233 

200 1 .033 .570 .220 .556 .234 .548 .271 .570 .220 .556 .234 .555 .235 

500 1 .021 .591 .225 .573 .236 .573 .270 .591 .225 .573 .236 .567 .238 

1000 1 .015 .616 .217 .593 .232 .594 .264 .616 .217 .593 .232 .591 .233 

50 2 .067 .621 .176 .604 .193 .604 .210 .623 .178 .609 .192 .603 .195 

100 2 .047 .642 .151 .627 .175 .632 .190 .645 .151 .629 .175 .624 .178 

200 2 .033 .656 .120 .645 .153 .653 .157 .659 .121 .648 .153 .646 .155 

500 2 .021 .665 .075 .664 .111 .669 .099 .666 .076 .665 .109 .662 .113 

1000 2 .015 .667 .050 .668 .077 .668 .062 .667 .049 .669 .076 .668 .079 

50 3 .067 .657 .105 .651 .128 .656 .123 .658 .110 .648 .141 .649 .131 

100 3 .047 .664 .072 .661 .095 .664 .084 .645 .150 .660 .108 .660 .096 

200 3 .033 .665 .048 .665 .063 .665 .055 .666 .050 .666 .073 .664 .065 

500 3 .021 .666 .029 .666 .037 .666 .033 .666 .031 .667 .042 .666 .037 

1000 3 .015 .666 .021 .666 .026 .666 .023 .667 .022 .667 .029 .666 .026 

50 4 .067 .665 .075 .663 .084 .665 .080 .665 .078 .663 .084 .662 .086 

100 4 .047 .666 .051 .665 .058 .666 .054 .666 .053 .665 .058 .665 .058 

200 4 .033 .666 .037 .666 .040 .666 .038 .667 .037 .666 .040 .666 .040 

500 4 .021 .666 .020 .666 .025 .666 .024 .667 .024 .666 .025 .666 .025 

1000 4 .015 .667 .016 .667 .018 .666 .017 .667 .017 .667 .018 .667 .018 

50 5 .067 .666 .069 .665 .071 .666 .070 .666 .070 .665 .077 .666 .071 

100 5 .047 .667 .048 .666 .050 .667 .049 .667 .048 .666 .053 .666 .049 

200 5 .033 .667 .034 .667 .035 .667 .035 .667 .035 .667 .037 .667 .035 

500 5 .021 .666 .022 .666 .023 .666 .022 .667 .022 .666 .023 .666 .022 

1000 5 .015 .667 .015 .667 .017 .667 .015 .667 .015 .667 .017 .667 .016 
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7. Discussion 
 
 
 
Despite of twenty years development of the theory behind LGM and LGMM, 
in terms of empirical research, these are very new methods. As these methods 
increasingly become more common and important to model development, the 
functionality of the models needs more investigation (Bauer & Curran, 2003a, 
2003b; Muthén, 2004). The theory of LGM and LGMM is based on 
asymptotic results and, therefore, when the sample size is large, e.g. over 
1000, researchers can trust the results obtained with these methods. However, 
in many empirical studies the sample size is small and limited to only 100-
500 cases. Simulated data provides a possibility to examine the functionality 
of these methods with small sample sizes.   
 
The aim of this dissertation was to examine the functionality of the LGM 
model, particularly with small sample sizes. The investigated model was 
chosen to be a linear LGMM with four repeated measurements, which is a 
typical case in longitudinal research. LGMM parameters were estimated using 
maximum likelihood estimation with robust standard errors (MLR). The 
functionality of LGMM was first examined with a pilot study. In this, three 
different constraint situations were tested with different sample sizes and 
different SMDs (square root of Mahalanobis distance) using linear LGM 
model A.8, in which the differences between two latent classes appear in the 
mean values of intercepts. Second, a main simulation study was carried out to 
examine the effect of reliability, the effect of additional measurements, and 
the effect of model construct, on the model estimation, with different sample 
sizes and different SMDs. The functionality of LGMM was approached from 
three different viewpoints: 1) problems in estimation of model parameters, 2) 
the ability of information criteria and statistical tests to decide the number of 
latent classes, and 3) good parameter estimation, which was evaluated using 
four different criteria. 
 
