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ABSTRACT 

Markus Hähkiöniemi 
The role of representations in learning the derivative.  
University of Jyväskylä. Department of Mathematics and Statistics. Report 104.  
 

It has been proposed that there are two ways how learning a mathematical 
concept may develop. A new object may be abstracted from actions performed 
on already existing objects. For example, the derivative concept may be ab-
stracted from calculating values of the derivative. Another way is to act with 
the concept to be learnt and perceive it as an object. For instance, some proper-
ties of the derivative may be learnt by perceiving the derivative of a function 
from the graph of the function. These two ways correspond to learning in the 
symbolic and in the embodied worlds in the theory of the three worlds of 
mathematics. Several studies have suggested that the learning results of the de-
rivative are enhanced if teaching takes into account, for example, working with 
several representations including the graphical ones, considering the limiting 
process inherent in the derivative thoroughly, supporting the process-object 
development and, in general, emphasizing problem solving.  

However, there is still need for a detailed analysis on how students are 
thinking about the derivative in approaches which takes into account the 
above-mentioned suggestions. The aim of this study is to find out how students 
may use different kinds of representations for thinking about the derivative in a 
specific approach. To achieve this, I designed and implemented a five-hour 
teaching-learning sequence introducing the derivative concept in a Finnish high 
school (grade 11).  The above-mentioned aspects of learning were taken into ac-
count in the design. After the teaching-learning sequence, I selected five stu-
dents into carefully designed task-based interviews. From the interviews I ana-
lyzed what kind of representations the students used for thinking about the de-
rivative and for which purpose and how they used these. Especially, using 
limiting processes and perceiving the derivative from the graph of a function 
were taken into account in the design of the interviews as well as in the analy-
sis. 

I found that the embodied world offered powerful thinking tools for the stu-
dents. They used the increase, steepness, horizontalness and tangent of the 
graph for thinking about the derivative qualitatively without calculating any-
thing. These representations were accompanied by gestures which were an es-
sential part of thinking. At this very early stage of learning the derivative the 
students seemed to consider the derivative as an object, which has some proper-
ties, in the embodied world. Using the above-mentioned representations, they, 
for example, considered when the derivative is positive/negative, and what the 
maximum/minimum point of the derivative is. Therefore, this study supports 
the claims that learning may begin by considering the derivative as an object. 
The study also suggests that in the embodied world students may learn as the 



 

representations become more and more transparent allowing seeing the deriva-
tive. 

The students used various kinds of limiting processes and connected them 
in different ways to the limit of the difference quotient. Some of the students 
changed from one of these two representations to the other, and some of them 
explained one with the other. I named the two connections associative and re-
flective connections, respectively. One of the students, who made the reflective 
connection, had major difficulties in using the limit of the difference quotient. 
This suggests that a student may have conceptual knowledge of this notion 
without being able to use it for calculating the derivative. 

On the basis of the analysis of the students’ use of representations, I con-
structed a hypothetical learning path to the derivative. According to the learn-
ing path, the representations of the tangent, increase, steepness and horizontal-
ness of the graph as well local straightness, moving a hand along the graph and 
placing a pencil as a tangent may be used to perceive the rate of change in the 
embodied world. In the symbolic world, students may calculate the average 
rate of change over different intervals. This way, students may build knowl-
edge of the derivative even before being introduced to its definition and they 
have readiness to investigate the problem of the value of the instant rate of 
change. 
 
Key words: conceptual knowledge, connection, derivative, embodied world, 
procedural knowledge, process-object, representation, symbolic world, task-
based interview. 
 



 

TIIVISTELMÄ 

Markus Hähkiöniemi 
Representaatioiden merkitys derivaatan oppimisessa. 
Jyväskylän yliopisto. Matematiikan ja tilastotieteen laitos. Raportti 104. 
 

Opiskelija voi alkaa muodostaa matemaattista käsitettä kahdella eri tavalla. 
Hän voi suorittaa toimintoja jo olemassa oleville objekteille ja abstrahoida näistä 
toiminnoista uuden objektin. Opiskelija voi esimerkiksi abstrahoida derivaatan 
arvojen laskemisen toiminnoista derivaatta käsitteen. Toisaalta hän voi toimia 
opittavan käsitteen parissa ja havaita sen objektina. Hän voi esimerkiksi oppia 
tiettyjä derivaatan ominaisuuksia havaitsemalla funktion kuvaajasta sen deri-
vaatan. Nämä kaksi käsitteenmuodostuksen reittiä vastaavat oppimista mate-
matiikan kolmen maailman teorian symboli- ja havaintomaailmassa. Useat tut-
kimukset viittaavat siihen, että derivaatan oppimiseen voidaan vaikuttaa myön-
teisesti ottamalla opetuksessa huomioon esimerkiksi erilaisten 
representaatioiden tuomat mahdollisuudet, käsittelemällä derivaattaan liittyvää 
rajankäyntiä perusteellisesti, tukemalla opiskelijoiden käsitysten kehittymistä 
prosessinomaisesta objektinomaiseksi ja painottamalla avointa ongelmanratkai-
sua. 

Tällä tutkimuksella täydennän olemassa olevia tutkimuksia analysoimalla 
hyvin yksityiskohtaisesti opiskelijoiden derivaattaan liittyviä ajatteluprosesseja, 
kun opetuksen suunnittelussa on huomioitu edellä esitetyt seikat. Tutkin erityi-
sesti, miten opiskelijat käyttävät erilaisia derivaatan representaatioita ajattelun 
työvälineinä ratkaistessaan ongelmia. Tätä tarkoitusta varten suunnittelin ja to-
teutin viisi tuntia kestävän derivaattaan johdattavan opetus–oppimisjakson lu-
kion pitkän matematiikan Differentiaalilaskenta 1 -kurssilla. Suunnittelussa otin 
huomioon edellä esitetyt tekijät, jotka voivat vaikuttaa positiivisesti oppimi-
seen. Opetus–oppimisjakson jälkeen haastattelin viittä opiskelijaa heidän rat-
kaistessaan ongelmia tehtäväpohjaisessa haastattelussa. Haastatteluiden ana-
lyysissa kiinnitin huomiota siihen, millaisia representaatioita opiskelijat käytti-
vät sekä mihin tarkoitukseen ja miten he niitä käyttivät. Erityisesti analysoin 
miten he käyttivät erilaisia rajankäyntiprosesseja ja miten he havaitsivat deri-
vaatan funktion kuvaajasta. Suunnittelin haastatteluissa käytetyt tehtävät eri-
tyisesti tätä tarkoitusta varten. 

Tutkimuksen tulokset osoittavat, että havaintomaailma tarjosi haastatelluil-
le opiskelijoille käyttökelpoisia representaatioita, joiden välityksellä derivaattaa 
voi käsitellä. Opiskelijat käyttivät funktion kuvaajan kasvamista, jyrkkyyttä, 
vaakasuoruutta ja tangenttia käsitelläkseen derivaattaa kvalitatiivisesti ilman 
laskutoimituksia. Näiden representaatioiden yhteydessä he käyttivät myös elei-
tä olennaisena osana ajatteluaan. Oppimisprosessin näinkin varhaisessa vai-
heessa opiskelijat näkyivät käsittelevän derivaattaa objektina, jolla on tiettyjä 
ominaisuuksia havaintomaailmassa. Käyttämällä edellä mainittuja representaa-
tioita he esimerkiksi havaitsivat derivaatan merkin sekä maksimi- ja minimipis-
teet funktion kuvaajasta. Siten tämä tutkimus tukee väitteitä, joiden mukaan 



 

opiskelija voi aloittaa derivaatan oppimisen käsittelemällä derivaattaa objekti-
na. Tutkimuksen perusteella näyttää myös siltä, että havaintomaailmassa opis-
kelijan käsitys kehittyy, kun representaatiot tulevat läpinäkyväksi ja hän näkee 
derivaatan niiden kautta. 

Haastatellut opiskelijat käyttivät useita erilaisia derivaattaan liittyviä rajan-
käyntiprosesseja ja yhdistivät ne eri tavoin erotusosamäärän raja-arvoon. Eräät 
opiskelijat vaihtoivat toisesta representaatioista toiseen. Jotkut opiskelijat taas 
käyttivät toista representaatiota selittäessään toista. Nimesin nämä havaitut 
kaksi erilaista kytkentää assosiatiiviseksi ja reflektiiviseksi kytkennäksi. Eräs 
opiskelija muodosti reflektiivisen kytkennän, mutta hänellä oli suuria vaikeuk-
sia erotusosamäärän raja-arvon käyttämisessä. Tämän perusteella vaikuttaa sil-
tä, että opiskelijalla voi olla konseptuaalista tietoa erotusosamäärän raja-arvosta 
vaikka hän ei kykenekään käyttämään sitä laskeakseen derivaatan arvon. 

Opiskelijoiden representaatioiden käytön analyysin pohjalta konstruoin hy-
poteettisen oppimispolun derivaattaan. Oppimispolun mukaan opiskelijat voi-
vat havaita funktion hetkellisen kasvunopeuden käyttäen seuraavia havainto-
maailman representaatioita: funktion kuvaajan tangentti, kasvaminen, jyrkkyys, 
vaakasuoruus, paikallinen suoruus sekä käden liikuttaminen kuvaajaa pitkin ja 
kynän asettaminen tangentiksi. Lisäksi opiskelijat voivat laskea symbolimaail-
massa keskimääräisiä kasvunopeuksia eri väleillä. Oppimispolun mukaan opis-
kelijat voivat aloittaa derivaatan oppimisen ennen määritelmän esittämistä. Täl-
lä tavoin opiskelijat saavat valmiuksia tutkiakseen, miten hetkellisen nopeuden 
arvon voisi määrittää. 

 
Asiasanat: derivaatta, konseptuaalinen tieto, kytkennät, matematiikan kolme 
maailmaa, proseduraalinen tieto, prosessi–objekti, representaatio, tehtäväpoh-
jainen haastattelu. 
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1 INTRODUCTION 

The aim of this study is to construct knowledge on high school students’ 
mathematical thinking in the subject of the derivative. In this short introduction 
I clarify what aspects of the derivative concept are under focus and what char-
acteristics of mathematical thinking are studied. This gives an introduction to 
the theoretical framework of the study. Furthermore, I will specify what kind of 
knowledge is sought and how that is acquired. These considerations give an in-
troduction to the methodology of the study.  

There seems to be a consensus in the mathematics education community 
that learning mathematics only as symbolic manipulations according to given 
rules is not meaningful. For example, according to Schoenfeld (1992), students 
should construct mathematical knowledge by solving problems and not just 
memorizing procedures, by investigating patterns and not just memorizing 
formulas, and by forming conjectures and not just doing exercises. This means 
that both procedural and conceptual knowledge should be emphasized in 
teaching (Haapasalo & Kadijevich, 2000). It is also proposed that teachers 
should focus on students’ ideas instead of the teacher’s and mathematicians’ 
ideas (Davis & Maher, 1997). Thus, it is not that students should try to under-
stand the teacher’s ideas. Instead, the teacher should try to understand the stu-
dents’ ideas and support the further construction of these ideas. One teaching 
approach based on this view is open problem solving, whose aim is that stu-
dents develop a variety of solutions to problems on the basis of their own ideas 
that they bring to the problem situations (Francisco & Maher, 2005; Nohda, 
2000; Pehkonen, 1997).  

Ideas of student centeredness and open problem solving inspired this study 
as I designed it to acquire information on how students think. The derivative is 
an interesting concept as it is a central notion in high school mathematics. It is 
also one of those concepts which includes limiting processes and is thus a turn-
ing point to more abstract mathematics (Tall, 1992). For example, Orton (1983) 
has reported students’ difficulties with the derivative concept. Especially, the 
limiting process inherent in the derivative is reported to be difficult to under-
stand (Orton, 1983; Heid, 1988; Repo, 1996; Zandieh, 2000). However, studies of 
Heid (1988), Repo (1996) and Asiala et al. (1997) have shown that with teaching 
based on the modern ideas, mentioned in the previous paragraph, it is possible 
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to achieve better learning results of the derivative. This study fulfils these re-
sults by investigating qualitatively how students think about the derivative. 
The focus is not on how much they have acquired knowledge but on how they 
use their knowledge. 

According to Goldin (1998) and Davis and Maher (1997), a useful way to in-
vestigate students’ ideas is to examine how they use different representations. 
In this study, a representation is considered as a tool to think of something. Re-
cently, more and more attention is focused on representations that are not sym-
bolic but, for example, graphic or kinesthetic, or that are unconventional (Davis 
& Maher, 1997; Goldin, 1998; Gray & Tall, 2001; Tall, 2004a). In the case of the 
derivative and other calculus concepts it is proposed that emphasis on percep-
tual activity, for example, perceiving the derivative from the graph of a func-
tion, is beneficial for learning (Tall, 2003, 2004a, 2004b, 2005; Berry & Nyman, 
2003; Heid, 1988; Speiser & al., 2003; Repo, 1996). Tall (2003, 2004a, 2004b, 2005) 
is developing a theory of three worlds of mathematics, which takes into account 
the role of different representations in learning. The three worlds are the em-
bodied world of visuo-spatial images, the symbolic world where symbols act 
dually as processes and concepts, and the formal world of properties (ibid.). In 
the same way as in the APOS theory (Asiala & al., 1996) and in Sfard’s (1991) 
reification theory, learning in the symbolic world begins by performing some 
procedure which is then encapsulated to an object (Tall, 2003, 2004a, 2004b, 
2005). For example, a number may be encapsulated from the counting proce-
dure. The other way, according to Tall (2003, 2004a, 2004b, 2005) and Gray and 
Tall (2001), is to start by considering the concept as an embodied object which 
becomes more abstract through reflection. For example, according to Gray and 
Tall (2001), the derivative may be considered as an object in a graphical context 
before any symbolic calculations.  

Corresponding to Gray and Tall’s (2001) theoretical perspective on two 
starting points for learning, I designed and implemented a short teaching-
learning sequence introducing the derivative in a Finnish high school. In the 
teaching-learning sequence, open problem solving and working with different 
representations, especially graphs and the limit of the difference quotient, were 
emphasized. After the teaching-learning sequence I invited five students to 
task-based interviews. I designed and analyzed the interviews from the point of 
view of how the students use different representations. Particularly, I focused 
on representations related to the limit of the difference quotient with other lim-
iting processes and perceiving the derivative from the graph of a function. Simi-
larly to Speiser et al. (2003), the study concentrates on students’ potentials in-
stead of their misconceptions. I found that all the five students have good po-
tential for learning the derivative and related concepts if they are allowed to use 
their own tools to think with, especially those representations which belong to 
the embodied world. On the basis of the analysis of the five students’ use of dif-
ferent representations, I hypothesized how these representations could be used 
in the learning of the derivative. These considerations produced a hypothetical 
learning path to the derivative. 
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As already implicitly suggested, the intended results of this study are rich 
descriptions of the particular students’ use of different representations. I do not 
intend to make general claims about the way that all students use these repre-
sentations. Instead, these students’ uses of the representations serve as an illus-
trative example on how it is possible to use these representations. This research 
increases our understanding about possibilities of students’ personal thinking 
processes. In Ernest’s (1997) classification of different research paradigms, these 
views are consistent with the qualitative research paradigm. According to him, 
this paradigm is also known as interpretative, naturalistic (cf. Lincoln & Guba, 
1985) and alternative paradigms. In this paradigm, knowledge is viewed as con-
structed. Therefore, an absolute truth does not exist. However, in some occa-
sions it is convenient to use expressions such as “correct” or “incorrect”. In such 
cases the correctness refers to the compatibility of students’ production with my 
interpretation of institutionalized mathematical knowledge.  

According to Ernest, the constructivist perspective on learning is the central 
component of the qualitative research paradigm. My personal view of learning 
is a mixture of constructivist and sociocultural aspects. I view learning, on one 
hand, as an active individual construction and, on the other hand, as becoming 
a part of culture. In line with Cobb (1994), I argue that both views have to be 
taken into account to understand the complex phenomenon of learning. In this 
particular study, the focus is on individual students’ use of representations. 
This implies the constructivist position. Some researchers (e.g., Simon, 1995) 
specify this kind of research applying a cognitive constructivist perspective. 
However, in this study the notion of cognition is widened to distributed cogni-
tion (Salomon, 1993). This means that in the analysis I take into account that the 
cognitions are distributed to sociocultural tools. The tools have an essential role 
in thinking; they are not just mere aids. Representations are not only tools for 
expressing our thoughts. They are tools to think with. The object of thinking is 
constructed through using different representations. A representation consists 
of an invisible internal side and of a visible external side. Unlike the classical 
internal versus external distinction, this view does not differentiate between 
two representations but considers them as the different sides of the same repre-
sentation. For example, gestures are analyzed as an essential part of representa-
tions.  

To summarize, the aim of the study is now specified as follows. In studying 
students’ mathematical thinking, I consider how they use different kinds of rep-
resentations in the embodied and in the symbolic worlds, what kind of proce-
dural and conceptual knowledge they use, and how they consider the deriva-
tive as a process and as an object. The properties of the derivative which are in 
focus are the limit of the difference quotient, various limiting processes inherent 
in the derivative, and relations between a graph of a function and its derivative. 
The knowledge produced by the research are micro-level descriptions of how 
particular individual students use different representation for thinking about 
the derivative. This knowledge is achieved by investigating five students’ rea-
soning as they solve problems in task-based interviews. Because of the detailed 
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analysis of the qualities of the students’ thinking processes, these cases are as-
sumed to serve as illustrative examples of how also other students could use 
these representations.  
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2 OVERVIEW OF THE ARTICLES 

The aim of the study is to investigate how students use different representa-
tions of the derivative after a short teaching-learning sequence introducing the 
derivative. On the basis of a literature review, theoretical background, and 
analysis of the derivative concept, I decided to emphasize the perceptual activ-
ity and limiting processes in the teaching-learning sequence. Also the task-
based interviews were designed around these issues. Correspondingly, the stu-
dents’ uses of the limit of the difference quotient and various limiting processes 
are discussed in the articles [1] and [2]. The students’ perceptual activity is dis-
cussed in the articles [3] and [4]. In the article [5] the common features of the 
students’ use of representations is analyzed, and a hypothetical learning path to 
the derivative is constructed. In this section, slightly modified abstracts of the 
articles are presented to give an overview of the study. 

[1] Hähkiöniemi, M. 2006. Associative and reflective connections between the 
limit of the difference quotient and limiting process. Journal of Mathe-
matical Behavior, 25(2), 170-184. 

This article reports a study of how students may connect the limiting proc-
ess inherent in the derivative to the limit of the difference quotient when solv-
ing problems. It was found that the students used various limiting processes 
and they connected them in different ways to the limit of the difference quo-
tient. Some of them changed from one of these two representations to the other, 
and some students explained one with the other. The two connections were 
named associative and reflective connections, respectively. One of the students, 
who made the associative connection, used the limit of the difference quotient 
skilfully. On the contrary, another student, who made the reflective connection, 
had major difficulties using the limit of the difference quotient. Therefore, stu-
dents may, at the early stage of their learning process of the derivative, use dif-
ferent kinds of procedural and conceptual knowledge of the limit of the differ-
ence quotient. 
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[2] Hähkiöniemi, M. 2006. Is there a limit in the derivative? – Exploring stu-
dents’ understanding of the limit of the difference quotient. In M. Bosch 
(Ed.) Proceedings of the fourth congress of the European society for re-
search in mathematics education (CERME 4), Sant Feliu de Guíxols, Spain 
– 17 - 21 February 2005, 1758-1767. [http://ermeweb.free.fr/CERME4/]. 

This paper continues examining the students’ understanding of the limit of 
the difference quotient. The contribution of this paper is that it uses a different 
theoretical framework from the article [1]. This paper was written before the ar-
ticle [1], and the reader may see how the associative and reflective connections 
are still being developed. The students’ procedural knowledge was analyzed 
using the APOS theory and conceptual knowledge by examining what kind of 
representations they had of the limiting process and how these were connected 
to the limit of the difference quotient. I found out that students had two kinds 
of connections: they changed from one representation to the other or they ex-
plained one representation with the other. Among the students, all combina-
tions of good or poor procedural and conceptual knowledge of the limit of the 
difference quotient were found. 

