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Introduction

1. Quasiconformal mappings

Let Ω and Ω′ be domains, i.e. open and connected subsets, in R
n and

1 ≤ K < ∞ a constant. We say that a homeomorphism f : Ω → Ω′ is
(K-)quasiconformal if the following properties are satisfied:

(i) f ∈ W 1,n
loc (Ω; Rn),

(ii) ‖Df(x)‖n ≤ KJf (x) for almost every x ∈ Ω.

Here Df(x) denotes the derivative of f at x ∈ Ω, ‖ · ‖ is the operator
norm and Jf (x) is the Jacobian determinant of f at x ∈ Ω. Note that

for any homeomorphism f ∈ W 1,n
loc (Ω; Rn), Jf (x) is locally integrable

and Df(x) exists almost everywhere. The inequality (ii) in the above
definition also implies that Jf (x) ≥ 0 almost everywhere in Ω and thus
the mappings in question are sense preserving.

Our interest will be in the planar case (n = 2), where the theory of
quasiconformal mappings is nowadays quite well understood [2, 13, 15].
One part of the theory is the extendability of a quasiconformal mapping
defined in the unit disk to a quasiconformal mapping of the entire plane.
This property is described completely by the concept of a quasidisk.

2. Quasidisks

A (K-)quasidisk is the image of the unit disk or a half plane under
a (K-)quasiconformal mapping of the entire plane. In fact, as already
suggested, it is true that each quasiconformal mapping f : B → Ω
extends to a quasiconformal mapping of the entire plane if and only
if Ω is a quasidisk [13]. What makes this all interesting is the fact
that there exist at least a dozen essentially different characterizations
for quasidisks that do not utilize the concept of quasiconformality [4].
Perhaps one of the most famous of them is obtained by using the so-
called Ahlfors three point property.

2.1. Ahlfors three point property. We say that a domain D ⊂ R
2

admits a quasiconformal reflection in its boundary ∂D if there exists a
homeomorphism f of D, whose restriction to D is anti-quasiconformal,

such that f(D) = R
2
\ D and f is identity on ∂D. By anti-quasi-

conformal we mean that the mapping is sense reversing, i.e. we have
Jf (x) ≤ 0 for almost all x ∈ D, but in this case the condition (ii) in
the definition of quasiconformality holds for −Jf (x) instead of Jf (x).

In [1], Ahlfors showed that a Jordan domain D admits a quasicon-
formal reflection if and only if it satisfies the three point property. By
using the formulation used by Gehring in [4], this property can be con-

veniently stated as follows: A domain D ⊂ R
2

has the three point
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property if it is a Jordan domain and if there exists a constant C such
that for each pair of finite points P1, P2 ∈ ∂D,

min
i=1,2

diam(γi) ≤ C|P1 − P2|.

where γ1, γ2 are the components of ∂D \ {P1, P2}. This condition
implies that |P1 −P3| ≤ C|P1 −P2| for each point P3 in the component
of ∂D \ {P1, P2} with the minimum diameter. The latter property is
similar to the condition that Ahlfors gave in [1], from where the name
“three point property” is derived.

On the other hand, a domain D ⊂ R
2

is a quasidisk if and only if it
admits a quasiconformal reflection in ∂D (cf. [5]). Thus by combining
these two equivalences, we arrive at a characterization of quasidisks in
terms of the three point property: A Jordan domain D is a quasidisk

if and only if the boundary ∂D satisfies the three point property.

2.2. Typical example of a standard cusp. Although the bound-
ary of a quasidisk has always zero planar measure, it can still be in
some sense quite “wild”. For example, the Hausdorff dimension of the
boundary can be arbitrarily close to 2 (cf. [4], Example 3.2). Still,
one quite easily observes that the aforementioned three point property
rules out cusps, i.e. points where the boundary forms a zero angle. The
domain in Figure 1 exhibits what we call a standard cusp.

Figure 1. Example of a standard cusp domain.