The problems in estimation of model parameters was expressed as the number 
of failed estimations and as a number of negative variance estimates. The 
ability of information criteria and statistical tests to decide the number of 
latent classes was evaluated using three information criteria, namely AIC, 
BIC and aBIC, and two statistical tests, VLMR and LMR. Some results were 
presented concerning also the BLRT and OLRT tests. Successful parameter 
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estimation was evaluated using four criteria: MSE, proportion of bias in MSE,  
bias of standard error, and 95 % coverage. 
 
A simulation study was carried out using the Monte Carlo method. Each of 
the data based on the predefined model A.8, A.5, A.5*, B.8, B.5 or C.8 (seen 
in  section 5.2) was replicated 10000 times to gather reliable information of 
LGMM functionality. Sample sizes used in simulation study were n = 50, 
100, 200, 500 and 1000 and differences in mean values of latent components 
between classes were SMD = 1, 2, 3, 4 or 5, with the exception that in the 
pilot study SMD = 0.5 was also used. 
 
 
7.1. Results of previous studies and their limitations 
 
 
Only a few previous simulation studies concerning the latent growth mixture 
model have been carried out. In a simulation study, Nylund, Asparouhov, and 
Muthén (in press) compared the ability of different statistical indicators to 
resolve the number of latent classes. In this study, LGM was also one of the 
tested models. The results of this study were based on 100 replications. The 
difference between the latent classes was defined by the certain values of 
parameters. The examined sample sizes were n = 200, 500 or 1000. The main 
result was that best information criteria from AIC, BIC , aBIC and CAIC was 
BIC. When taking account of the results of higher Type I error rate for the 
LMR test, BLRT was the best behaved test. Ordinary LRT, as expected, 
produced too high Type I error rates, which warns against using this test when 
deciding the number of latent classes. To conclude, the BIC index seemed to 
behave well and was slightly better than the BLRT for some of the models, 
whereas the BLRT showed the best behavior on average. For the LGM model, 
all the used tests did not produce satisfying results. Consequently, these 
results need to be more carefully examined in further simulation studies. The 
limitation of this study was the low number of replications, which was due to 
the long computing time when calculating the BLRT test value.  
 
Only a few previous simulation studies concerning confirmatory factor  
mixture model have been carried out. Lubke and Muthén (2007) examined the 
functionality of a confirmatory factor mixture model consisting of two latent 
classes. This simulation study consisted of 120 replications in which the 
sample size was 300.  The main result revealed the importance of the effect of 
covariate on the the 95 % coverage. However, the limitation of this simulation 
study is that it was limited to only one sample size and, moreover, gave 
information from only 95% coverage with MDs (Mahalanobis distances) 0.5, 
1, and 2. The number of replications was also small. 
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Despite the limitations of previous simulation studies, their results provide 
important information about the functionality of LGMM. The mentioned 
limitations reveal, however, that LGMM as a method needs more 
investigation, which in fact makes the present simulation study well-founded 
and justified. 
 
 
7.2. Conclusions based on the pilot study 
 
 
The pilot study in the present dissertation using model A.8 showed that the 
estimation of LGMM fails only in a few cases, and problems in estimation 
appear mainly in the form of negative variance estimates. Negative variance 
estimates seem to appear frequently in the context of more complexes (e.g., 
larger number of estimated parameters) LGM models, in situations I and II, 
and are evident particularly with small sample sizes.  In practice, problems in 
estimation can be signs of overparameterized model. This 
overparameterization appears in models which include too many latent 
classes, or in too complex models. 
 
Because the present simulation study concentrates on the behavior of LGMM 
with small sample sizes, in broader simulations (using models A.8, A.5, A.5*, 
B.8, B.5 and C.8) carried out after the pilot study parameters were constrained 
to be equal between latent classes, as in situation III. In situation III, the 
number of negative variance estimates are rare enough to make it possible to 
examine other criteria of estimation. 
 