[3] Hähkiöniemi, M. 2006. Perceiving the derivative: the case of Susanna. Nor-
dic Studies in Mathematics Education, 11(1), 51-73. 

This article reports a study on how a less successful student (Susanna) per-
ceives the derivative from the graph of a function. I analyzed the interview of 
Susanna to find out how she perceives the derivative from a graph of a function 
and what kind of representations she uses for this. The results show how she 
used representations of the increase, the steepness, and the horizontalness of 
the graph to perceive the derivative. Gestures were an integral part of her think-
ing. This case shows that with appropriate representations students can per-
ceive essential aspects of the derivative from the graph of the function, and that 
students can consider the derivative as an object at the very beginning of the 
acquisition process. 

[4] Hähkiöniemi, M. Submitted. How the derivative becomes visible: the case 
of Daniel. Submitted to Teaching Mathematics and Computer Science. 

This paper continues with the topic of the article [3], but this time the inter-
view of an advanced student (Daniel) is analyzed. Therefore, these two papers 
give important information on how a less successful and a very successful stu-
dent reason in the embodied world. Daniel made very impressive perceptions 
using, for example, the steepness and the increase of a graph as well as the 
slope of a tangent as representations of the derivative. He followed the graphs 
sequentially and, for example, perceived where the derivative is increas-
ing/decreasing. Gestures were an essential part of his thinking. Daniel’s per-
ceptions were reflected against those of Susanna (the article [3]). Unlike 
Susanna, Daniel seemed to use the representations transparently and could see 
the graph as a representation of the derivative.  
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[5] Hähkiöniemi, M. Submitted. Hypothetical learning path to the derivative. 
Submitted to Mathematical Thinking and Learning.  

This paper builds on the other four papers and examines the role of differ-
ent representations of the embodied and symbolic worlds in problem solving 
and in the learning of the derivative. I analyzed what kind of representations 
the five students used at the interviews and how they used them. On the basis 
of this analysis, I constructed a hypothetical learning path to the derivative 
which describes how students could use different representations in learning 
the derivative. According to the learning path, the representations of tangent, 
increase, steepness and horizontalness of the graph as well local straightness, 
moving a hand along the graph and placing a pencil as a tangent may be used 
to perceive the rate of change in the embodied world. In the symbolic world 
students may calculate the average rate of change over different intervals. This 
way, the students build knowledge of the derivative even before its definition 
and they have readiness to investigate the problem of the value of the instant 
rate of change. Solving this problem gives a reason to define the derivative. 
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3 INTRODUCTION TO THE DERIVATIVE CONCEPT 

The purpose of this section is to present my view of the derivative. This 
view has affected the construction of the theoretical framework and the design 
of the empirical study. This section also orientates the reader to the themes of 
the derivative that are emphasised in this study: the underlying limiting proc-
ess and perceptual activity. 

The derivative is a mathematical concept which we usually meet at the ad-
vanced stage of our studies in mathematics. However, we have been dealing 
with the underlying structure of this concept and built related constructs all our 
lives. Velocity, for example, is a special case of the derivative. The velocity of an 
object means the rate by which the displacement of the object changes in rela-
tion to time. There are also other rates of change, for example, reading speed 
and the rate of change of population that we may have experienced. We can no-
tice a lot of things from velocity and other rates of change. For example, when 
riding a bike, we can notice when velocity is great, when it is small, when it in-
creases, when it decreases, when it is constant, when it is zero, and when it is at 
its greatest. We can also calculate an average velocity over some time interval. 
For example, we can calculate our average velocity on a school journey by di-
viding the length of the journey by the time that we spent on biking. Further-
more, we may notice that the velocity at a certain point during the journey is 
not necessarily the same as the average velocity. Nevertheless, we cannot know 
the exact value of the velocity at the point. The speedometer of the bike does 
not give the instant velocity but an average velocity on the basis of measuring 
how many times the wheel spins at a certain time interval. How good an esti-
mate this is for the instant velocity depends on how much the velocity changed 
during the time interval of the measurement. A radar would give a better esti-
mate because the time interval is smaller. 

We may also model the motion using mathematics. For example, the dis-
placement (s) of an object along the path travelled by the object may be repre-
sented as a function of time (t). We may know that the displacement of the ob-
ject at a certain time is 5 times the time minus the time square. The algebraic ex-
pression for the function s would be ttts 5)( 2 +−= . The function may be 
represented also graphically as in Figure 1.  
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Figure 1. The graph of the function ttts 5)( 2 +−= . 

By investigating the graph of the function s, we may notice that the values 
of the function (the displacement of the object) are increasing until the point t = 
2.5 and that after this the values are decreasing. Thus, the rate of change of the 
function (the velocity of the object) is positive until the point t = 2.5 and nega-
tive after that. Moving a hand along the graph from left to right may help to 
consider how the values are changing: when the hand raises, the values in-
crease, and when the hand goes down, the values decreases. Furthermore, the 
steeper the hand raises the faster the values increase and the steeper the hand 
goes down the faster the values decrease. In perceiving the steepness of the 
graph, it may help if we imagine grasping the graph with a thumb and a fore-
finger as if the graph were a rope and place a pencil between the fingers1. We 
can also slide the hand from left to right keeping the grasp. When moving the 
hand, we can see the steepness of the position of the pencil at different points 
and feel whether the hand is raising or going down2. After these considerations 
we may notice that the values of the function s increase fastest at the point t = 0. 
After this the rate of change decreases and becomes zero at the point t = 2.5. Af-
ter the point t = 2.5 the rate of change is negative and decreasing, which means 
that the values of the function are decreasing faster and faster. Thus, the veloc-
ity of the object is greatest at the beginning, positive and decreasing until the 
point 2.5, zero at the time 2.5 and negative and decreasing after that.  

Let us now examine the rate of change of the function s (the velocity of the 
object) at the point t = 2. On the basis of the previous observations, we can no-
tice that the rate of change at this point is positive but close to zero. How could 
we estimate the rate of change more accurately and how could we determine it 
exactly? Previously, we perceived the rate of change from the steepness of the 

                                                 
 

1  Note that this may also be used as an intuitive “definition” of a tangent as the tangent is 
known as a difficult concept to define without the limit concept. Definitions as “the tangent 
touches the graph at one point” are misleading. With the pencil-embodiment it becomes clear 
that, for example, the tangent may also intersect with the graph. 
2 This dynamic representation corresponds to dragging a tangent along the graph in computer 
algebra software.  
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position of the pencil. Thus, one estimation method could be calculating the 
steepness of the position of the pencil (Fig. 2). However, this estimate is not 
very accurate as it depends on how the pencil is placed on the graph. 

 

 

Figure 2. The steepness of the position of the pencil. 

For another estimate, we can calculate the average rate of change (the aver-
age velocity of the object) over the interval [2, 4]. This is calculated by dividing 
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In the graph this corresponds to the slope of the line (secant) intersecting the 
graph at the points 2 and 4 (Fig. 3). Obviously, this estimate is not good since 
we had previously noted that the rate of change at the point 2 should be posi-
tive. A better estimate could be achieved if the average rate of change was cal-
culated over a smaller interval, for example, over the interval [2, 2.5]: 
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Figure 3. The average rates of change over the intervals [2, 4] and [2, 2.5] and the cor-
responding secants. 
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This estimate can be improved by calculating the average rate of change 

over the interval [2, 2.1]: 9.0
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21.2
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− ss . An even better estimate is 

achieved by using the interval [2, 2.01]: 99.0
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same purpose, the average rates of change can be also calculated, for example, 
over the intervals [1.5, 2], [1.9, 2], and [1.99, 2]. The smaller the interval is the 
better the estimate is. To get the exact value of the instant rate of change we can 
investigate what number the average rates of change approach when the length 
of the interval tends to zero. In this case they seem to approach number 1. This 
can be confirmed by investigating what number the average rate of change over 
the interval [2, t] approaches when t approaches 2. The average rate of change 

over the interval [2, t] is 
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So the rate of change of the function s at the point 2 is 1. The limiting proc-
ess was a crucial factor in determining the rate of change. The average rates of 
change correspond to slopes of secants. Thus, the limiting process can be inter-
preted to mean secants approaching a tangent (Fig. 4). Figures 2 and 4 show 
that the estimations on the basis of calculating the steepness of the position of 
the pencil and average rates of change mean the same thing as the average rates 
of change approach the steepness.  

 

 

Figure 4. Secants corresponding to average rates of change approaching the tangent. 
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concept of the derivative. The derivative of a function f at a point a equals 

ax
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)()(lim)('  if the limit is defined. According to the above considera-

tions, the derivative of a function at a point means the rate of change of the 
function at the point, the slope of a tangent set on the point, and the steepness 
of the graph of the function at the point. In addition, the sign of the derivative 
indicates whether the function is increasing or decreasing at the point. The quo-

tient 
ax
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−
− )()(  is called the difference quotient and the limit 
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the limit of the difference quotient. The limit of the difference quotient can also 

be expressed, for example, as 
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For example, Grossman (1981, p. 93) gives the following definition to the 
derivative of a real valued function at a point: 

Let f be defined on an open interval containing the point 0x  and sup-
pose that  
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exists and is finite. Then f is said to be differentiable at 0x  and the deriva-
tive of f at 0x , denoted )( 0xf ′ , is given by 
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The most important applications of the derivative in high school are deter-
mining the slope of a tangent, determining the rate of change of a function, de-
termining velocity and acceleration, examining the behaviour of a function and 
determining the extreme values of a function. 
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4 STUDIES ON LEARNING THE DERIVATIVE 

In this study, the literature is used in two different ways. On one hand, it is 
used to construct a framework through which the students’ activity is analyzed. 
This kind of literature is discussed in section 5. On the other hand, I gained in-
sights to what kind of conceptions students may have of the derivative and how 
they can learn it meaningfully from a number of existing studies considering 
the derivative. Knowing these studies was important for noticing new and es-
sential findings of this study. The results of this study are related to previous 
ones by extending them, supporting their conclusions, proposing new direc-
tions or challenging the generality of previous results. This kind of literature is 
reviewed in this section. The existing studies are reviewed corresponding to 
themes of the findings of this study. Therefore, from the reviewed studies espe-
cially insights into limiting processes and working with graphs related to the 
derivative are discussed. In addition to studying students’ reasoning and con-
ceptions of the derivative, some studies have also proposed, tested or designed 
teaching-learning sequences on the derivative. The arguments for the relevance 
of these sequences vary from quantitative testing to design research. Also these 
studies are reviewed here as they are relevant for the construction of a hypo-
thetical learning path to the derivative.  

4.1 Teaching-learning sequences on the derivative 

Several studies have suggested a particular research-based course, teaching-
learning sequence1 or learning activities through which students could learn the 
derivative meaningfully. From a researcher’s perspective a critical question is 
how the proposed sequence is validated. What is the basis for the meaningful-
ness of the sequence? One approach is conducting a teaching experiment, test-
ing the students’ learning outcomes and comparing these to the outcomes of a 
control group. Another approach is to collect data that inform how an initial 
teaching-learning sequence could be improved. 

                                                 
 

1 Teaching–learning sequence is used in the sense of Méheut and Psillos (2004) to refer to topic-
oriented instructional sequences instead of long-term curricula. 
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Testing the learning outcomes after a teaching-learning sequence 

Asiala et al. (1997) constructed in the framework of the APOS theory (see 
section 5.4) a genetic decomposition of the derivative which described what 
kind of constructions students might make for learning the concept. First, re-
searchers constructed an initial version of a genetic decomposition on the basis 
of theoretical analysis. Accordingly, they designed and implemented instruc-
tion for university students in a calculus course. Then empirical data were col-
lected by interviewing 17 students after the reform instruction and 24 students 
after the traditional instruction. The data were analyzed in terms of the APOS 
theory. On the basis of the analysis, the genetic decomposition was revised. The 
initial and revised genetic decompositions included graphical and analytical 
paths to the derivative. The graphical path consisted of calculating the slopes of 
secants when the two points on the graph get closer and closer, and producing 
the slope of the tangent as a result of limiting. The analytical path consisted of 
calculating the average rate of change over a smaller and smaller interval, and 
producing the instant rate of change as a result of limiting. In the instruction the 
students constructed mathematical ideas with the computer using a program-
ming language, investigated mathematical concepts with a symbolic computer 
system, and worked in cooperative learning groups in problem solving and in 
discussion. 

According to Asiala et al., the calculus students whose course was based on 
the genetic decomposition had more success in constructing a graphical under-
standing of the function and the derivative than students from traditional 
courses. According to the analysis of the interviews, all the 17 students in the 
experimental group achieved a level of completely satisfactory understanding 
in the cases of the function and the derivative. Only 12 of the 24 students in the 
control group achieved this level in the case of the function and 10 in the case of 
the derivative. About a fourth of the students in the control group understood 
the concepts poorly. The rest were in between. Because of the striking differ-
ences between rates of success, Asiala et al. concluded that the experimental in-
structional treatment may be more effective than the traditional instruction. 

Also Repo (1996)1 conducted a study in the framework developed by 
Dubinsky (1991), which was later developed to the APOS theory. Repo devel-
oped a theoretical model of how the derivative could be learnt and designed a 
corresponding learning environment with learning activities. The 50-hour in-
struction was implemented in 1991 in a Finnish high school for 17 grade 11 stu-
dents2. The computer software Derive was used intensively. The emphasis in 
the learning of the derivative was placed on the definition of the derivative and 
on the limiting process in the context of the average velocity/rate of change, 

                                                 
 

1  See also Lehtinen and Repo (1996). 
2 The mathematical contents of Repo’s course seem to correspond roughly to the course in 
which the teaching-learning sequence of this study was implemented. However, in Repo’s 
course there were 20 lessons more. 
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slope of secant and difference quotient. Also investigating a function using its 
derivative function and vice versa were emphasized. At every stage of the 
course different representations and their coordination were emphasized.  

In Repo’s study the definition of the derivative was introduced through ex-
amining the velocity of a ball rolling in an inclined plane. The students esti-
mated the value of the instant velocity at a point using average velocity over a 
smaller and smaller interval. As a solution to this problem, the derivative was 
defined as the limit of the difference quotient and also the limiting process of 
secants approaching the tangent was discussed. 

Repo compared the performance of the 17 students of the experimental 
group to the control group (N = 23) who studied the same course. She imple-
mented pre-tests, post-tests and delayed post-tests (after six months) to both 
groups. She also supplemented the tests by conducting interviews. According 
to the results, the students of the experimental group constructed knowledge 
structures that were considerably higher in quality than those of the students of 
the control group. The difference between the groups was especially high in the 
case of students whose previous success in mathematics had been weak or av-
erage. The experimental group performed better in every item including those 
involving graphical representations and limiting processes. The overall differ-
ence between the experimental and the control groups was maintained in the 
delayed post-test both in the items of procedural knowledge and in the items of 
conceptual knowledge. 

Also Heid (1988) conducted a study in which calculus students of two ex-
perimental groups (N = 39) showed more conceptual understanding than the 
students in the control group (N = 100). She designed an experimental applied 
calculus course for college students. In this course the traditional sequence of 
‘first skills then concepts’ was reversed. Computer software was used in the 
course to perform symbolic calculations. The focus was on concepts, and vari-
ous representations were emphasized. For example, working with graphs was 
used intensively. At the end of the course students practiced skills by perform-
ing the algorithms without computer. Heid based her conclusions on interviews 
and tests to the students. 

Also Serhan’s (2006) study suggests that experimental teaching, which util-
izes graphical calculator and emphasizes connections between symbolic, visual 
and numerical representations, may influence positively on students’ learning 
the derivative. 

Collecting data to improve an initial teaching-learning sequence 

The studies of Repo (1996), Heid (1988) and Asiala et al. (1997) suggest that 
in particular settings and with careful planning according to a strong theoretical 
framework, it is possible to improve students’ learning achievements of the de-
rivative. However, the pre-test/post-test procedures of these studies allow only 
suggesting very general answers to the question of what it was in the teaching-
learning sequence that helped the students to learn the concept. In the study of 
Asiala et al., after analysing the data the researcher also revised the initial ge-
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netic decomposition describing the constructs that students should build to 
learn the derivative. Thus, their methodology had a cyclic nature aiming at re-
fining iteratively the initial genetic decomposition. In recent years, methodo-
logical approaches have been developed whose main aim is to design teaching-
learning sequences iteratively. Such approaches are, for example, design re-
search (Edelson, 2002), design experiment (Cobb & al., 2003), didactical engi-
neering (Artigue, 2005), and educational reconstruction (Duit & al., 1997; Katt-
mann & al., 1998). In these approaches, the effectiveness of a conducted teach-
ing-learning sequence is not tested. Instead, data are collected to find out how 
the sequence could be improved. In the case of the derivative concept, Doorman 
(2005) and Artigue (2005) have carried out such a research.  

In Doorman’s (2005) design research, an integrated 10th-grade course of the 
principles of calculus and kinematics was developed. The course was designed 
as a guided reinvention course on modelling motion using computer tools. The 
initial design was based on theoretical considerations of previous studies on 
students’ difficulties in calculus and kinematics, of the historical development 
of calculus and kinematics, of theories on symbolizing, and of a guided reinven-
tion in the Realistic Mathematics Education –approach1. This design was further 
developed through collecting qualitative data mainly by videotaping the les-
sons of three implemented courses and reflecting on the design.  

In Doorman’s (2005) instructional sequence, the first step was to foster stu-
dents’ thinking about a change of position as a measure of motion. The students 
were guided to reason with displacements between successive positions and to 
make predictions of the motion. One-dimensional trace graphs, which signified 
successive displacements at equal time intervals, were introduced. Displaying 
the patterns in the displacements encouraged the students to invent two-
dimensional discrete graphs of displacements between successive points and 
total displacements. Students started to use these graphs for reasoning about 
mathematical and kinematical notions and relationships. Velocity was repre-
sented as the length of displacements at successive time intervals in graphs of 
displacements and distance. The students came to understand that these graphs 
are related by taking sums and differences. They also noted that they did not 
have enough measurements to determine the instantaneous velocity. Then a 
transition to continuous models was made. Students used bar-graph approxi-
mations of continuous velocity-time graphs to signify displacements at corre-
sponding time intervals. They also considered the difference between instanta-
neous and average velocities. The students used the difference quotient as a 
measure for the average rate of change: vertical displacements and correspond-
ing time intervals were detected from continuous distance-time graphs. The 
approximation of instantaneous velocity built upon the linear continuation of a 
graph (a tangent-like continuation of the graph according to the movement that 
continues with the constant velocity). The students drew linear continuations to 

                                                 
 

1 See also Gravemeijer and Doorman (1999) for the discussion about a guided reinvention 
course on calculus. 
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graphs and most students answered that the precise value of this velocity could 
not be determined. Only a few students invented an approximation process 
themselves. The last stage was a transition to reasoning with graphs of mathe-
matical formulas. At this stage there were some problems. The students were 
familiar with graphs and their intervals but most of them had major difficulties 
in using the formula of a function in approximating the instantaneous change. 
Thus, Doorman concludes that in this transition, more attention is needed for 
approximation processes in data-based graphs. 

Artigue (2005) reports a didactic engineering study in which a quite differ-
ent approach to the derivative which utilizes a symbolic calculator is devel-
oped. In this approach the definition of the derivative is introduced by letting 
students conjecture graphically what the slope (and the equation) of the tangent 
would be at a particular point. Then this is proved or refined by examining the 
difference between values of the function and the tangent line at a point that 
approaches the point in question. Artigue found the design viable, but the 
analysis focused on the role of technology, and thus, it is not discussed more 
thoroughly here. 

4.2 Limiting processes inherent in the derivative 

In the above-reviewed innovative teaching-learning sequences to the de-
rivative, a lot of emphasis was placed on the limiting process inherent in the de-
rivative. This reflects the need for designs through which the limiting process 
might be learnt meaningfully. Several studies have reported that students have 
great difficulties understanding the limit concept (see, e.g., Cornu, 1991; Tall, 
1992; Tall & Vinner, 1981; Merenluoto, 2001; Juter, 2006; Bergsten, 2006). This 
also causes difficulties in understanding other concepts which include limiting 
processes (Orton, 1983; Heid 1988; Tall, 1992; Tall, 1991; Tall & Vinner, 1981). In 
this section I review studies reporting these difficulties. Before this I clarify 
what I mean by limiting processes inherent in the derivative.  