We parametrize the degree of the cusp by s > 0 and define our model
domains Ωs ⊂ R

2 by setting

Ωs = {(x1, x2) ∈ R
2 : 0 < x1 < 1, |x2| < x1+s

1 } ∪ B(xs, rs),

where xs = (s + 2, 0) and rs =
√

(s + 1)2 + 1. As the domains Ωs

are not quasidisks, they cannot be the images of a unit disk or half
plane under quasiconformal mappings of the entire plane. One is then
motivated to ask what happens when we move from quasiconformal
mappings to a more general class of homeomorphisms.
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3. Mappings of finite distortion

A mapping f : Ω → Ω′ between domains Ω, Ω′ ⊂ R
n is called a

mapping of finite distortion, if for some measurable K : Ω → [1,∞]
that is finite almost everywhere, the following properties are satisfied:

(i) f ∈ W 1,1
loc (Ω; Rn),

(ii) ‖Df(x)‖n ≤ K(x)Jf (x) for almost every x ∈ Ω,
(iii) Jf (x) ∈ L1

loc(Ω).

In the recent years these mappings have gathered much interest, es-
pecially the case when one assumes that the distortion function K(x)
satisfies

(1) exp(λK(x)) ∈ L1
loc(Ω) for some λ > 0.

With this assumption these mappings are shown to have many good
properties, e.g. they satisfy the condition N, are continuous, open and
discrete, to mention some (cf. [8, 10, 11]).

As noted before, we know (precisely) which Jordan domains are the
images of the unit disk under quasiconformal mappings of the entire
plane. It would be of interest to to know if something similar holds for
homeomorphic mappings of finite distortion. In this setting, the image
of the unit disk is always a Jordan domain, but the Hausdorff dimension
of f(∂B) can be 2. Towards this goal, it has been considered proper to
first study some fixed example domains that are in some sense “almost”
quasidisks. Hence the choice of the domains Ωs as the preferred images.

As we have made the restriction to the planar case, i.e. Ω, Ω′ ⊂ R
2,

we only need to assume that a homeomorphism f : Ω → Ω′ satisfies

(i) f ∈ W 1,1
loc (Ω; R2) and

(ii) ‖Df(x)‖2 ≤ K(x)Jf (x) for almost every x ∈ Ω,

in order for it to be a mapping of finite distortion. This is because
of the facts that a planar Sobolev homeomorphism f ∈ W 1,1

loc (Ω; R2) is
differentiable almost everywhere and its Jacobian determinant is locally
integrable (cf. [9, 13]). Now, if we would assume K(x) to be bounded,
we would recover the class of quasiconformal mappings as defined in
the beginning. The initiation of the study of homeomorphisms with
locally exponentially integrable distortion is usually credited to David,
who in [3] considered homeomorphic solutions of the Beltrami equation.

It was shown by Häıssinsky in [6] that cusps can be formed by home-
omorphisms of finite distortion, even when (1) is satisfied. In the in-
cluded articles we have considered homeomorphisms of finite distortion
with the additional assumption that either (1) is satisfied or that the
distortion function of the inverse f−1 satisfies Kf−1(x) ∈ Lp

loc(R
2) for

some p ≥ 1. We have shown that if f(B) = Ωs for this kind of a map-
ping, then the degree s of the cusp gives a bound for the parameters λ
and p, or conversely. Also, example mappings have been constructed
in order to evaluate the sharpness of these bounds.
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4. Results

In this section we gather the main theorems from the included arti-
cles [A], [B] and [C].

For a (planar) homeomorphism f of finite distortion, it is convenient
to denote the optimal distortion function by Kf . It is obtained by
setting Kf (x) = ‖Df(x)‖2/Jf (x) when Df(x) exists and Jf (x) > 0
and by letting Kf (x) = 1 otherwise.

4.1. Formation of cusps. In what follows, B denotes the unit disk.
The main theorem of the first included article [A] deals with the case
when f : R

2 → R
2 is a homeomorphism of finite distortion that is quasi-

conformal on B. In this case the assumption of exponentially integrable
distortion of the distortion function Kf (x) leads to an essentially sharp
result, stated as follows.

Theorem 1. Let f : B → Ωs be a quasiconformal mapping and assume

that f̂ : R
2 → R

2 is a homeomorphic extension of f . If f̂ is a mapping

of finite distortion, then
∫

2B

exp(λKf (x)) dx = ∞ for all λ > 1/s.

Conversely, there exists a quasiconformal mapping f : B → Ωs, which

extends to a homeomorphism of finite distortion f̂ : R
2 → R

2 with
∫

2B

exp(λKf (x)) dx < ∞ for all λ < 1/s.

In the second included article [B], the assumption of quasiconformal-
ity is abandoned. More precisely, f : R

2 → R
2 is assumed only to be a

homeomorphism of finite, exponentially integrable distortion.