 
7.3. Conclusions based on the main simulation study 
 
 
7.3.1. Deciding the number of latent classes 
 
 
The results of simulations suggest that when concluding the number of latent 
classes, AIC with all sample sizes, and aBIC with small sample sizes, are not 
useful because they produce too high wrong class proportions. The BIC 
index, which is recommended as the most reliable index in Nylund et al.  (in 
press) simulation study, appeared to be more useful index than AIC in the 
present study. The results of the present study further suggest, however, that 
when a sample size is large, say over 500, a decision should be based on 
aBIC, instead of BIC. With large sample sizes, aBIC was found to be more 
effective than BIC in finding the right two-class solution instead of one-class 
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solution. In contrast to the results of Nylund et al. (in press), the present 
results showed that BIC is also more useful than the VLMR or LMR tests. 
The VLMR and LMR tests were found to be useful only with small sample 
sizes. When a sample size is greater than 100, they seem to produce too high 
wrong class proportions. When a sample size is large, 200-1000, proportions 
concluding to too many number of latent classes are comparable to an 
ordinary likelihood ratio test. Therefore, recommendation based on the results 
of the present study is to use BIC with small sample sizes and aBIC with large 
sample sizes. The borderline between small and large sample size could be 
about 500.  
 
In the study of Nylund et al. (in press) BLRT showed low predictive power to 
find the right number of latent classes in LGMM. This result is probably due 
to a small SMD. Taking account of this, the few results of the present study 
using BLRT were found to be very promising. The results suggest that the 
BLRT test is useful when deciding the number of latent classes, because it 
produced approximately the expected proportion with a nominal .05 level 
when concluding to too many number of latent classes. However, because of 
heavy computation, only a few simulations were carried out using BLRT and, 
thus, more investigation is needed to further support the functionality of this 
test. 
 
 
7.3.2. Failed estimation and number of negative variance estimates 
 
 
The results of main simulation study showed that estimation fails only in a 
few cases. However, when 3SMD ≤ , the number of negative variance 
estimates was greater than 5 % of replications when the sample size was 50 in 
all tested models. When the reliability of observed variables decreases, the 
number of negative variance estimates shows to increase. Additional 
measurement points, in turn, decrease the number of negative variance 
estimates. If the difference in the mean value of latent components appear in 
the slope instead of intercept, the number of negative variance estimates 
decreases when reliability of observed variables are high, and increases when 
reliability of observed variables are low. 
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7.3.3. Results of evaluation of parameter estimation  
 
 
7.3.3.1. Results of MSE 
 
The results concerning MSE showed that MSE decreases for all parameters in 
all tested models when SMD is large enough. The effect of SMD on the MSE 
is very strong, but the effect weakens and changes  to be insignificant when 
SMD increases to 4. In this case, the MSE decreases by half when the sample 
size increases by two times. When the reliability of observed variables 
decreases, MSE increases strongly. Additional measurement points seem to 
compensate this increase in MSE. The model with correlated latent 
component has greater  MSE compared to the model with equal SMD in 
which the correlation of latent components is zero. If the difference in the 
mean value of latent components appears in the slope instead of the intercept, 
MSE increases for some parameters and decreases for other parameters. 
These changes are more obvious when the reliability of the observed variables 
is low. 
 
 
7.3.3.2. Results of proportion of bias in MSE 
 
The proportion of bias in MSE was very small and appeared only for )1(

0α ,  
)2(

0α , 00ψ , 11ψ  and 01ψ  parameters. When SMD is 1, the estimates of these 
parameters seems to be biased. When SMD is 2, the bias for these parameters 
is very small, and decreases strongly when the sample size increases. These 
results were similar in all models A.8, A.5, A.5*, B.8, B.5 and C.8.  
 