For example, Asiala et al. (1997) emphasized two kinds of limiting proc-
esses: the average rates of change approaching instant rate of change and the 
slope of secants approaching the slope of a tangent. Cottrill et al. (1996) have 
noted that the limit of a function consists of the coordination of two processes. 
Accordingly, also the limiting processes underlying the derivative consist of 
many processes. For example, the slopes of secants approaching the slope of a 
tangent include a point approaching the other point, secants approaching the 
tangent and the slope of the secants approaching the tangent. Other limiting 
processes that may represent the derivative include average velocity approach-
ing instant velocity (cf. Repo, 1996; Doorman, 2005) and a numerical representa-
tion of the difference quotient approaching the derivative. Also local straight-
ness (Tall, 2003) is a limiting process which means magnifying a graph so that it 
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looks like a line1. Artigue (2005) discussed yet another limiting process, in 
which the difference between the values of the function and the assumed tan-
gent line is considered. Usually, in these limiting processes underlying the de-
rivative, the limit is viewed dynamically (cf. Cottrill & al., 1996; Cornu, 1991; 
Tall & Vinner, 1981) as something is approaching something else.  

Zandieh (2000) developed a framework for understanding the derivative, in 
which special attention is given to the limiting processes inherent in the deriva-
tive. In addition to the limit of the difference quotient, Zandieh (2000) also con-
siders limiting processes of the slope of the secant, rate of change and average 
velocity. In her framework the limit in these different representation contexts 
can be used as a process or as a (pseudo-)object. For example, for a student the 
process in the graphical context may be secants converting to tangents and the 
object may be the slope of the tangent line at a point. Applying the terms of 
Sfard (1992), Zandieh calls the object a pseudo-object because it does not neces-
sarily include an internal structure of the limiting process for the student. In 
other words, as Zandieh and Knapp (2006) express it, a student may refer to the 
(pseudo-)object as a metonymy of the underlying processes or only of the intui-
tive idea. When applying the framework in case studies of nine calculus stu-
dents, Zandieh (2000) found that the students could often describe the limit as a 
pseudo-object, but considering the limiting process was more difficult.  

Orton (1983) has reported students’ difficulties with the limiting process in a 
large study. Orton interviewed 60 students from the age range 16–18 years and 
50 students from the age range 18–22 as they solved problems related to differ-
entiation. He assessed students’ success in these items numerically and studied 
what kind of errors they made. The students of the two age groups had similar 
success and failures in the items. According to the results, the students had ma-
jor difficulties coping with the limiting process inherent in the derivative. The 
students scored weakest on items of “differentiation as a limit” and “use of δ-
symbolism”. In these and other items involving the limit, the students made lot 
of structural errors, which mean misunderstanding relationships involved in a 
problem or principles in a solution. On the contrary, students succeeded very 
well on carrying out differentiation. In these items they made only executive 
errors, which mean failing to carry out manipulations.  

Also in Repo’s (1996) study (see the section 4.1), neither the experimental 
nor the control group performed well (in relation to other items) in the items 
involving the limit of difference quotient and limiting processes. The studies of 
Repo, Orton and Zandieh, highlight the issue that students may perform well 
with other aspects of the derivative concept, but considering the limiting proc-
ess may still be difficult. Also the study of Habre and Abboud (2006) gave indi-
cations of this. 

If the limiting process is not properly understood, shortcomings in the use 
of the limit of the difference quotient may occur. Viholainen (2006, submitted a) 

                                                 
 

1 For example, Tall (1986) presented empirical evidence for the benefits of using the local 
straightness approach in calculus. 
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reports a case in which a function defined in two domains was not continuous, 
but a student (Mark) came to the conclusion that it has to be differentiable. The 
reason for this was that Mark used the limit of the difference quotient sepa-
rately for both domains, and they happened to take the same value. Mark was 
interviewed after having studied mathematics as his main subject for five years 
at university and was an almost qualified mathematics teacher. Furthermore, 
Viholainen reports that more than one fourth of the 146 prospective teachers at 
the same phase as Mark at a written exam claimed that a discontinuous func-
tion is differentiable. Another student (Theresa), who made such a conclusion 
in the written exam, explained at the interview that a function which had a 
jump at one point (and was thus discontinuous) was differentiable. The reason, 
according to Theresa, was that the tangent could be drawn as if there were not a 
hole in the graph. Viholainen also noted that both of the students indicated a 
tendency to avoid using the limit of the difference quotient in interview tasks. 
This tendency was noted also among other 18 interviewed students in a particu-
lar challenging problem, as only three of them used the limit of the difference 
quotient as their primary method (Viholainen, submitted b). The conclusion 
from these research results should not be that, for example, the tangent repre-
sentation should be avoided in teaching and the definition preferred. On the 
contrary, the tangent and other graphical representations should be used more 
and support students to connect them to formal representations. This means 
helping students to see the limit of the difference quotient as a limit instead of 
symbol manipulation (cf. Mark) and the tangent as a limit instead of a pseudo-
object (cf. Theresa). 

4.3 Graphical representations 

The already reviewed studies of Repo (1996), Heid (1988) and Asiala et al. 
(1997) have shown that instruction which emphasizes, among other things, 
working with graphs may have positive impact on students’ learning of the de-
rivative. Also the research-based teaching-learning sequences designed by 
Doorman (2005) and Artigue (2005) emphasized working with graphs.  

In addition to these studies, Berry and Nyman (2003) investigated how first-
year university students think about connections between the graph of a func-
tion and the graph of the derivative function when solving a particular prob-
lem. The problem given to two groups of four students was to sketch the graph 
of the function from the graph of the derivative function. Furthermore, the stu-
dents were asked to consider these as displacement-time and velocity-time 
graphs and to create the corresponding movement and compare that to the 
graph given by the motion detector. Berry and Nyman found that the students 
moved from an instrumental understanding of the calculus towards a relational 
understanding. They recommend that, before entering the formal symbolic cal-
culus, students should build understanding of the underlying concepts. This 
can be enhanced with problems like the one used in their study. Also Speiser et 



 
 

32

al. (2003) report how a group of third-grade high school students made sense of 
the motion of a cat while they worked with several graphical representations.  

There are also studies that have shown how even younger students may 
construct calculus-related ideas. Schorr (2003) reports a research project in 
which 8-11 students in grades 7 and 8 participated an after-school program in 
which they investigated motion especially with graphic representations and 
computer software. According to the results, the students built powerful ideas 
of related concepts. Thus, Schorr concludes that meaningful mathematical ex-
periences in the mathematics of motion are possible even in the middle grades. 
Furthermore, in Wright’s (2001) research, even a third/fourth-grade student 
was able to build mathematical ideas of motion when she was allowed to use 
her kinesthetic experience. 

Besides the potentials of working in the graphical context in learning the de-
rivative, there are also some documented difficulties. According to Nemirovsky 
and Rubin (1992), students’ tendency to assume resemblance in change of a 
function and change of its derivative is quite a general phenomenon. This is 
also well documented in the context of kinematics (McDermott & al., 1987; 
Trowbridge & McDermott, 1980; Beichner, 1994).1 According to Nemirovsky 
and Rubin (1992), students may overcome the assumption of resemblance by 
focusing on how one function describes the local variation in the other. Stu-
dents may use different mathematical notions, such as steepness and slope, for 
this (ibid.). In Hauger’s (1997) study, four pre-calculus students made a similar 
error to that described by Nemirovsky and Rubin. The students drew distance-
time graphs which represented constant speed instead of varying speed. The 
students used graphical slope, steepness, shape of the graph and changes over 
intervals to correct their errors. Thus, Hauger concludes that these are powerful 
ways for pre-calculus students in thinking about the rate of change. 

Tall (2003) argues that the local straightness would be a fruitful starting 
point for learning the derivative. The magnification window can also be 
dragged along the graph to see and feel the changing slope of the graph (ibid.). 
According to Gray and Tall (2001), instead of computer programs, also drawing 
the graph and moving a hand along the graph may be used for the same pur-
pose. According to Tall and Watson’s (2001) study, students (N = 13) whose 
teacher emphasized this kind of activity performed better in graphing tasks of a 
written test than other teachers’ students (N = 27). Despite the benefits of per-
ceptual activity, Tall (2003) and Gray and Tall (2001) note that the perceptual 
activity must be connected to the symbolism. According to Giraldo, Carvalho 
and Tall (2003) and Giraldo, Tall and Carvalho (2003) there are propositions in 
the literature that numerical representations may restrict the concept image. 
However, according to them, if the conflicts between numerical and formal rep-
resentations are emphasized in teaching, students’ concept images may become 

                                                 
 

1 See Leinhardt et al. (1990) for the discussion on this and other misconceptions related to 
graphs. 
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richer. In this way, the limitations of individual representation are not general-
ized to the concept (ibid.). 

The studies referred to in the section 4 suggest that many different represen-
tations have to be taken into account in teaching the derivative. As the studies 
of Kendal and Stacey (2000) and Bingolbali (2005) indicate, teachers’ privileging 
of representations of the derivative affects students’ competence with these rep-
resentations. Therefore, the representations emphasized in teaching have to be 
carefully chosen. 
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5 THEORETICAL FRAMEWORK 

In this section, the theoretical framework that guided the study is described. 
Although the theoretical framework was not used to make an advanced coding 
scheme for the analysis, it cannot be said that the theoretical framework did not 
influence the study. The previous experiences of a researcher cannot be ex-
cluded. Therefore, it is important to make the theoretical framework explicit. 
The theoretical framework is like spectacles through which students’ activity is 
seen. The spectacles of this study focus, for example, on an individual’s use of 
representations but not, for example, on classroom norms. The literature dis-
cussed in this section focuses more on theoretical perspectives which are more 
general than the particular research results discussed in the previous section. 
First, Tall’s (2004a) evolving theory of three worlds of mathematics is described. 
This theory provides the general framework of the study. Other perspectives 
are used to discuss students’ working in the different worlds. These include 
procedural and conceptual knowledge, representations, connections between 
representations, process-object nature of mathematical concepts, perceptual ac-
tivity in mathematics and open problem solving. 

5.1 Three worlds of mathematics 

Similar to Piaget’s pseudo-empirical and empirical abstractions, there are at 
least two ways how concept acquisition may begin in mathematics. These are 
explored in more detail in sections 5.4 and 5.5. One way is to perform a sym-
bolic action on an object and from this action to construct a new concept. For ex-
ample, in the APOS (Action-Process-Object-Schema) theory an action is interior-
ized as a process which is encapsulated as an object (Asiala & al. 1996; Dubin-
sky, 1994). Similarly, in Sfard’s (1991) theory, a person may reify an operation to 
a static entity, which means a shift from an operational to a structural concep-
tion. The other way, according to Gray and Tall (2001), is that concept acquisi-
tion begins from the perception of an object and acting with the object. Gray and 
Tall call this kind of perceived object an embodied object. Embodied objects are 
mental constructs of the perceived reality, and through reflection and discourse 
they can become more abstract constructs, which do not anymore refer to spe-
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cific objects in the real world (ibid.). These two ways how concept acquisition 
may begin are presented in Figure 5 taken from Gray and Tall (2001, p. 71). 

 

 

Figure 5. Different kinds of mental entities arising through perception, action and re-
flection (Gray & Tall 2001, p. 71). 

Tall (2003, 2004a, 2004b, 2005) has further developed these ideas into the 
evolving theory of three worlds of mathematics.1 Each of these worlds has its 
own characteristics for the development of sophistication and own warrants for 
the truth. 

The (conceptual-)embodied world (Tall, 2003, 2004a, 2004b, 2005) consists 
of thinking about things that can be perceived and sensed in the physi-
cal and the mental world. For example, mental conceptions that involve 
visual-spatial imagery belong to this world. The truth warrant in the 
embodied world is based on thought experiments and on “seeing” 
things to be true. For example, 2 + 3 = 3 + 2 because it gives the same 
amount of blocks whether you add three blocks to two or two blocks to 
three (Tall, 2004b). Students’ conceptions develop in this world through 
reflection and using more sophisticated language. The development of 
thinking is discussed in section 5.5.  

The (proceptual-)symbolic world (Tall, 2003, 2004a, 2004b, 2005) consists of 
using symbols for calculation and for thinking about concepts. Ideally, 

                                                 
 

1 See also Tall’s web page (www.davidtall.com) for information on the forthcoming book on this 
theory. 
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symbols act both as processes and as concepts (process + concept = pro-
cept), and a person can fluently change between these. For example, 2 + 
3 may be viewed as an addition but it may also be viewed as a sum 
(Tall, 2005). In the symbolic world the truth warrant is based on calcula-
tions and manipulations of symbols. For example, 3 + 2 = 2 + 3 because 
both sides of the equation give the same result when counted (Tall, 
2004b). Students build knowledge in this world by encapsulating new 
concepts from actions on old objects. The development is discussed in 
section 5.4. 

The formal(-axiomatic) world (Tall, 2003, 2004a, 2004b, 2005) is based on 
axioms, definitions, theorems and deductive reasoning. In the formal 
world something is true if it is an axiom, a definition or it can be proved 
formally. For example, 3 + 2 = 2 + 3 because it follows from the axiom of 
commutativity (Tall, 2004b). This world is not described as much as the 
other worlds because this study focuses on the early stage of the learn-
ing of the derivative. This means that although deductive reasoning is 
used also in the embodied and symbolic worlds, it is not used to build 
the axiomatic structure. For example, the same definition of the deriva-
tive is used in the symbolic and in the formal worlds in a different way. 
In the symbolic world, its conclusive role in defining the derivative is 
not emphasized. Neither is it emphasized that theorems are part of the 
axiomatic system. Instead, theorems are more like mathematical laws 
that can be justified from known facts. Also some intuitiveness is al-
lowed in the other worlds as, for example, the limit concept used in the 
definition of the derivative need not be defined formally. 

The theory of three worlds of mathematics can be understood in two ways. 
First, it may describe students’ journey in mathematics longitudinally (journey 
through geometry, arithmetic, algebra, calculus, analysis, etc.) as they work in 
the embodied and in the symbolic world, and some of them even continue to 
the formal world. Secondly, the theory may also focus on a specific concept and 
describe how students travel through different worlds when building that con-
cept. In this study, Tall’s theory is used in the latter sense by investigating how 
students work in the embodied and in the symbolic world at the beginning of 
the learning the derivative. 

5.2 Procedural and conceptual knowledge 

In the three worlds of mathematics, students may use both procedural and 
conceptual knowledge. There is a long-time debate on the importance of such 
knowledge as these (Hiebert & Lefevre, 1986; Hiebert & Carpenter, 1992; Haa-
pasalo, 1997; Haapasalo & Kadijevich, 2000; Rittle-Johnson & al., 2001; Haa-
pasalo, 2003; Kadijevich, 2003; Haapasalo, 2004). Several similar types of 
knowledge distinctions exist in the literature and are discussed in Haapasalo 
and Kadijevich (2000). 
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According to Hiebert and Lefevre’s (1986, p. 6) classical definition, proce-
dural knowledge consists of the formal language of mathematics, and of rules, 
algorithms, and procedures used to solve mathematical tasks. Conceptual 
knowledge, on the other hand, is knowledge that is connected to other pieces of 
knowledge and the holder of the knowledge also recognizes the connection 
(Hiebert & Lefevre, 1986, p. 3-4). 

According to Haapasalo and Kadijevich (2000), the above-mentioned defini-
tions may lead to the conception that procedural knowledge is dynamic and 
conceptual knowledge static. To highlight the dynamic nature of conceptual 
knowledge, they give the following definitions: 

Procedural knowledge denotes dynamic and successful utilization of par-
ticular rules, algorithms or procedures within relevant representation 
form(s). This usually requires not only knowledge of the objects being 
utilized, but also the knowledge of format and syntax for the represen-
tational system(s) expressing them. 

Conceptual knowledge denotes knowledge of and a skilful drive along 
particular networks, the elements of which can be concepts, rules (algo-
rithms, procedures, etc.), and even problems (a solved problem may in-
troduce a new concept or a rule) given in various representation forms. 
(Haapasalo & Kadijevich, 2000, p. 141.) 

Haapasalo and Kadijevich (2000) emphasize that in some cases the two 
knowledge types can be distinguished only by the level of consciousness of the 
applied actions. These definitions clearly indicate that conceptual knowledge is 
not only “knowledge of” but also “using that knowledge”. Therefore, students’ 
conceptual knowledge cannot be investigated by simply asking them what they 
know. Instead, we have to study how they use this knowledge in solving prob-
lems. Often the procedural knowledge refers to the use of some representation 
and conceptual knowledge to making connections from this representation to 
other representations. In the articles [1] and [2] the students’ procedural and 
conceptual knowledge of the limit of the difference quotient are analyzed. Both 
kinds of knowledge are conceived as dynamic in nature as the students use 
procedures and “drive along knowledge network” to solve problems. The de-
gree of utilized procedural knowledge of the limit of the difference quotient 
means knowledge of and fluency in carrying out the mathematical algorithm of 
calculating the value of the derivative at a point using the limit of the difference 
quotient. The degree of utilized conceptual knowledge refers to students mak-
ing connections between the limit of the difference quotient and other limiting 
processes. 

According to Haapasalo and Kadijevich (2000) and Rittle-Johnson et al. 
(2001), there is a long-term debate on which type of knowledge is more impor-
tant and in which order they should be learnt. They state that instead of arguing 
on this, it is more important to investigate how these two types of knowledge 
are connected. According to Haapasalo and Kadijevich (2000), all the four rela-
tions between procedural and conceptual knowledge have been supported by 
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empirical studies: (1) procedural and conceptual knowledge are not related, (2) 
procedural knowledge is a necessary and sufficient condition for conceptual 
knowledge (P ⇔ C), (3) conceptual knowledge is a necessary but not sufficient 
condition for procedural knowledge (P ⇒ C), and (4) procedural knowledge is a 
necessary but not sufficient condition for conceptual knowledge (C ⇒ P). Also 
Rittle-Johnson et al. (2001) state that, it cannot be generalized which kind of 
knowledge should precede the other as it is only a matter of which one starts 
the learning process. They found empirical evidence that these knowledge 
types develop iteratively so that development in one type of knowledge leads 
to the development in the other. 

5.3 Representations and connections between them 

In the three worlds of mathematics students may use different representa-
tions. As stated in the previous section, procedural knowledge often denotes 
the use of a representation and conceptual knowledge denotes making of con-
nections to other representations. Several classifications of representations can 
be found in the literature. For example, according to Goldin (1998), internal rep-
resentational systems can be a) verbal/syntactic, b) imagistic, c) formal nota-
tional, d) strategic and heuristic, and e) affective. Imagistic representations are 
the main ingredient in the embodied world and formal notational representa-
tions in the symbolic world1.  

In this section, I clarify in what meaning the representation concept is used 
in this study. Traditionally, a representation is conceived as something which 
stands for something else, and representations are divided into internal and ex-
ternal ones (cf. Janvier, 1987). An internal representation refers to the mental 
construction and an external representation to the physical construction. For 
example, a graph on a paper may be a representation of a function for a person. 
The mental image of the graph is an internal representation. This view of the 
representation has been criticized recently. For example, there is a danger that 
representations may be thought to be mere representations of some objects and 
separated from meaning (Sfard, 2000). According to Sfard (2000), this position 
implies that objects and meanings are more important than representations, and 
these should be learnt before signs. For example, a picture of a triangle is not a 
triangle but just a representation of it. Then, what is the triangle? The triangle is 
something that is represented by the picture. Therefore, the meaning cannot be 
separated from the representation. How could one first learn what the triangle 
is and only after that represent it?  

The traditional view of a representation implies that representations are 
only used to store information and that the role of signs and symbolic tools is 
only to support and aid students (Sfard & McClain, 2002; Radford, 2000; Meira, 
1998). Thus, this view does not use all the potential power of representations 

                                                 
 

1 In other literature, representations have been classified also as enactive, iconic, graphical, for-
mal, symbolic, algebraic, numerical, verbal, etc. 
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and other tools. For example, the image of the triangle is not necessarily just 
storing some aspects of the triangle and used as an aid in thinking. Instead, the 
image may be an essential part of thinking and without it thinking would be 
really different.    