Theorem 2. For s > 0 given, there is no homeomorphism f : R
2 → R

2

of finite distortion with exp(λKf ) ∈ L1
loc(R

2) so that f(B) = Ωs when

λ > 4/s. On the other hand, for λ < 2/s such an f exists.

In this case, as seen above, the result is not as optimal as it was in the
case of partial quasiconformality. The constructed example suggests
that the correct border case for λ should be 2/s, but this remains to
be proven.

Notice that the bound on λ in Theorem 1 is 1/s and that the optimal
bound under the setting of Theorem 2 is between 2/s and 4/s. This is
slightly surprising because of the results for quasiconformal mappings.
Indeed, Ω is a K-quasidisk if and only if Ω is the image of B (or a half
plane) under a K2-quasiconformal mapping which is conformal in B (or
in the half plane). This follows by combining results from [4] and [5].

In the last included article [C] we consider the distortion of the in-
verse function. As the inverse of a homeomorphism of finite distortion
is also of finite distortion [7], it is of interest to consider how assump-
tions on the distortion function of f−1 affect on the cusp formation
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of f . Again, the example domain is Ωs and f may or may not be
quasiconformal on B. The results are stated as two theorems.

Theorem 3. Let f : R
2 → R

2 be a homeomorphism of finite distortion

such that Kf−1 ∈ Lp
loc(R

2) for some 1 ≤ p < ∞. If f(B) = Ωs for

some s > 0, then necessarily s ≤ 4/(p − 1). If, in addition, f is

assumed to be quasiconformal on B, then s ≤ 2/p.

Theorem 4. For s > 0 given, there exists a homeomorphism of finite

distortion, f : R
2 → R

2, with f(B) = Ωs, such that Kf−1 ∈ Lp
loc(R

2)
for all p < 2/s + 1. If one only requires that Kf−1 ∈ Lp

loc(R
2) for all

p < 2/s, then f can be made quasiconformal on B.

One immediately sees that in the quasiconformal case one has an
essentially sharp bound, but that the general case exhibits again some
gap. Again, it seems that the correct bound for the general case in
Theorem 3 should be s ≤ 2/(p − 1), but as before, this remains to be
proven.

4.2. Modulus of continuity estimates. Here we present some new
modulus of continuity results from [A] and [B] as they play a central
role in the methods used to prove Theorems 1 and 3. Theorem 2
utilizes a known modulus of continuity result by Koskela, Onninen and
Zhong [12, 14], which states that the sharp modulus of continuity for
a mapping of finite, exponentially integrable distortion is of the type
log−λ/n(1/|x − y|), when the dimension of the space is n.

The first result is from [A] and it shows that if f is assumed to
be quasiconformal on B, then in the planar case instead of the bound
log−λ/2(1/|x−y|) we get with an arbitrary ε > 0 a modulus of continuity

of the type log−λ/(1+ε)(1/|x − y|) on the closed unit disk B. Note
that even if one were able to take ε = 0, the technique used to prove
Theorem 1 would not allow one to improve on the result of Theorem 1.
An example from [A] shows that we cannot allow ε to be negative.

Theorem 5. Let f : R
2 → R

2 be a homeomorphism of finite distortion

such that exp(λKf (x)) ∈ L1(2B) for some λ > 0. If the restriction

of f to the open unit disk B is quasiconformal, then for any ε > 0
there exist positive constants Ĉ and C̃ ≥ 2 such that

(2) |f(x) − f(y)| ≤
Ĉ

log
λ

1+ε C̃
|x−y|

,

whenever x, y ∈ B.

The final theorem of this review is from [C] and it provides a modulus
of continuity estimate for a homeomorphism of finite distortion in the
case when one has a local Lp-integrability assumption on the distortion
of the inverse of f . Simple examples show that the indicated modulus
of continuity is sharp.
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Theorem 6. Let f : R
2 → R

2 a homeomorphism of finite distortion.

If Kf−1 ∈ Lp
loc(R

2) for some 1 ≤ p < ∞, then for all |x − y| < 1/2

(3) |f(x) − f(y)| ≤
C(p, ‖Kf−1‖Lp(G))

log
p

2 (1/|x − y|)
,

where G = f(B(x, 1)).

5. Final comments

The results of this dissertation hopefully provide a starting point
for understanding the geometry of the image of the unit disk under a
homeomorphism of finite distortion. A possible next step could be to
try to find an optimal analog for the three point property. Also, the
role of reflections could be studied.
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Mathématiques Supérieures, no. 84, Presses de L’université de Montréal,
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