 
7.3.3.3. Results of relative bias of asymptotic standard error 
 
The results showed that, when SMD is 1, standard error estimates for the 
mean, variance and covariance parameters of latent components are badly 
downward biased with all sample sizes. When SMD is 2, standard errors of 
these parameters decrease rapidly when sample size increases. When SMD is 
4 or 5, bias of standard error is lower than 5 percent with the smallest sample 
size (n = 50). When the reliability of observed variables decreases, the bias of 
standard errors increases, requiring, for example, two times larger sample size 
to achieve lower than 5 percent biased standard error. Additional 
measurement points seem to have only a minor effect in decreasing bias. 
When correlation of latent components increases, bias of standard errors 
clearly increases. If the difference in the mean value of latent components 
appears in slope instead of intercept, the bias of standard errors increases for 
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most of the parameters, especially when the reliability of observed variables is 
low. 
 
 
7.3.3.4. Results of 95 % coverage  
 
Because the standard error was in most cases downward biased, the 95 % 
coverage is lower than expected .95 value. For unbiased parameter estimation, 
an expected value of coverage is .937, .922 or .904 with 5, 10 or 15 % 
downward biased standard error, respectively. Two cut off values, .90 and 
.92, were chosen for the 95 % coverage to build up the results. The results 
suggest that if the 95 % coverage is lower than .92, estimation is suspicious 
and if this value is lower than .90, estimation seem to be poor. In addition to 
this, linear approximation is produced for sample sizes whose 95 % coverage 
is greater than .93. This cut off value is assumed to be a sign of good 
estimation. 
 
When estimation, in terms of the 95 % coverage, is poor (95 % coverage 
lower than .90) or suspicious (95 % coverage lower than .92), this is seen 
most clearly for 00ψ , 11ψ  and 01ψ  parameters. For )1(

1α  and )2(
1α  parameters, 

estimation seems to be almost as poor or suspicious. For )1(
0α  and )2(

0α  
parameters, estimation is slightly better, whilst for error variances estimation 
is clearly better. 
 
When SMD is 1, the estimation for all parameters, except for error variances, 
is poor (95 % coverage lower than .90) with all sample sizes. Estimation is 
poor also when SMD is 2 and the sample size lower than 200, and suspicious 
(95 % coverage lower than .92) for some of the parameters when the sample 
size is 500. In models A.5, B.5 and C.8 estimation is poor even when the 
sample size is 1000. When SMD is 3, estimation is poor when the sample size 
is 50 or 100 in all models A.8 – C.8 and suspicious when sample size is 200 
in model A.5, B.5 and C.8. When SMD is 4, estimation is poor in all models 
A.8 – C.8 when the sample size is 50 and suspicious when the sample size is 
100 for at least one parameter. When SMD is 5, estimation is poor, or at least 
suspicious, in all models A.8 – C.8 when the sample size is 50 and suspicious 
when the sample size is 100 for at least one parameter in models A.8, B.8 or 
C.8. 
 
As can be seen from Figures 6.44 and 6.45, the required sample sizes to 
achieve a good estimation are in most cases largest for 00ψ  parameter. When 
SMD is 3, the required sample size to achieve a good estimation is between 
200 – 300 and, in model B.8, even 450. When SMD is 4, the required sample 
size to achieve good estimation is between 130 – 160 and,  in model A.5, 
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exceptionally 220. When SMD is 4, the required sample size to achieve good 
estimation is between 130 – 140. 
 
7.4. Results of the simulation study that should be 
accounted for in empirical research 
 
 
Next, the results of this dissertation are evaluated from a practical point of 
view. The first issue concerns the conditions in terms of  SMD and sample 
size within which the right number of latent classes can be decided at .70 or 
.80 probability. The number of latent classes is decided using BIC and aBIC 
as recommended previously. Then, the validity of estimation within these 
conditions is considered in terms of the problems in the estimation and 
evaluation of estimation.  
 
The results of the simulations suggest that, when SMD is 1, it is not possible 
to identify the right two-class solution instead of the wrong one-class solution 
in any of the models A.8 – C.8. This result is thus independent of the 
characteristics of the model and tested sample size.  When SMD is 1, MSE for 
mean parameters of latent components slowly decreases, the proportion of 
bias in MSE is relatively large, a downward bias of standard error is large, 
and 95% coverage is low.  The MSE is large compared with the MSE in the 
case when SMD is 5. These results suggest that the goal to find latent classes 
with small effect size (SMD = 1) is unreasonable.  When SMD is 1 and 
sample size is small, that is, 50 or 100, the number of negative variance 
estimates are frequent, especially when reliability of observed variables is 
small. The negative variance estimates are supposed to appear and are not due 
to the misspecification of the model.  
 