Also, the dichotomy of internal versus external representations has been 
found artificial. According to Radford (2000) and Sfard and McClain (2002), 
traditional views often take a standpoint that external representations reflect 
the mental structures of an individual and that learning is the growth of mental 
structures. This would suggest that, for example, paper-and-pencil pictures of a 
triangle are reflections of a person’s mental image. Sometimes it may be the 
other way around; the person constructs a mental copy of a physical picture. 
Clearly, this cannot be always the case as both the mental and the physical pic-
ture has some properties that cannot be replaced by the other.  

Meira (1998) and Cobb et al. (1992) point out that even when the decisive 
role of a student is acknowledged, representations are often analyzed from an 
expert’s point of view as if external representations included meanings. Thus, 
these analyses do not address the use or construction of the representations. 
Meira (1998) has emphasized that the focus of studies in representations should 
move towards students’ use and construction of representations. This focus can 
be noticed in the studies of Davis and Maher (1997) as they describe how stu-
dents use representations as “tools to think with”. According to them, the key 
attribute of effective tools is that they can be used to carry out thought experi-
ments and to test hypothetical scenarios. Research has to focus on students’ 
ideas and not just on testing their compatibility with experts’ ideas (ibid.). In 
line with this, Speiser et al. (2003) emphasize capabilities of students rather than 
their errors. This move towards conceiving representations as tools was made 
also by Radford (2000). In his study there is “a theoretical shift from what signs 
represent to what they enable us to do” (p. 241). Compatible with the view of a 
representation as a tool, Sfard (2000) has argued that representations are not 
born as such but they may become to stand for something else later. Several au-
thors have also emphasized that meanings are constructed through the use of 
signs (e.g., Sfard, 2000; Radford, 2000). 

Building on the above-reviewed criticism and new views, the representation 
is characterized in this study as follows: 

A representation is a tool to think of something which is constructed through 
the use of the tool. A representation has the potential to stand for something 
else but this is not necessary. A representation consists of external and internal 
sides which are equally important and do not necessarily stand for each other 
but are inseparable. The external side is visible to other humans through the 
senses but the internal side is not. 

For example, a student may use the steepness of a graph of a function as a 
representation of a derivative of the function. This means that the steepness tool 
allows the student to perceive some aspects of the derivative, for example, the 
maximum point of the derivative. The student’s conception of the derivative 
may have been constructed (and is being constructed) through the use of the 
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steepness and other representation tools. There may be an external side of the 
steepness, for example, the mere graph on the paper, speech or some gestures. 
Obviously, there must be some internal side, because for some people the graph 
would not allow to perceive the derivative. It is not the case that the external 
side only reflects the internal side, but it is the interplay between them that al-
lows the student to use this tool efficiently. External sides are important for re-
search because all the interpretations are based on these. 

Following Goldin (1998), it is pointed out that one representation (or repre-
sentational system) may be thought to consist (and usually it does) of other rep-
resentations (or representational systems), and it is a matter of convention if we 
want to think of a single representation or its constituents. Often a graph of a 
function is considered as one representation. Instead, in this study the focus is 
on more specific representations (e.g., steepness) which are used within the 
graph. 

Connections, links and relations between representations or pieces of 
knowledge as well as students’ ability to move, change, or translate among rep-
resentations are important characteristics of learning and problem solving (Hie-
bert & Lefevre, 1986; Haapasalo & Kadijevich, 2000; Tall & Vinner, 1981; Goldin, 
1998; Dreyfus, 1991; Hiebert & Carpenter, 1992; Zimmermann, 2005). Many 
studies discuss the fact that students are able to make particular connections 
but few explain the distinctions between different types of connections. For ex-
ample, the classical book of representations edited by Janvier (1987) does not 
present any kind of analysis on the nature of different kinds of translations. One 
of the aims of this study was to characterize connections that are different in na-
ture. Two connections, named associative and reflective connections, were 
characterized after extensive data analysis. Then, the data were (re)analyzed ac-
cording to these connections. In the article [1] these connections were character-
ized as follows: 

A person makes an associative connection between two representations if he or 
she changes from one representation to another. 

A person makes a reflective connection between two representations if he or she 
uses one representation to explain another. 

These characterizations highlight the nature of representations as tools for 
thinking. To solve a problem it is often important to change between represen-
tations and very often it is necessary to argue or reason by explaining one rep-
resentation with another. During the data analysis it was found that the expla-
nations in students’ discourse are reasonably easy to observe. Therefore, the 
classification of connections was based on the explanations. It was also discov-
ered that in some cases it was difficult to observe which one of the reflectively 
connected representations was used to explain and which one was explained. 
Moreover, the representations often seemed to be mutually explaining each 
other. Thus, the direction of the connections is not mentioned in the above 
characterization but is expressed in the results where appropriate. It is notewor-
thy that the connections are not assumed to exist in a person’s mental structures 
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but in his or her activity, such as in problem solving and in discourse. Thus, a 
person does not have a connection but he or she makes a connection. 

In the article [1] the similarities of these connections to other proposed con-
nections are discussed. In short, these connections resemble a kind of combina-
tion of Goldin and Kaput’s (1996) weak and strong links and Sfard’s (2000) dis-
cursive connections. According to Goldin and Kaput, two external representa-
tions may be linked internally in the mind of a person who produced or 
perceived them. The link would be weak if the individual is able to predict, 
identify, or produce the counterpart of a given external representation. The link 
would be strong when given an action to one of the external representations, 
the individual is able to predict, identify, or produce the result of the corre-
sponding action on its external counterpart. According to Sfard (2000), one kind 
of relationship is “the awareness of some sort of ‘kinship’ between signs”, 
which usually is prior to any mention of a referent. The other kind of relation-
ship appears in isomorphic discourses which mean “a relations-preserving cor-
respondence between the two discourses”. According to Sfard (2000, p. 82), the 
latter relationship exists, for example, in a mapping between discourses about 
algebraic formulas (“ xx 32612 −=+  when 5=x ”) and discourses about coordi-
nate graphs (“the straight lines with the slopes 2 and -3 and y-intercepts 1 and 
26, respectively, cross each other at the point (5, 11)”) when the logical relation-
ships are preserved. In the article [2] also the intra, the inter and the trans stages 
of a schema development described by Clark et al. (1997) are used in the analy-
sis. This framework is an extension of the APOS theory and is discussed in the 
next section. 

5.4 Process-object theories 

An important feature of mathematical thinking is that mathematical con-
cepts can be viewed as processes or as objects (e.g., Sfard, 1991; Asiala & al., 
1996; Gray & Tall, 2001). For example, 3 + 5 may be understood as adding 5 to 3. 
On the other hand, 3 + 5 may also be understood as a sum without a demand to 
perform some calculation. Similarly, 0.999… may be understood as a process in 
which the number 9 is “repeated” infinitely many times. This may suggest that 
0.999… is infinitely close to 1. However, 0.999… may also be conceived as an 
object, as a number which is a result of the limiting process (“repeating” 9 infi-
nitely many times). The latter point of view may suggest that 0.999… = 1. This 
illustrates how big the difference between these two views is. For example, 
Francisco and Hähkiöniemi (2006) presented a case in which three children ar-
rived to a correct rule in “Guess My Rule” –game but did not write the rule as 
(x + 1)(x + 1). This might have been because for the children x + 1 was a process 
which had to be calculated first. Therefore, their rule was: add 1 and multiply 
the answer by itself. 

The APOS theory (Asiala & al., 1996) and Sfard’s (1991) reification theory 
are based on the mentioned dualism of the mathematical concepts and on the 
assumption that process conception precedes object conception. According to 
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Sfard (1991), also in the history of mathematics several concepts have first been 
conceived as processes and only afterwards as objects. A similar development 
has been noticed in individuals (ibid.). For example, the concept of number is 
learnt usually through counting. The number as an object is abstracted from the 
counting process. Sfard (1991) calls process conception operational outlook and 
object conception structural view. According to the reification theory (Sfard, 1991; 
Sfard, 1992; Sfard & Linchevsky, 1994) learning proceeds through three stages: 

At the first stage a learner interiorize a process that is performed on an 
already existing object. The learner becomes skilled in performing the 
process and can consider the process without actually performing it.  

At the second phase long sequences of operations are condensed into 
more manageable units. A person becomes more capable of thinking 
about the process as a whole and he/she does not have to go into de-
tails. The process is considered as an input-output relation rather than 
as operations.  

At the third stage a mathematical entity is reified. This means that the 
notion is conceived as an object and is detached from the process that 
produced it. The object gains its meaning from being a member of a cer-
tain category rather than from the process. At this stage processes may 
be performed on this new object. 

Sfard presents one exception for this kind of development. This is called 
pseudo-structural (Sfard, 1992; Sfard & Linchevsky, 1994) or quasi-structural 
(Sfard, 1991) conception. This means that a student manipulates a concept ac-
cording to certain rules as if it was an object, but the object does not have un-
derlying operational structure (Sfard, 1991; Sfard, 1992; Sfard & Linchevsky, 
1994). The representation of the concept is just standing for itself without any 
meaning (ibid.). According to Sfard and Linchevsky (1994), an example of this 
in the case of algebra is that changing the name of a variable leads to a totally 
different equation. At the beginning of this section an example of operational 
and structural views of number 0.999… was given. To continue this example, 
imagine that a person considers 0.333… as a number 1/3 and proves this by 
manipulating 0.333… according to a well-practiced algorithm so that 

3...333.0...333.3...333.0...333.010...333.09 =−=−⋅=⋅  and thus, concluding that 
3193...333.0 == . The person may do this by considering the 0.333… as a 

pseudo-structural object which does not include any limiting process. In an un-
familiar context of 0.999… this person may not notice that 0.999… = 1 if the al-
gorithm is not practiced also in this case. This is an important detail for this 
study as the derivative may be easily considered as a pseudo-structural object, 
for example, using differentiation rules. 

In the APOS theory developed by Dubinsky et al. (Asiala & al., 1997; Cottrill 
& al., 1996; Asiala & al., 1996; Breidenbach & al., 1992; Dubinsky & McDonald, 
2001; Dubinsky, 1991; Dubinsky, 1994; DeVries, 2001) especially for advanced 
mathematics, there are similar stages of Action, Process, Object and Schema: 
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An action is a physical or a mental transformation of objects to obtain 
another object. The action is a reaction to external stimuli and it is car-
ried out step by step without an individual’s conscious control of the 
action.  

When the individual reflects on the action and gets a conscious control 
of it, the action is interiorized to a process and the individual can describe 
the steps in the transformation without necessarily doing them.  

The process becomes encapsulated as an object when the individual be-
comes aware of the totality of the process and is able to perform new 
actions to it.  

A schema is a coherent collection of processes, objects and other sche-
mas. An object can also be created when a schema is thematized to an 
object. 

Examples of the stages in the case of advanced mathematical concepts can 
be found in the mentioned literature on the APOS theory. For the case of the 
function concept, Asiala et al. (1996), Breidenbach et al. (1992), Dubinsky and 
McDonald (2001) and DeVries (2001) give the following examples. A student 
has an action conception if he/she is limited to calculating values of a function 
with a given formula. One is at the process level if he/she is thinking about the 
function as an input-output machine. At the object level a student is able to per-
form actions on functions. For example, he/she can think about a function as a 
sum of two functions or as an element of a set. 

Clark et al. (1997) have extended the APOS theory by developing a three-
staged framework for analyzing the schema development. According to this 
framework, at the intra stage, a student focuses on a single item isolated from 
other items, at the inter stage he or she recognizes relationships between differ-
ent items, and at the trans stage the coherent structure of relationships is struc-
tured. For example, at the intra stage a student may have a collection of differ-
entiation rules, at the inter stage he or she recognizes that in some way they are 
related, and at the trans stage he or she considers those rules as special cases of 
the chain rule (ibid.).  

Roughly saying, the three first levels in the APOS theory correspond to the 
stages in Sfrad’s theory. For a detailed comparison of these theories and other 
similar theories, see Meel (2003). The most important common thing is, how-
ever, the development from processes to objects. In this study, these theories are 
used mainly in this sense. It is examined whether students are thinking about 
the derivative operationally as a process or structurally as an object. In addition, 
in the article [2], the APOS theory is used in more detail. In the article [2], it is 
examined on which levels the students are with the procedure of calculating the 
limit of the difference quotient and with their limiting processes, and on which 
stage they are in their schema development. 

In the theory of reification and the APOS theory, a stage cannot be reached 
before all the previous stages have been passed. However, when one stage is 
reached, the previous stage does not vanish. In the APOS theory this means that 
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it is important to be able to de-encapsulate the object back to a process. Sfard 
(1991) uses a metaphor that operational and structural views are like different 
sides of the same coin. The same basic idea is also inherent in Gray and Tall’s 
(2001) notion of procept which means that symbols act dually as processes and 
concepts. According to Tall (2003, 2004a, 2004b, 2005), learning in the symbolic 
world proceeds similarly to the APOS theory and Sfard’s (1991) theory. Gray 
and Tall (2001) propose levels of sophistication which are procedure (step-by-
step solution for routine problem), process (flexible solution with possible alter-
natives) and procept (ability to think about mathematics symbolically). How-
ever, Tall (1999) has criticized the APOS theory because learning does not al-
ways proceed according to the APOS levels. Therefore, Tall (2003, 2004a, 2004b, 
2005) has included the embodied world to his evolving theory of three worlds 
of mathematics, in which perceptions have an important role. In the next sec-
tion learning in the embodied world is discussed. 

5.5 Perceptual activity in mathematics 

Learning in the symbolic world proceeds by constructing objects from ac-
tions. However, in the embodied world it is not meaningful to describe the de-
velopment in the same way. Gray and Tall (2001) claim that learning may also 
begin by perceiving the concept to be learnt as an object. In this way a student 
constructs the concept by acting with it. This means that before encapsulating 
the object from the process, the concept already exists as an embodied object 
(ibid.). According to Gray and Tall, for example, the derivative can be perceived 
from the graph of a function before any numerical calculation or symbolic ma-
nipulation. Gray and Tall proposed that perceptions may become more abstract 
constructs, which do not anymore refer to specific objects in the real world. For 
example, the conception of a line may develop from a line drawn by a ruler to a 
perfectly straight line that has no width and is arbitrarily extensible in either di-
rection (ibid.). According to Gray and Tall (2001), this kind of development is 
similar to the development described by van Hiele in geometry1. This kind of 
development is assumed to happen in the embodied world through reflection 
and use of language (Tall, 2004a). According to Tall (2004a), this is quite differ-
ent from the development in the symbolic world.  

Later, Tall has developed the description of learning in the embodied world 
so that it has similarities with the development in the symbolic world (see Tall, 
2005; Pegg & Tall, 2005). This was inspired by one student who noticed that one 
hand translation combined with another had the same effect as a single transla-
tion corresponding to the sum of the two vectors (Tall, 2005; Poynter, 2004; 
Watson & al. 2003). Thus, in the embodied world, students may learn by shift-
ing their focus from actions to the effects of those actions (Tall, 2005; Poynter, 
2004; Pegg & Tall, 2005). For example, in the case of the vector concept students 

                                                 
 

1 See Silfverberg (1999) for an extensive discussion on van Hiele levels and comparison to other 
theories, including Sfard’s (1991) theory. 
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may shift their focus from translations of a hand to the effects of the translations 
(Tall, 2005; Poynter, 2004). Another example in the case of fractions is given by 
Pegg and Tall (2005). According to them, the action of dividing a quantity into 6 
equal parts and selecting 3 of them leads to the same effect as dividing the 
quantity into 4 equal parts and selecting 2. Similarly, in the symbolic world 3/6 
= 2/4.   

In the articles [3] and [4] I have proposed that the action-effect development 
in the embodied world is similar to the concept of transparency. The transpar-
ency of a tool means that the tool is visible for acquiring detailed information of 
the tool, but invisible for getting access to a phenomenon that can be seen 
through the tool (Meira, 1998; Roth, 2003; Lave & Wenger, 1991). Similarly, eye-
glasses are visible to a person so that he/she may notice when it is time to clean 
the glasses. But the eyeglasses are invisible so that the person sees the world 
through the glasses, and trashes and frames do not disturb him/her1. Transpar-
ency is not a property of a tool but an emerging relation between the user and 
the tool (Meira, 1998; Roth, 2003). The tool does not mean only physical tools, 
but also representations are tools. For example, a graph may become transpar-
ent to the user so that he/she sees the phenomenon behind the graph and does 
not only focus on the physical appearance of the graph (Ainley, 2000; Roth, 
2003). Roth (2003) points out that in his study the graph affected what scientists 
were able to see of the phenomenon. He uses the eyeglasses metaphor that the 
graph was like glasses which allowed seeing the world clearer when the user 
was accustomed to the glasses. In mathematics, learning to use a graph means 
beginning to see essential aspects of mathematical objects that are represented 
in the graph. In the above-mentioned action-effect example in the case of the 
vector concept, the transparency of the hand movement embodiment would 
mean that one sees the vector as an effect through the hand movement. If the 
hand movement is not transparent, one focuses on the action of moving the 
hand. But if the hand movement is transparent, one focuses on the effect of the 
action. 

Noble et al. (2004) have investigated students’ working with graphs and 
how students learn to see these in a meaningful way. They have proposed a 
mechanism through which a disciplined way of seeing may evolve. According 
to them the disciplined way of seeing may evolve from not seeing a whole to rec-
ognizing in and to seeing as. Not seeing a whole means that one may be able to 
see the parts of an image without being able to see the whole. However, one 
may recognize in the image something he/she is familiar with. The experiences 

                                                 
 

1 In section 5, I presented a metaphor that the theoretical framework of this study is like specta-
cles through which students’ activity is seen. The theoretical framework has to be visible for 
introspection. On the other hand, the researcher has to be familiar with it so that he does not 
have to read what this and that means every time he makes inferences of students’ activity. 
Thus, the theoretical framework has to be also invisible so that, for example, the technical terms 
do not prevent the researcher from seeing what happens. For evaluating the transparency of the 
theoretical framework the reader may judge from this section how visible it is and from the em-
pirical part how invisible it is for the author. 
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of “recognizing in” may cause one to see the image as something that he/she 
was not able to see before. This framework may be translated to the context of 
this study in the following way. Not seeing a whole means that a student may 
see a graph as a representation of a function. However, he/she does not see the 
derivative of the function in the graph. Gradually, the student may recognize 
in, for example, where the derivative is positive and where it is negative by fo-
cusing on the graph going upward and downward. Finally, the student may see 
the graph as a representation of the derivative. In the articles [3] and [4], I have 
proposed that the representations of the steepness, increase and horizontalness 
of a graph are things that may be recognized in the graph. Depending on the 
transparency, these representations may allow to see the derivative in the 
graph. 

Also gestures have an important role in the embodied world, as can be seen 
from the hand translation example. In this study, gestures are considered as ex-
ternal sides of representations. McNeill (1992) has argued that gestures together 
with speech are an essential part of thinking processes. According to him, deictic 
gestures indicate something, iconic gestures resemble something and metaphoric 
gestures represent abstract ideas. For example, pointing with a finger to some-
thing is a deictic gesture. When talking about a round object one makes an 
iconic gesture if he/she makes a circle in the air with a hand. An example of 
metaphoric gesture is moving a hand between oneself and listener when talking 
about communication. Roth and Welzel (2001) have demonstrated by their case 
studies that gestures have an important role in constructing explanations in 
physics. They argue that gestures allow constructing complex explanations 
even in the absence of the scientific language and coordinating phenomenal and 
conceptual layers of the content. According to their study, gestures seemed to 
make abstract entities visible. Similarly, Radford et al. (2003) report that ges-
tures with words allowed a student to make sense of a distance-time graph of a 
moving object. Also, a study of Moschkovich (1996) highlights the importance 
of gestures, particularly, when describing graphical objects. According to her, 
ninth-grade students used coordinated gestures and talk to negotiate a meaning 
for steepness of a linear graph. Rasmussen et al. (2004) illustrate in their study 
how gestures are part of expressing, communicating and reorganizing one’s 
thinking also in the advanced mathematics of differential equations.  

5.6 Open problem solving 

This section differs from the other sections in the theoretical framework. The 
difference is that the literature on open problem solving is not used in the 
analysis or discussing the results. Instead, open problem solving was an under-
lying perspective on what meaningful mathematics learning means. These ideas 
had very much influence on the design of the study, particularly on the design 
of the teaching-learning sequence. 

In line with the constructivist perspective, Schoenfeld (1992) and Davis and 
Maher (1990) have proposed that to learn mathematics students should engage 
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in doing mathematics and in solving problems. Particularly, students should 
also work with open problems (see, e.g., Pehkonen, 1997; Pehkonen, 2004; 
Nohda, 2000; Francisco & Maher, 2005). A problem is open if the starting situa-
tion or the goal situation is not exactly defined so that the solver has to make 
selections (Pehkonen, 1997). Nohda (2000) adds that also the process may be 
open so that the problem has multiple ways of solving them. Although all 
mathematical problems have multiple correct ways to solve them, Nohda 
points out that the openness of the process need to be emphasized instead of 
answer-driven problem solving. Especially, the openness of the process was 
emphasized in the teaching-learning sequence of this study. The openness of 
the process allows a solver to use or create different representations, and solu-
tions utilizing different representations may be compared to each other. Stu-
dents can also solve these problems in the different worlds of mathematics and 
work at their level of concept development. In the already referred studies of 
Repo (1996), Berry and Nyman (2003), Doorman (2005), and Speiser & al. (2003), 
students worked with open problems and openness seemed to be one factor in-
fluencing students’ learning.  
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6 THE IMPLEMENTED TEACHING-LEARNING 
SEQUENCE 

The studies and theories used in constructing the initial learning path and 
instruction are reviewed above. This was supplemented by the analysis of the 
derivative concept (see section 3). The main features of the derivative that 
would be included in the teaching-learning sequence were the velocity as a spe-
cial case of the derivative, the average and instant rate of change, the slope of a 
tangent line, the steepness of the graph, the relation between a graph of a func-
tion and its derivative, various underlying limiting processes and the limit of 
the difference quotient. The aim of the instruction was that students build these 
constructs by solving open problems in which they can use several representa-
tions. The definition of the derivative was designed to be introduced to students 
as they engage in solving the problem of a value of an instant rate of change of 
a function. First, I shortly describe how calculus is generally taught in Finland. 
Then, the initial hypotheses of how students might learn the derivative are 
summarized. Finally, the implemented teaching-learning sequence is described. 
For the discussion on methodology involved in the construction of the teaching-
learning sequence, see section 7.4. 

6.1 Calculus in Finnish high school and university 

Finnish students in the advanced syllabus of high school mathematics face 
the explicit notion of the limit for the first time usually during the second year 
(grade 11) in the Differential calculus I -course. After this course the derivative 
concept is dealt with in the courses Differential calculus II, Integral calculus, 
Number series and in the optional courses Analysis and Numerical mathemat-
ics (The Finnish National Board of Education, 1994). Courses have had some 
changes after the new framework curriculum 2003 (The Finnish National Board 
of Education, 2003), which was for the first time implemented in 2005. In the 
new framework curriculum the concepts of limit, continuity, and derivative are 
introduced in the course Derivative. After this the derivative is also handled in 
the courses Root functions and logarithm functions, Trigonometric functions 
and number series, Integral calculus as well as in the optional courses Numeri-
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cal and algebraic methods and Extension course of differential and integral cal-
culus. 

Typically, the limit is defined informally (without the δε − -definition) in-
cluding statements, such as getting the values of the function arbitrarily close to 
the limit value (Kontkanen & al., 1999; Merikoski & al., 2000; Kangasaho & al., 
2002; Kangasaho & al., 2006). Thus, in high school the limit is viewed dynami-
cally excluding the formal definition. Shortly, the rules for calculating algebrai-
cally limits of elementary functions are introduced. The continuity and deriva-
tive are then defined using the limit concept. When proceeding like this, there is 
a danger that students will conceive limiting only as computing limits algebrai-
cally (cf. Tall, 1991, p. 17-18). The derivative concept offers one possibility to 
avoid this if the (dynamic) limiting process in the definition of the derivative is 
emphasized in the instruction. The definition of the derivative is followed by 
differentiation rules. The derivative is used in applications to investigate func-
tions and to find extreme values. 

Those who continue to study mathematics at university will face the formal 
δε − -definition of the limit concept in Analysis courses. Although calculus is 

usually considered as advanced mathematics, it is considered totally differently 
in high school and at university (see Hähkiöniemi & Viholainen, 2005). In high 
school, calculus is hardly dealt with in Tall’s (2004a) formal-axiomatic world.  

6.2 The initial hypothetical learning path to the derivative 

The initial theoretical analysis of how students may learn the derivative 
meaningfully is summarized in Figure 6 (cf. Figure 5)1. Learning the derivative 
begins by perceiving functions and their properties in graphical representations 
and by performing actions on functions represented symbolically. From the 
graph of a function students can make perceptions about the rate of change 
even before the definition of the derivative. Moving a hand along the curve, 
placing a pencil as a tangent, looking how steep the graph is and the local 
straightness of the graph can be used for this.  

Especially, the following innovation was developed to help the students. 
The graph of a function may be imagined to be a rope. One can grasp this rope 
by a thumb and a forefinger. Keeping the rope (the graph) between the thumb 
and the forefinger one may now slide the hand along the rope (the graph). A 
pencil may now be placed between the fingers so that it resembles a tangent. By 
zooming in to the graph it may be noticed that the pencil is actually a good ap-
proximation of how the graph behaves locally. When the pencil points up-
ward/downward, the rate of change is positive/negative. The steeper the pen-
cil is the greater the rate of change is. When one now slides the hand along the 
graph, he/she sees how the rate of change is changing. 

                                                 
 

1 This analysis was presented as a poster including Figure 6 at the symposium of the Finnish 
mathematics and science education research association (Hähkiöniemi, 2003). 
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Figure 6. The initial learning path to the derivative. 

These perceptions can form different embodied objects for the derivative. 
On the other hand, students can perform different symbolic actions on func-
tions, for example, they can define algebraically the average rate of change over 
different intervals. These actions may be interiorized to a process in which the 
average rate of change is calculated over a smaller and smaller interval. This 
process may be encapsulated to the instant rate of change. Also, at the same 
time the embodied objects of the derivative become more abstract. Thus the 
learner’s conception of the derivative is not anymore limited to the real-world 
situation from which learning began. The main thing is that the learner links 
different representations of the derivative, so that he/she forms a rich concept 
image and can use different appropriate representations in problem solving. 

6.3 The teaching-learning sequence 

I taught the teaching-learning sequence in the autumn of 2003 as a part of a 
Finnish grade 11 (age 17) course Differential calculus I in the advanced syllabus 
of high school mathematics. The teaching-learning sequence consisted of the 
first five lessons (one single lesson and two double lessons) on the subject of the 
derivative. It was conducted in an ordinary classroom of 14 students without 
using the computer. However, most of the students had a graphical calculator. 
There were no other researchers in the classroom than the author as a teacher. I 
had been the students’ teacher also before this course. The lessons were video-
taped with one stationary camera. In the following, the teaching-learning se-
quence is described with a sample of important tasks. The description is based 
on the teaching journal, lesson plans and videotapes of the lessons. The tasks 
were especially designed for this course. In addition to these tasks, students 
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also had a course book (Kangasaho & al., 2002). During the teaching-learning 
sequence the book was used only to give some extra tasks to students. Before 
the teaching-learning sequence the course dealt with topics of function, piece-
wise function, absolute value function, limit and continuity.  

The teaching-learning sequence began by examining motion represented 
graphically. The word derivative was not mentioned. Among other tasks, the 
students were given Task 1. 

 

 
 
In the class I discussed1 with individual students or groups of students and 

with the whole class how to determine the average velocity and what the 
instant velocity means. Students considered, for example, the negative velocity 
and the maximum value of the velocity. Students also pointed out conflicts with 
the real life. After this we agreed that the distance travelled in this situation 
meant the displacement of the car from the starting point on a straight road2. 
Also moving a hand along the graph and placing a pencil tangent-like to a 

                                                 
 

1 A discussion with an individual or a small group of students means asking questions and 
sharing ideas during problem solving. I avoided giving students too much advice or directions. 
Instead, I asked them, for example, what they were doing and where they were aiming at. I also 
tried to encourage students to explore more problem situations and find alternative solution 
methods. A whole-class discussion means that I collected the ideas that students had invented 
in solving problems. At this kind of discussion I asked more specific questions about solution 
methods. Unlike at the discussion with students during problem solving, I also contributed to 
answering these questions myself. 
2 From the scientific point of view, the distance travelled and the displacement are different con-
cepts. For example, the distance travelled can never decrease. For these tasks to be meaningful, 
the displacement has to be considered along the path travelled by the object. Dealing with these 
issues thoroughly in this situation would had taken the teaching-learning sequence to a long 
side route. Therefore, the distance travelled was (incorrectly) identified with the displacement. 

1. The figure represents the distance travelled s (m) by a car as a func-
tion of time t (s). 
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a) What is the furthest point where the car is and how far does it 

end up?  
b) How long did the travel take? 
c) What is the average velocity of the car during the whole trip? 
d) What can you say about the velocity of the car at different 

points? 
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graph and moving it along the graph were considered at a teacher-led 
discussion with the whole class. After this, the rate of change of a function was 
considered, for example, in Tasks 2 and 3. 

 

 
 
At this point the teaching-learning sequence had lasted about one lesson (45 

minutes). The classroom discussion concerned increasing and decreasing of the 
values of a function as well as the quality and magnitude of the rate of change. 
Also the local straightness was considered, and it was noticed that a pencil as a 
tangent illustrates the graph well locally. Especially, it was noticed that the 
graph indeed goes horizontally at the top of the graph, which means that the 
rate of change equals to zero. 

 

 

2. The graph of the function f is presented in the figure.  
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a) What is the greatest value that the function f takes?  
b) At which point does the function f take its smallest value?  
c) When do the values of the function f increase and when de-

crease? 
d) Make observations of the rate of change of the function f. 
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a) Determine the zero points of the function f.  
b) What is the smallest value of the function f? What about the 

greatest?  
c) When is the rate of change of the function f positive and 

when negative?  
d) When is the rate of change of f zero? 
e) When is the rate of change of f greatest and when smallest? 
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Then the average rate of change was scrutinized in Task 4 among other 
tasks. During this task and after solving it, we discussed in the class how the 
average rate of change is determined by dividing the change in the values of the 
function by the change in the variable, by calculating the slope of the corre-
sponding secant and by calculating the difference quotient 
( ( ) ( )babfaf −− )()( ). At this point I mentioned the difference quotient for the 
first time. 

 

 
 

After dealing with the average rate of change, the students were given Task, 
5 in which the value of the instant rate of change was asked.  

 

 

5. A car starts at the time t = 0 and its distance s (m) from the starting 
point depends on the time t (s) according to the function 2)( tts = .  
a) What is the distance of the car from the starting point at the 

time t = 5? 
b) When has the car travelled 100 meters? 
c) How does the velocity of the car change as time increases? 

How about the rate of change of the function s? 
d) Determine the average velocity of the car at the interval [5, 7]. 
e) Determine the average rate of change of the function s at the 

interval [4, 5]. 
f) What is the velocity of the car at the moment t = 5? Invent dif-

ferent ways to determine or estimate the velocity. 

4. a) How many units does the value of the function f increase 
when x increases by one unit (that is, what is the rate of 
change of the function f)?  
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b) How many units does the value of the function 

2
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4
3

2
1)( 2 −−= xxxg  increase on average at the interval [1, 3] 

when x increases by one unit (that is, what is the average rate 
of change of the function g at the interval [1, 3])?  
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In connection with the solution of Task 5 I discussed with the class the esti-
mations of the instant velocity by drawing a tangent and by decreasing the in-
terval over which the average rate of change is calculated. Average rates of 
change were listed over different intervals. It was examined which number they 
seemed to approach when the interval diminished. Also secants corresponding 
to average rates of change were drawn (and this was related to the tangent). Fi-
nally, the exact value of the rate of change was determined by the limit of the 
difference quotient. Ideas for these solution methods came from students1. At 
this point the teaching-learning sequence had lasted three lessons. 

After the solution methods for Task 5 were discussed, I defined the deriva-

tive of a function f at a point a as 
ax

afxfaf
ax −

−
=

→

)()(lim)(' . Other forms of the 

definition were not discussed in the class or presented in the course book. Then 
the students evaluated and determined exact values of the derivative, for ex-
ample, in Tasks 6 and 7.  

 

 
 

 
 
During the discussions of Task 7 it was noticed from the graph of the func-

tion that the function does not have an unambiguous rate of change or a tan-
gent at the point x = 0, and, therefore, the derivative does not exist. This was 
also proven by calculating both hand limits of the difference quotient. It was 
also graphically noted that a function does not have a derivative at a point 

                                                 
 

1 All the students did not arrive at all these solutions. According to my teaching journal (the sta-
tionary camera did not manage to record individual students’ solutions), I noticed that individ-
ual students had solved the problem, for example, by calculating the slope of the tangent and 
by calculating an average rate of change over smaller interval. One student also calculated the 
average of the average rates of change over intervals [5, 7] and [4, 5]. Another student calculated 
the exact value of the instant rate of change as the limit of the average rates of change before 
any interaction with me. After I noticed this, he explained how he did this. He also used secants 
approaching the tangent in his explanation. 

6. a) Estimate with some method what is the derivative (that is the 
rate of change) of the function 32)( 2 −= xxf  at the point x = -1. 
b) Determine the exact value of the derivative of the function f at 
the point x = -1. 

 

7. xxf =)( . 
a) Determine the derivative of the function f at the point x = 4. 
b) Determine f’(-2). 
c) Investigate with different methods what is the derivative of 

the function f at other points.  
d) Investigate what could be the derivative of f especially at the 

point x = 0. 
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when it is not continuous. The whole teaching-learning sequence lasted five les-
sons.  

After this, another teacher continued the course with the following topics: 
derivative function, differentiation rules, investigations of polynomial func-
tions, extreme values of a function, applications, differentiation rule for the pro-
duct of functions, differentiation rule for the function nxf )( , differentiation rule 
for division of functions, rational function, derivative of rational function and 
applications (cf. Kangasaho & al., 2002). In all, the course lasted 30 lessons. The 
14 students were evaluated by their teacher on scale 4–10, in which 4 means 
failed. Two students got mark 10, four students got 9, four students got 8, three 
students got 7 and one student got 6. The average of the students’ course marks 
was 8.21. 

 

                                                 
 

1 The information about students’ marks are only intended as general background information 
about the course. Any conclusions about the effectiveness of the teaching-learning sequence 
cannot be made from this. 
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7 METHODOLOGY 

7.1 Research questions 

The aim of the research is to find out how students may use different kinds 
of representations for thinking about the derivative at the early stage of learn-
ing the derivative in a specific approach. The following more specific research 
questions were set to guide the study. In stating the aim of the research, I use 
the phrase “how students may use” but in the two first research questions the 
expression “how the students use” is employed. This is to emphasize that the 
aim is to find illustrative information on what ways of reasoning students may 
have in general. This information is acquired by studying the five students in 
depth. 

Research question 1: How do the students use the procedure of the limit of the difference 
quotient, how do they use other limiting processes, and how do they connect the limit-
ing processes to the limit of the difference quotient? 

The limit is an essential feature of the derivative, and, therefore, it deserves 
special attention. Also one of the main aims of the teaching-learning sequence 
was to introduce the definition of the derivative. I investigate how the students 
carry out the procedure of calculating the value of a derivative at a point using 

the limit of the difference quotient (
ax

afxfaf
ax −

−
=

→

)()(lim)(' ). More important, I 

sought for detailed information on how the students reason about other limit-
ing process inherent in the derivative and how they connect these to the limit of 
the difference quotient. As the limiting process inherent in the derivative is re-
ported to be difficult to understand for students, answering this research ques-
tion is an important contribution to the literature on what kind of ideas stu-
dents may use of the limiting process. After noticing that there exist very few 
characterizations of different connections between representations, I also aimed 
at producing such a characterization. Producing this kind of characterization 
extends the theoretical framework of connections between representations. This 
research question is answered in the articles [1] and [2]. 
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Research question 2: What kind of representations do the students use for thinking 
about the derivative? For which purpose and how do they use these representations? 

In addition to the representations of limiting processes, also other represen-
tations are of interest. I try to find effective tools that students may use for 
thinking about the derivative, particularly, in a similar approach to the deriva-
tive to that reported here. Especially, perceptual activity was emphasized in the 
teaching-learning sequence, and therefore, I greatly focus on how the students 
perceive the derivative from the graph of a function. I investigate what repre-
sentations the students use, how they use them, and what they enable the stu-
dents to do. In the literature it is suggested that this kind of perceptual activity 
may be beneficial for learning calculus. Answering this question extends the 
previous studies by describing how the students use different representations 
to perceive the derivative. To present enough detailed analysis, the perceptual 
activity of only two students is reported in the articles. The case of one less suc-
cessful student is reported in the article [3] and the case of one very successful 
student in the article [4]. Other students and also other representations are dis-
cussed in the article [5]. 

Research question 3: How could different representations be used in learning the deriva-
tive? 

I investigated how the students use different representations at the early 
stage of their learning process of the derivative in a specific approach. On the 
basis of these characteristics, I hypothesized how these representations could be 
used by students to learn the derivative. This research question is different from 
the other two as this builds on them. The answer to this question needs build-
ing a hypothetical learning path to the derivative that is based on the analysis of 
the interviews and the literature. In the literature there exist some proposed 
learning paths (or similar constructs) or teaching-learning sequences to the de-
rivative. This study takes into account some new aspects of students’ ways to 
learn the derivative on the basis of the analysis of how different representations 
are used. This research question is answered in the article [5]. 

7.2 Data collection 

After the teaching-learning sequence the five students were invited into 
task-based interviews. Tommi and Niina were interviewed right after the teach-
ing-learning sequence. Samuel was interviewed one lesson after, Susanna three 
and Daniel five lessons after the teaching-learning sequence. During that time 
the teacher of the course continued with the concept of the derivative function 
and with differentiation rules. Students were selected on the basis of their dif-
ferences in success in previous mathematics courses and their performance at a 
pre-test. Because I had taught these students also in previous courses, I could 
roughly classify their success on these previous courses and at the pre-test. 
Daniel had been very successful, Tommi and Samuel had been average success-
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ful, and Niina and Susanna had been less successful. It should be emphasized 
that it was a coincidence that the least successful students happened to be girls1. 

At the pre-test (Appendix 1) all the five students could determine an aver-
age velocity from a graph of a distance, but only Daniel estimated the instant 
velocity. They all, except Susanna, determined the sign of the velocity correctly. 
Niina and Susanna had some difficulties with functions and they could not 
draw a tangent. The other three students could also draw a tangent of slope 
zero and, except Samuel, determine the slope of a particular tangent. Only 
Daniel could interpret the difference quotient as the slope of a secant and esti-
mate how it changes when the base interval decreases. 

The task-based interviews were designed according to the principles given in 
Goldin (2003, 2000, 1997). Also more general interview techniques were taken 
into account (Hirsjärvi & Hurme, 2000; Kvale, 1996; Clement, 2000). Task-based 
interviews are interviews in which a subject and an interviewer interact in rela-
tion to one or more tasks designed in advance (Goldin, 2000). As applied in this 
study, the task-based interview seems to correspond to the semi-structured the-
matic interview (Hirsjärvi & Hurme, 2000; Kvale, 1996), where specific themes 
are carefully chosen for discussion and options for additional questions are pre-
planned. In this case a task corresponds to a theme; the additional questions 
depend on the students’ behaviour. According to Goldin (2000), task-based in-
terviews allow to focus more directly on students’ thinking processes than the 
traditional tests which focus on patterns of incorrect and correct answers. Thus, 
the task-based interviews suit especially well for this study. Goldin (2000, p. 
539-544) presents the following principles for designing task-based interviews: 
design task-based interviews to address advance research questions, choose 
tasks that are accessible to the students, choose tasks that embody rich repre-
sentational structures, develop explicitly described interviews and establish cri-
teria for major contingencies, encourage free problem solving, maximize inter-
action with the external learning environment, decide what will be recorded 
and record as much as possible, train the clinicians and pilot-test the interview, 
design to be alert to new or unforeseen possibilities, and compromise when ap-
propriate. In the following it is described how these and some other things were 
taken into account in the design and implementation of the interviews. 