When SMD is 2, it is possible to identify the true two-latent classes only 
when reliability of observed variables is high and the sample size is relatively 
large. When using aBIC, the probability to identify the right two-class 
solution instead of the wrong one-class solution is greater than .70 only in 
models A.8 and B.8, and the sample size needed for these models to achieve 
.70 - .80 probability is 600-800.  If reliability is smaller (e.g., model A.5, A.5* 
and B.5) or latent components correlate with each other (e.g., model C.8), 
even a relatively high sample size, that is, n=1000, is not enough.  As in the 
case when SMD is 1, negative variance estimates appear frequently when 
SMD is 2 and the sample size is small. MSE for all parameters clearly 
decreases; approximately to one third when the sample size increases to 1.5-
2.4 times larger. However, the MSE is large compared with the MSE in the 
case SMD is 5; 4-6 times larger when the sample size is large (n = 1000). 
When the sample size is 600-800 and reliability of observed variables is high 
(models A.8 and B.8), the proportion of bias is very small and also 
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insignificant, the bias of standard error is lower than 5% on average, and 95% 
coverage is greater than .90 for all parameters. In other models the bias of 
standard error for some of the parameters is suspiciously high, especially 
when reliability is low (models A.5 and B.5), even when sample size is large 
n=1000. In these cases, 95% coverage is also suspiciously low, lower than 
.90.    
 
When SMD is 3, it is possible to identify the right two-latent classes with 
small sample sizes, for which purpose BIC is most appropriate. When using 
BIC, the probability to identify the right two-class solution instead of the 
wrong one-class solution is greater than .70 in models A.8, A.5* or B.8  when 
the sample size is greater than 170, 290 or 190, respectively; in models A.5 or 
C.8 when the sample size is greater than 365 or 375, respectively; and in 
model B.5 when the sample size is greater than 450. When the sample size is 
500, probability for other models than model B.5 are greater than .90 if using 
BIC and also in model B.5 if using aBIC. MSE for all parameters clearly 
decreases when the sample size increases; approximately to half when the 
sample size increases by two times. However, the MSE is large compared 
with the MSE in the case SMD is 5; 1.0 – 2.5 times larger. In the cases where 
probability to conclude a right two-class solution is greater than .70, the 
proportion of bias is very small and insignificant, a bias of standard error is 
lower than 5% for all parameters, and 95% coverage is greater than .90 for all 
parameters.   
 
When SMD is 4, the probability in identifying the right two-latent-class 
solution instead of the wrong one-class solution is greater than .70 with the 
smallest sample size (n=50) using BIC in models A.8 and B.8. For model 
A.5*, A.5, C.8 or B.5, the needed sample size to achieve .70 probability is 70, 
75, 80 or 120, respectively. When the sample size is 120, probability is 
greater than .70 in all models, and greater than .80 in all other models, except 
in model B.8, and greater than .90 in A.8, B.8 and A.5*. These results 
describe the strong increase in probability when the sample size increases. As 
in the case where SMD is 3, MSE for all parameters also clearly decreases 
when SMD is 4; approximately to half when the sample size increases by two 
times. In the cases where probability to conclude to the right two-class 
solution is greater than .70, the proportion of bias is very small and 
insignificant and the bias of standard error is greater than 5% for some 
parameters, but always lower than 10%. The 95% coverage is greater than .90 
for all mean and error variance parameters. For variance and covariance 
parameters, 95% coverage is suspiciously small, slightly lower than .90, in all 
other models expect in model B.5. After taking account of suspicious results 
in bias of standard error and 95% coverage, to achieve reliable results in 
estimation, the sample size should be greater than presented in the context of 
deciding the number of latent classes at the level of .70 probability.  
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When SMD is 5, the proportion using BIC is greater than .90 in all models 
when n≥50. MSE for all parameters clearly decreases; approximately to half 
when sample size increases by two times.  In the cases where n ≥ 50, the 
proportion of bias is very small and insignificant and the bias of standard 
error is greater than 5% for some parameters, but always lower than 8%. A 
suspicious downward bias in standard errors appears in all models, most often 
in variances and covariance of latent components. This phenomenon is also 
seen as suspiciously small 95% coverage (coverage slightly lower than .90). 
After taking account of suspicious results in bias of standard error and 95% 
coverage, to achieve reliable results in estimation, the sample size should be 
greater than 50.   
 