During the interview the only people present were the student and I. I gave 
tasks and subtasks one at a time on separate sheets of paper and red them 
aloud. Students could use extra sheets, pencils, erasers, rulers and a graphic cal-
culator. Each interview was recorded by one video camera focused on the 
sheets and hands of the interviewee. I selected this focus because it was more 
important to capture the hand gestures and the order of written notations than 
facial expressions. I also collected all the written documents.  

The task-based interview method was combined with the think aloud 
method (Ericsson & Simon, 1993; Van Someren & al., 1994). I asked the students 

                                                 
 

1 I wanted to choose students from different levels and only students that had been in every les-
son. In addition, one girl did not want to participate in the interview. 
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to think their solutions aloud. Thinking aloud was not demanded very strictly. 
If there was a long silence, I could, for example, ask what the student is think-
ing. I told the students before the interview that in addition to such questions as 
these, they would be asked for arguments without meaning that they were 
wrong. Usually, at the think aloud interviews questions are minimized (Erics-
son & Simon, 1993; Van Someren & al., 1994). This guideline was not followed 
in this study, as the methods of task-based interviews were considered more 
relevant for the purposes of this study. Thus, the role of thinking aloud was to 
help to reveal the students’ thought processes in addition to the task-based in-
terviews methods. According to Ericsson and Simon (1993), a good instruction 
to thinking aloud includes a reference to a familiar procedure.  In this study, a 
television game show “Hermopeli” was used as an example of thinking aloud 
and of the interviewer’s questions1. In this game show the host continuously 
asks what the competitor is thinking to let the audience take part in his decision 
making processes. I told the students that the tasks are not intended to test their 
skills but rather to get information about different ways of thinking. I also told 
them that the interview does not affect the evaluation of their studies and that 
the tapes are dealt with confidentially. It was also noted that their face could 
not be recognized from the video because of the focus of the camera. The cam-
era was positioned so that the student was not facing towards the camera. In 
this way, the camera (with a blinking red light) was not in the student’s sight all 
the time. I hoped that this positioning would help the students not to be inter-
rupted by the camera and to even “forget” it. After the interviews the students 
approved that the videos could be shown to other researchers. The interviewed 
students were given a small reward from the school’s cafeteria. 

At approximately 45-minute interviews the following tasks were given. De-
pending on the situation, some subtasks were skipped with some students.  

Task 1. a) Tell in your own words what the derivative is. 
 b) The derivative of the function f at the point x = -5 is 3. What 

does this mean? 
Task 2.  The graph of a function f is given in the figure (see Appendix 2). 

What observations can you make about the derivative of the 
function f at different points? 

Task 3.  Estimate as accurately as possible the value of the derivative of 
the function xxf 2)( =  at the point x = 1.  

Task 4. a) Interpret from the figure (see Appendix 2) what the quotient 
( ) hfhf )1()1( −+  means.  
b) Interpret from the figure (see Appendix 2) what the limit 

( ) hfhf
h

)1()1(lim
0

−+
→

 means.  

c) Estimate the value of the limit ( ) hfhf
h

)1()1(lim
0

−+
→

. 

                                                 
 

1 The first interviewee invented the metaphor of the game show. Later, it was also told to the 
other interviewees. 
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Task 5.  A car starts at the time t = 0 from the starting point. The figure 
(see Appendix 2) represents the velocity v (m/s) of the car as a 
function of time t (s).  

 a) What is the velocity of the car at the point t = 7? 
b) When does the distance travelled by the car increase and 
when does it decrease? 
c) Sketch the graph of the distance travelled s (m) by the car as a 
function of time t (s) in the given (t, s)-coordinates. 
d) What is the average acceleration of the car at the interval 2s - 
7s? 
e) What is the acceleration of the car at the point t = 7s? 
f) Sketch the graph of the acceleration a (m/s2) of the car as a 
function of time t (s) in the given (t, a)-coordinates. 

The purpose of Task 1 was to be a warm-up question and to investigate 
what are the things that give meaning to the derivative for the students. Task 2 
was designed to give information on how students can see the derivate from the 
graph of a function. The equation of the function was not given so that all the 
conclusions would be made from the graph.  

Task 3 was chosen to get information on how students estimate the deriva-
tive of a function for which they do not know the differentiation rule, and using 
the limit of the difference quotient is too difficult. At this stage of their learning 
process the students do not know that they cannot use the limit of the difference 
quotient for this function. Thus, they will probably try to use it. This will reveal 
more of their reasoning because they may describe what they would do if they 
could. Among other methods to estimate the value of the derivative, they may 
use those including limiting processes. Estimations for the derivatives of expo-
nent functions were not discussed at this stage in the course. A graph was not 
given to avoid restricting possible estimation methods to those involving a 
graph. 

Task 4 was designed to explore what kind of limiting processes student may 
use and how they connect these with symbolism. The students had not yet 
faced this form of the difference quotient (neither in the class nor in the text-
book). Thus, they could not only recall what they had seen but they had to rea-
son. 

Task 5 was planned to be similar to Task 2 but in a different context. The 
difference is that this task corresponds to the situation where the graph of a 
function (velocity) is given, and students are asked how the values of the inte-
gral function (distance) and derivative function (acceleration) are changing. In 
this task they were also asked to draw the graphs. Students’ ways to determine 
the average and instant acceleration is also investigated in this task. 

7.3 Analysis of the interviews 

The analysis of the interviews followed general guidelines given to a quali-
tative analysis of interview data (Hirsjärvi & Hurme, 2000; Kvale, 1996). These 
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general guidelines included transcribing the data, reading through the data and 
“living with it”, describing the data, coding or categorizing, synthesizing and 
moving back and forth between the mentioned stages. The analysis has similari-
ties with grounded theory and particularly with the constant comparison 
method (Glaser & Strauss, 1967; Strauss & Corbin, 1990). The analysis has also 
some similarities with the video data analysis procedures developed by Powell 
et al. (2003). In the following, the steps in the analysis are described in more de-
tail than in the articles [1]-[5]. 

I began the analysis of the interviews (if the interpretations made before and 
during the interviews are not included) by viewing the videotapes. This is an 
important stage of the analysis because the analyst has to become familiar with 
the data and know it as a whole before making interpretations of individual in-
cidents (Powell & al., 2003). The familiarization process continued as I tran-
scribed all the tapes. Also the gestures and inscriptions made by the students 
were described in the transcript. From this on the analysis was based on the 
transcript and the original videos as well as on the written work of the students. 
The transcripts allowed going into details with several points of the interview 
simultaneously and to see long segments at a glance, which is not possible from 
the videotapes. The role of the original recordings was to show the situation in 
a more holistic way than captured in the transcript. Particularly, students’ ges-
tures and inscriptions could not be transcribed without losing something. When 
making interpretations, I checked the relevant points from the video. The stu-
dents’ written work was used together with the videotapes to see, for example, 
what they were writing and to what they were pointing. After transcribing and 
becoming familiar with the data the main steps in the analysis were: 

1. Describing. I described how the students solved the problems. I fo-
cused on what the students did at the interviews. This process was 
started already during viewing the tapes and transcribing. For exam-
ple, I listed what observations the students made in Task 2. This 
stage corresponds to the stage of “describing the video data” in the 
analysis framework of Powell et al. (2003). According to Powell et al. 
(2003), it is important that the researcher avoids making strong inter-
pretations but describes what happens (of course, this is also an in-
terpretation but not so strong). 

2. Locating representations. I located indications of the use of some repre-
sentation from each of the interviews. The analysis was inductive in a 
sense that no coding scheme was used in advance. Instead, any kinds 
of representations were sought. Of course, as Strauss and Corbin 
(1990) note, the theoretical background and previous experiences af-
fect the analysis. Moreover, according to Strauss and Corbin (1990, 
41-47), it is important for the researcher to acquire theoretical sensi-
tivity. For example, without having theoretical (and practical) sensi-
tivity, it could happen that the researcher would note only conven-
tional representations. When I found a new indication, I searched 
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whether similar indications could be found in the other points of the 
interviews.  

3. Analyzing uses of representations. From each of the located situation, I 
analyzed how and for which purpose a student used the representa-
tion and how he/she connected it to the other representations. At 
this stage the associative and reflective connections (the article [1]) 
were not yet characterized. Instead, these connections were being 
created as I noted which properties the connections seemed to have.  

4. Comparing one student’s use of different representations. Then, I com-
pared all the situations where a student used some representation to 
other situations where the same student used another representation. 
This allowed noticing some common and some distinct features 
among the representations that the student used. It was meaningful 
to speak about specific representations, and I grouped together the 
points where these were used. This grouping of the uses of the same 
representations in different situations allowed deepening the analysis 
of the representations. At this stage I also collected together each stu-
dent’s connections between representations. I noted, for example, 
that some connections seemed to be “stronger” than others. 

5. Comparing the use of one representation among the five students. After 
naming specific representations that each of the students used, I 
compared these representations among the students. Like above, 
some representations resembled each other so much that I grouped 
them in the same category. This again allowed deepening the analy-
sis. When comparing one student’s use of one representation to how 
other students used the same representation, I noted some new in-
stances. For example, some feature in the use of a representation may 
be more visible in some student than in others. However, after notic-
ing this feature it can also be seen in other students as the researcher 
has gained sensitivity to this feature. At this stage also the common 
and distinct characteristics in the students’ connections between rep-
resentations were clarified. I characterized the associative and the re-
flective connections. 

6. Comparing the students. Finally, I compared the students’ activities 
during the whole interview to each other’s activities. At this stage I 
compared how students used different representations in the whole 
interviews. This was an important stage because after the new find-
ings at the previous stages the interviews had to be viewed again in 
order not to lose the sense of the whole. At this stage I re-analyzed 
the connections between representations according to the characteri-
zations of the associative and the reflective connections. 

The comparisons between different representations of one student, between 
different students’ use of one representation and between different students’ 
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use of all his/her representations correspond to the constant comparison method 
of the grounded theory (Glaser & Strauss, 1967; Strauss & Corbin, 1990). 

As Goldin (2000) and Clement (2000) emphasize, in the analysis of 
interviews, there are two levels of interpretations made by the researcher: 
observations of students doing something and interpretations of these 
observations. The observations are more reliable than the interpretations. 
Quotes from interviews are presented, so that the reader may control the 
reliability of the observations and the interpretations. The quotes from 
transcripts in the articles [1]–[5] are translated from Finnish and some irrelevant 
expressions of the spoken language are left out because translating them would 
be my interpretation, and thus it would not increase reliability but, instead, 
confuse reader. Symbol “[...]“ in the students’ transcripts means that the text is 
snipped and “[ ]” that one word was not audible. In this study there is also a 
third level of interpretations. This consists of hypotheses of how different 
representations could be used in learning the derivative. These are based on 
interpretations at the second level.  In the next section the rationale for making 
these hypotheses are discussed.  

7.4 Constructing a hypothetical learning path to the derivative 

As an answer to the third research question, I construct a hypothetical learn-
ing path to the derivative that describes how a student could learn the deriva-
tive concept by working with different representations (the article [5]). For con-
structing the learning path, I apply the rationale of educational reconstruction 
(Duit & al., 1997; Duit & Komorek, 1997; Kattmann & al., 1998) developed in 
science education. In this methodology, researchers relate the three compo-
nents: analysis of the scientific content, empirical investigations of students’ perspec-
tives and construction of instruction. The content analysis aims at detecting the 
interconnected set of core ideas of the content from the perspective of key aims 
of education (Duit & al., 1997). Empirical investigations focus on the structure 
and quality of students’ conceptions instead of quantities (Kattmann & al.,1998). 
According to Kattmann et al. (1998), in constructing the instruction the re-
searchers should, for example, evaluate the most relevant elements of the stu-
dents’ conceptions to be respected and the opportunities that are opened by cer-
tain elements of students’ conceptions.  

Many factors in these components correspond to those of Simon’s (1995) 
model of factors influencing a mathematics teacher’s construction of a hypotheti-
cal learning trajectory which consists of the teacher’s learning goal, plan for 
learning activities and hypotheses of learning processes. In Simon’s model, the 
factors are the teacher’s knowledge of mathematics, knowledge of mathematical 
activities and representations, hypothesis of students’ knowledge, theories 
about mathematics learning and teaching, knowledge of students’ learning of 
particular content and continuous assessment of students’ knowledge during 
the instruction. Simon’s model describes the teacher’s making of hypotheses, 
but this model can also be used to guide research. Combining the model with 
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educational reconstruction helps to account different factors for the construc-
tion of the hypothetical learning path. Moreover, constructing the hypothetical 
learning path through educational reconstruction should help teachers to con-
struct hypothetical learning trajectories1 which are based on the explicit consid-
eration of the mentioned factors. Particularly, one aim in constructing the learn-
ing path is to encourage teachers to consider alternative trajectories to those 
supported by textbooks. 

This study applies the ideas of educational reconstruction and a hypotheti-
cal learning trajectory for constructing the hypothetical learning path to the de-
rivative in the following way.  

1. Theoretical analysis. First, I analyzed the structure of the derivative 
concept (section 3), studies of learning the derivative (section 4), and 
theories about mathematical learning (section 5) in relation to each 
other.  

2. Designing and implementing the teaching-learning sequence. I designed 
and implemented a five-hour teaching-learning sequence introduc-
ing the derivate according to the theoretical analysis (section 6).  

3. Collecting and analyzing data. After the teaching-learning sequence, I 
collected empirical data by interviewing five students on how they 
used different representations in solving problems about the deriva-
tive (section 8).  

4. Constructing the hypothetical learning path. I constructed the hypo-
thetical learning path on the basis of the micro-level analysis of the 
data in relation to the theoretical analysis (the article [5]). 

From a researcher’s perspective, a critical question is how the proposed 
learning path is validated. In section 4.1, some approaches which have been 
used to validate hypothetical learning paths, teaching-learning sequences or 
some similar constructs were reviewed. One such approach is conducting a 
teaching experiment, testing the students’ learning outcomes and comparing 
these to the outcomes of a control group (Repo, 1996; Asiala & al., 1997; Heid, 
1988). Another approach is to collect and analyze data to find out how an ini-
tially designed teaching-learning sequence (or learning path) could be im-
proved. Such approaches are, for example, design research (Edelson, 2002), design 
experiment (Cobb & al., 2003) and didactical engineering (Artigue, 2005).  Also the 
rationale of educational reconstruction as applied in this study belongs to this 
category. The main similarity to design research is that the initial learning path, 
which is based on theoretical analysis, is revised on the basis of empirical data. 
According to Cobb et al. (2003) and Edelson (2002), developing a domain-
specific theory is one aim of design research. Thus, another similarity is that I 
am constructing a local framework of how students could learn the derivative 

                                                 
 

1 I use the phrase “hypothetical learning path” to signify the construct which resulted from this 
study. The phrase “hypothetical learning trajectory” is used in the sense of Simon (1995) to sig-
nify the teacher’s hypotheses of the way how students might learn the concept. 
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using particular representations. Moreover, nor does this study aim to show the 
effectiveness of teaching1. Instead, it makes an effort for finding effective tools 
that students may use for thinking about the derivative.  

A difference to design research studies (e.g., Doorman, 2005; Artigue, 2005) 
is that the learning path constructed in this study does not include practical in-
structional preferences but students’ constructions. In this study, the aim is to 
find micro-level information on individual students’ use of representations, and 
on the basis of this, to hypothesize how these representations could be used in 
learning the derivative. Thus, the hypothetical learning path does not include 
research-based information on how the activities in the classroom should be ar-
ranged. The design for the activities is left to teachers who want to support stu-
dents’ use of representations as suggested by the learning path. The aim at mi-
cro-level information on individuals was also a reason for collecting data 
through task-based interviews, as this aim was thought to be difficult to achieve 
by analyzing classroom episodes. Thus, this study has also similarities with 
APOS studies (Asiala & al., 1997; Cottrill & al., 1996; Asiala & al., 1996; Breiden-
bach & al., 1992; Dubinsky & McDonald, 2001), as the initial hypothetical learn-
ing path or genetic decomposition is revised on the basis of the analysis of the 
interview data. Another similarity is that the genetic decomposition as well as 
the hypothetical learning path do not include information on how the activities 
in the classroom should be arranged. A difference to the APOS studies is that 
the design of the hypothetical learning path and the analysis of data is not tied 
to the APOS theory. Unlike in the APOS studies, I do not intend to analyze 
whether students have made some proposed constructions. Instead, I try to ana-
lyze the characteristics of students’ use of representations in an open way and, 
on the basis of this, hypothesize how these could be used in learning the deriva-
tive. Thus, the hypothetical learning path is also very different from frame-
works for understanding the derivative (cf. Zandieh, 2000; Santos & Thomas, 
2003; Kendal & Stacey, 2000) because it does not describe what the students 
should know. Instead, the learning path is a kind of a local framework of how 
students could learn the derivative using particular representations. 

 

                                                 
 

1 Some studies (e.g., Leppäaho, in press; Viiri, 2004) have combined the two approaches in that a 
teaching-learning sequence is constructed through design research or educational reconstruc-
tion but the effectiveness of the sequence is also tested using pre-test/post-test procedures. 
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8 SUMMARY OF THE RESULTS 

In this section the results presented in the articles [1]–[5] are summarized. 
Only some quotes from the transcripts are presented for illustration. The reli-
ability of the observations and interpretations should be evaluated on the basis 
of the original publications which are more detailed.  

8.1 Limiting processes in the derivative 

The analysis of the students’ use of limiting processes inherent in the de-
rivative focused on their use of the limit of the difference quotient, on their use 
of other limiting processes and on how they make connections between these. 
These results are presented in the articles [1] and [2]. Corresponding to the task 
design of the interviews, the most important tasks for this section are Tasks 3 
and 4. 

I found that only Samuel and Tommi used the limit of the difference quo-
tient fluently to calculate the value of the derivative at a point. Niina and Daniel 
tried to remember the formula but could not even get started in using it. 
Susanna used the limit of the function to calculate the derivative when, appar-
ently, she meant to use the limit of the difference quotient. In terms of the APOS 
theory it could be said that Niina, Susanna and Daniel were at the action level 
and Tommi and Samuel were at the process level. Accordingly, Tommi and 
Samuel demonstrated good procedural knowledge of the limit of the difference 
quotient, while Niina, Susanna and Daniel demonstrated poor procedural 
knowledge. For example, Samuel started to calculate the derivative in Task 3 as 
“ )1()22()1())1()(()( −−=−−= xxfxfxDf x ” and described the procedure as: 

Now you can’t substitute one here (points to x at numerator and denomina-
tor), because it would be zero here. [...] You should find some common 
factor from there (points to numerator). [...] If you could find a common 
factor from here and the other factor would be x minus one, then you 
could cancel out. [...] Then you would substitute one to what’s left. 

Samuel’s notation was insufficient, but he described the procedure cor-
rectly. Actually, in the successful use of the procedure the notation 

1
lim
→x

 symbol-
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izes only that 1 is substituted to x after the expression is manipulated to an ap-
propriate form. Therefore, it is really not needed in the procedure. If the nota-
tion 

1
lim
→x

 means some kind of limiting, then some other limiting process than the 

procedure is considered. 
All the students used also some other limiting process besides the limit of 

the difference quotient but not all of them connected these. Niina used zooming 
in the graph to explain in Task 2 why the derivative is zero at the top of the 
graph of a function if there is not a sharp corner. In Task 5a she first thought 
that the vertical axis is the distance and suggested taking the average velocity 
over a small interval to estimate the instant velocity. Susanna used secants ap-
proaching the tangent in Task 3 to estimate the derivative. She did this graphi-
cally by adjusting secant lines to the graph and concluded that this would not 
be a more accurate estimation than the slope of a tangent line. Thus, she did not 
notice that the slope of the secant could have been determined exactly using the 
expression of the function. Tommi used the idea of the average rate of change 
over a diminishing interval in Task 3 and 4. However, in Task 3 he was not able 
to evaluate the derivative by this method. Also in Task 4 he had constructed an 
incorrect correspondence between the given quotient and the average rate of 
change. Daniel used secants approaching the tangent in Task 4a to interpret 
what the quotient means: 

Let h be also one. [...] Then here h would be the distance (points to x-axis 
at [1, 2]). [Pause.] From that value (points to the graph at 2) we subtract 
that value (points to the graph at 1), so it would be this interval, differ-
ence of these values (points to y-axis at [1.2, 3.2]). So that divided by the 
lower part (points to x-axis at [1, 2]). How does this go? I assumed that 
this would, of course, be connected to this kind of line (sketches the corre-
sponding secant in the air). Oh yeah, is this then? What’s the difference 
quotient? This could be quite close to the difference quotient (sketches 
the secant). This defines also the tangent. I’m not quite sure, don’t re-
member if the formula of the difference quotient was just like this. If it 
was it, then it would be the slope of that line (sketches to the secant). Yes, 
it comes from here, too. This distance (points to the y-axis at [1.2, 3.2]) di-
vided by this (points to x-axis at [1, 2]). [...] (Draws the secant.) So it would 
be the slope of that line, that’s like, how to say it, average derivative at 
that interval. 

In Task 4b he interpreted what the limit of the quotient means: 

What does the limit mean? When h tends to zero. Obviously the deriva-
tive at the point one (points to the x-axis at 1) is wanted here. Because h is 
this distance and if h tends to zero, so h would be zero here (points to the 
graph at 1). So it would be to this point, you would get the tangent here 
(draws the tangent), which slope would come out from that formula 
(points to the formula in the task). So you would get the derivative at that 
point. 
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Samuel used difference quotients over diminishing intervals in Task 3 to es-
timate the value of the derivative and explained these with corresponding se-
cants converting to the tangent (Fig. 7). He used these limiting representations 
also in Task 4 to interpret what the quotient and its limit mean. In terms of the 
APOS theory, only Daniel and Samuel seemed to have interiorized the limiting 
as a process. The other students seemed to be at the action level.  

 

 

Figure 7. Samuel’s solution to Task 3. 

The students used various limiting processes but they also connected these 
in different ways to the limit of the difference quotient. Niina used the limiting 
process for thinking about the derivative but did this separately of the limit of 
the difference quotient. Tommi and Susanna changed between using the limit 
of the difference quotient and a limiting process. This connection was named an 
associative connection (the article [1]). Daniel and Samuel even used the limit-
ing process and the limit of the difference quotient to explain each other. This 
connection was named a reflective connection (the article [1]). The associative 
and the reflective connections were taken as means to evaluate the conceptual 
knowledge of the limit of the difference quotient used by the students. Daniel 
and Samuel demonstrated good conceptual knowledge by making reflective 
connections. Instead, Tommi and Susanna did not demonstrate so good concep-
tual knowledge as they made associative connections. Also Niina was consid-
ered to demonstrate some conceptual knowledge as she used limiting processes 
although she did not make a connection from these to the limit of the difference 
quotient. 

8.2 Perceiving the derivative 

In this section results concerning the students’ perceptual activity in the 
embodied world are presented. Corresponding to the task design of the inter-
views, the most important tasks for this section are Tasks 2, 3 and 5. First, I 
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summarize the students’ main findings in these tasks. Then, as a more impor-
tant part of the study, I analyze how they used different representations in their 
reasoning. A more detailed presentation of the results of this section can be 
found in the articles [3]–[5]. 

The students’ achievements in the embodied world 

In Task 2 all the students perceived the intervals when the derivative is 
positive, negative and constant. They also perceived the zero points and the 
maximum point of the derivative. They all, except Susanna, argued that the de-
rivative does not exist at the point 2. Also Susanna considered the point as 
problematic but continued to estimate the derivative with inappropriate meth-
ods. Susanna and Niina determined the minimum point of the derivative incor-
rectly. Instead, Daniel, Tommi and Samuel determined also the minimum point 
of the derivative correctly. Daniel even observed where the derivative increases 
and where it decreases. Susanna, on the contrary, confused the increase of the 
derivative to the increase of the function. 

In Task 5 they all, except Susanna, drew appropriate time–distance-graphs 
of the car from the time–velocity-graph (Fig. 8). Samuel, Tommi and Daniel also 
drew appropriate time–acceleration-graphs (Fig. 9).  
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Figure 8. The distance-time graphs produced by the students’ in Task 5c. 

Susanna 

Daniel  Niina 

Samuel  Tommi 
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Figure 9. The acceleration-time graphs produced by the students’ in Task 5f. 

Also in Task 3 the students used some estimation methods that included 
perceiving the derivative from the graph. Samuel’s solution is already pre-
sented in Figure 7. He was the only student who sketched the graph only very 
roughly. The other students calculated some points of the graph and fitted the 
curve to these. Daniel did not draw anything on the paper but obviously 
sketched the graph mentally. After sketching the graph, Susanna and Tommi 
drew a tangent to the point in question and calculated its slope. Also Niina 
mentioned that the derivative could be estimated by calculating the slope of the 
tangent as she did in Task 1. However, she did not do that because she was un-
certain. Daniel estimated the value of the derivative by imagining the shape of 
the graph, calculating the derivative over an interval and by imagining the ten-
dency of decrease of the graph. 

The representations used by the students 

For the mentioned observations the students used representations of the in-
crease, steepness, horizontalness, and tangent of the graph of a function. They 
also used some related gestures.  

All the five students used the increase of the graph as a representation of 
the derivative. Using this representation means that a student uses increas-
ing/decreasing or rising/going down of the graph of a function for thinking 
about the derivative. The increase seemed to be a tool to perceive how a func-
tion changes at some interval. For example, a sign of the derivative could be ob-

Daniel 

Samuel  Tommi 
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served using the increase representation. Daniel, Tommi, Susanna and Niina 
used the increase to perceive the sign of the derivative from the graph of the 
function correctly in Task 2. In Task 5 all the students, including Samuel, exam-
ined the increase of the velocity to investigate the distance or used to the veloc-
ity to make inferences about increase of the distance. At many points the in-
crease representation was accompanied by a gesture of tracing the graph or 
moving a hand in the air up or down. A thorough discussion on these gestures 
can be found in the article [3]. Susanna and Daniel used increase also in Task 3. 
Susanna used it to convince herself that she had calculated the derivative incor-
rectly. Daniel used the derivative over an interval (average rate of change), the 
shape of the imagined graph, and the tendency of decrease for his estimation: 

Because it is a kind of half of a parabola, if I imagined it correctly. The 
value at the point 1 was 2 and at the point 2 it would be 4, then at that 
interval the derivative would be something, it would be 2 at that inter-
val. Yes, it would be like a half of a parabola. If we then assume that it 
would continue to decrease in the same way also after the 2 power 1, 
then it would be, it would be about slightly above 1. 

The use of the steepness representation means that a student refers to the 
steepness of the graph of a function when considering the derivative of the 
function. All the students, except Tommi, were noticed to use the steepness of 
the graph for thinking about the magnitude of the change of the function. The 
students seemed to use steepness together with increase. This may be natural as 
increase seemed to represent how the values change and steepness represented 
the magnitude of the change. As increase is a property of an interval, steepness 
is a pointwise characteristic. Thus, it is a good tool, for example, to perceive the 
maximum and minimum points of the derivative. For example, Susanna used 
increase and steepness in Task 2: 

Interviewer: When would the derivative be positive in general at the whole 
graph and when negative? 

Susanna: It would be positive approximately from here to somewhere 
there (points to the graph at -2.6 and -1.5), when the graph rises 
upward (moves the pencil upward). And then from somewhere 
here to there (points to the graph at 0.8 and 2). [...] Negative from 
somewhere here to about there (points to the graph at -1.5 and 
0.8). And from that on (points to the x-axis from 2 to 4). [...]  

Interviewer: Could it be said when the derivative is at its greatest and when 
at its smallest? 

Susanna: At its greatest it is when the graph rises most steepest upward 
(moves the pencil upward). It could be (puts the pencil as a tangent 
to the graph at points -3 and 1.9, see Fig. 10). Hmm. Somewhere 
there (points to the graph at [-3, -2.6]). Or here (points to the graph 
at 1.9).  
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Figure 10. Susanna places the pencil as a tangent to the graph at the point x = 1.9 in 
Task 2. 

All the students used also the horizontalness of a graph for thinking about 
the derivative. This means that a student refers to a graph being horizontal, uni-
form or something similar. Horizontalness seemed to be closely connected to 
the extreme values of a function and to the zero points of the derivative. As in-
crease and steepness, also horizontalness was related to a change of the values 
of a function. It seemed to be an especially good tool for perceiving when the 
values are not changing. Moreover, the students seemed to regard it as a point-
wise property. All the students, except Tommi, made also a gesture of drawing 
a horizontal line in the air when referring to the horizontalness. For example, 
Niina imagined magnifying the graph in Task 2 to explain why the derivative is 
zero at the point 0.9 but not at the point 2: 

If you would zoom in on here (points to the graph at x = 0.9), for example, 
it would be straight for a while (draws a line with a finger), but not there 
(points to the graph at x = 2). 

The students used the tangent in two ways. They calculated the slope of a 
drawn tangent and they perceived the tangent as such. Samuel is a good exam-
ple, how these are really two different ways to use the tangent. In Task 2 Sam-
uel seemed to see the magnitude of the derivative directly from the position of 
the tangent:  

Samuel:  Because the tangent is. Here it goes like this (moves a ruler as a 
tangent along the graph from -3 to -1.5), here it is still positive 
(holds the ruler as a tangent at -2 and pretends to draw a line), but 
when it is here, it is horizontal (holds the ruler as a tangent at -1.5 
and pretends to draw a line). [...] And then it is zero. [...] From two 
to four the derivative is constant. 

Interviewer:  On what grounds would it be constant? Or why? 
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Samuel:  If this would be. If you took a tangent, for instance, there (points 
to the graph at a point 2.4 with a pencil and puts the ruler as a tan-
gent there) [...] and there (holds the ruler in the same position, but 
moves the pencil to a point 3.6), so it would be still the same. 

Also in Task 3 and Task 4 Samuel used the tangent to represent the “correct 
derivative” as secants were approaching it. Contrary to this efficient tool to 
think with, Samuel did not use the algorithm xy ∆∆  to calculate the slope of the 
tangent at the interview nor at the pre-test. For the other students the slope of a 
tangent offered an easy way to estimate the value of the derivative. Tommi 
even noticed in Task 5d that the value he calculated for the slope did not corre-
spond to the drawn tangent. The tangent as such could be used in the same 
manner as steepness to perceive the magnitude of the derivative without calcu-
lation. Another similarity is the use of gestures. Both of these representations 
were accompanied by a similar gesture: placing a pencil or a ruler tangent-like 
to a graph (Fig. 10). 

8.3 Hypothetical learning path to the derivative 

On the basis of the analysis of the students’ use of different kinds of repre-
sentations, it was considered how these representations could be used in the 
learning of the derivative. These considerations and the resulting hypothetical 
learning path to the derivative are presented in the article [5]. In this section the 
hypothetical learning path is reviewed shortly. Figure 11 represents the over-
view of the hypothetical learning path. 

 

 

Figure 11. The learning path to the derivative (the article [5]). 
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The learning of the derivative could start from examining the motion, espe-
cially the average and the instant velocity. We can assume that students are 
usually able to consider some aspects of the instant velocity qualitatively. For 
example, they can notice when the velocity of a moving object is great and 
when small. At first, the students could work in the embodied world to learn to 
consider qualitatively the rate of change of a function from the graph of the 
function. Distance-time functions may help them to activate their past experi-
ences. From the velocity as a special case of the rate of change, they could pro-
ceed to examine how the values of a function are changing. The representations 
discussed in the preceding section may help them to perceive the velocity or the 
rate of change qualitatively. The students could also calculate the average rate 
of change by different representations, for example, as the slope of the secant, 
by a change in values divided by a change in parameter, or by the difference 
quotient. At this point the students have worked in the embodied and in the 
symbolic worlds and become familiar with the instant rate of change. They have 
hopefully constructed many representations. Combining these worlds, students 
may begin to examine how to estimate the value of the instant rate of change. 
Solving this problem would give reason to define a new concept, the derivative.  

In this way, the students have already learnt important properties of the de-
rivative at the very beginning of the learning process of the derivative. The 
most important applications of the derivative in high school are examining the 
increase and the extreme values of a function and determining the slope of the 
tangent and the rate of change. The interviewed students had already made a 
connection between these properties of a function and its derivative. So the stu-
dents following this path would have a good readiness for investigating related 
topics and for deepening their understanding.  
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9 CONCLUSIONS AND DISCUSSION 

In this section the main conclusions of the study are presented. Conclusions 
are accompanied by discussions of them and related results. 

Conclusion 1: Embodied world offered powerful thinking tools for the students 

The above-discussed increase, steepness, horizontalness and tangent repre-
sentations seemed to be those tools that the students used for thinking about 
the derivative qualitatively without calculating anything. Students used these 
tools literally for thinking and not just for carrying out algorithms. For example, 
the article [3] presents how Susanna used the differentiation rule incorrectly to 
solve Task 3 but noticed the mistake by considering the horizontalness and in-
crease of the graph. Similarly, in Task 5b she perceived how the distance is 
changing but in Task 5c abandoned these perceptions and produced a contra-
dictory graph using a symbolic formula. In the embodied world, Susanna, as 
well as the other students, had good readiness for reasoning. This is clearly il-
lustrated by their observations of the derivative in Task 2 and their reasoning 
about the distance and acceleration in Task 5. Daniel made even observations of 
the change of the derivative in Task 2 (see the article [4]). Therefore, this study 
supports Tall’s (2003, 2004a, 2004b, 2005) claim that working in the embodied 
world should not be underestimated even in the case of the concepts of ad-
vanced mathematics. Also many other studies support this claim in the case of 
the derivative concept (Berry & Nyman, 2003; Speiser & al., 2003; Repo, 1996; 
Heid, 1988). Some studies have shown how students may construct ideas re-
lated to calculus even before high school (Schorr, 2003; Wright, 2001; Radford & 
al., 2003). 

The representation concept had to be re-characterized to better fit the ideas 
of constructivism and distributed cognition. The small adjustments of the con-
cept seem to be simple and even trivial after the re-characterization was done. 
Still, that was an important step (and in no way simple) for the study and 
helped to characterize students’ activity better. Particularly, the re-characterized 
representation concept fits better to the consideration of the embodied world. 
Especially, in the embodied world, it became clear that a representation has 
usually something visible and something invisible. Gestures were noticed to be 
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an important visible part of the students’ thinking. They were not just external 
representations of the students’ ideas but they were an integral part of the idea. 
An extensive discussion on the role of gestures in reasoning is presented in the 
articles [3] and [4]. This study supports arguments that gestures are important 
for thinking and part of expressing, communicating and reorganizing one’s 
thinking (McNeill, 1992; Radford & al., 2003; Rasmussen & al., 2004; Roth & 
Welzel, 2001; Moschkovich, 1996). For an advanced learner in mathematics, 
these gestures may seem meaningless or useless. I emphasize that they may 
seem useless, but in grasping a novel concept they may have a great role also to 
a mathematician. For example, Rasmussen et al. (2004) reported on the role of 
gestures in learning differential equations. For the students of this study the 
gestures were of great help and helped to focus attention on particular aspects, 
such as increase and steepness. Actually, as said before, the gestures did not just 
help but they were an integral part of the students’ thinking. As in the study of 
Roth and Welzel (2001), the gestures seemed to help to make an abstract con-
cept visible and concrete. 

Of course, there were also other external sides than the gestures. For exam-
ple, the students’ utterances and the inscriptions were external sides of the rep-
resentations. It is noteworthy that all the inferences of the students’ representa-
tions were based on the visible external sides. For the purpose of any study, 
representations which do not have any external side are useless because we 
cannot get any information about them. When an indication of some represen-
tation is detected, there has to be also something which is not visible. These in-
ternal sides of representations are important for the use of external sides. As 
Meira (1998) has pointed out, the expert-designed powerful external representa-
tions are not necessarily powerful for a student. For example, the article [3] re-
ports how Susanna had difficulties in perceiving the minimum point of the de-
rivative although she used a “good” external side of a representation. To use a 
representation effectively, the external side of the representation has to be coor-
dinated with an appropriate internal side. The use of a representation is neither 
internal nor external but more like an interplay between these two sides. 

Conclusion 2: The students considered the derivative as an object at the early stage of 
the learning process 

It seems that the students considered the derivative as an object which has 
some properties, such as sign and magnitude. This happened at the very early 
stage of their learning of the derivative. Moreover, this was the case with all the 
students, with the successful and the less successful ones. This result suggests 
that theories like the APOS theory (Asiala & al., 1997) and the reification theory 
(Sfard, 1991), which propose that learning proceeds from process conception to 
object conception, do not take into account this very meaningful alternative. Be-
cause the students seemed to consider the derivative as an object especially in 
the embodied world, this result fits to the claim of Gray and Tall (2001) and to 
Tall’s (2003, 2004a, 2004b, 2005) evolving theory of three worlds of mathematics. 
Gray and Tall (2001) have claimed that students do not necessarily learn 
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mathematics by performing actions on some object and then constructing a new 
object from these actions. According to Gray and Tall, students may also learn 
by acting with the object and learn its properties. This seemed to happen to the 
students of this study. They acted with the derivative in the embodied world 
and learnt it properties. Therefore, this object is different from the object which 
is encapsulated or reified.  

It should be noted that in this study, the derivative as an object does not re-
fer to the derivative as a function as it is sometimes assumed. At this stage the 
students considered the derivative at a point. However, they considered the de-
rivative at many points, and Daniel even observed how the derivative varied in 
coordination with the variable. Therefore, they also started to move towards 
conceiving the derivative as a function.  

According to Sfard (1991, 1992) and Sfard and Linchevsky (1994), one excep-
tion to the reification theory is pseudo-structural conception. This means that a 
concept is treated like an object, but this object does not have an internal struc-
ture, that is, it is not reified from a process. It may be true that the students of 
this study did not learn the derivative in the embodied world through reifica-
tion. However, it is not true that the derivative did not have an internal struc-
ture. The structure is just not being built in the form of processes but as acting 
with the derivative. Moreover, if the derivative were acquired only through rei-
fication, there would be a danger that students would not succeed in reification 
and would learn the derivative only as a pseudo-structural object which is cal-
culated according to the differentiation rules. If students have an opportunity to 
learn the derivative also in the embodied world, the derivative will have some 
internal structure even if reification fails. Even if the students accept the differ-
entiation rules as such, they can use these rules and their knowledge in the em-
bodied world, for example, to find out the extreme values of a function (with-
out being given an algorithm for this). 

Conclusion 3: Learning in the embodied world may be described by the increasing 
transparency of representations 

In the article [3] it was found that Susanna perceived some aspects of the 
derivative but seemed to focus on the graph as a physical object. For example, 
she noticed such things as the graph going upward and the steepness of the 
graph. She also used physical objects (e.g., a pencil) to see these aspects and had 
problems with the minimum point of the derivative in Task 2. Susanna did not 
seem to use her representations of increase, steepness and horizontalness very 
transparently, because she focused more on these tools than on the derivative 
which can be seen through them. These representations seemed to be aspects 
that Susanna could recognize in the graph. According to Noble et al. (2004), the 
experiences of recognizing something familiar in the picture may cause a per-
son to see the picture in a new way. Susanna may still be on her way toward 
seeing the graph of a function as a representation of the derivative.  

In the article [4] it was found that Daniel seemed to see the derivative trans-
parently through the representations. He even perceived how the rate of change 
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of the derivative was changing. This required perceiving aspects that expect a 
more disciplined way of seeing because in the teaching-learning sequence, no 
methods (e.g., curvature) were discussed to see when the derivative is increas-
ing and when decreasing. Daniel also perceived estimation for the value of the 
derivative in Task 3 without using any physical materials.  