 
7.5. Implications for further studies  
 
 
The results of the present simulation study provide some challenges for 
further research. The results of the present dissertation are based on the linear 
latent growth curve mixture model with two latent classes, in which variance 
and covariance parameters are constrained to be equal across classes.   
 
It could be worthwhile to analyze problems further in estimation with each 
simulated data. The covariation between latent components compared to the 
variances of latent components can be too high. Even when the estimate of 
covariance is nearly to exact, too low variance estimates can produce not 
admissible estimates of the covariance matrix of the latent components, which 
requires some modification to the model. Further modifications are also 
expected to occur because of nonsignificant parameter estimates. The 
important questions are; what are the expected modifications when the 
problems in estimation occur and what are the consequences of 
modifications?   
 
Using unconstrained models probably lessens dramatically the validity of 
estimation and require further investigation. The results showed that the 
required difference between classes in terms of SMD should be very large in 
order to find the right number of latent classes. Previous studies have shown 
the meaning of covariate in finding latent classes (Lubke & Muthén, 2007).  
Therefore, in further simulation studies, the effect of covariate should be 
taken into account. Second, the results revealed that finding latent classes is 
dependent on the SMD of observed variables, rather than the SMD of latent 
variables.  
 



 189

Empirical distributions of the difference of likelihood ratio in model 
comparison suggest that the penalty seems to be very stable, slightly 
dependent upon the sample size. In the present study this was investigated 
only in the context of model A.8. It could be fruitful to investigate this 
phenomenon in other models as well. 
 
If distribution of observed variables is skewed, overextraction of latent  
classes is obvious (Bauer  & Curran, 2003a, 2003b; Cudeck & Henly, 2003;  
Muthen, 2003; Rindskopf, 2003), and, therefore, one should be aware of the 
effect of skewed distribution when using LGMM in practice. This 
phenomenon set also future challenges to examine LGMM with skewed 
distribution. 
 
The mixture modeling can be extended to various models, for example, factor 
mixture model and latent variable hybrids (Muthén, 2006). When using 
mixture modeling in empirical data, it is important to examine the behavior of 
various different models with small sample sizes, as was done in this work for 
LGMM. This requires a lot of simulation studies. 
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Appendix 1. Mplus script to generate and analyze data by using parameters of 
model A.8 with SMD = 3 and n = 500. 
 
TITLE:      LGM A.8 model SMD=3 n=500 
MONTECARLO: NAMES ARE x1 x2 x3 x4; 
            NOBSERVATIONS = 500; 
            NREPS = 10000; 
            SEED =53648292; 
            GENCLASSES = C(3); 
            CLASSES = C(2); 
            SAVE = SMD3A8n500.SAV ; 
            RESULTS = SMD3A8n500.RES; 
ANALYSIS:   TYPE = MIXTURE; 
            ESTIMATOR = MLR; 
            MITERATIONS = 1000; 
MODEL MONTECARLO: 
            %OVERALL% 
            i BY x1-x4@1; 
            s BY x1@0 x2@1 x3@2 x4@3; 
            [x1-x4@0]; 
            [i*0 s*.2]; 
            i*1.0; 
            s*0.2; 
            i with s*0; 
            x1*.25 x2*.30 x3*.45 x4*.70; 
            %C#1% 
            [i*0 s*.2]; 
            %C#2% 
            [i*0 s*.2]; 
            %C#3% 
            [i*3 s*.2]; 
MODEL: 
            %OVERALL% 
            i BY x1-x4@1; 
            s BY x1@0 x2@1 x3@2 x4@3; 
            [x1-x4@0]; 
            [i*0 s*.2]; 
            i*1; 
            s*0.2; 
            i with s*0; 
            x1*.25 x2*.30 x3*.45 x4*.70; 
            %C#1% 
            [i*0 s*.2]; 
            %C#2% 
            [i*3 s*.2]; 
OUTPUT:  TECH9 TECH11; 
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Appendix 2. Calculating difference of information criteria and statistical tests to 
decide number of latent classes – two class solution versus one class solution. The 
data is produced using Mplus script presented in Appendix 1 and cleaned up using 
script in text editor. 
 