Therefore, the students seemed to be at different levels concerning the trans-
parency of the representations of the embodied world. The transparency con-
cept seems to offer meaningful conceptualization for learning in the embodied 
world. This was one of the theoretical problems faced in the study. Learning in 
the symbolic world is described clearly and straightforwardly in Tall’s (2003, 
2004a, 2004b, 2005) theory in the same way as in the APOS theory. However, 
the same kind of development is not possible in the embodied world, and it was 
not very clear how to describe the differences among the students. Tall (2005), 
proposes that students may learn in the embodied world by shifting their focus 
from actions to the effects of those actions. This bears some resemblance to the 
transparency concept as discussed in section 5.5. One of the achievements of 
this study was finding a way to describe learning in the embodied world using 
the transparency concept. 

Conclusion 4: The students used various representations of the limiting process and 
made associative and reflective connections from these to the limit of the difference quo-
tient 

The students used various different limiting processes when considering the 
derivative and connected them in different ways to the limit of the difference 
quotient. In the article [1] the following four options for the students’ concep-
tual knowledge of the limit of the difference quotient were presented: 

1. A student does not use any idea where limiting is explicitly involved 
when considering the derivative. 

2. A student uses an idea of limiting when considering the derivative. 
3. A student uses an idea of limiting and associates it with the limit of the 

difference quotient. 
4. A student uses an idea of limiting together with the limit of the differ-

ence quotient and uses one to explain the other. 
The options 3 and 4 correspond to associative and reflective connections. 

Susanna and Tommi demonstrated option 3. It seems that such a connection 
means that students know that two representations represent or can be used for 
thinking about the same thing. This kind of connection does not mean that they 
necessarily understand why it is so. Instead, the reflective connection demon-
strated by Daniel and Samuel means that the students also, at some level, un-
derstand why the representations can be used for thinking about the same 
thing. 

These connections were noticed during the data analysis. They enabled ana-
lyzing students’ dynamic solution drives from their point of view instead of 
testing whether they were able to make some specific connection. This focus in-
dicates a shift from viewing connections as static structures toward viewing 



 
 

80

them as dynamic constructs in students’ drive along knowledge networks. This 
corresponds to the dynamic feature of conceptual knowledge that Haapasalo 
and Kadijevich (2000) highlight in their definition of conceptual knowledge. Af-
terwards, the characterizations of associative and reflective connections were 
compared to those found in the literature (see section 5.3).  

It is well documented that students have difficulties to understand the limit-
ing process inherent in the derivative (Orton, 1983; Heid, 1988; Tall, 1992, 1991; 
Tall & Vinner, 1981; Repo, 1996; Zandieh, 2000). In this study, it was found that 
the students used good ideas of limiting processes. The difficulty seemed to be 
in the structure of the representations of limiting and in their connections to for-
mal mathematics. There should also be some other limiting process than the no-
tation 

ax→
lim . Along the lines of Cottrill et al. (1996), the limiting process should be 

a coordination of two processes. For example, in Task 3 Samuel coordinated “x 
approaching 1” and “difference quotients over corresponding intervals ap-
proaching the derivative”. Using the limit of the difference quotient does not 
necessarily include limiting, however skilfully it is done. If other limiting proc-
esses are not discussed in the instruction, the representations of the embodied 
world may stay detached from the symbolic world. A good example of how 
even at the university level a student may use the detached embodied world 
misleadingly is presented in Viholainen (2006). According to his analysis an al-
most qualified mathematics teacher used the tangent inappropriately to con-
clude that the discontinuous function is differentiable. Another university stu-
dent came to the same conclusion by using the limit of the difference quotient 
inadequately (ibid.). Therefore, it is important to emphasize the various limiting 
processes in teaching from the beginning, as limiting processes may serve as a 
bridge between the embodied and the symbolic world. 

Conclusion 5: It is possible to use conceptual knowledge of the limit of the difference 
quotient without being able to carry out the procedure 

One interesting result earns its place for a separate discussion. This issue 
concerns the students’ procedural and conceptual knowledge of the limit of the 
difference quotient. The limit of the difference quotient is the most important 
symbolic representation at this stage. Therefore, the students’ procedural and 
conceptual knowledge of this notion was analyzed thoroughly. It was found 
that Susanna, Niina and Daniel had difficulties in using procedural knowledge, 
while Tommi and Samuel used it fluently. On the other hand, Daniel and Sam-
uel used conceptual knowledge efficiently. The other students did not demon-
strate so efficient conceptual knowledge as they did.  

The interesting result is that Daniel used conceptual knowledge efficiently 
but had difficulties with the procedural knowledge. Tommi had it the other 
way around. Also the studies of Zandieh (2000), Repo (1996) and Orton (1983) 
have shown that students may have procedural fluency of using the limit of the 
difference quotient but still have difficulties with the conceptual knowledge of 
the limiting process. This is similar to Tommi’s case. However, Daniel’s case 
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shows that even at the beginning of the learning of the derivative, it is possible 
to use the conceptual knowledge of this notion without being able to use the al-
gorithm. Thus, if a student is not able to use some notion, it does not mean that 
he would not have knowledge of the underlying structure of the notion. 

Another similar case is that of Samuel. He used both the procedural and 
conceptual knowledge of the limit of the difference quotient efficiently. How-
ever, he was not able to use the procedural knowledge of the slope of the tan-
gent despite the fact that he used the tangent representation as part of his con-
ceptual knowledge. This is another example of how a student uses conceptual 
knowledge competently but something prevents him from using procedural 
knowledge of the same notion.  

Haapasalo and Kadijevich (2000) and Haapasalo (2003) have discussed 
whether it is necessary to have conceptual knowledge in order to have proce-
dural knowledge or vice versa. The results of this study suggest that neither is 
necessary. However, for learning to be meaningful, students should at some 
point attain both kind of knowledge and build connections between them, as 
Haapasalo (2003) has stated. Both Daniel and Samuel had difficulties in their 
problem solving as regards procedural knowledge. Still both of them had some-
thing that they could build their knowledge on. 

Conclusion 6: The hypothetical learning path to the derivative 

As one result of this study a hypothetical learning path to the derivative 
was constructed. The validity of the learning path is based on the detailed ana-
lysis of how the five students used representations at the interviews. These rep-
resentations could be used similarly by other students in other classrooms. 
Tests were not implemented to claim that teaching had been efficient. The stud-
ies of Repo (1996), Asiala et al. (1997) and Heid (1988) have already shown that 
it is possible to achieve good learning outcomes. However, from these studies it 
is difficult to say which factor of experimental teaching was beneficial for stu-
dents and why it was advantageous. This study answers these questions by fo-
cusing on a small number of students. It was found that the students’ uses of 
representations had certain characteristics and they used these representations 
for specific purposes. Being aware of these issues is important, as according to 
Davis and Maher (1997), a teacher has to recognize the representations that stu-
dents are using and to design them opportunities to further develop these rep-
resentations. In constructing the hypothetical learning path I have considered 
what opportunities are opened by certain elements of the students’ conceptions 
which is one principle in educational reconstruction (Kattmann & al., 1998). I 
believe that some other teacher could teach his/her class efficiently, taking into 
account the representations that are proposed by the hypothetical learning path. 
If this happens, then the practical aims of the study are fulfilled.  

The hypothetical learning path is in line with studies which have argued 
that the APOS theory suits well for designing the teaching of the derivative 
(Asiala & al., 1997; Repo, 1996). However, this study also suggests that acting 
with an object and making perceptions are a powerful stage in the learning of 
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the derivative. Thus, the study supports Tall’s (2003, 2004a, 2004b, 2005) evolv-
ing theory of the three worlds of mathematics. Particularly, it localizes Tall’s 
theory to the case of the derivative concept. In the symbolic world students 
learn the derivative as they interiorize actions of calculating average rates of 
change to a limiting process where the base interval of the average rate of 
change decreases. This process may be encapsulated to a procept which means 
that a student is able to think about the limiting process also as a resulting rate 
of change. At the same time students may perceive the derivative as an object in 
the embodied world. In this world students learn as the representations become 
transparent allowing seeing the derivative through the representations. 
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10 REFLECTIONS ON THE QUALITY OF THE STUDY  

In this section I reflect on the quality of the study. I will use the criteria pro-
vided by Sierpinska (1993): relevance, validity, objectivity, originality, rigor and 
precision, predictability, reproducibility, and relatedness. Also Kilpatrick’s 
(1993) discussion on these and Lincoln and Guba’s (1985) discussion on similar 
criteria is utilized. I supplement these criteria also with the criteria provided by 
Clement (2000). 

Relevance 

Sierpinska (1993) differentiates between the theoretical and pragmatic rele-
vance of a research. According to her, an educational research is theoretically 
relevant if it “broadens and deepens our understanding of the teaching and 
learning phenomena” (p. 38). A study is pragmatically relevant if it “has some 
positive impact on the practice of teaching” (p. 38). In the following, I cannot 
reflect on whether this study has actually caused such things to happen but I 
will reflect on whether it has potential to do so. 

This study is theoretically relevant as it contributes to the theoretical 
framework of how learners build mathematical concepts. In particular, it deep-
ens our understanding of how students may use different representations for 
thinking about the derivative. Particular indications of the theoretical relevance 
of the study are the re-characterization of the representation concept, the char-
acterizations of the associative and reflective connections, support to the evolv-
ing theory of the three worlds of mathematics, and suggesting that learning in 
the embodied world may be described using the transparency concept.  

The pragmatic relevance of the study resides on the hypothetical learning 
path to the derivative. I hope that some teachers could in their teaching take 
into account these ways how students may use different representations. Par-
ticularly, I hope that teachers will notice that students may build knowledge of 
the derivative before the definition of the derivative is introduced. The study 
aims at encouraging teachers to emphasize perceptual activity in their teaching. 
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Validity 

According to Kilpatrick (1993), validity refers to how we justify the interpre-
tations we make from the research. The criterion has a different meaning in the 
qualitative research paradigm (Ernest, 1997) from studies grounded in the posi-
tivistic tradition. Some authors have suggested replacing the term with viability 
(Clement, 2000) or with credibility and transferability (Lincoln & Guba, 1985). 
Synthesizing these views, considering validity means examining how plausible 
the claims are, what empirical support there exists for the claims, and how these 
claims are extended beyond the situation that was studied.  

Before beginning to consider these aspects of validity, it has to be noted that 
there are conclusions (see section 9). As Sierpinska (1993) indicated, we have to 
take a critical standpoint towards validity of (case) studies that describe in de-
tail students’ mathematical behaviour but do not actually make any conclu-
sions. This is not the case in this study, as I have made interpretations which are 
stronger than the observations of students’ behaviour.  

The claims made in this study are plausible because they have explanatory 
adequacy and internal coherence (Clement, 2000). This means that the interpre-
tations that I have made give a description of students’ thought processes that 
can be imagined to take place. The interpretations are also internally coherent in 
that, for example, there are no contradictory claims.  

In addition to the plausibility of claims, there also has to be empirical sup-
port for them. In this study, the interpretations of students’ use of representa-
tions are based on several observations of their behaviour at the interviews. It 
was also looked after that there were no deviations of the observed behaviour. 
According to Clement (2000), these are factors that have to be taken into ac-
count when considering the empirical support for the claims. The third factor, 
according to Clement, is evaluating the strength of the connection from inter-
pretation to each observation. The reader can evaluate this on the basis of the 
excerpts provided from the interviews. In addition to presenting excerpts, I 
have also explained how the data support the interpretation.  

Evaluating (external) validity includes also considering the generalizability 
of the findings. Also this concept depends on the paradigm. In this study, gen-
eralizability means that the students’ ways of using the representations serve as 
an illustrative example of how representations could be used for thinking about 
the derivative. Depending on the context, also other students could use the rep-
resentations similarly. As the analysis of the five students’ uses of representa-
tions is described in very detail, the readers may adapt these results into their 
context. 

Objectivity 

The paradigm of this study rejects the possibility of objective knowledge. 
However, this does not mean that every interpretation is acceptable. As Sierpin-
ska (1993) states, a researcher has to make effort towards “objectivity”. This 
does not mean total objectivity but the aim is to rule out obvious biases. Accord-
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ing to Lincoln and Guba (1985), the objectivity of knowledge means its con-
formability. In this study an effort towards objectivity is made by presenting a 
detailed account of the theoretical framework, aims of the study and methodol-
ogy. Thus, I have made explicit (for myself and for the reader) the background 
from which I made interpretations. Without this, implicit assumptions (of 
which neither the researcher nor the reader is aware) would had guided inter-
pretations. Being aware of one’s theories is a necessary condition for being in-
dependent enough of these theories. Clement (2000) emphasizes this kind of 
“objectivity”. This is also related to the openness of the research. One factor of 
openness that increases the objectivity of this research is that the study was pre-
sented in different phases instead of presenting only the final product. For ex-
ample, the first research plans (which were afterwards modified) were publicly 
presented for criticism and suggestions at national seminars. Also the (prelimi-
nary) results of the study were reported already during the first years of the 
study (e.g., Hähkiöniemi, 2004).   

Originality 

The originality of the study comes from a fresh question formulation in a 
well studied topic of learning and understanding the derivative. I did not try to 
confirm the results provided by the previous studies, for example, of Heid 
(1988), Repo (1996) and Asiala et al. (1997). Instead, I utilized the method of the 
task-based interview to gain qualitative information on a few students’ reason-
ing. Although the method of a task-based interview itself is not very original, I 
designed the interviews as well as the data analysis procedure specifically for 
this study. Instead of strictly following some well known analysis procedures, I 
created my own procedure by taking some aspects from the procedures pre-
sented in the literature. Also the theoretical framework is original as many 
theoretical perspectives are synthesized and reflected, and Tall’s (2004a) evolv-
ing theory of the three worlds of mathematics is a new theory which is con-
stantly developing.  

Rigor and precision 

According to Kilpatrick (1993), this criterion concerns the care taken in ob-
servations, the attention to detail and the willingness to test alternatives. Ac-
cording to him, the researcher has to show sensitivity to the meanings of the 
phenomenon, and he/she has to design and conduct the study carefully by an-
ticipating possible misinterpretations. To fulfil this criterion, the data collection 
and analysis were carefully designed as described in section 7. In the presenta-
tion of the results, the interpretations are tried to express clearly and differenti-
ate them from observations. Likewise, the theoretical terms used in the study 
are defined. The terms are not used to make simple things complex but to con-
struct explanations of complex phenomena. 
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Predictability 

According to the paradigm of this study, we cannot predict anything to 
happen under given conditions. Instead, this criterion is replaced by examining 
the generalizability of the findings of this study (see validity). The study aims to 
offer some possibilities that could happen but not to predict anything about 
what will happen under certain conditions. 

Reproducibility 

In this study the research setting and procedures are described to allow 
other researchers to conduct a similar study. According to the paradigm of this 
study, it does not make sense to try to achieve the same results by following the 
presented procedures. Instead, reproducibility means that the results of the 
study can be compared, clarified, extended and challenged by other studies that 
are conducted in a similar setting according to similar procedures. 

Relatedness 

This criterion is especially important as this thesis is submitted to the De-
partment of Mathematics and Statistics. According to Kilpatrick (1993) and Sier-
pinska (1993), a research in mathematics education should be related both to 
mathematics and to education. For example, proving a theorem is not research 
in mathematics education. In my opinion, neither are designs for mathematics 
courses which are based solely on the designer’s rational thinking of the mathe-
matical content.  Instead, a research in mathematics education should study the 
phenomenon of learning and/or teaching. However, studying only learning 
and/or teaching is not enough. Learning and/or teaching has to be especially 
related to mathematics. This means that the teaching/learning phenomenon 
could not have been researched, for example, in the context of history educa-
tion. Mathematics should not act only as a placeholder (Kilpatrick, 1993).  

Obviously, this study is related to education, as students’ use of different 
representations is studied using methods of educational research. From the stu-
dents’ use of representations, I do not only analyze, for example, whether the 
representations are pictorial, verbal, or symbolic. Instead, the analysis is closely 
related to mathematics. For example, I analyzed for which mathematical pur-
pose they used the representations. Also the conclusions concerning, for exam-
ple, process-object dualism, are related to a special kind of nature of mathe-
matical thinking. Conducting such a study as this would not be possible with-
out having considerable understanding of mathematics and practice in doing 
mathematics. Good practical criteria, which are filled by this study, for related-
ness are that the study should not be conductible by an educational researcher 
(without gaining considerable expertise in mathematics) nor by a mathemati-
cian (without gaining considerable expertise in education). 
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APPENDIX 1: Pre-test 

Differential calculus 1: Pre-test Name: 
The mark of the previous mathematics course: 

 
1. The figure represents the distance s (m) of a car from the starting point as a 

function of time t (s). 
a) What is the distance of the car from the 

starting point after 10 seconds from the 
start?  

b) When is the car furthest away from the 
starting point?  

c) What is the average velocity of the car at 
the time interval 5 s ... 10 s? 

d) At what time interval is the velocity of 
the car positive and at what interval 
negative? When is the velocity of the car 
zero? 

e) At what time interval is the velocity of 
the car constant? 

f) Determine the constant velocity in the subquestion e.  
g) What is the velocity of the car at the moment t = 8? Give a short argument. 
 

2. The figure represents the graph of the function 2)( 2 ++−= xxxf . 
a) Determine f(-0.5). 
b) What is the largest value that the function 

f takes?  
c) When are the values of the function f 

negative?  
d) Draw a tangent to the function f at the 

point x = 1. Determine the slope of the 
tangent.  

e) Draw a tangent to the function f that has 
the slope zero.  

f) How much do the values of the function f 
change from the point x = -0.5 to the point x = 1? 

 
3. a) Interpret from the figure what 

the quotient 
ab

afbf
−
− )()(  means. 

b) Interpret from the figure what 
happens to the quotient 

ab
afbf

−
− )()(  when the point b is 

displaced closer to the point a.  
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APPENDIX 2: Interview tasks 

The most important possibilities for follow-up questions are listed after each 
question. 

 
1. a) Explain in your own words what the derivative is. 

- What does the derivative mean in practice? 
- What is the derivative good for? For what can it be used? 
- How can the derivative be determined? 

b) The derivative of the function f at the point x = -5 is 3. What does this 
mean? 

 
2. The graph of a function f is given in the figure. What observations can 

you make about the derivative of the function f at different points? 
- Where is the derivative 

positive? 
- Where is the derivative 

negative? 
- Where is the derivative 

zero? 
- Is the derivative defined 

everywhere? 
- Where is the derivative 

constant? 
- Where is the derivative 

at its greatest and where 
at its smallest?  

 
 

3. Estimate as accurately as possible the value of the derivative of the func-
tion xxf 2)( =  at the point x = 1. 

- How can the exact value of the derivative be determined? 
 

4. a) Interpret from the figure what the quotient 
h

fhf )1()1( −+  means. 

- What does f(1) mean? 
- What does f(1 + h) mean? For exam-

ple, if h = 0.2? 
- What does 1 + h mean? 
- Give a graph where 1 + h, f(1 + h) and  

f(1) are marked.  
- How much does x change from the 

point 1 to 1 + h? 
- How much do the values of the func-

tion change?  
b) Interpret from the figure what the 

limit 
h

fhf
h

)1()1(lim
0

−+

→

 means. 

y = 
f(x) 
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y = f(x) 
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c) Estimate the value of the limit 
h

fhf
h

)1()1(lim
0

−+

→

. 

 
5. A car starts at the time t = 0 from the starting point. The figure represents 

the velocity v (m/s) of the car as a function of time t (s). 
a)  What is the velocity of the car at the point t = 7? 

- Read the task carefully. 
b)  When does the distance travelled by the car increase and when does 

it decrease? 
- What happens to the car when the distance decreases? What hap-

pens to the velocity? 
c)  Sketch the graph of the distance travelled s (m) by the car as a func-

tion of time t (s) in the given (t, s)-coordinates. 
- When is the distance at its greatest? 

d)  What is the average acceleration of the car at the interval 2s - 7s? 
- What does acceleration mean? 

e)  What is the acceleration of the car at the point t = 7s? 
f)  Sketch the graph of the acceleration a (m/s2) of the car as a function 

of time t (s) in the given (t, a)-coordinates. 
- When is the acceleration zero? 
- How much is the acceleration at the beginning? How does it 

change? 
- When is the acceleration positive and when negative? 
- When does the acceleration increase and when decrease? 

5 10 15 20 25
t
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10
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APPENDIX 3: The included articles 

The articles are included only to the printed thesis.  
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