 
data list file='d:\LGMA8\SMD3A8n500.txt' Free / 
repnro logli lo2dif difdf mea std p1 value p2. 
execute. 
 
compute nobs=500. 
compute xpvalue=1-cdf.chisq(lo2dif,difdf). 
recode xpvalue 
(0 thru .00009999999=0)(0.0001 thru .00099999999=1) 
(0.001 thru .00999999999=2)(.01 thru .04999999999=3) 
(.05 thru .09999999999=4)(.10 thru hi=5) into xp05. 
 
value labels xp05 0 'p<.0001' 1'p<.001' 2 'p<.01'  
3 'p<.05' 4 'p<.10' 5 'ns.'. 
 
var labels xp05 'ordinary LRT'. 
execute. 
 
recode p1 p2 (0 thru .00009999999=0)(0.0001 
thru .00099999999=1) 
(0.01 thru .00999999999=2)(.01 thru .04999999999=3) 
(0.02 (.05 thru .09999999999=4)(.10 thru hi=5) into p105 

p205. 
 
value labels p105 p205 0 'p<.0001' 1'p<.001' 2 'p<.01'  
3 'p<.05' 4 'p<.10' 5 'ns.'. 
 
var labels  
p105 'Lo-Mendel-Rubin test'  
p205 'Adjusted Lo-Mendel-Rubin test'. 
execute. 
 
frequencies variables=p105 p205 xp05. 
 
compute AICERO=-1*lo2dif+2*difdf. 
compute BICERO=-1*lo2dif+ln(nobs)*difdf. 
compute aBICERO=-1*lo2dif+ln((nobs+2)/24)*difdf. 
 
var label  
aicero 'AIC2-AIC1'  
bicero 'BIC2-BIC1'  
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abicero 'aBIC2-aBIC1'  
p1 'LO-.. p-value'  
p2 'LO-...adj p-value'. 
execute. 
 
recode AICERO BICERO aBICERO (lo thru -.00000001=2)(0 
thru hi=1). 
execute. 
freq var=AICERO BICERO aBICERO. 
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Appendix 3. Calculating number of negative variance estimates in all and for each 
variance parameter separately. The data is produced using Mplus script presented 
in Appendix 1. 
 
 
data list file='d:\LGMA8\SMDA8n500.res ' Free / 
repnro converge loglikel  
te1 te2 te3 te4 i1alpha s1alpha i1psi is1psi s1psi 
i2alpha s2alpha calpha. 
execute. 
 
freq konverg. 
 
select if (konverg eq 0). 
execute. 
 
 
*number of negative variances * 
 
if (konverg = 0)negvar=0. 
if (te1 lt 0) negvar =1. 
if (te2 lt 0) negvar =1. 
if (te3 lt 0) negvar =1. 
if (te4 lt 0) negvar =1. 
if (i1psi lt 0) negvar =1. 
if (s1psi lt 0) negvar =1. 
execute. 
if (konverg ge 1) negvar =2. 
 
value labels negvar 0 'no problems' 1 'negative 
variances'  
2 'failed estimation'. 
 
FREQUENCIES  VARIABLES=negvar  /ORDER=  ANALYSIS . 
 
recode te1 te2 te3 te4 i1psi s1psi  
(lo thru -.00000000001=0)(0 thru hi=1). 
freq var=te1 te2 te3 te4 i1psi s1psi. 
 
 
 
 
 
 

 201
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